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Abstract — BISON is a nuclear fuel performance application built using the Multiphysics Object-Oriented Simulation 
Environment (MOOSE) finite element library. One of its major goals is to have a great amount of flexibility in how it is 
used, including in the types of fuel it can analyze, the geometry of the fuel being modeled, the modeling approach 
employed, and the dimensionality and size of the models. Fuel forms that can be modeled include standard light water 
reactor fuel, emerging light water reactor fuels, tri-structural isotropic fuel particles, and metallic fuels. BISON is 
a platform for research in nuclear fuel performance modeling while simultaneously serving as a tool for the analysis of 
nuclear fuel designs. Recent research in BISON includes techniques such as the extended finite element method for fuel 
cracking, exploration of high-burnup light water reactor fuel behavior, swelling behavior of metallic fuels, and central 
void formation in mixed-oxide fuel. BISON includes integrated documentation for each of its capabilities, follows rigorous 
software quality assurance procedures, and has a growing set of rigorous verification and validation tests.

Keywords — Finite element, BISON, MOOSE. 

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Nuclear fuel performance modeling is used for a variety 
of purposes, including fuel design and optimization, experi
ment planning and interpretation, and operational and safety 
analysis. Such modeling is typically performed using dedi
cated fuel performance codes, a number of which have been 
developed for specific fuel types. Fuel vendors, utilities, 
safety authorities, and research organizations develop or 
use these codes to predict the behavior and lifetime of fuel 
during standard operation, accidental transients, and post- 
irradiation storage. A comprehensive review of nuclear fuel 
performance modeling was recently published.1
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Nuclear fuel operates in extreme environments that 
induce complex coupled physics phenomena occurring over 
distances ranging from inter-atomic spacing to meters, and 
timescales ranging from microseconds to years. This multi
physics behavior is often tightly coupled, a well-known exam
ple being the thermomechanical behavior during final gap 
closure in light water reactor (LWR) fuel rods. In addition, 
many important aspects of fuel behavior are inherently multi
dimensional, such as cladding ballooning in LWR fuel, frac
ture of the layers that comprise tri-structural isotropic (TRISO) 
particle fuel, and anisotropic swelling in metallic fuel.

Since 2008, Idaho National Laboratory (INL) has been 
developing next-generation capabilities to model nuclear fuel 
behavior, resulting in the BISON finite element fuels code.2 

BISON is based on the Multiphysics Object-Oriented 
Simulation Environment (MOOSE) computational 
framework,3 and from the beginning was designed to be 
“multi” in several aspects, including multiphysics, multidi
mensional, multiscale, and multifuel. With regard to multi
physics, the BISON governing relations currently consist of 
nonlinear partial differential equations for energy, species, and 
momentum conservation, and can be solved either fully or 
loosely coupled. BISON supports a variety of geometries, 
providing one-dimensional (1-D) (spherical or layered), two- 
dimensional (2-D) (axisymmetric, Cartesian, or layered), and 
full three-dimensional (3-D) analysis capabilities. BISON was 
developed and is used in close coordination with meso- and 
atomistic-scale codes and analyses, providing lower-length- 
scale-informed models for complex material behavior. Finally, 
BISON was designed to analyze a variety of fuel types, 
including standard and emerging LWR fuel concepts, 
TRISO particle fuel, and metallic fuels. The code was devel
oped with flexibility as a goal, including a programming 
structure that readily permits the addition of enhanced cap
abilities (such as a new material model) and the ability to run 
on a laptop computer or large cluster.

Following early fuel performance prototyping using commer
cial finite element software,4 BISON development for LWR and 
TRISO particle fuel began in earnest in 2009 and was first reported 
in 2012 (Ref. 2). Further development and benchmarking of 
BISON for TRISO fuel was published in Ref. 5. Continuous code 
verification has been a priority during the development process, as 
outlined in Ref. 6. As LWR capabilities matured, a significant code 
validation effort ensued, first documented in Ref. 7. That effort 
continues today. Extensive development and early validation of 
BISON for metallic fuel has been accomplished in recent years 
and will be published shortly. Numerous other articles and reports, 
many summarized herein, document the development, application, 
verification, and validation of BISON throughout the last decade.

The objective of this paper is to outline the current 
status of BISON, including a variety of examples that 

demonstrate important, and in many cases, novel capabil
ities. Much like a review paper, descriptions will be 
relatively high level, relying on referenced literature for 
details.

This paper begins with an overview of foundational cap
abilities, including descriptions of the MOOSE multiphysics 
finite element framework, integrated code, and validation 
documentation, and software quality assurance (SQA). The 
next five sections outline the capability to analyze specific fuel 
types, namely, LWR fuel, advanced technology LWR fuel, 
TRISO particle fuel, metallic fuel, and finally, void formation 
in mixed-oxide (MOX) fuel. A description of BISON verifica
tion and validation follows, concluding with a description of 
current and future development directions.

II. FOUNDATIONAL CAPABILITIES

The MOOSE framework, on which BISON is built, 
provides the core functionality needed to solve coupled phy
sics field equations with the finite element method.3 Generic 
capabilities to solve the various types of physics, including the 
heat transfer, mechanics, and contact capabilities used within 
BISON simulations, are provided by the MOOSE physics 
modules. MOOSE also provides built-in capabilities for par
allel coupled multiscale solves through its MultiApp and 
Transfer systems. BISON uses the thermomechanical cap
abilities of MOOSE in combination with nuclear-specific 
material and physics models to simulate a variety of fuel 
forms. The primary MOOSE framework capabilities used by 
BISON are described herein.

II.A. Multidimensional Multiphysics Finite Element 
Framework

BISON solves the multiphysics problems inherent in fuel 
performance analysis by solving the fully coupled nonlinear 
partial differential equations for thermomechanics.8 In addi
tion, BISON has the capability to solve simulations on multi
ple length scales, different dimensions, and as part of 
a coupled simulation with other codes. This versatility allows 
BISON to increase modeling fidelity or emphasize computa
tional efficiency, depending on the simulation requirements.

The ability to simulate fuel performance behavior 
through multiscale information passing enables higher- 
fidelity modeling in BISON (Ref. 9). Lower-length-scale 
work allows for improvements on classical empirical models 
of fuel performance, particularly in the area of metallic fuel 
modeling.10,11 Discussed in Sec. VI.D, these lower length 
scales improve the simulation of engineering-scale fuel per
formance through the creation of physics-informed models.
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BISON supports multidimensional simulations that 
solve the fully coupled nonlinear partial differential equa
tions involved in nuclear fuel performance modeling. 
This capability uniquely positions BISON to model phe
nomena of interest to the LWR fuel performance commu
nity, including pellet-cladding mechanical interaction 
(PCMI) behavior induced by missing pellet surface 
(MPS) defects.12–14 BISON has been used to study the 
influence of an MPS defect on the mechanical response 
of the cladding.15 In a similar application, the 
3-D functionality of BISON was harnessed to aid in 
planning an experiment in the Halden Research Reactor 
for validating MPS defect simulations and to investigate 
the role of the MPS defect size on the measurable clad
ding deformation.16 The 3-D modeling capabilities of 
BISON enabled the successful simulation of these loca
lized geometry defects. Additional multidimensional 
modeling efforts in BISON are discussed in Secs. V.C 
and VII.A.

In recent years, a low-dimensional capability, termed 
layered 1-D or 1.5-D, has been added to BISON. The 
layered 1-D modeling capability consists of several rows 
of line elements arranged axially in slices to represent a fuel 
rod.17 On each slice of the radial line elements, a 1-D model 
of the physics (energy conservation, stress divergence, ther
mal and mechanical contact) is solved. The mechanical 
interaction between these line elements is coupled in the 
axial direction with a specifically developed generalized 
plane-strain capability that transfers a homogeneous scalar 
general strain between axially adjacent line elements. 
A similarly termed layered 2-D capability models the axial 
position slices using 2-D Cartesian meshes. The extension of 
the layered 1-D capability to the layered 2-D functionality 
enables the introduction of azimuthal variation in the bound
ary conditions.18

A series of comparisons between layered 1-D and 
2-D axisymmetric simulations of a set of validation 
cases was performed to assess the layered 
1-D capability.19 As a low-dimensional simulation, 
this layered 1-D capability is unable to accurately 
replicate the stress and strain predictions of the 
2-D and 3-D BISON simulations. However, the layered 
1-D capability excels in computational efficiency: 
A simulation runtime reduction of one to two orders 
of magnitude was routinely observed. The computa
tional efficiency of the layered 1-D capability would 
lend itself well to a scoping study to identify para
meters of interest, such as for a fuel rod in which 
a high stress state occurs. Once the rods of interest 
are identified, a higher-dimension study can be run on 
just those rods.

The computational efficiency of the layered 1-D simu
lations can also enable the coupling of BISON with other 
simulation codes. In a coupled quarter-core nuclear reactor 
simulation based on Watts Bar Nuclear Plant Unit 1 
(cycle 1), the reduced geometric complexity of the layered 
1-D BISON capability enabled the tight coupling of BISON 
with the neutron transport [e.g., MPACT (Ref. 20)] and 
thermal hydraulics [e.g., CTF (Ref. 21)] codes, through 
the Virtual Environment for Reactor Applications (VERA) 
used in the simulations reported in Ref. 22. This simulation 
demonstrates the high-fidelity coupled methodology that 
may potentially be required to successfully model transient 
cases on the scale of a reactor core.

The flexibility of simulation and multicode coupling 
afforded by the MOOSE framework have been of growing 
interest to academic and industry partners alike. The U.S. 
Nuclear Regulatory Commission (NRC) proposed using the 
MOOSE coupling approach to couple legacy NRC codes to 
advanced modeling tools currently under development 
through the U.S. Department of Energy (DOE) for confirma
tory analysis. The concept is known as the Comprehensive 
Reactor Analysis Bundle (CRAB). Through the use of 
a MOOSE-wrapped application, a code that is external to 
MOOSE can be treated as a native MOOSE application, 
allowing the non-native code to leverage all of MOOSE’s 
capabilities. A coupling demonstration was completed as 
a proof of concept for CRAB. For this demonstration, 
BISON was coupled to the NRC’s legacy thermal-hydraulic 
system code TRACE to allow thermomechanical phenomena 
feedback between the fuel rod and reactor coolant. The Loss of 
Fluid Test (LOFT) L2-5 experiment was recommended by the 
NRC as a first validation case, as test data and TRACE code 
inputs were already available. The LOFT experiments were 
designed to test the system response during a loss-of-coolant 
accident (LOCA) and presented a challenging experiment to 
simulate. Fully coupled simulations with CRAB were com
pleted, with results demonstrating clear improvement over 
calculations made using TRACE alone.23,24

II.B. Integrated Documentation

As with any finite element analysis software, the 
accessibility of BISON is determined in part by the quality 
of the code documentation. Documentation is a key 
method of communicating BISON’s modeling capabilities 
to current and potential users. The BISON documentation 
system in prior years2 used static PDF user and theory 
manuals. These static manuals could easily become out of 
date with respect to the source code and required signifi
cant effort to maintain. In the last few years, a new web- 
based, dynamic BISON documentation system has been 
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implemented.25,26 This BISON documentation approach, 
built on the MooseDocs system,27,28 is tightly integrated 
with the BISON source code, thereby ensuring real-time 
documentation updates.

Cohesive and simultaneous development of the docu
mentation along with the BISON source code is the defining 
principle of the web-based BISON documentation system. 
Use-case examples for each code element are linked directly 
from BISON regression, verification, and validation input 
files, ensuring that the documentation examples reflect the 
current BISON code state. Documentation standards were 
developed to outline content and format expectations with the 
goal of presenting a consistent, uniform interface to users. 
The MooseDocs system includes the functionality to directly 
link to the source code test design requirements within 
a requirement’s traceability matrix28 as part of the BISON 
documentation system.29 This matrix is one of the elements 
of the SQA process discussed in Sec. II.C. Strict requirements 
for documentation coverage are enforced by the automatic 
testing system prior to acceptance of any source code change.

Development of the documentation navigation experience 
focused on accommodating a wide range of user experience 
levels. Quick links, search functionality, and curated table-of- 
contents lists allow advanced users to rapidly find a specific 
documentation page. For new users, guided step-by-step instruc
tions with copy-read example commands are provided to help 
download and build BISON. Detailed descriptions of simplified 
LWR examples are included with links to many BISON code 
elements. Descriptions of the BISON validation cases are incor
porated into the web-based documentation system. Detailed 
descriptions of the material models applied in these validation 
cases are given as links to the relevant documentation pages. 
Such integration allows users to quickly explore the different 
material models used in each validation analysis.

The official BISON documentation website is built 
daily from the BISON code repository and reflects the 
current BISON source code state. Functionality within 
the MooseDocs system allows a local build of the doc
umentation system based on the user’s locally built ver
sion of BISON, thereby ensuring a direct match between 
the local BISON code and the local documentation.

II.C. Software Quality Assurance

BISON follows a SQA procedure aligned with 
American Society of Mechanical Engineers’ (ASME’s) 
Nuclear Quality Assurance-1 (NQA-1) requirements. The 
use of ASME’s NQA-1 standard is endorsed by the NRC 
and is therefore a key requirement for fuel performance 
analysis software used in license applications.

BISON development procedures include, among 
other things, issue tracking, version control, peer review, 
regression testing, testing, and quantification of code 
coverage.6,30 These procedures are flexible enough to 
accommodate the modern agile software development 
process while tracking, through the MooseDocs system, 
the software design requirements and accompanying doc
umentation for each code element. Two separate reviews 
are completed before a source code change is accepted 
into BISON: an independent code review of the indivi
dual code change and a technical lead review when 
a version of BISON is given an official version tag.

III. LWR FUEL

In this section, we summarize BISON capabilities 
and applications for modeling LWR fuel rod behavior. 
Initially, BISON development, verification, and valida
tion for LWR fuel was focused on behavior under normal 
reactor operating conditions and power ramps.2,6,7 More 
recently, code development and validation work for the 
analysis of design-basis accidents such as LOCA and 
reactivity-initiated accident (RIA) scenarios has been 
performed.23,31–36

Hereafter, we provide summary descriptions and 
references for the BISON capability status and applica
tions to LWR fuel modeling.

III.A. Material and Behavioral Models

Basic descriptions of the models incorporated into 
BISON to predict UO2-Zircaloy LWR fuel performance 
are outlined in Secs. III.A.1 and III.A.2.

III.A.1. Base Models

The thermal conductivity of UO2 fuel is calculated 
using the model from Ref. 37. To capture the radial 
power distribution in the fuel during irradiation, a model 
based on Refs. 38 and 39 is used. To represent the effect of 
fuel cracking, multiple models of varying complexity are 
available in BISON, including an orthotropic smeared 
cracking model40 and a simple isotropic softening 
model,41 as well as advanced techniques described in 
Sec. III.C. MATPRO models are used for fuel creep and 
solid fission product swelling.42 A modified ESCORE 
model is used for fuel densification.43 Gaseous fission 
product swelling and fission gas release (FGR) are com
puted by a physics-based model from Refs. 44 and 45. 
Grain growth is calculated using the model from Ref. 46. 
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For pellet-fragment relocation, the empirical ESCORE 
model47 is applied; this model was calibrated by Swiler 
et al.48 for use in BISON.

The BISON models for Zircaloy-2/4 thermal and 
irradiation creep at normal operating temperatures were 
given by Limbäck and Andersson.49 The model for irra
diation growth of Zircaloy cladding is the one developed 
by Franklin.50 To treat mechanical contact between the 
fuel and the cladding, BISON uses an approach based on 
the methodology of Heinstein and Laursen.51 The con
ductance of the fuel-to-cladding gap can be calculated 
using the legacy gap conductance modeling52–54 and the 
improved gap conductance modeling.55–58

III.A.2. Models for Accident Conditions

Axial relocation of fuel fragments during postulated 
LOCA accidents is accounted for in BISON using a semi- 
empirical model originally developed by Jernkvist and 
Massih.59 BISON capabilities for Zircaloy cladding analysis 
under LOCA conditions include models for high- 
temperature oxidation from Ref. 60, crystallographic phase 
transition based on Ref. 61, high-temperature creep from 
Ref. 62, and failure due to burst based on Refs. 62 and 63.

A Zircaloy plasticity model applicable at high tem
peratures and strain rates64 was implemented in BISON. 
This model has been successfully used to simulate the 
Organisation for Economic Co-operation and 
Development RIA benchmark cases, as described in 
Ref. 32. Also, a transient fission gas behavior model 
that accounts for the effect of fuel micro cracking in 
FGR is available.65,66 This transient model has been 
applied in BISON simulations of RIA tests, demonstrat
ing an improved predictive capability for FGR during 
RIA compared to traditional models.33

III.B. Overview of Applications

BISON has been applied to the simulation of 
a variety of LWR fuel problems encompassing fuel rod 
irradiation experiments under normal operating condi
tions and power ramps,7 LOCA experiments including 
both separate-effects cladding ballooning tests and inte
gral fuel rod tests,23,31,35,36 RIA experiments,32,34,67 and 
idealized problems involving specific multidimensional 
aspects such as MPS fabrication defects.15,68,69 As men
tioned previously, BISON has been coupled to the 
MPACT (neutronics) and CTF (thermal hydraulics) 
codes through VERA, and in one application70,71 was 
used to perform quarter-core simulations of all fuel rods 
to identify specific rods most susceptible to PCMI failure. 

These cases demonstrate the code’s ability to simulate 
various aspects of fuel rod behavior, including thermal 
response, FGR, and mechanical behavior such as clad
ding elongation, PCMI, cladding ballooning, and burst 
failure.

Many of the BISON LWR experimental validation 
cases grew out of INL’s participation in the International 
Atomic Energy Agency’s (IAEA) Coordinated Research 
Projects FUMEX-II (Ref. 72), FUMEX-III (Ref. 73), and 
FUMAC (Ref. 74). A more detailed account of BISON 
validation to LWR fuel experiments is given in Sec. VIII.

While most BISON applications for integral LWR fuel 
rod analysis used 2-D geometrical representations, the 
multidimensional modeling capability of BISON implies 
the potential to investigate inherently 3-D aspects. One 
example is analyzing the effect of fuel pellet eccentricity 
(radial offset) on the radial temperature distribution in the 
fuel, previously demonstrated through the simulation of 
the Halden test Instrumented Fuel Assembly-431 (IFA- 
431) (Ref. 7). Another important 3-D application of 
BISON concerns the analysis of local geometric irregula
rities, particularly MPS defects. Such an application was 
demonstrated in Ref. 15, where BISON’s 3-D capability 
was used to simulate the local fuel rod response in the 
MPS region for a boiling water reactor (BWR) fuel rod 
subject to a variety of transient events. The analysis 
involved a 3-D model of the region of the fuel rod contain
ing the MPS coupled to a 2-D full-length rod model for 
calculating integral quantities. Results demonstrated the 
ability to explicitly capture the MPS effects on the local 
thermomechanical fuel rod behavior, including during 
PCMI. Figure 1 shows typical results from that analysis, 
with full details provided in Ref. 15. Finally, under LOCA 
conditions, 3-D aspects such as the effects of azimuthal 
temperature variations in the cladding can be important in 
affecting the cladding ballooning and burst behavior. 
A 3-D analysis of a LOCA cladding test that included 
azimuthal temperature variations, presented in Ref. 35, 
demonstrates the nonuniform cladding ballooning along 
with a localized burst, consistent with the experimental 
observations75 reproduced by BISON.

III.C. Fracture Modeling

While fracture in LWR fuel is not generally a direct 
safety concern, it has important impacts on the perfor
mance of LWR fuel during normal operation, including 
having a major influence on the fuel stress state, being 
a major contributor to radial fuel relocation, influencing 
the effective thermal conductivity of the fuel, and creat
ing local stress concentrations in the cladding adjacent to 
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cracks. During accident conditions, the size distribution 
of fuel fragments affects the way they are dispersed in the 
coolant in the event of a cladding rupture. Since its early 
development, BISON featured smeared cracking models 
that allow it to account for the effects of cracking on the 
stress state of the fuel, but which are limited in their 
ability to predict the formation of discrete cracks or 
fragments.

Efforts have been underway to incorporate state-of- 
the-art fracture modeling techniques into BISON to allow 

for a more physics-based representation of fracture pro
pagation and its effects on fuel performance. These have 
primarily focused on the extended finite element method 
(XFEM) and peridynamics.

The extended finite element method allows for arbi
trary evolving discontinuities to be represented in a finite 
element simulation independent of the underlying finite 
element mesh. These discontinuities can be used to repre
sent cracks as discontinuities in the displacement field, 
but can also be used to represent other types of discrete 
discontinuities that occur in multiphysics simulations, 
such as an interface between two materials. The 
MOOSE xfem module uses the phantom node technique 
to implement XFEM solution field enrichment and has 
been documented in detail and demonstrated for 
2-D nuclear fuel fracture.76

Peridynamics is a mesh-free technique for model
ing field equations that uses integral rather than differ
ential equations. It satisfies equilibrium through a set 
of interactions between material points and their neigh
bors that fall within a specified radius, known as 
a horizon. The bonds that represent connections 
between these material points can be removed when 
a local fracture criterion is reached, allowing for frac
ture and fragmentation to be represented in an 
unguided manner. This has been implemented in the 
MOOSE peridynamics module and has been 
applied to fuel fracture.77

In addition to the development of these new fracture 
techniques, the ability of the existing smeared cracking 
technique to model the formation of individual cracks has 
recently been enhanced through the use of a volume- 
weighted fracture strength randomization technique that 
enables it to better capture fracture localization.

Figure 2 shows a comparison of predicted fracture 
patterns and temperature fields in fresh LWR fuel after 
a ramp up to full power using XFEM, peridynamics, and 
smeared cracking. Each technique has its own advantages 
and disadvantages, and all are useful for addressing var
ious aspects of fuel fracture and its effects.

IV. ADVANCED TECHNOLOGY FUEL

IV.A. Background

Advanced technology fuel (ATF) concepts, formerly 
known as accident-tolerant fuel concepts, are fuel and 
cladding materials proposed to improve response time 
in the event of an accident (e.g., LOCA, RIA), and at 
the same time maintain equal or improved performance 

Fig. 1. (a) Computed temperature and (b) hoop stress in 
the cladding near an MPS defect. The localized reduction 
in cladding temperature and substantial increase in hoop 
stress can only be accurately computed using 
3-D analysis.
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during normal operation.78 Intense research into these 
concepts by national laboratories, universities, and indus
try began after the events that occurred at the Fukushima 
Daiichi nuclear power plant in 2011.

From a cladding perspective, concepts were selected 
that potentially mitigate the rapid oxidation of the exist
ing Zircaloy-based cladding during accidents, which was 
the cause of the hydrogen explosions at Fukushima. For 
fuels, the primary focus has been to increase thermal 
conductivity to lower the fuel’s operating temperature 
and reduce the amount of FGR. An added benefit of 
many of the fuel concepts is the higher uranium loading 
for improved economics compared to traditional UO2.

In BISON, capabilities have been added to model U3Si2 
and Cr2O3-doped fuel, as well as iron-chromium-aluminum 
(FeCrAl) and Cr-coated Zircaloy claddings. The approach 
has been to stand up an initial empirical capability while 
identifying the range of applicability and uncertainty in the 
models. Then, for material and behavior models with limited 
or no experimental material property data, utilize a multiscale 
modeling approach.79–81 A summary of the models available 
in BISON for each ATF concept and the studies completed on 
them are summarized in Secs. IV.B through IV.F.

IV.B. U3Si2 Fuel

Westinghouse has pursued U3Si2 fuel as an ATF 
concept for its higher thermal conductivity and uranium 
density as compared to UO2. At the time of conception, 
concerns regarding the use of U3Si2 in LWRs included 
the potential for uncontrollable swelling (as seen at 

research reactor temperatures) and the possibility of it 
dissolving in water after a cladding breach. Through 
multiscale modeling approaches, it was determined that 
uncontrollable gaseous fission product swelling was not 
expected during operation at LWR temperatures.82,83

Models have been incorporated into BISON for ther
mal conductivity and its degradation,82,84 specific heat,84 

Young’s modulus,84 Poisson’s ratio,84 thermal creep,85 

solid swelling,86 and FGR and gaseous swelling.83 

Further refinements to the FGR and thermal creep models 
through multiscale modeling approaches are underway.

BISON has been used to analyze two U3Si2-fueled rods 
(ATF-13 and ATF-15) that underwent post-irradiation 
examination87 following irradiation in the Advanced Test 
Reactor at INL. By incorporating sensitivity analysis and 
uncertainty quantification, it was found that simulation pre
dictions bound the limited available experimental data.81

BISON has been used to evaluate the performance of U3 
Si2 fuel in several recent applications. In Refs. 88 and 89 the 
code was used to investigate the proposed U3Si2-SiC fuel 
cladding concept during normal operation, and then extended 
to power ramps and RIA conditions in Ref. 89. Very recently, 
BISON was used to compare the behavior of Zircaloy-clad 
UO2 and U3Si2 under normal operation, and then extended to 
demonstrate how varying thermodynamic and chemical 
kinetics influence fuel expansion and subsequent cladding 
performance during a cladding breach.90 In an interesting 
application of BISON’s multidimensional capabilities, these 
simulations were further extended to a 3-D fuel rod subsec
tion to demonstrate the characteristics of the resulting clad
ding crack.

Fig. 2. Comparison of temperature fields and radial crack patterns predicted in an LWR fuel cross-section model using (a) 
smeared cracking, (b) xfem, and (c) peridynamics. (top row) Damage fields (and discrete crack locations in the case of xfem) 
and (bottom row) temperature fields (in kelvins) are shown.
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IV.C. Cr2O3-Doped UO2 Fuel

Westinghouse, Framatome, and Global Nuclear Fuel 
(GNF) are exploring Cr2O3-doped UO2 fuel as an ATF 
concept due its larger grain size and potential reduction of 
FGR and rod internal pressure. It is unclear how the 
larger-grain-sized fuel will affect the thermophysical 
properties. Currently, except for the initial grain size 
and the FGR and gaseous swelling model for Cr2O3- 
doped UO2, all other models (i.e., thermophysical proper
ties, solid swelling, and densification) are assumed to be 
the same as UO2 (Ref. 7).

The Cr2O3-doped UO2 capabilities in BISON have 
been validated to the IFA-677 and IFA-716 experiments 
irradiated at the Halden reactor in Norway, as well as the 
AREVA ramp tests.91 Validation to these experiments has 
demonstrated the usefulness and importance of multiscale 
modeling.81

As an initial application of BISON’s Cr2O3-doped 
UO2 capabilities, in Ref. 91 a large-break LOCA case 
was simulated, providing an initial assessment of the 
enhanced safety associated with chromia-doped fuel as 
compared to standard UO2 fuel in LWRs.

IV.D. FeCrAl Cladding

The concept of FeCrAl is under consideration by 
GNF and has been primarily developed by Oak Ridge 
National Laboratory (ORNL) to replace the existing 
Zircaloy-based cladding due to FeCrAl’s improved oxi
dation resistance92 and strength.93 Because of its higher 
thermal neutron absorption cross section, FeCrAl clad
dings must be thinner. This reduction in cladding thick
ness allows for slightly larger pellets to maintain the same 
cold gap width of the fuel rod. However, the slight 
increase in pellet diameter is not sufficient to compensate 
for the neutronic penalty, and enriching the fuel beyond 
the current 5% limit appears necessary.94 Current esti
mates indicate that this neutronic penalty will impose an 
increase in fuel cost of 15% to 35% (Ref. 95). Tritium 
release is also of concern for FeCrAl (Ref. 96).

In BISON, models exist for failure,97 thermal 
creep,98 irradiation swelling,98 Young’s modulus and 
Poisson’s ratio,93 thermal expansion,99 thermal conduc
tivity and specific heat,99 tritium permeability,96 and 
oxidation.92 Some of the models are specific to four 
different FeCrAl alloys: APMT, C06M, C35M, and 
C36M.

Several related studies have used BISON to perform 
fuel performance evaluations of FeCrAl claddings under 
normal LWR operating conditions.100–103 These studies 

considered both commercially available alloys101–103 and 
new FeCrAl alloys under current development.103 

Collectively, these investigations provide an important 
summary of the advantages and disadvantages of 
FeCrAl alloys in comparison to current Zr-based 
cladding.

BISON has also been used for qualitative compari
sons to Zircaloy-4 in burst tests for which the experimen
tal conditions were known. It was found that Zircaloy-4 
and FeCrAl exhibited similar behavior, given the neces
sity to reduce the cladding thickness.80,97

IV.E. Cr-Coated Cladding

The addition of pure chromium on the waterside 
surface of Zircaloy-based claddings is to reduce oxidation 
and the subsequent production of hydrogen. All fuel 
vendors have a Cr-coated concept. The material models 
available for pure chromium in BISON were first com
piled by Ref. 104, including creep, Young’s modulus, 
Poisson’s ratio, thermal expansion, thermal conductivity, 
specific heat, oxidation, and yield stress (plasticity). 
Initial normal operation comparisons to uncoated 
Zircaloy-based tubes completed by Ref. 104 illustrated 
comparable behavior. BISON was also used in conjunc
tion with an experimental assessment of the feasibility of 
using cold spray techniques to apply Cr-coatings, con
cluding that the concept has high potential benefits but 
requires further optimization and testing.105

The BISON chromium models have also been used 
in a parametric numerical experiment to confirm the 
postulated claim that coated cladding tubes balloon less 
during LOCA-like conditions than uncoated tubes, thus 
resulting in a more coolable geometry.106

IV.F. Additional ATF Applications

BISON has also been utilized to evaluate other ATF 
concepts and materials.

One fuel concept proposes the use of conductive 
molybdenum inserts, either disks placed between stan
dard UO2 fuel pellets or finned structures embedded 
within pellets, to reduce fuel temperatures. 
Computational feasibility studies with BISON (in three 
dimensions) indicated substantial temperature reductions 
are achievable using either of these conductive inserts, 
suggesting further experimental and computational stu
dies are warranted.107

Multimetallic layered composite (MMLC) cladding is 
a recently proposed concept designed to provide improved 
fuel rod survivability during LWR accident scenarios. 
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BISON has been used to evaluate the mechanical perfor
mance of MMLC cladding using both small-scale and full- 
length rod simulations, with parametric studies used to 
provide cladding design recommendations.108

BISON’s basic thermomechanic capabilities have 
also been used to study SiC-SiC composite materials for 
both cladding and channel box applications. In Refs. 109 
and 110, parametric studies of SiC-SiC composite clad
ding are used to evaluate the interaction of the fuel and 
cladding under differing initial gap and power conditions, 
including the impact of a nonuniform power profile. In 
Refs. 111 and 112, BISON was used to study the defor
mation behavior of proposed SiC-SiC composite channel 
box core components under expected BWR neutron flux 
and temperature distributions.

V. TRISO PARTICLE FUEL

V.A. Background

Researchers have studied TRISO fuel particles for 
use in high-temperature, gas-cooled reactors, though 
their use in other reactor types is now drawing interest. 
These particles are roughly 1 mm in diameter and consist 
of a fuel kernel (UO2 or UCO), a graphite buffer layer, an 
inner pyrolytic carbon (IPyC) layer, a SiC layer that acts 
as the primary fission product barrier, and an outer pyr
olytic carbon (OPyC) layer. Analysis of TRISO particles 

typically assumes spherical symmetry. However, multi
dimensional effects can be important.5

V.B. Material and Behavioral Models

Table I summarizes the solution scheme, applicable 
particle geometries, and the material and behavioral mod
els currently available for TRISO particle fuel analyses 
using BISON. These capabilities are documented in 
greater detail in Ref. 29.

V.C. Multidimensional TRISO Demonstration

Cracking of the IPyC layer is a typical failure mode 
observed in post-irradiation examination of fuel 
particles.113 During irradiation, shrinkage of the pyrocar
bon (PyC) layers causes significant tensile stress in those 
layers. If the stress exceeds the tensile strength of that 
material, a radial crack forms in that PyC layer. The 
radial crack leads to a high local tensile stress in the 
SiC layer adjacent to the cracked PyC layer, potentially 
leading to particle failure. To model the cracking beha
vior, the extended finite element method is used to repre
sent discrete cracks in the BISON TRISO particle model. 
Figure 3a shows a 2-D axisymmetric model in which 
a radial crack cuts through the thickness of the IPyC 
layer. Due to axisymmetry, the crack effectively extends 
around the full circumference of the particle. Figure 3a 
shows a 3-D one-eighth symmetric model in which 

TABLE I 

Summary of BISON TRISO Fuel Performance Models

Feature Summary

Solution scheme Finite element: massively parallel, coupled nonlinear partial differential equations (heat 
conduction, mechanics, fission product species transport), fully implicit

Geometry Supports 1-D spherical, 2-D axisymmetric, and 3-D
Material modelsa Kernel: UO2 and UCO, solid and gas swelling, densification, thermal expansion; buffer: isotropic 

irradiation strain, irradiation creep, thermal expansion 
PyC: anisotropic irradiation strain, irradiation creep, thermal expansion; and SiC: irradiation 

creep, thermal expansion
Gap behavior Gap between buffer and IPyC: heat transfer, mass transfer, and mechanical contact
Fission products modeling FGR: physics-based model44 for UO2 and Recoil-Booth model for UCO, fission product 

diffusion
Failure modeling Failure probability calculation using Monte Carlo; failure mechanisms can be modeledb: pressure 

vessel failure, IPyC cracking, debonding, asphericity, SiC thinning, SiC thermal 
decomposition, SiC palladium penetration, kernel migration

aAll material models from the PARFUME fuel performance code have been implemented in BISON. 
bBISON has the capability to model these failure phenomena in multiple dimensions, however, the failure modes currently used in 
Monte Carlo simulation are pressure vessel failure, IPyC cracking, and asphericity. The work to incorporate all those failure modes 
is under active development. 
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a radial crack with a length of 0.1 mm cuts through the 
thickness of the IPyC layer. Due to eighth-symmetry, it is 
equivalent to modeling four radial cracks with a length of 
0.2 mm in a complete spherical model.

As can be seen in Figs. 3a and 3b, the presence of an 
IPyC crack leads to a stress concentration in the SiC layer 
in the vicinity of the crack tip. Figure 4 plots the tangen
tial stress histories in the SiC layer at a point near the 
crack tip for both intact and cracked particles. Contrary to 
the stress history for an intact particle, the tangential 
stress near the crack tip quickly becomes tensile, rising 
to a peak value of 580 and 120 MPa for two dimensions 
and three dimensions, respectively. The difference in 
peak value highlights the importance of enabling an eva
luation of multidimensional effects. After reaching the 

peak, the stress is eventually relieved due to creep in 
the PyC layers.

V.D. Recent Applications

BISON has recently been employed in a variety of 
TRISO particle fuel investigations, including simulation of 
the thermomechanical behavior of fuel particles in fully 
ceramic microencapsulated (FCM) fuel irradiated under pro
totypic LWR conditions,114 analysis of stress evolution in 
fuel particles containing novel composite architectures for 
both the SiC and PyC layers,115 calculation of radionuclide 
release from particle fuel during post-irradiation annealing 
(including comparison to experimental data),116 and simula
tion of the thermomechanical and failure behavior of fuel 
particles subjected to transient power pulse conditions in the 
Nuclear Safety Research Reactor117 (NSRR).

VI. METALLIC FUEL

VI.A. Background

Due to their inherent safety and reprocessing capabil
ity, zirconium-based metallic fuels such as U-Zr and 
U-Pu-Zr have been used in nuclear reactors since the 
early days of nuclear energy, with the Experimental 
Breeder Reactor (EBR) program being a prime 
example.118,119 EBR-II operated for approximately 
30 years (1964 to 1994) and accomplished several impor
tant objectives related to sodium-cooled fast reactors and 
metallic fuels.

Fig. 3. BISON IPyC cracking model: contour plot of the tangential stress (in pascal) of SiC layer at 3 × 106 s.

Fig. 4. Tangential stress histories at the inner surface of 
SiC near the crack tip.
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EBR-II demonstrated that a closed fuel cycle using 
metallic fuel was possible, and by 1969 ~35 000 fuel 
pins had been successfully reprocessed, refabricated, 
and reinserted into the reactor. Many important experi
ments were performed in the reactor, and significant 
advances in materials were made over this time. 
Eventually, burnups of ~20% were reached in EBR-II 
using a U-Pu-Zr fuel composition combined with HT9 
cladding. Finally, in the later years of EBR-II operation, 
the reactor was used to demonstrate the integral fast 
reactor concept. Both a loss-of-flow and a loss-of-heat- 
sink accident were performed at EBR-II in 1986. During 
each accident, no operator intervention was required, 
and the reactor passively shut down.

The behavior of metallic fuels is complex and 
depends on composition, porosity, temperature, and 
other factors.120 In recent years, BISON has been updated 
to account for these phenomena and to provide accurate 
simulations of zirconium-based metallic fuel in fast 
reactors.121 BISON has recently been used to evaluate 
the fuel performance of annular metallic fuels for an 
advanced fast reactor concept122 and is currently being 
used for fuel design studies for the Versatile Test 
Reactor.123

The requisite material models to accurately represent 
complex metallic fuel behavior are thermal conductivity, 
heat capacity, thermal expansion, mechanical elasticity, 
thermal and irradiation creep, solid and gaseous fission 
product swelling with corresponding porosity generation 
and interconnection, and zirconium redistribution.

Cladding material models consist of basic thermome
chanic models for three variations of stainless steel: 316, 
D9, and HT9. In addition to the basic models, models that 
cover thermal and irradiation (fast neutron flux) creep 
and swelling are also included.120 Fuel cladding chemical 
interaction (FCCI) models, critically important for pre
dicting cladding mechanical performance and failure, are 
also implemented.

While many of the empirical models from sources 
such as the Metallic Fuels Handbook120 (MFH) are 
included in BISON, new models and updated parameters 
for existing models (Beeler et al.124) are being developed 
from lower-length-scale calculations. This approach pro
vides fuel designers with material models beyond stan
dard measurement-bound empirical models, gaining more 
insight into the underlying physics.

VI.B. Material and Behavior Models

The thermal conductivity model used in BISON for U, 
U-Zr, and U-Pu-Zr alloys is provided in the MFH (Ref. 120), 

which was developed from many sets of measurements com
piled in Kittel et al.125 This model is a function of zirconium 
and plutonium concentration and temperature. A model for 
specific heat is taken from Savage126 and is a function of 
temperature and phase (where it is assumed that the phase 
simply changes with temperature). An average value for fuel 
thermal expansion, applicable in the temperature range of 
293 to 1200 K, is taken from Saller et al.127 The MFH 
(Ref. 120) is again used for elastic constants and creep 
models. The elastic constants are functions of temperature, 
porosity, and zirconium and plutonium concentration, 
whereas the models for steady-state thermal and irradiation 
creep depend on porosity, activation energy, effective stress, 
fission rate, and temperature. The solid and gaseous fission 
product swelling model comes from Olander,128 the latter 
derived by a simple force balance of a bubble within 
a deformable solid and an equation of state for the gas 
behavior. The gaseous swelling model depends on tempera
ture, bubble surface tension, fission rate and yield, time, and 
bubble number density. The relationship between porosity 
generation and gaseous swelling, also referenced in Olander, 
is used in BISON. The fission gas model is simply based on 
the fission rate for gas generation, and the fission gas released 
is governed by the value of porosity: When the porosity 
reaches 25%, 80% of the fission gas produced up to that 
point is released and all fission gas produced thereafter is 
immediately released.129 Zirconium diffusion coefficients for 
U-Zr from Adda et al.130 and Müller131 at various tempera
tures are used in BISON. For more detail about how diffusion 
is modeled in BISON, see Galloway et al.132

Cladding material models consist of three variations 
of stainless steel: 316, D9, and HT9. Creep rate models 
for 316 are taken from the Nuclear Systems Materials 
Handbook133 for the 20% cold-worked condition and 
Garner and Porter134 for the annealed condition. The 
coefficient of thermal expansion for 316 is taken from 
the ASME Boiler and Pressure Vessel Code.135 The ther
mal conductivity and heat capacity models for D9 are 
from Leibowitz and Blomquist136 and Banerjee et al.,137 

respectively. The D9 models for thermal expansion, elas
tic moduli, creep rate, and swelling from the MFH are 
available in BISON. Finally, models for HT9 are taken 
from the MFH for thermal conductivity and creep rate, 
Leibowitz and Blomquist136 for thermal expansion, 
Yamanouchi et al.138 for heat capacity, and Los Alamos 
National Laboratory139 for elastic moduli.

Accurately modeling the gap between fuel and clad
ding is important for representing heat transfer and 
FCCI. Heat transfer across the gap is modeled via 
BISON’s thermal contact model, assuming constant 
thermal conductivity of the sodium and constant gap 
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conductance. Due to the high thermal conductivity of 
the fuel and sodium, this is a valid assumption. There 
are several models for FCCI in BISON, consisting of 
work from Bauer et al.,140 Karahan and Buongiorno,141 

Jiang et al.,142 and Argonne National Laboratory’s 
LIFE-METAL code.

VI.C. Assessment Case

The EBR-II X441 experiment was chosen as the initial 
case for BISON to model due to the number of fuel rod 
design parameters varied during the tests. Table II sum
marizes the variations in each group of fuel rods tested in 
the experiment. All of these groups were modeled using 
BISON and are part of the assessment cases included in the 
code repository.

Figure 5 shows the general features of an EBR–II 
fuel rod. The fuel is surrounded by a liquid sodium bond 
material in order to enhance the heat transfer between the 
fuel and the cladding. The remainder of the plenum 
volume is filled with He gas, as is typical in other fuel 
types (i.e., LWRs). The cladding material is generally 
a 316 stainless steel or similar stainless steel alloy.

The X441 “as-designed” geometry was used to create 
the BISON models, and a simplified power history and gap 
conductance were used in these simulations. In addition, the 
effects of Zr-redistribution and frictional contact were 
ignored in order to improve the robustness of the full set 
of X441 assessment cases. Figure 6 shows a comparison 
between EBR-II data and BISON predictions for the radial 
cladding strain as a function of the plenum-to-fuel volume 
ratio. The general trend in the data is for the radial strain to 
decrease as the plenum-to-fuel volume ratio increases. The 
BISON results show a similar trend, though not in complete 
agreement with the data. The BISON simulations should 
better match the data as the simplifications in the model are 

removed and more accurate power history and gap conduc
tance inputs are used.

VI.D. Multiscale

As mentioned previously, progress has been made on 
using physics-based lower-length-scale calculations to 
inform engineering-scale calculations. One example is the 
development of a quantitative phase-field model of macro
scale constituent redistribution in the U-Zr system, where 
model parameters were optimized and the model validated 
against an independent data set.143 A second example is 
Beeler et al.’s calculation124 of surface tension based on 
molecular dynamics, which is used in the BISON gaseous 
metallic fuel swelling model. Implementation of more lower- 
length-scale calculations to replace or inform existing empiri
cal models is a central theme in future BISON development.

VII. CENTRAL VOID FORMATION IN MOX

An important feature of oxide fuel in fast reactors or 
LWRs at high temperature is central void formation. The 
coupled conservation equations necessary to represent this 
phenomenon are heat conduction and pore migration. To 
model pore migration, we assume pores are ubiquitous and 
uniformly distributed in the ceramic fuel. Upon heating, 
the pores undergo a complicated process of vaporizing on 
the hot side of the pore (nearer to the fuel centerline) and 
condensing on the cool side. The speed of this process is 
a highly uncertain quantity and has been the subject of 
considerable study.128,144–150 Reference 151 describes how 
BISON is used to solve these equations. The following 
section includes a result from that paper concerning quan
tification of the effects of void offset.

TABLE II 

X441 Experimental Parameters

Group

Plenum/ 
Fuel 

(Volume Ratio)

Zr 
Content 

(Weight Percent)

Smear Density 
(% Theoretical 

Density)
Clad 

Material

Clad 
Thickness 

(mils)

A 1.5 10 75 HT9 15
B 2.1 10 75 HT9 15
C 1.1 10 75 HT9 15
D 1.5 6 75 HT9 15
E 1.5 14 75 HT9 15
F 1.5 10 85 HT9 15
G 1.5 10 70 HT9 15
H 1.5 10 75 HT9 18
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VII.A. Multidimensional Effects

A 2-D calculation was run to demonstrate the effects 
of offset fuel within the cladding. The expectation was 
that an offset fuel pellet will get hotter on the side with 
the larger pellet/clad gap; consequently, the central void 
formation will also be offset. Results are shown in 

Figs. 7a and 7b when solving only pore migration and 
the heat equation (fuel and cladding displacements were 
neglected). A micrograph showing similar offset behavior 
is shown in Fig. 7c.

When comparing the calculations in Fig. 7b to the 
micrograph in Fig. 7c, measurements from a plot digitizer 
show than the calculation over predicts void offset by about 
40%. We speculate this is due to neglecting mechanics (fuel 
expansion and cladding creep down). Refinements to this 
calculation are expected in a future publication.

VIII. VERIFICATION AND VALIDATION

A variety of processes have been developed to quantify 
the reliability and predictive capability of modeling and 
simulation tools.153–155 These processes can be categorized 
into three main categories: (1) SQA is the process to detect 
unintentional coding mistakes in software (e.g., performing 
unit-, component-, and system-level defect analyses, 
regression tests, and code comparisons), (2) verification is 
the process to ensure that the code functions correctly (e.g., 
comparisons between code results and analytic or approx
imate analytic solutions), and (3) validation is the process 
of assessing a code’s capability to accurately model physi
cal problems (e.g., comparisons between code results and 
experiments). The applications of these procedures form 
the basis of code development in BISON, ensuring it is free 
of coding mistakes and that it accurately represents 
reality.6,7,58,156,157 BISON SQA practices are outlined in 
Sec. II.C. Sections VIII.A and VIII.B briefly summarize 
BISON verification and validation activities.

VIII.A. Verification

A concise application of verification is to calculate 
the formal order of accuracy of a numerical discretiza
tion, followed by a test to see if the observed order 
matches. Code verification is performed by calculating 
the observed order of accuracy and comparing it to an 
analytically derived exact solution. In practice, exact 
solutions are difficult to obtain for systems that involve 
coupled differential equations. It is often necessary to 
calculate the observed order of accuracy by comparing 
the results from successive refinements of the solution 
domain, a process referred to as solution verification.

Here we provide two test problems for each verifica
tion method: (1) a spherical shell problem with an analytic 
solution (Fig. 8) and (2) an axisymmetric cylinder problem 
without an analytic solution (Fig. 9). Temperature results 
are shown for different meshes and finite elements in 

Fig. 5. Schematic illustration of a fuel rod for EBR-II 
(not to scale).

Fig. 6. Maximum cladding radial strain versus plenum- 
to-fuel volume ratio for the EBR-II X441 experiment.
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which BISON accurately predicts the temperature distri
bution. Then a convergence study is conducted with 
a refinement factor of two (i.e., r ¼ 2). The error behavior 
is compared to the expected behavior to quantify the suc
cess of each problem as the mesh is refined. The error 
norm is computed as jjy � eyjj ¼ Chpþ1 in terms of the 

expected solution to a problem y, the numerical approx
imation ey, the order of accuracy p, the mesh spacing h, and 
an arbitrary constant C. The computed norms for each 
element type are plotted. The observed order of accuracy 
is obtained from the slope of the error norm in a log-log plot 
(i.e., pþ 1 ¼ logðjjy � eyjjÞ=logðhÞ in the asymptotic 

Fig. 7. Two-dimensional calculation showing temperature and porosity contours in a restructured fuel pellet in offset (a and b) 
positions relative to the cladding. The offset and shape of this void is similar to the micrograph shown in (c), which is from 
a similar fuel pin subjected to conditions consistent with the model shown in (a) and (b). Measurement using a plot digitizer on 
the images show that the calculation over predicts void offset by about 40%.

Fig. 8. Code verification: BISON results are computed using 1-D finite elements (shape: line, EDGE2: linear, EDGE3: quadratic) 
for a spherical shell that is exposed on its outer surface to a constant temperature and has a constant heat flux applied to its inner 
surface. The shell has isotropic material properties and uniform internal heating.156,158
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region). The formal order of accuracy, theoretically derived 
in Refs. 156 and 157, is shown (labeled 2 and 3) in Figs. 8 
and 9. Note that the finite element orders are p = 1 and 2 for 
linear and quadratic polynomials, respectively. The ele
ments each show the correct order of convergence. These 
results indicate that, at least for the code exercised in the 
examples, BISON functions as intended and is free of cod
ing mistakes.

A thorough pedigree of verification in BISON is estab
lished in Refs. 6, 156, and 157 by performing an extensive 
verification study and creating verification matrices that cover 
conservation terms, geometry, and discretization choices.

VIII.B. Validation

After the quality assurance of the code and verifica
tion of its numerics, it is essential to validate that the code 
is capable of accurately modeling the actual behavior of 
real-world problems by comparing its predictions to 
experimental data. Two types of validation tests are per
formed in BISON to address this: (1) Separate-effects 
validation tests investigate a code’s capability to model 
a single physical phenomenon such as hydrogen migra
tion and distribution in the zirconium-based nuclear fuel 
cladding,159 and (2) integral-effects validation tests 
examine a system’s overall response to a model that 
involves many phenomena. BISON has undergone sub
stantial validation over the years regarding its modeling 
capability for nuclear fuel rod behavior under normal 
operating conditions and design-basis accident scenarios. 
Table III briefly summarizes BISON’s validation 

activities for the aforementioned nuclear fuel types. All 
validation activities have been analyzed, documented, 
and incorporated into BISON’s validation suite.

IX. CURRENT AND FUTURE DIRECTIONS

BISON’s capabilities continue to grow in each of the 
areas reviewed in this paper. Modeling of traditional LWR 
fuel rods is being enhanced through improved support of 
lower-dimensional analysis. The so-called 1.5-D or layered 
approach to modeling a fuel rod involves representing the rod 
as stacked slices, with each slice an axisymmetric, 
1-D representation of a section of the rod. This technique is 
being expanded to a 2.5-D capability where each slice is 
a 2-D cross section of the rod. This new capability will 
combine efficient calculation with the ability to model azi
muthally varying conditions. Other work in this area includes 
continued research into fission gas behavior and a continual 
effort to add more validation cases, particularly LOCA and 
RIA cases.

While improving models for ATF continues, consider
able effort is now being made to improve modeling at high- 
burnup conditions. Running fuel rods to high burnup, 
combined with increased initial enrichment, is economically 
advantageous. However, fuel rod behavior at high burnup, 
particularly accident behavior, requires more development. 
Understanding fuel and cladding interactions and fuel frag
mentation at high burnup is essential to this effort. The 
BISON team is partnering with others at INL, as well as 
researchers outside INL, to improve our modeling capabil
ities in this area.

Fig. 9. Solution verification: BISON results are computed using 2-D finite elements (shape: triangular, TRI3: linear, TRI6: quadratic) 
for an axisymmetric cylinder exposed on its bottom and right surfaces to a constant temperature of T1 (=0 K in this study) and on its top 
surface to a constant temperature of T2 (=200 K in this study). The cylinder has isotropic material properties with no internal heating.156
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Modeling of TRISO fuel is seeing much greater 
interest, with advanced reactor developers, microreac
tor developers, and developers of nuclear thermal 
propulsion for space applications all expressing inter
est. Current work in TRISO modeling includes 
improved sampling and statistical capabilities, 
research into fission product diffusion, and validation 
to experimental data.

Metallic fuel modeling research in BISON is 
focused on fuel swelling. Fuel swelling in metallic 
fuels is complicated by its anisotropic nature and its 
coupling to fission gas behavior. Other work on 
metallic fuel modeling includes the redistribution of 
zirconium during irradiation.

In each of these areas, improved verification testing 
and validation are major efforts.

BISON is intended to be a true multifuel code, 
providing a full range of capabilities for each major 
nuclear fuel type while allowing users to customize 
behavior through the addition of new material or 
behavioral models. BISON includes documentation 
for each of its capabilities that is packaged directly 
with the source code. The developmental process 
follows NQA-1 guidelines and relies on extensive 
integration testing and code reviews to ensure high 
quality. Verification and validation cases are run reg
ularly and are included with the code, allowing users 
to evaluate the adequacy of BISON for their pur
poses. BISON is a platform for research in nuclear 
fuel performance modeling while simultaneously ser
ving as a tool for the analysis of nuclear fuel designs. 
The flexibility of BISON makes it unique among 
nuclear fuel performance applications.
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