
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/JOU-20-58797-Revision-0

Automatic Differentiation in
MetaPhysicL and its
Applications in MOOSE

February 2021

Alexander D Lindsay, Cody J Permann, Derek R Gaston, Fande Kong, Andrew
E Slaughter, Robert W Carlsen, Larry K Aagesen Jr, Daniel Schwen, Wen
Jiang, Christopher Matthews, Richard Martineau, Roy Stogner

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/JOU-20-58797-Revision-0

Automatic Differentiation in MetaPhysicL and its
Applications in MOOSE

Alexander D Lindsay, Cody J Permann, Derek R Gaston, Fande Kong, Andrew E
Slaughter, Robert W Carlsen, Larry K Aagesen Jr, Daniel Schwen, Wen Jiang,

Christopher Matthews, Richard Martineau, Roy Stogner

February 2021

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Nuclear Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/unct20

Automatic Differentiation in MetaPhysicL and Its
Applications in MOOSE

Alexander Lindsay, Roy Stogner, Derek Gaston, Daniel Schwen, Christopher
Matthews, Wen Jiang, Larry K. Aagesen, Robert Carlsen, Fande Kong, Andrew
Slaughter, Cody Permann & Richard Martineau

To cite this article: Alexander Lindsay, Roy Stogner, Derek Gaston, Daniel Schwen,
Christopher Matthews, Wen Jiang, Larry K. Aagesen, Robert Carlsen, Fande Kong, Andrew
Slaughter, Cody Permann & Richard Martineau (2021) Automatic Differentiation in
MetaPhysicL and Its Applications in MOOSE, Nuclear Technology, 207:7, 905-922, DOI:
10.1080/00295450.2020.1838877

To link to this article: https://doi.org/10.1080/00295450.2020.1838877

This material is published by permission of
the Idaho National Laboratory, operated
by Battelle Energy Alliance, for the U.S.
Department of Energy under Contract No.
DE-AC07-05ID14517. The U.S. Government
retains for itself, and others acting on
its behalf, a paid-up, non-exclusive, and
irrevocable worldwide license in said article
to reproduce, prepare derivative works,
distribute copies to the public, and perform
publicly and display publicly, by or on behalf
of the Government.

Published online: 22 Feb 2021.

Submit your article to this journal

Article views: 3573

View related articles

View Crossmark data

https://www.tandfonline.com/loi/unct20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00295450.2020.1838877
https://doi.org/10.1080/00295450.2020.1838877
https://www.tandfonline.com/action/authorSubmission?journalCode=unct20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=unct20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00295450.2020.1838877
https://www.tandfonline.com/doi/mlt/10.1080/00295450.2020.1838877
http://crossmark.crossref.org/dialog/?doi=10.1080/00295450.2020.1838877&domain=pdf&date_stamp=22 Feb 2021
http://crossmark.crossref.org/dialog/?doi=10.1080/00295450.2020.1838877&domain=pdf&date_stamp=22 Feb 2021

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=unct20

Citing articles: 12 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=unct20
https://www.tandfonline.com/doi/citedby/10.1080/00295450.2020.1838877#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00295450.2020.1838877#tabModule

Automatic Differentiation in MetaPhysicL and Its Applications
in MOOSE
Alexander Lindsay, a* Roy Stogner,a Derek Gaston,a Daniel Schwen,a Christopher Matthews,b Wen
Jiang,a Larry K. Aagesen,a Robert Carlsen,a Fande Kong,a Andrew Slaughter,a Cody Permann,a and
Richard Martineaua

aIdaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415
bLos Alamos National Laboratory, Materials Science and Technology Division, P.O. Box 1663, Los Alamos, New Mexico 87545

Received June 17, 2020
Accepted for Publication October 15, 2020

Abstract — Efficient solution via Newton’s method of nonlinear systems of equations requires an accurate
representation of the Jacobian, corresponding to the derivatives of the component residual equations with respect
to the degrees of freedom. In practice these systems of equations often arise from spatial discretization of partial
differential equations used to model physical phenomena. These equations may involve domain motion or material
equations that are complex functions of the systems’ degrees of freedom. Computing the Jacobian by hand in these
situations is arduous and prone to error. Finite difference approximations of the Jacobian or its action are prone to
truncation error, especially in multiphysics settings. Symbolic differentiation packages may be used, but often result
in an excessive number of terms in realistic model scenarios. An alternative to symbolic and numerical differentia-
tion is automatic differentiation (AD), which propagates derivatives with every elementary operation of a computer
program, corresponding to continual application of the chain rule. Automatic differentiation offers the guarantee
of an exact Jacobian at a relatively small overhead cost. In this work, we outline the adoption of AD in the
Multiphysics Object Oriented Simulation Environment (MOOSE) via the MetaPhysicL package. We describe the
application of MOOSE’s AD capability to several sets of physics that were previously infeasible to model via hand-
coded or Jacobian-free simulation techniques, including arbitrary Lagrangian-Eulerian and level-set simulations
of laser melt pools, phase-field simulations with free energies provided through neural networks, and metallic
nuclear fuel simulations that require inner Newton loop calculation of nonlinear material properties.

Keywords — Finite element method, automatic differentiation, MOOSE.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION AND MOTIVATION

Historically, the most common question on the
Multiphysics Object-Oriented Simulation Environment1

(MOOSE) mailing list has been “Why is my solve not con-
verging?” An equivalent question is also posted on the
Computational Science StackExchange2 under the title,
“Why is Newton’s method not converging?” The leading
bullet in the accepted answer is that the Jacobian is wrong.
Coding Jacobians can be a difficult and tedious task, espe-
cially for physics that require complex material models.
Instead of spending time running simulations and generating

*E-mail: alexander.lindsay@inl.gov
This material is published by permission of the Idaho National
Laboratory, operated by Battelle Energy Alliance, for the U.S.
Department of Energy under Contract No. DE-AC07-05ID14517. The
U.S. Government retains for itself, and others acting on its behalf, a
paid-up, non-exclusive, and irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government.
This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly
cited.

NUCLEAR TECHNOLOGY · VOLUME 207 · 905–922 · JULY 2021
DOI: https://doi.org/10.1080/00295450.2020.1838877

905

http://orcid.org/0000-0002-6988-2123
https://crossmark.crossref.org/dialog/?doi=10.1080/00295450.2020.1838877&domain=pdf&date_stamp=2021-09-04

results, physicists and engineers may devote days or weeks
to constructing accurate Jacobians. Often, the developer
will elect an approximate Jacobian method like Jacobian-
Free Newton-Krylov3 (JFNK) or its preconditioned variant
PJFNK where the Jacobian is never explicitly formed, but
instead its action on vectors is approximated using finite
differences. While effective in many cases, the quality of the
matrix-free approximation is closely tied to the selection of
a differencing parameter that should vary based on the non-
linear system of equations. If the nonlinear functions are
noisy and too small of a differencing parameter is chosen,
truncation will lead to a Jacobian approximation that is
actually a nonlinear operator. If the differencing parameter
is too large, then the approximated derivatives will be inac-
curate if the differenced function is nonlinear. For multi-
physics problems in which the magnitudes of solution and
residual components may vary significantly, an arbitrary
choice of differencing parameter may lead to an accurate
approximation of the Jacobian action for one physics, but
lead to the aforementioned truncation error in another. The
presence of the truncation error, and hence a nonlinear
operator, is evident in a linear solve derived from porous
flow equations coupled with heat transport, shown in
Table I.

While the unpreconditioned residual norm, produced
through generalized minimal residual method (GMRES)
iterations, drops by five orders of magnitude during the
solve, the true residual norm computed via A~x � ~b actually
increases by five orders of magnitude. In MOOSE, a right
preconditioned GMRES is chosen by default, where the
unpreconditioned residual should be mathematically equiva-
lent to the actual residual for a linear operator. Given the
divergence of the residuals, the Jacobian-free approximation
is clearly a poor proxy for the true linear operator in this case.
The net result of such a bad linear solve is a diverging

Newton’s method, shown in Table II, since the computed
Newton update is inaccurate.

Given the multiphysics design of MOOSE and the clear
pitfalls associated with differencing approximations, there is
clear motivation to form accurate explicit representations of
the matrix. Even if a perfect Jacobian action can be achieved
via the finite difference scheme, a suitable preconditioning
matrix is required to construct a robust and efficient solver.
To accurately fill the matrix, some users elect to use
symbolic differentiation packages like SymPy4 or
Mathematica.5 However, for functions with even minimal
complexity, the resulting gradient expressions can take up to
several pages and can be quite difficult to translate from
notebook to code.6 An alternative to numerical and symbolic
differentiation is automatic differentiation (AD), which
applies the chain rule to elementary operations at every
step of the computer program. This applies, at most,
a small constant factor (estimated to have an upper bound
of five by Ref. 6) of additional arithmetic operations.
Because developers can spend significant time trying to
create accurate hand-coded Jacobians and analysts can

TABLE I

Iteration Number Versus GMRES and True Residual Norms for a Poorly Scaled PJFNK Linear Solve

Linear Iteration Number GMRES Residual Norm
True Residual Norm

(A~x � ~b)
True Residual

Initial Residual

0 5:64� 1016 5:64� 1016 1:00� 100

1 2:96� 1012 2:96� 1012 5:25� 10� 5

2 2:72� 1012 2:89� 1014 5:11� 10� 3

3 8:33� 1011 5:17� 1015 9:17� 10� 2

4 8:33� 1011 8:67� 1017 1:53� 101

5 6:02� 1011 1:02� 1022 1:82� 105

6 6:02� 1011 1:02� 1022 1:82� 105

7 2:07� 1011 6:05� 1021 1:07� 105

TABLE II

Newton-Raphson Nonlinear Iteration History with Poor Linear
Solves Due to Truncation Error from Finite Differencing

Nonlinear Iteration Number Nonlinear Residual Norm

0 1:13� 106

1 1:39� 1011

2 2:88� 1010

3 8:47� 109

4 2:01� 109

5 7:63� 108

6 5:64� 1016

906 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

spend significant time waiting for problems with poor hand-
coded or approximated Jacobians to converge (if they ever
do), the small additional computation cost imposed by AD is
considered worth the trade. With an accurate Jacobian
formed using AD, the overall simulation can be much faster
than that utilizing a deficient hand-coded matrix due to
a reduction in the total number of nonlinear iterations and
potential increases in time-step size for implicit time-
stepping schemes. Moreover, considering that AD computa-
tions are local, any added cost can be smoothed over by
embarrassingly parallel scalability in high-performance
computing contexts.

Automatic differentiation implementations typically
use one of two methods, either forward or reverse mode.6

Forward-mode AD is best suited for problems with many
more outputs than inputs (e.g., for functions f : R m ! R n

with n >> m), while reverse mode is best suited for many
more inputs than outputs (e.g., m >> n). The latter case is
more prevalent in deep learning applications and is what is
implemented in popular machine learning libraries like
PyTorch.7 For the solution of nonlinear systems of equa-
tions, the number of inputs and outputs are equivalent, so the
choice is not clear cut. However, given the architecture of
MOOSE, in which the residuals are constructed from finite
element solutions which themselves are naturally con-
structed from the nonlinear degrees of freedom (DOFs),
forward propagation is a convenient choice. Additionally,
a choice of forward mode allows potential exploitation of
sparsity.8 Forward-mode AD relies on the concept of dual
numbers that can be implemented either through source
code transformation or operator overloading. The latter is
better suited for programming languages that support it such
as C++, the language in which MOOSE is written.
Conveniently, MetaPhysicL,9 the C++ header-only library,
comes ready made with a DualNumber template class and
an operator-overload AD implementation that fits into the
MOOSE architecture with minimal disruption to the code
base. The AD capability of MetaPhysicL was merged into
the MOOSE code base in the fall of 2018. What follows is
an overview of the physics applications that have been
enabled by AD since its merge. By and large, the results
presented here are proofs of concept. Validation of indivi-
dual physics against experimental results is an ongoing
effort.

Section II.A outlines the basic mathematical underpin-
nings of AD. In Sec. II.B, we present the important AD
template classes provided by MetaPhysicL. The incorpora-
tion of MetaPhysicL classes into MOOSE is described in Sec.
II.C. Automatic differentiation–enabled physics results are
shown in Sec. III. Finally, we give concluding remarks and
a description of future work in Sec. IV.

II. AUTOMATIC DIFFERENTIATION

II.A. Automatic Differentiation Fundamentals

The fundamental idea of AD is to use the chain rule
to decompose the function differentials, with derivative
calculations performed during the function evaluation
process. A composed function is expressed as follows:

f ðgðhðx1; x2ÞÞÞ ¼ f ðgðhðw1;w2ÞÞÞ ¼ f ðgðw3ÞÞ ¼ f ðw4Þ

¼ w5 ;

with

w1 ¼ x1;

w2 ¼ x2;

w3 ¼ hðw1;w2Þ;

w4 ¼ gðw3Þ;

and
w5 ¼ f ðw4Þ ;

and then the derivatives of f with respective to x1 read:

df
dx1
¼

df
dw4

dw4

dw3

dw3

dw1

dw1

dx1
:

Here we assume x1 and x2 are independent variables, and
wi represents an elementary evaluation. Differentiation
with respect to x2 can be performed similarly. Forward-
mode AD evaluates the derivatives from left to right.
Taking the function

f ¼ x1 sinðx2Þ þ x2 cosðx1Þ ;

¼ w1 sinðw2Þ þ w2 cosðw1Þ ;

¼ w1w3 þ w2w4 ;

¼ w5 þ w6 ;

¼ w7 ;

we demonstrate a forward-mode derivative calculation in
Table III.

II.B. Automatic Differentiation Implementation

The classes in MetaPhysicL were originally developed
and tested in the Manufactured Analytical Solution
Abstraction (MASA) library,9 which is used for generating
manufactured solutions for realistic physics simulations.
Early in the development of MASA, it was discovered that
multiple symbolic differentiation packages were suffering
software failures on sufficiently large problems. Symbol-

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 907

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

ically differentiating manufactured solution fields through,
for example, three-dimensional (3-D) Navier-Stokes equa-
tions, caused a combinatorial explosion, leading to corre-
sponding forcing functions that were hundreds of kilobytes
in length, or that required many man-hours of manual sim-
plification, or that failed to evaluate altogether on some
computer algebra system software. Automatic differentiation
allowed for the generation of a manufactured solution and
forcing functions using code that was hardly more complex
than the physics equations themselves. The classes used for
this effort were eventually published as an independent
library, MetaPhysicL, for wider use and further development.

DualNumber is MetaPhysicL’s centerpiece class
for AD. DualNumber stores value and derivatives
members that correspond to f ð~xÞ and Ñf ð~xÞ, respectively.
Value and derivatives types are determined by T and
D template parameters, where T is some floating point
type, and D is equivalent to T for single-argument func-
tions or equal to some container type for a generic
vector of arguments. MetaPhysicL overloads unary
and binary operators, ensuring any calculation invol-
ving a DualNumber propagates both the function
value and its derivatives.

MOOSE leverages one of two MetaPhysicL container
class templates depending on user configuration. The default
MOOSE configuration uses the NumberArray class template,
which accepts N and T template arguments where N denotes
the length of an underlying array that holds the NumberArray
data, and T is the floating-point type held by the array. As for
DualNumber, MetaPhysicL provides arithmetic, unary, and
binary function overloads for manipulation of its container
types. NumberArray is an ideal derivative container choice
when there is dense coupling between physics variables; this
is because operator and function overloads for NumberArray
operate on the entire underlying array. The second
MetaPhysicL container class leveraged by MOOSE is
SemiDynamicSparseNumberArray, which is a more ideal

choice for problems in which variable coupling is sparse or
when a user wishes to solve a variety of problems with
a single library configuration. In contrast to NumberArray,
which only holds a single array of floating-point data,
SemiDynamicSparseNumberArray additionally holds an
array of integers corresponding to DOF indices. The exis-
tence of this additional data member enables sparse opera-
tions that may involve only a subset of the elements in the
underlying floating-point data (typically double precision,
but single or quadruple precision may be used). As an explicit
example of when these sparse operations are useful, consider
a user who may configure MOOSE with an underlying
derivative storage container size of 81 for solid-mechanics
simulations on 3-D second-order hexagonal finite elements
(3 displacement variables × 27 DOFs per variable per finite
element = 81 local DOFs). When running 3-D, second-order
cases, the nonsparse NumberArray container would be 100%
efficient. However, if the user wishes to run a two-
dimensional (2-D), second-order case with the same
MOOSE configuration, they would be performing 81=18 ¼
4:5 times more work than is necessary if using NumberArray.
Since SemiDynamicSparseNumberArray tracks the sparsity
pattern, it will only initialize and operate on the floating-point
array elements that are required for the run-time problem
(e.g., 18 elements for the 2-D, second-order solid-
mechanics example). Of course, tracking the sparsity
pattern has nonzero cost, so if users know they will
always be running a certain kind of problem, they may
be best served by configuring with an intelligently sized
NumberArray container. It should be noted that both
NumberArray and SemiDynamicSparseNumberArray
use containers that are statically sized, or in other words
are sized at compile time as opposed to dynamically
during run time. If ever a user tries to index
a NumberArray outside its static size or tries to add
more sparsity to a SemiDynamicSparseNumberArray
than its static size allows, then MOOSE emits a helpful

TABLE III

Derivative Calculation with Respect to x1 at ð1; 0:5Þ Using AD*

Function Computation Derivative Evaluation

w1 ¼ x1 ¼ 1 _w1 ¼ 1 (seed)
w2 ¼ x2 ¼ 0:5 _w2 ¼ 0 (seed)
w3 ¼ sinðw2Þ ¼ 0:48 _w3 ¼ cosðw2Þ � _w2 = 0
w4 ¼ cosðw1Þ ¼ 0:54 _w4 ¼ � sinðw1Þ � _w1 ¼ � 0:84
w5 ¼ w1w3 ¼ 0:48 _w5 ¼ _w1w3 þ w1 _w3 ¼ 0:48
w6 ¼ w2w4 ¼ 0:27 _w6 ¼ _w2w4 þ w2 _w4 ¼ � 0:42
w7 ¼ w5 þ w6 ¼ 0:75 _w7 ¼ _w5 þ _w6 ¼ 0:06

*Demonstrative example.

908 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

error message. The static size of both classes can be
changed through MOOSE’s configure script.

II.C. Automatic Differentiation in MOOSE

For a finite element framework like MOOSE, derivative
seeding begins when constructing local finite element solu-
tions. The finite element solution approximation is given by

uh ¼
Xi

N
uiϕi ;

where

ui = DOFs

ϕi = shape function associated with the DOF

N = number of shape functions.

For a Lagrange basis, shape functions and DOFs are tied to
mesh nodes. To illustrate the initiation of the AD process,
we will consider the construction of a local finite element
solution on a first-order QUAD4 element, that is to say
a quadrilateral with a number of nodes equal to the number
of vertices. This element type, when combined with
a Lagrange basis, has four DOFs that contribute to the
local solution (one for each element node). In MOOSE we
assign these local DOF solution values (the local ui) to
a variable class data member called _ad_dof_values,
where the ad prefix denotes AD. We then seed

a derivative value of 1 (recognizing that qui
quj
¼ 1 when

i ¼ j) at a corresponding local DOF index determined
through a somewhat arbitrary numbering scheme. We
choose a variable major numbering scheme such that the
local DOFs are in a contiguous block for each variable, e.g.,
if we have two variables in the system, u and v, then the
numbering scheme for a QUAD4 element with Lagrange
basis would look like u0; u1; u2; u3; v0; v1; v2; v3 with

subscripts corresponding to the local node number.
We can examine the dependence of the local finite
element solution on each DOF for an arbitrary point
in the domain; we know analytically the expected deri-

vatives:
quh

quj
¼ ϕj. For a given Gaussian integration

point ð�; ηÞ ¼ ð� :577; � :577Þ, we know the corre-
sponding Lagrange ϕ values: ϕ0 ¼ :622; ϕ1 ¼ :167,
ϕ2 ¼ :0447; ϕ3 ¼ :167, and we can check and verify
whether our automatically differentiated solution
ad_u.derivatives() matches (see Table IV).
The first four derivative indices correspond to the deri-
vatives of u with respect to uj. The remaining indices
are for derivatives with respect to other variables’
DOFs (e.g., vj). Note that some of the unused values
in indices 4 through 7 appear to contain nonsensical
values. This is actually desirable since it indicates the
SemiDynamicSparseNumberArray container has unne-
cessary components of the derivative vector left
uninitialized.

In general, the quality of AD derivatives is verified with
unit testing in MetaPhysicL and using
a PetscJacobianTester in MOOSE, which compares
the Jacobian produced against that generated using finite
differencing of the residuals. The latter test relies on using
well-scaled problems; for poorly scaled problems, floating
point errors can result in a loss in accuracy of the finite
differenced Jacobian, as described in Sec. I.

II.D. MOOSE AD Limitations

For problems with many variables, computation of the
full Jacobian matrix through AD (or through a hand-coded
method) can be very expensive in terms of memory. For
these types of problems, a matrix-free or derivative-free
method is preferred. We have already discussed the limita-
tions of methods like PJFNK in which the Jacobian action is
approximated using finite differences; truncation error due
to a noisy or poorly scaled function can destroy the accuracy
of the approximation. In such a case where the matrix is too
memory intensive to compute and the function is too noisy
to difference, an alternative method should be considered.
In recent years there has been a resurgence in the investiga-
tion of derivative-free optimization techniques.10 The solu-
tion of nonlinear systems can be easily recast as
a minimization of a least-squares problem, e.g.,

f ðxÞ ¼ jjFðxÞjj22 ¼
Xm

i¼1
FiðxÞ2 : ð1Þ

TABLE IV

Verification of qu
quj

Derivative Index AD Result Expected Result

0 0.6220085 0.6220085
1 0.1666667 0.1666667
2 0.04465820 0.04465820
3 0.1666667 0.1666667
4 0 0
5 4:82� 10� 317 0
6 4:82� 10� 317 0
7 3:95� 10� 323 0

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 909

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

The PETSc/TAO (Ref. 11) library, which is a dependency
of MOOSE, contains a derivative-free model-based algo-
rithm called POUNDerS for solving the nonlinear least-
squares problems. In the future we wish to pursue the use
of POUNDerS or similar algorithms when AD and
PJFNK are not applicable; however, that is beyond the
scope of current work.

One area where the full benefit of AD has not yet been
realized is in multibody problems that require projection of
one moving domain face onto another. Specific physics
include mechanical and thermal contact on displaced
meshes. Mesh displacement, and consequently the location
of projections, the evaluation of shape functions, and the
computation of variable values on the interface are all
determined by nonlinear displacement variable DOFs. At
this time there is no way to store the dependence of the
mesh nodes on the displacement DOFs, so consequently it
is not possible to use AD to form a perfect Jacobian for the
two-body interface physics. Because AD cannot form
a perfect Jacobian, a PJFNK method has to be used. The
current MOOSE AD implementation adds some overhead
to function evaluations, so the use of AD and PJFNK
(which perform a function evaluation at every linear itera-
tion) together can slow simulations down relative to the
use of a fairly accurate hand-coded preconditioning matrix
with PJFNK. However, as described in Sec. IV, we plan to
develop dynamic derivative storage containers that will
enable the addition of derivative information to mesh
nodes, and consequently allow AD information to properly
propagate all the way down to multibody interface phy-
sics. When that task is complete, mechanical and thermal
contact problems will be able to use an explicit matrix for
the Jacobian and avoid function evaluations at linear
iterations.

III. PHYSICS APPLICATION

III.A. Laser Melt Pool

Additive manufacturing, also known as 3-D printing,
is a technique for creating objects from 3-D models that
has grown incredibly popular in the past decade.12

Selective laser melting (SLM) is a powder bed–based
additive manufacturing technique that has garnered sig-
nificant attention in the modeling and simulation commu-
nity. In this directed-energy technology, the material
deposition is localized and occurs at the same time as
the laser heat deposition. The powders absorb the directed
energy and form a local melt pool. Within the multiphase
material, heat will transfer by convection and conduction,

forming a nonuniform temperature profile. The phenom-
ena that describes the melt pool behavior can be categor-
ized as a nonlinear, nonequilibrium multiphysics process.
As such, sophisticated modeling techniques are required
to capture the associated phenomena. In Refs. 13 and 14,
the authors simulate temperature and mechanical stress
fields during SLM using commercial finite element
packages ANSYS (Ref. 15) and MSC Marc,16 respec-
tively. In Ref. 17, the authors consider the hydrodynamics
of the melt pool, surface tension effects, and thermal
transport using the ALE3D multiphysics code.18 As indi-
cated by its name, the ALE3D code uses an arbitrary
Lagrangian-Eulerian (ALE) formulation in which the
computational mesh is neither fixed in space (Eulerian)
nor tied to the motion of the material within the computa-
tional domain (Lagrangian). The authors in Ref. 19 also
explore the thermal and mechanics phenomena of laser
melt using ALE as well as with the interface-tracking
level-set method. Other methods for simulating interface
physics include volume of fluid and molecular dynamics,
which are demonstrated in additive manufacturing con-
texts in Refs. 20 and 21, respectively. Motivated largely
by the work in Ref. 19, MOOSE has developed support
for both ALE and the level-set simulation of laser melt
pools. Demonstration of ALE support will be shown in
Sec. III.A.1 for melt dynamics of stainless steel.

III.A.1. Melt Pool ALE

Details of the equations, boundary conditions, and
material properties used to model melt pool evolution are
given in Ref. 19. In summary, the pressure and velocity are
determined by the transient incompressible Navier-Stokes
equations, and the temperature is determined by a transient
conduction-convection equation. The problem is driven by
an incident laser energy flux that heats the surface and
eventually begins to evaporate material, exerting a recoil
force and displacing the melt pool. Additional forces are
exerted by the Marangoni effect; however, these are not
included in the AD proof-of-concept results since remesh-
ing is required to properly resolve tangential gradients.
Mesh displacement enters the residual calculation process
in subtle, but very important ways, by changing the finite
element Jacobian matrix, which maps the element from the
reference to physical space. Mesh displacement also
changes shape function gradients, consequently modifying
both local element solution gradients as well as test func-
tion gradients. Tracking this dependence on displacements
by hand would be nearly impossible. Alternatively,
a modeler may choose to use a matrix-free approximation
to the Jacobian, but this approximation is subject to errors

910 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

from floating-point round off, which can become signifi-
cant in these multiphysics problems. The melt pool simu-
lation described here includes a viscosity that varies by
eight orders of magnitude; other material properties only
add to scaling complexity. Indeed, the PJFNK solution of
melt pool physics in MOOSE fails to converge because of
the difficult scaling. However, through AD, we are able to
form perfect Jacobians for the melt pool, enabling the
following results.

MOOSE 3-D simulation results for the ALE equa-
tions are shown in Fig. 1. The simulation was performed
with adaptive mesh refinement, with refinement based on
gradient jumps in the temperature and z-displacement
variables. The number of elements and DOFs changed
with refinement, but at the conclusion of the simulation
the 3-D domain contained 29 310 elements and 424 018
DOFs. The problem was solved with 12 processes, with
approximately 35 000 DOFs per process. The laser is
rotated counterclockwise around the top surface of
a 3-D cube. When the surface reaches the boiling point
of the medium, it recoils, creating an imprint in the sur-
face that tracks with the rotating laser spot.
A representative 2-D simulation is shown in Fig. 2,
where the laser is swept back and forth repeatedly across

the surface. As with the 3-D simulation, melted material
is displaced away from the impinging laser spot.

III.A.2. Multiscale Coupling: Grain Growth in
Heat-Affected Zone Near Laser Melt Pool

In processes such as laser welding where a melt pool
is formed on the surface of two parts being joined, local
changes in the material’s microstructure can result in
significant changes in the properties of the material near
the weld. As the melt pool resolidifies, the solidification
process controls the microstructure and properties of this
region. However, the heat input from the laser also causes
temperatures to increase significantly outside the melt
pool. The region outside the melt pool where tempera-
tures increase enough to cause microstructural changes,
but not enough to cause melting, is referred to as the heat-
affected zone22 (HAZ).

One of the most significant microstructural changes
that can occur in the HAZ is grain growth.22 Grain
growth is the process by which the average size of grains
increases, driven thermodynamically by the reduction in
grain boundary surface area, and therefore, grain bound-
ary energy. Kinetically, grain growth is controlled by the

(a) half-rotation, top view (b) full-rotation, top view

(c) half-rotation, bottom view (d) full-rotation, bottom view

Fig. 1. Visualization of just the top surface of the melt pool after a half and full rotation of the laser. Solid coloring is based on the
temperature ranging from 300 K (dark blue) at the bottom of the domain (not shown here) to 3200 K (dark red) at the center of the
laser spot. Arrow vectors are based on the velocity vector. Arrow lengths are based on the velocity magnitude and are scaled 10×
larger for viewing purposes for the half rotation compared to the full rotation.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 911

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

re-arrangement of atoms at grain boundaries and is
a strong function of temperature. The average grain size
can have a significant impact on mechanical properties.
In order to predict the properties, and therefore the per-
formance of a part processed using laser-based techniques
such as powder bed fusion or laser welding, it is impor-
tant to be able to predict microstructural evolution in the

HAZ in addition to the resolidifying melt pool. The
average grain size in materials is typically much smaller
than the size of engineering-scale parts, and it is not
computationally practical to perform simulations of
microstructural evolution of the entire component. In
this section, we employ the multiscale capabilities of
the MOOSE framework to address this challenge.

Fig. 2. Two-dimensional melt pool simulation. Arrows represent unscaled velocity vectors. Solid coloring is based on the
temperature. Times in arbitrary units are 50, 100, 150, 200, 210, and 220.

912 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

The multiscale coupling strategy employed here uses
the ALE-based model of laser melt pool dynamics
described in Sec. III.A.1 at the engineering scale, includ-
ing the temperature field in both the melt pool and the
surrounding HAZ. To simulate grain growth in the HAZ,
multiple instantiations of the MOOSE phase-field model
of grain growth23,24 are run concurrently with the engi-
neering-scale model using the MOOSE MultiApp
system.25 Each instantiation represents microstructural
evolution at a different position within the HAZ of the
engineering-scale simulation domain. Thus, each grain
growth simulation is a representative volume element
(RVE) of the macroscale simulation domain. The tem-
peratures at each RVE’s position are passed from the
engineering-scale model to the corresponding grain
growth simulation using the MOOSE Transfer system.25

A schematic of the coupled simulations is shown in
Fig. 3.

Grain growth simulations were conducted in RVEs as
shown in Fig. 3. The RVEs are 2-D with a size of
100 × 100 μm. The grain structure in the initial conditions
is constructed with a Voronoi tessellation as described in
Ref. 24, and there are 100 grains in the initial conditions
for each simulation. Simplified physical parameters for
grain boundary properties were chosen such that
a reasonable amount of grain growth occurred in the time
span of the weld pool simulation.

The microstructures in both RVEs at the end of the
simulation time (t ¼ 2779 s) are shown in Fig. 3. The
average grain size in the RVE at y ¼ 0:5 mm is larger
than that in the RVE at y ¼ 0:3 mm. The higher tempera-
tures throughout the simulation for the RVE at y ¼ 0:5
cause the grain boundary mobility to be greater there, result-
ing in faster grain growth. Further details of the grain
growth kinetics will be given in a forthcoming publication.

In this section, we have demonstrated the coupling of
an engineering-scale model of laser melt pool formation,
enabled by AD, to a phase-field model to quantify the effect
of laser heat input on the microstructure in the HAZ. Due to
the strong dependence of grain boundary mobility on tem-
perature, relatively small changes in distance from the melt
pool result in significantly different grain growth kinetics.
This example demonstrates the advantage of leveraging
existing multiscale capabilities within the MOOSE frame-
work when using new AD-enabled modeling capabilities.

III.A.3. Melt Pool Level Set

The level-set method is an alternative approach to
tracking the free interface in melt pool modeling. In the
level-set method, the location of the moving interface is tied
to an iso-contour of a scalar field. The mesh is fixed in time
and the material moves through the mesh, which makes this
technique suitable for severe interface deformations and
topology changes. In this work, we use a conservative
level-set method27–30 to accurately model evolution of the
liquid-gas interface. The level-set evolution is written as

qϕ
qt
þ~uð~x; tÞ � Ñϕþ FpjÑϕj ¼ 0 ; ð2Þ

where

ϕ = level-set variable

~uð~x; tÞ = fluid velocity

Fp = powder addition speed.

For computational efficiency, powder particles are
approximately represented as a homogenized continuum

Fig. 3. Multiscale demonstration of laser welding with
coupled phase-field simulations to determine microstruc-
tural evolution in the HAZ. The engineering-scale laser
melt pool formation simulation domain is shown in the
upper left, with the domain colored by temperature. The
simulation domain is 2-D with a size of 0:8� 0:8 mm. The
laser is incident on the top boundary and travels left to
right at a rate of 1 m/min, a typical rate for welding of
stainless steel.26 Grain growth simulations are conducted
in RVEs at a height of 0.3 and 0.5 mm from the bottom of
the engineering-scale simulation domain, as shown with
white boxes (boxes are enlarged to ensure visibility). The
grain structures at t ¼ 2779 s are shown in expanded view
at the bottom and right. Grain growth simulations are
2-D with a size of 100 � 100 μm. Temperatures from
the engineering-scale simulations are passed to individual
grain growth simulations using the MOOSE Transfer sys-
tem. The higher temperatures for the grain growth simula-
tions conducted in the RVE at 0.5 mm from the bottom
result in a larger grain size, as seen at right.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 913

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

medium. The properties are smoothly varied across the
interface between gas and solid-liquid using a smeared-
out heaviside function defined by the level-set variable.31

The density ρ, enthalpy h, thermal conductivity k, and
dynamic viscosity μ in the transition region are provided
in Ref. 29. The solid-liquid region of metal is described
by pure solid, pure liquid, and solid-liquid mixture
(mushy zone) in which the material properties are deter-
mined by the mass and volume fraction.

A continuum finite element model is used to describe
relevant multiphysics phenomena, including the genera-
tion of the powder layer, melting and solidification, melt
pool dynamics, and thermal-capillary, buoyant, conduc-
tive, and convective heat transport processes. The con-
servation equations of mass, energy, and momentum are
solved with MOOSE.

The gas and liquid flow is assumed to be incompres-
sible, so the mass conservation equation simplifies to

Ñ �~u ¼ 0 : ð3Þ

The energy conservation equation is described by

ρ
qh
qt
þ ρÑ � ð~uhÞ ¼ Ñ � ðkÑTÞ

þ
2Pα
πR2

b
exp

� 2r2

R2
b

� �

Ñϕj j

� AhðT � T0Þ Ñϕj j

� σ 2 ðT4 � T4
0 Þ Ñϕj j ; ð4Þ

where the last three terms on the right represent heat flux
from the laser, heat loss through convection, and heat loss
through radiation, respectively, and where

P = laser power

Rb = effective beam radius

α = laser energy absorption coefficient

Ah = heat transfer coefficient

σ = Stefan-Boltzmann constant

2 = material emissivity

T0 = ambient temperature.

The momentum equation is expressed by

ρ
q~u
qt
þ~u � Ñ~u

� �

¼ Ñ � pIþ μ Ñ~uþ Ñ~uT� �� �

� ρlβl T � Trð Þ~g �
μm
K
~u

þ γ~nκjÑϕj � γT ÑsT jÑϕj ; ð5Þ

where the last four terms on the right represent buoyancy
force, Darcy damping, capillary, and thermal-capillary
(Marangoni) forces, respectively, and where

βl = thermal expansion coefficient

~g = gravity vector

Tr = reference temperature

K = isotropic permeability

γ = surface tension coefficient

κ = surface curvature

~n = normal vector to the free surface

γT = thermal-capillary coefficient

Ñs = surface gradient operator.

Equations (2) through (5) are solved implicitly in
MOOSE. These equations are highly nonlinear and strongly
coupled, so accurate Jacobians are required for Newton’s
method to converge appropriately. With AD, we are able to
form perfect Jacobians and solve the equations in a fully
coupled manner. In the example considered, only three to
four nonlinear iterations are needed to solve each time step,
making the overall simulation remarkably efficient. The
material considered here is 316L stainless steel; parameters
relevant to the simulation can be found in Refs. 27 through 30.
The initial and melting temperatures are set to be 300 and
1673 K, respectively. The predicted sequential track evolution
during 0.4 s of the process is illustrated in Fig. 4. The melt
pool is generated at the front of the track corresponding to the
laser spot. Due to the high cooling rate, the melt solidifies
shortly after the laser moves away. The fluid motion in the
melt pool is shown in Fig. 5. The liquid flows from the higher-
temperature region toward the lower-temperature region due
to thermal-capillary forces. The fluid velocity is damped out-
side the fluid domain due to the Darcy effect. Two vortices
form in the melt pool by t = 0.2 s; the vortex pattern is
consistent with simulation results shown in Refs. 27 and 29.
Although only 2-D results are shown here, the model and
implementation can be readily applied to three dimensions.

III.B. Neural Network–Based Free Energies in Phase-Field
Modeling

In the field of mesoscale materials modeling, the phase-
field method has emerged as a well-established approach for
simulating the co-evolution of microstructure and proper-
ties.32,33 The description of phase-state and concentrations
through field variables with finite-width smooth interfaces
has proven to be an extremely flexible approach resulting in
a broad range of applications from solidification34,35 to
over-phase transformation36,37 to grain growth.23,38

914 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

Quantitative phase-field modeling of realistic material
systems requires thermodynamic and kinetic input data in
the form of Gibbs free energies and atomic mobilities. The
assessment and compilation of such data through
a combination of theoretical and experimental data are for-
malized by the CALPHAD approach.39 In CALPHAD,
Gibbs free energies are expressed as phenomenological func-
tion expansions combined with semi-empirical entropy

models. As a standard machine readable delivery format for
these free energies, the thermodynamic database ASCII-
based file format has been established, and a large swath of
open thermodynamic and kinetic data exists on the web and
can be explored with search engines such as the
Thermodynamic DataBase DataBase.40

CALPHAD free-energy databases present users with
two challenges. Commercial databases are often encrypted

(a) t = 0.1 second (b) t = 0.2 second

(c) t = 0.3 second (d) t = 0.4 second

Fig. 4. Sequential deposition profile and temperature distribution. The coloring is based on the temperature ranging from 300 to
1782 K.

(a) t = 0.1 second (b) t = 0.2 second

(c) t = 0.3 second (d) t = 0.4 second

Fig. 5. Sequential fluid motion velocity fields in the melt pool. Arrows represent scaled velocity vectors. The scale of the
temperature is shown in Fig. 4. The white line shows the contour of the melting temperature.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 915

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

and do not permit the extraction of functional forms and
parameter sets. Free-energy formulations in the compound
energy formalism allow for phases with multiple sublattices.
The distribution of the local solute concentrations onto the
different sublattices requires solving a local free-energy mini-
mization problem, which comes at a computational cost.
Both issues can be addressed by pretabulating the free-
energy functions over the configuration space relevant to
the phase-field problem at hand and generating a surrogate
model for the tabulated free energy to ensure differentiability
and smoothness.

In this work, we propose the use of multilayer neural
networks as a generic function fitting tool to generate
surrogate free-energy models from pretabulated free-
energy data, which can be obtained from thermodynamic
database software, such as ThermoCalc or pycalphad. We
rely on the universal function approximation theorem,41

which states that any continuous function over the R n can
be approximated with an arbitrarily small error using
a neural network with one hidden layer and a finite
number of neurons.

We chose a fully connected network topology with
a variable number of hidden layers and hidden layer
nodes. The input nodes of the network are connected to
the state space coordinates ~s or arguments of the free-
energy function, such as temperature, concentrations,
pressure, etc. The output node is the value of the free
energy. We note that while the implementation of training
and evaluation of the neural network allows for an arbi-
trary number of input and output nodes, in the context of
this work we use a single output node for the value of the
free energy.

The chemical potential data are not fitted indepen-
dently from the free-energy data, as the chemical
potentials are the derivatives of the free energy with
respect to its arguments, or in terms of a neural net-
work, the derivatives of the output node with respect to
the input nodes. We have derived an analytical expres-
sion for these derivatives. Not having independent
training for the chemical potentials ensures the free
energy and chemical potentials remain consistent and
that a closed loop in state space does not incur
a difference in free energy.

A multilayer perceptron network with two hidden
layers can be described by

Fð~sÞ ¼ ~s �W1 þ~b1

h i

g
�W2 þ~b2

� �

g
�W3 þ~b3 ; ð6Þ

where

Wi = ni � ni� 1 weight matrices that code the
connectivity between the adjacent layers con-
taining ni and ni� 1 neurons, respectively

~bi = a bias vector

½. . .�g = elementwise application of the activation func-
tion (a sigmoid or softsign).

Training of the networks has been implemented
using the PyTorch machine learning framework,42

which supports GPU-accelerated learning. The net-
works are trained outside of MOOSE in a standalone
PyTorch-based python code. Once trained, the network
topology and parameterization contained in the Wi

matrices and ~bi vectors are exported to a simple text
file format. We read these files in the MOOSE-based
Marmot application for mesoscale microstructure mod-
eling. Evaluation of the networks and the first deriva-
tive of the output node(s) with respect to the input
nodes are performed in Marmot.

We utilize dual numbers and forward-mode AD to
obtain the second derivatives of the output node (i.e., the
first derivative of the chemical potentials with respect to
the DOFs of the state-space variables we are solving for).

The derivative
qF
q~s

is straightforward to derive analyti-

cally. This permits us to construct the exact Jacobian
matrix for the Cahn-Hilliard phase-field problem.

To test the feasibility of a neural network–based free-
energy density, we trained a network on an analytical
free-energy density function. This approach allows us to
compare the neural network results to the exact solution.
We generated an evenly sampled set of data points of the
regular solution free-energy density function

Fðc;TÞ ¼ ωcpð1 � cpÞ

þ χT cp logðcpÞ þ ð1 � cpÞ logð1 � cpÞ
� �2

;

ð7Þ

with ω ¼ 1 and χ¼ 10� 3 at intervals Δc¼ 10� 3 in the
interval ½0:05; 0:95�, and ΔT ¼ 6 K in the interval
½445K; 475 K�. The loss function L is computed using
the values of the free-energy training values �Fn and the
network’s predicted value Fn, as well as their derivatives
with respect to the input node values ~s ¼ ðc;TÞ as

L ¼
1
N
XN

n

�Fn � Fnð Þ
2
þ

q�Fn

q~s
�

qFn

q~s

� �

: ð8Þ

Training was stopped at 400 000 epochs and a wall time
of about 1 h on a GeForce RTX 2080 (Fig. 6a).

916 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

A comparison of the free energies returned by the neural
network and the training data is shown in Fig. 6b. As
expected from the loss function value, the curves are
visually indistinguishable.

Next, we implemented the evaluation of the neural
network in Marmot. Here the forward-mode AD simpli-
fied the implementation effort greatly by providing us
with the derivatives of the chemical potentials with
respect to the finite element DOFs.

To test the neural network free energy, we set up two
concentration fields cp and cn. Both fields were initialized
with identical fields generated from a uniform random dis-
tribution of values between 0.45 and 0.55, right in the middle
of the spinodal region of the phase diagram for the free-
energy density function Fðc;TÞ. We evolved both fields
using the time-dependent Cahn-Hilliard equation, choosing
the analytical free-energy expression from Eq. (7) for the cp
field and the neural network free energy for the cn field. The
simulations were run with T ¼ 460 K for 750 time units.

The results of the simulation are shown in Fig. 7.
The time-integrated concentration fields are qualita-
tively very similar. Only differencing the fields, as
shown in Fig. 7a, reveals a subtle difference on the
order of 1% in concentration. This is an indication of
how sensitive the microstructural evolution is to even
small changes in the free-energy density function.

In summary, we believe using neural network–based
surrogate models for thermodynamic potentials is a viable
approach that needs to be investigated further. Automatic
differentiation in MOOSE significantly accelerated the
implementation of a neural network in our mesoscale
microstructure evolution code.

III.C. Nuclear Fuel Performance Simulations

Fuel performance simulation is a powerful tool uti-
lized to try and predict the behavior of actinide fuel and
steel cladding in the high-temperature irradiation condi-
tions experienced in nuclear reactor cores.43 Such simula-
tions are made difficult not only by the complex
operating environment, but also by the inability to obtain
the high volume of data required to build comprehensive
empirical constitutive models that can be used to describe
the thermomechanical response of the fuel and cladding
beyond typical operating conditions. Consequently, the
need for predictive rather than descriptive tools to fill in
the holes between sparse data sets requires mechanistic
models that stretch both academic understanding and
computational limits.

Like all nuclear fuel, metallic fuel (here, metallic will
only refer to zirconium-based metallic fuel, e.g., U-Zr
and U-Pu-Zr) suffers from volumetric swelling during

102 103 104
105

Epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L
os

s
fu

nc
tio

n

(a) Loss function

0 0.2 0.4 0.6 0.8 1
Concentration

-0.08

-0.07

-0.06

-0.05

-0.04

F
[a

.u
.]

Training Data 445K - 465K
Neural Net

(b) Free energy density

Fig. 6. Loss function and free-energy density.

Fig. 7. Cahn-Hilliard spinodal decomposition phase-field simulation showing the concentration field cn for (a) neural network–
based free energy, (b) the concentration field cp for the corresponding analytical free energy, which the neural network was trained
on, and (c) the difference between the two fields.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 917

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

irradiation due to the accumulation of fission gas into
bubbles. Once the bubbles interconnect with an outside
surface, the fission gas is released into the fuel plenum,
imparting a pressure loading on the thin cladding. Over
time, the internal pressure in the fuel pin plenum will
result in thermal and irradiation creep of the cladding. If
enough deformation occurs, the swelled fuel pin can
place the core at risk of overheating due to coolant
channel restriction, further enhancing plastic deformation.
If left unchecked, the cladding could fail, releasing radio-
active gases into the coolant. Using this simplified
description of nuclear fuel pin behavior during irradia-
tion, two driving factors can be identified as key compo-
nents in understanding cladding failure: fission gas
swelling in the fuel and creep behavior in the cladding.

While lower-length-scale atomistic and microstruc-
tural simulations of nuclear fuel utilize a wide range of
computational methods such as density functional theory,
molecular dynamics, and Monte Carlo, fuel performance
simulations almost always rely on a finite element frame-
work to capture the thermomechanical response of fuel
systems.44 Such highly coupled nonlinear problems often
have been explored with the MOOSE framework, primar-
ily through the BISON code.43 Although the historical
focus of BISON has been primarily on the UO2/Zircaloy
system due to familiarity of the fuel system in the United
States, recent progress at modeling zirconium-based
metallic fuel has accelerated due to the AD methods
described here.45 Several examples of advanced mechan-
istic models will be summarized in order to provide
a sense of how AD has enabled rapid implementation of
advanced mechanistic constitutive models into BISON.

III.C.1. The Tangent Modulus

The strain in a material ε can be decomposed into
several components:

ε ¼ εel þ εth þ εswðσÞ þ εcrðσÞ ; ð9Þ

where

εel = elastic strain

εth = thermal strain

εsw = swelling strain (e.g., fission gas or void swelling)

εcr = creep strain.

The typical constitutive equation used to compute the
stress σ to the elastic strain, is

σ ¼ C : εel ¼ C : ε � εswðσÞεth � εcrðσÞ
� �

; ð10Þ

where C is the elasticity tensor. Since the swelling and
creep strains can be dependent on the stress, Eq. (10)
becomes a complex set of nonlinear partial differential
equations that is typically solved using inner Newton-
Raphson root-finding loops such as radial return
algorithms.46 This in turn requires a proper Jacobian
once converged, which is typically in the form of the so-
called tangent modulus J:

dσnþ1 ¼ J : dεnþ1 ; ð11Þ

where J represents the change in stress as a function of
strain and typically describes the stiffness of a material in
the plastic range. In the limit where a material response is
primarily elastic J ’ C. However, due to the nonlinearity
introduced by stress-dependent strain, J quickly becomes
a nontrivial derivation with potentially no closed form.
Like the other Jacobians described here, Eq. (10) can be
solved without a perfectly defined J, either through brute
force computation using perturbation techniques, small
time steps, or finite differencing.47 Unfortunately, these
simplifications tend to result in unacceptable increases in
computational cost or time to justify their implementation
in fuel performance simulations. Even formulation of an
analytical J leads to extensive mathematic manipulation
that quickly overshadows the implementation of any
mechanistic modeling.

With the introduction of AD into MOOSE, the for-
mulation of J is handled automatically, even allowing for
Jacobian information to propagate through to the outer
Newton-Raphson algorithm. This has allowed rapid pro-
totyping of advanced constitutive models for the fuel and
cladding, both of which are descried briefly here and will
be explored in detail in future publications. The goal of
the following examples is to convey how the use of AD
in MOOSE has allowed for implementation and testing of
advanced mechanistic models before fully committing to
a comprehensive derivation by forgoing the need to for-
mulate an accurate J.

III.C.2. Fission Gas Swelling

While the driving mechanism for the growth of fission
gas bubbles is simple (i.e., accumulation of fission gas), the
volumetric strain response is nontrivial. In general, the bubble
surface can be assumed to be in equilibrium with the sur-
rounding material due to the fast mobility and high concen-
tration of vacancies present in the fuel during irradiation.48

As a first approximation, the bubble radius r can be estimated
via the Young-Laplace equation with a van der Waals

918 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

equation of state by equating the pressure of the gas Pgas to
the pressure exerted by the surface Psurf (Ref. 45):

Pgas ¼ Psurf ð12Þ

and

kBT
vbðrÞ=gbðrÞ � B

¼ 2γs=r � σhydroðrÞ ; ð13Þ

where

kB = Boltzmann constant

T = temperature

vb = volume of the bubble

B = van der Waals constant for the gas

γs = surface tension

σhydro = bulk stress at the surface of the bubble.

By turning Eq. (13) into a residual, an inner Newton
loop can be utilized to solve for the bubble radius r. This
in turn can be used to apply a volumetric strain on the
cladding:

ΔV
V
¼

4
3
πr3Cb ; ð14Þ

where Cb is the concentration of bubbles in the solid. Despite
the many built-in simplifications, Eq. (13) turns into a seven-

order polynomial due to the stress coupling term in σ.
Furthermore, the growth of the porosity in the fuel f can be
calculated from the individual swelling strain components:

_f ¼ ½1:0 � f � � _2sw
xx þ _2sw

yy þ _2sw
zz

� �
: ð15Þ

The growing porosity will impact the strength of the fuel
via the elasticity tensor C and the temperature of the fuel
via the thermal conductivity, convoluting the solution of
Eq. (10) even further.

The ability to quickly implement a complex model
like Eq. (13) using AD has allowed for rapid prototyping
and model refinement. More importantly, advanced mod-
els allow for quantification of potential approximations
rather than being forced to make decisions a priori.
Following the results from the example simulations
(Fig. 8), the rapid prototyping has led to increased interest
and funding in refining and calibrating this bubble model.

III.C.3. Reduced-Order Model for Cladding Creep

With cladding strain as one of the primary concerns for
core integrity, accurate estimations of the creep response to
internal plenum pressure is essential to help reduce costly
overestimations resulting in unnecessarily large failure mar-
gins or dangerous underestimations that could allow for
dangerous core failures. In order to maximize the utilization

(a) (b) (c) (d)

Fig. 8. Results from simulation of a prototypical U-Pu-Zr rodlet fuel performance simulation at an intermediate time in order to
illustrate the impact of the bubble model on the (a) von Mises stress, (b) hydrostatic stress, (c) radius, and (d) creep strain.45 Note,
cladding is omitted for clarity. The radial variation is due to phase-dependent bubble concentrations and sizes.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 919

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

of irradiated steel experimental campaigns, mechanistic mod-
eling must be used to bridge the sparsity of data.

Recently, a mechanistic-based constitutive creep
model for HT9 stainless steels was developed through
extensive simulations using the visco-plastic self-
consistent (VPSC) approach.49,50 This provided a tool to
estimate creep response for standard fast reactor cladding
in a predictive manner. Unfortunately, this lower-length
(i.e., microstructural) code is too vastly expensive to run
concurrently within a fuel performance simulation. In
addition, the creep strain response in HT9 is dependent
on several evolving parameters, such as dislocation den-
sity, preventing an analytical creep rate formulation.

In order to overcome the computational cost of the
VPSC simulations while still enabling a mechanistic,
lower-length-scale-informed constitutive HT9 model,
a reduced-order method (ROM) to condense hundreds
of precomputed VPSC results into orthogonal Legendre
polynomials has shown promise in similar stainless
steels.51 These polynomials carry the form

εcrðσÞ ¼
Xdeg

w¼0
. . .
Xdeg

z¼0
αw...zPw xwð Þ . . . Pz xzð Þ ; ð16Þ

where

Pi xð Þ = polynomial of degree i

deg = maximum degree of polynomial to be used in
the model (typically two or three)

αi regression coefficients for the terms formed from the
product of the i’th degree polynomial of input xi.

By calibrating the various Legendre coefficients to
the VPSC data, Eq. (16) can be trained to provide
a nearly identical creep strain response with a fraction
of the computational cost.

Although an analytical expression for the tangent
modulus that derives from Eq. (16) may be possible, the
rapid implementation in MOOSE using AD allowed for
early prototyping to support adoption of an HT9 ROM
using a limited number of VPSC simulations to formulate
the Legendre polynomial coefficients. Similar to the fis-
sion gas swelling model, increased resources were con-
sequently diverted to develop a fully calibrated ROM for
use in metallic fuel performance simulations.

IV. CONCLUSIONS AND FUTURE WORK

The introduction of MetaPhysicL and AD into the
MOOSE framework has opened doors to simulation

types that were not previously possible because of the
complexity of forming accurate hand-coded Jacobians
or because the multiphysics nature of the problem
inhibited the accuracy of finite difference approxima-
tions. Examples of these simulations include ALE and
level-set models of laser melt pools, phase-field mod-
els with neural network–based free energies, and
metallic nuclear fuel performance calculations that
rely on extensive inner Newton loops for material
property evaluation. Future AD work includes the
exploration of dynamic derivative storage containers
using a memory pool in order to reduce the memory
footprint for dynamic mesh calculations that require
storing derivative information with respect to displa-
cements for each mesh node. If the memory pool
implementation is successful, it will allow expansion
of AD into more complex discretization schemes such
as mortar methods for nonconforming interfaces.

Acronyms

2-D: two dimensional
3-D: three dimensional
AD: automatic differentiation
ALE: arbitrary Lagrangian-Eulerian
DOE: U.S. Department of Energy
DOF: degree of freedom
GMRES: generalized minimal residual method
HAZ: heat affected zone
JFNK: Jacobian-Free Newton-Krylov
MASA: Manufactured Analytical Solution Abstraction

library
MOOSE: Multiphysics Object Oriented Simulation

Environ-ment
PJFNK: preconditioned Jacobian-Free Newton-Krylov
SLM: selective laser melting
ROM: reduced-order method
RVE: representative volume element
VPSC: visco-plastic self-consistent

Acknowledgments

This work was sponsored in part by the U.S. Department of
Energy (DOE), Office of Nuclear Energy, Nuclear Energy
Advanced Modeling and Simulation program and Idaho
National Laboratory’s Laboratory Directed Research &
Development Program. Idaho National Laboratory, an affirmative
action/equal opportunity employer, is operated by Battelle Energy
Alliance under contract number DE-AC07-05ID14517. Los
Alamos National Laboratory, an affirmative action/equal oppor-
tunity employer, is operated by Triad National Security, LLC, for

920 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

the National Nuclear Security Administration of the DOE under
contract number 89233218CNA000001.

ORCID

Alexander Lindsay http://orcid.org/0000-0002-6988-
2123

References

1. C. J. PERMANN et al., “MOOSE: Enabling Massively
Parallel Multiphysics Simulation,” SoftwareX, 11, 100430
(2020); https://doi.org/10.1016/j.softx.2020.100430.

2. J. BROWN, “Why Is Newton’s Method Not Converging?”;
https://scicomp.stackexchange.com/q/30/24756 (current as
of June 17, 2020).

3. D. A. KNOLL and D. E. KEYES, “Jacobian-Free Newton–
Krylov Methods: A Survey of Approaches and
Applications,” J. Comput. Phys., 193, 2, 357 (2004);
https://doi.org/10.1016/j.jcp.2003.08.010.

4. A. MEURER et al., “SymPy: Symbolic Computing in
Python,” PeerJ Comput. Sci., 3, e103 (2017); https://doi.
org/10.7717/peerj-cs.103.

5. S. WOLFRAM et al., The MATHEMATICA® Book,
Version 4, Cambridge University Press (1999).

6. A. GRIEWANK et al., “On Automatic Differentiation,”
Math. Program. Recent Dev. Appl., 6, 6, 83 (1989).

7. A. PASZKE et al., Automatic Differentiation in Pytorch (2017);
https://openreview.net/pdf?id=BJJsrmfCZ.

8. J. I. TOIVANEN and R. A. MÄKINEN, “Implementation
of Sparse Forward Mode Automatic Differentiation with
Application to Electromagnetic Shape Optimization,”
Optim. Methods Software, 26, 4–5, 601 (2011); https://doi.
org/10.1080/10556781003642305.

9. N. MALAYA et al., “MASA: A Library for Verification
Using Manufactured and Analytical Solutions,” Eng.
Comput., 29, 4, 487 (2013); https://doi.org/10.1007/
s00366-012-0267-9.

10. C. CARTIS and L. ROBERTS, “A Derivative-Free
Gauss-Newton Method,” Math. Program. Comput., 11, 4,
631 (2019); https://doi.org/10.1007/s12532-019-00161-7.

11. S. BALAY et al., “PETSc Users Manual,” ANL-95/11-
Revision 3.13, Argonne National Laboratory (2020);
https://www.mcs.anl.gov/petsc(current as of June 17,
2020).

12. K. V. WONG and A. HERNANDEZ, “A Review of
Additive Manufacturing,” Int. Scholarly Res. Notices,
2012, 208760 (2012); https://doi.org/10.5402/2012/208760.

13. A. HUSSEIN et al., “Finite Element Simulation of the
Temperature and Stress Fields in Single Layers Built
Without-Support in Selective Laser Melting,” Mater. Des.
(1980–2015), 52, 638 (2013); https://doi.org/10.1016/j.
matdes.2013.05.070.

14. L. PARRY, I. ASHCROFT, and R. D. WILDMAN,
“Understanding the Effect of Laser Scan Strategy on
Residual Stress in Selective Laser Melting Through
Thermo-Mechanical Simulation,” Addit. Manuf., 12, 1
(2016); https://doi.org/10.1016/j.addma.2016.05.014.

15. “ANSYS,” ANSYS; https://www.ansys.com (current as of
June 17, 2020).

16. “MSC Marc,” M. SOFTWARE; https://www.mscsoftware.
com/product/marc (current as of June 17, 2020).

17. S. A. KHAIRALLAH and A. ANDERSON, “Mesoscopic
Simulation Model of Selective Laser Melting of Stainless
Steel Powder,” J. Mater. Process. Technol., 214, 11, 2627
(2014); https://doi.org/10.1016/j.jmatprotec.2014.06.001.

18. C. R. NOBLE et al., “ALE3D: An arbitrary Lagrangian-
Eulerian Multi-Physics Code,” Lawrence Livermore
National Laboratory (2017).

19. D. R. NOBLE et al., “Use of Aria to Simulate Laser Weld
Pool Dynamics for Neutron Generator Production,” Sandia
National Laboratories (2007).

20. H. LI et al., “3D Numerical Simulation of Successive
Deposition of Uniform Molten Al Droplets on a Moving
Substrate and Experimental Validation,” Comput. Mater.
Sci, 65, 291 (2012); https://doi.org/10.1016/j.commatsci.
2012.07.034.

21. M. S. BENI, T. H. TAN, and K. YU, “Atomistic Modeling
of Pileup Process in Metal Deposition Manufacture,”
Results Phys., 12, 1660 (2019); https://doi.org/10.1016/j.
rinp.2019.01.075.

22. D. PORTER and K. EASTERLING, Phase Transformations in
Metals and Alloys, Chapman and Hall, London (1992).

23. N. MOELANS, B. BLANPAIN, and P. WOLLANTS,
“Quantitative Analysis of Grain Boundary Properties in
a Generalized Phase Field Model for Grain Growth in
Anisotropic Systems,” Phys. Rev. B, 78, 2, 024113 (23 pages)
(2008); https://doi.org/10.1103/PhysRevB.78.024113.

24. C. J. PERMANN et al., “Order Parameter Remapping
Algorithm for 3D Phase Field Model of Grain Growth
Using FEM,” Comput. Mater. Sci, 115, 18 (2016); https://
doi.org/10.1016/j.commatsci.2015.12.042.

25. C. J. PERMANN et al., “MOOSE: Enabling Massively
Parallel Multiphysics Simulation,” SoftwareX, 11, 100430
(2020); https://doi.org/10.1016/j.softx.2020.100430, ArXiv
e-print: https://arxiv.org/abs/1911.04488 (current as of
June 17, 2020).

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 921

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

https://doi.org/10.1016/j.softx.2020.100430
https://scicomp.stackexchange.com/q/30/24756
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.1080/10556781003642305
https://doi.org/10.1080/10556781003642305
https://doi.org/10.1007/s00366-012-0267-9
https://doi.org/10.1007/s00366-012-0267-9
https://doi.org/10.1007/s12532-019-00161-7
https://www.mcs.anl.gov/petsc
https://doi.org/10.5402/2012/208760
https://doi.org/10.1016/j.matdes.2013.05.070
https://doi.org/10.1016/j.matdes.2013.05.070
https://doi.org/10.1016/j.addma.2016.05.014
https://www.ansys.com
https://www.mscsoftware.com/product/marc
https://www.mscsoftware.com/product/marc
https://doi.org/10.1016/j.jmatprotec.2014.06.001
https://doi.org/10.1016/j.commatsci.2012.07.034
https://doi.org/10.1016/j.commatsci.2012.07.034
https://doi.org/10.1016/j.rinp.2019.01.075
https://doi.org/10.1016/j.rinp.2019.01.075
https://doi.org/10.1103/PhysRevB.78.024113
https://doi.org/10.1016/j.commatsci.2015.12.042
https://doi.org/10.1016/j.commatsci.2015.12.042
https://doi.org/10.1016/j.softx.2020.100430
https://arxiv.org/abs/1911.04488

26. J. D. MADISON and L. K. AAGESEN, “Quantitative
Characterization of Porosity in Laser Welds of Stainless
Steel,” Scr. Mater., 67, 9, 783 (2012); https://doi.org/10.
1016/j.scriptamat.2012.06.015.

27. H.-O. ZHANG et al., “Numerical Simulation of Multiphase
Transient Field During Plasma Deposition Manufacturing,”
J. Appl. Phys., 100, 12, 123522 (2006); https://doi.org/10.
1063/1.2399341.

28. X. HE and J. MAZUMDER, “Transport Phenomena
During Direct Metal Deposition,” J. Appl. Phys., 101, 5,
053113 (2007); https://doi.org/10.1063/1.2710780.

29. S. WEN and Y. C. SHIN, “Modeling of Transport
Phenomena During the Coaxial Laser Direct Deposition
Process,” J. Appl. Phys., 108, 4, 044908 (2010); https://
doi.org/10.1063/1.3474655.

30. M. COURTOIS et al., “A Complete Model of Keyhole and
Melt Pool Dynamics to Analyze Instabilities and Collapse
During Laser Welding,” J. Laser Appl., 26, 4, 042001
(2014); https://doi.org/10.2351/1.4886835.

31. E. OLSSON and G. KREISS, “A Conservative Level Set
Method for Two Phase Flow,” J. Comput. Phys., 210, 1,
225 (2005); https://doi.org/10.1016/j.jcp.2005.04.007.

32. L.-Q. CHEN, “Phase-Field Models for Microstructure
Evolution,” Annu. Rev. Mater. Res., 32, 1, 113 (2002);
https://doi.org/10.1146/annurev.matsci.32.112001.132041.

33. N. MOELANS, B. BLANPAIN, and P. WOLLANTS, “An
Introduction to Phase-Field Modeling of Microstructure
Evolution,” CALPHAD, 32, 2, 268 (2008); https://doi.org/
10.1016/j.calphad.2007.11.003.

34. J. A. WARREN and W. J. BOETTINGER, “Prediction of
Dendritic Growth and Microsegregation Patterns in
a Binary Alloy Using the Phase-Field Method,” Acta
Metall. Mater., 43, 2, 689 (1995); https://doi.org/10.1016/
0956-7151(94)00285-P.

35. A. KARMA and W.-J. RAPPEL, “Phase-Field Method for
Computationally Efficient Modeling of Solidification with
Arbitrary Interface Kinetics,” Phys. Rev. E, 53, 4, R3017 (4
pages) (1996); https://doi.org/10.1103/PhysRevE.53.
R3017.

36. A. A. WHEELER, W. J. BOETTINGER, and
G. B. McFADDEN, “Phase-Field Model for Isothermal Phase
Transitions in Binary Alloys,” Phys. Rev. A., 45, 10, 7424
(1992); https://doi.org/10.1103/Phys-RevA.45.7424.

37. S. G. KIM, W. T. KIM, and T. SUZUKI, “Phase-Field
Model for Binary Alloys,” Phys. Rev. E, 60, 6, 7186
(1999); https://doi.org/10.1103/PhysRevE.60.7186.

38. D. FAN and L.-Q. CHEN, “Diffusion-Controlled Grain
Growth in Two-Phase Solids,” Acta Mater., 45, 8, 3297
(1997); https://doi.org/10.1016/S1359-6454(97)00022-0.

39. H. L. LUKAS et al., Computational Thermodynamics: The Calphad
Method, Vol. 131, Cambridge University Press, Cambridge (2007).

40. A. VAN DE WALLE, C. NATARAJ, and Z.-K. LIU, “The
Thermodynamic Database Database,” Calphad, 61, 173
(2018); https://doi.org/10.1016/j.calphad.2018.04.003.

41. M. LESHNO et al., “Multilayer Feedforward Networks
with a Nonpolynomial Activation Function Can
Approximate Any Function,” Neural Networks, 6, 6, 861
(1993); https://doi.org/10.1016/S0893-6080(05)80131-5.

42. A. PASZKE et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” H. WALLACH et al.,
Eds., Advances in Neural Information Processing Systems 3 2,
pp. 8024–8035, Curran Associates, Inc. (2019); http://papers.neur
ips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf (current as of June 17, 2020).

43. R. L. WILLIAMSON et al., “Multidimensional Multiphysics
Simulation of Nuclear Fuel Behavior,” J. Nucl. Mater., 423,
1–3, 149 (2012); https://doi.org/10.1016/j.jnucmat.2012.01.
012.

44. M. R. TONKS et al., “Mechanistic Materials Modeling for
Nuclear Fuel Performance,” Ann. Nucl. Energy, 105, 11
(2017); https://doi.org/10.1016/j.anucene.2017.03.005.

45. C. MATTHEWS et al., “Improvements to the Multi-Scale
Capabilities of BISON for Metallic Fuel Performance Modeling,”
LA-UR-19-29858, Los Alamos National Laboratory (2019).

46. J. C. SIMO and R. L. TAYLOR, “Consistent Tangent
Operators for Rate-Independent Elasto-Plasticity,”
Comput. Methods Appl. Mech. Eng., 48, 1, 101 (1985);
https://doi.org/10.1016/0045-7825(85)90070-2.

47. N. PRAKASH et al., “A General Constitutive Framework
for the Combined Creep, Plasticity and Swelling Behavior
of Nuclear Fuels in an Implicit Hypoelastic Formulation,”
Los Alamos National Laboratory (2019).

48. D. R. OLANDER, “Fundamental Aspects of Nuclear
Reactor Fuel Elements,” Technical Information Center,
U.S. Department of Energy (1976).

49. W. WEN et al., “Mechanism-Based Modeling of Thermal
and Irradiation Creep Behavior: An Application to Ferritic/
Martensitic HT9 Steel,” Int. J. Plast., 126, 102633 (2020);
https://doi.org/10.1016/j.ijplas.2019.11.012.

50. R. A. LEBENSOHN and C. N. TOMÉ, “A Self-Consistent
Anisotropic Approach for the Simulation of Plastic
Deformation and Texture Development of Polycrystals:
Application to Zirconium Alloys,” Acta Metall. Mater., 41, 9,
2611 (1993); https://doi.org/10.1016/0956-7151(93)90130-K.

51. A. E. TALLMAN et al., “Data-Driven Constitutive Model
for the Inelastic Response of Metals: Application to 316H
Steel,” Integr. Mater. Manuf. Innovation, 9, 339 (2020);
https://doi.org/10.1007/s40192-020-00181-5.

922 LINDSAY et al. · AUTOMATIC DIFFERENTIATION IN MOOSE

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021

https://doi.org/10.1016/j.scriptamat.2012.06.015
https://doi.org/10.1016/j.scriptamat.2012.06.015
https://doi.org/10.1063/1.2399341
https://doi.org/10.1063/1.2399341
https://doi.org/10.1063/1.2710780
https://doi.org/10.1063/1.3474655
https://doi.org/10.1063/1.3474655
https://doi.org/10.2351/1.4886835
https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://doi.org/10.1016/j.calphad.2007.11.003
https://doi.org/10.1016/j.calphad.2007.11.003
https://doi.org/10.1016/0956-7151(94)00285-P
https://doi.org/10.1016/0956-7151(94)00285-P
https://doi.org/10.1103/PhysRevE.53.R3017
https://doi.org/10.1103/PhysRevE.53.R3017
https://doi.org/10.1103/Phys-RevA.45.7424
https://doi.org/10.1103/PhysRevE.60.7186
https://doi.org/10.1016/S1359-6454(97)00022-0
https://doi.org/10.1016/j.calphad.2018.04.003
https://doi.org/10.1016/S0893-6080(05)80131-5
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.jnucmat.2012.01.012
https://doi.org/10.1016/j.jnucmat.2012.01.012
https://doi.org/10.1016/j.anucene.2017.03.005
https://doi.org/10.1016/0045-7825(85)90070-2
https://doi.org/10.1016/j.ijplas.2019.11.012
https://doi.org/10.1016/0956-7151(93)90130-K
https://doi.org/10.1007/s40192-020-00181-5

