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Abstract — Efficient solution via Newton’s method of nonlinear systems of equations requires an accurate 
representation of the Jacobian, corresponding to the derivatives of the component residual equations with respect 
to the degrees of freedom. In practice these systems of equations often arise from spatial discretization of partial 
differential equations used to model physical phenomena. These equations may involve domain motion or material 
equations that are complex functions of the systems’ degrees of freedom. Computing the Jacobian by hand in these 
situations is arduous and prone to error. Finite difference approximations of the Jacobian or its action are prone to 
truncation error, especially in multiphysics settings. Symbolic differentiation packages may be used, but often result 
in an excessive number of terms in realistic model scenarios. An alternative to symbolic and numerical differentia-
tion is automatic differentiation (AD), which propagates derivatives with every elementary operation of a computer 
program, corresponding to continual application of the chain rule. Automatic differentiation offers the guarantee 
of an exact Jacobian at a relatively small overhead cost. In this work, we outline the adoption of AD in the 
Multiphysics Object Oriented Simulation Environment (MOOSE) via the MetaPhysicL package. We describe the 
application of MOOSE’s AD capability to several sets of physics that were previously infeasible to model via hand- 
coded or Jacobian-free simulation techniques, including arbitrary Lagrangian-Eulerian and level-set simulations 
of laser melt pools, phase-field simulations with free energies provided through neural networks, and metallic 
nuclear fuel simulations that require inner Newton loop calculation of nonlinear material properties.

Keywords — Finite element method, automatic differentiation, MOOSE. 

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION AND MOTIVATION

Historically, the most common question on the 
Multiphysics Object-Oriented Simulation Environment1 

(MOOSE) mailing list has been “Why is my solve not con-
verging?” An equivalent question is also posted on the 
Computational Science StackExchange2 under the title, 
“Why is Newton’s method not converging?” The leading 
bullet in the accepted answer is that the Jacobian is wrong. 
Coding Jacobians can be a difficult and tedious task, espe-
cially for physics that require complex material models. 
Instead of spending time running simulations and generating 
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results, physicists and engineers may devote days or weeks 
to constructing accurate Jacobians. Often, the developer 
will elect an approximate Jacobian method like Jacobian- 
Free Newton-Krylov3 (JFNK) or its preconditioned variant 
PJFNK where the Jacobian is never explicitly formed, but 
instead its action on vectors is approximated using finite 
differences. While effective in many cases, the quality of the 
matrix-free approximation is closely tied to the selection of 
a differencing parameter that should vary based on the non-
linear system of equations. If the nonlinear functions are 
noisy and too small of a differencing parameter is chosen, 
truncation will lead to a Jacobian approximation that is 
actually a nonlinear operator. If the differencing parameter 
is too large, then the approximated derivatives will be inac-
curate if the differenced function is nonlinear. For multi-
physics problems in which the magnitudes of solution and 
residual components may vary significantly, an arbitrary 
choice of differencing parameter may lead to an accurate 
approximation of the Jacobian action for one physics, but 
lead to the aforementioned truncation error in another. The 
presence of the truncation error, and hence a nonlinear 
operator, is evident in a linear solve derived from porous 
flow equations coupled with heat transport, shown in 
Table I.

While the unpreconditioned residual norm, produced 
through generalized minimal residual method (GMRES) 
iterations, drops by five orders of magnitude during the 
solve, the true residual norm computed via A~x � ~b actually 
increases by five orders of magnitude. In MOOSE, a right 
preconditioned GMRES is chosen by default, where the 
unpreconditioned residual should be mathematically equiva-
lent to the actual residual for a linear operator. Given the 
divergence of the residuals, the Jacobian-free approximation 
is clearly a poor proxy for the true linear operator in this case. 
The net result of such a bad linear solve is a diverging 

Newton’s method, shown in Table II, since the computed 
Newton update is inaccurate.

Given the multiphysics design of MOOSE and the clear 
pitfalls associated with differencing approximations, there is 
clear motivation to form accurate explicit representations of 
the matrix. Even if a perfect Jacobian action can be achieved 
via the finite difference scheme, a suitable preconditioning 
matrix is required to construct a robust and efficient solver. 
To accurately fill the matrix, some users elect to use 
symbolic differentiation packages like SymPy4 or 
Mathematica.5 However, for functions with even minimal 
complexity, the resulting gradient expressions can take up to 
several pages and can be quite difficult to translate from 
notebook to code.6 An alternative to numerical and symbolic 
differentiation is automatic differentiation (AD), which 
applies the chain rule to elementary operations at every 
step of the computer program. This applies, at most, 
a small constant factor (estimated to have an upper bound 
of five by Ref. 6) of additional arithmetic operations. 
Because developers can spend significant time trying to 
create accurate hand-coded Jacobians and analysts can 

TABLE I 

Iteration Number Versus GMRES and True Residual Norms for a Poorly Scaled PJFNK Linear Solve

Linear Iteration Number GMRES Residual Norm
True Residual Norm 

(A~x � ~b)
True Residual  

Initial Residual

0 5:64� 1016 5:64� 1016 1:00� 100

1 2:96� 1012 2:96� 1012 5:25� 10� 5

2 2:72� 1012 2:89� 1014 5:11� 10� 3

3 8:33� 1011 5:17� 1015 9:17� 10� 2

4 8:33� 1011 8:67� 1017 1:53� 101

5 6:02� 1011 1:02� 1022 1:82� 105

6 6:02� 1011 1:02� 1022 1:82� 105

7 2:07� 1011 6:05� 1021 1:07� 105

TABLE II 

Newton-Raphson Nonlinear Iteration History with Poor Linear 
Solves Due to Truncation Error from Finite Differencing

Nonlinear Iteration Number Nonlinear Residual Norm

0 1:13� 106

1 1:39� 1011

2 2:88� 1010

3 8:47� 109

4 2:01� 109

5 7:63� 108

6 5:64� 1016
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spend significant time waiting for problems with poor hand- 
coded or approximated Jacobians to converge (if they ever 
do), the small additional computation cost imposed by AD is 
considered worth the trade. With an accurate Jacobian 
formed using AD, the overall simulation can be much faster 
than that utilizing a deficient hand-coded matrix due to 
a reduction in the total number of nonlinear iterations and 
potential increases in time-step size for implicit time- 
stepping schemes. Moreover, considering that AD computa-
tions are local, any added cost can be smoothed over by 
embarrassingly parallel scalability in high-performance 
computing contexts.

Automatic differentiation implementations typically 
use one of two methods, either forward or reverse mode.6 

Forward-mode AD is best suited for problems with many 
more outputs than inputs (e.g., for functions f : R m ! R n 

with n >> m), while reverse mode is best suited for many 
more inputs than outputs (e.g., m >> n). The latter case is 
more prevalent in deep learning applications and is what is 
implemented in popular machine learning libraries like 
PyTorch.7 For the solution of nonlinear systems of equa-
tions, the number of inputs and outputs are equivalent, so the 
choice is not clear cut. However, given the architecture of 
MOOSE, in which the residuals are constructed from finite 
element solutions which themselves are naturally con-
structed from the nonlinear degrees of freedom (DOFs), 
forward propagation is a convenient choice. Additionally, 
a choice of forward mode allows potential exploitation of 
sparsity.8 Forward-mode AD relies on the concept of dual 
numbers that can be implemented either through source 
code transformation or operator overloading. The latter is 
better suited for programming languages that support it such 
as C++, the language in which MOOSE is written. 
Conveniently, MetaPhysicL,9 the C++ header-only library, 
comes ready made with a DualNumber template class and 
an operator-overload AD implementation that fits into the 
MOOSE architecture with minimal disruption to the code 
base. The AD capability of MetaPhysicL was merged into 
the MOOSE code base in the fall of 2018. What follows is 
an overview of the physics applications that have been 
enabled by AD since its merge. By and large, the results 
presented here are proofs of concept. Validation of indivi-
dual physics against experimental results is an ongoing 
effort.

Section II.A outlines the basic mathematical underpin-
nings of AD. In Sec. II.B, we present the important AD 
template classes provided by MetaPhysicL. The incorpora-
tion of MetaPhysicL classes into MOOSE is described in Sec. 
II.C. Automatic differentiation–enabled physics results are 
shown in Sec. III. Finally, we give concluding remarks and 
a description of future work in Sec. IV.

II. AUTOMATIC DIFFERENTIATION

II.A. Automatic Differentiation Fundamentals

The fundamental idea of AD is to use the chain rule 
to decompose the function differentials, with derivative 
calculations performed during the function evaluation 
process. A composed function is expressed as follows:

f ðgðhðx1; x2ÞÞÞ ¼ f ðgðhðw1;w2ÞÞÞ ¼ f ðgðw3ÞÞ ¼ f ðw4Þ

¼ w5 ;

with

w1 ¼ x1;

w2 ¼ x2;

w3 ¼ hðw1;w2Þ;

w4 ¼ gðw3Þ;

and
w5 ¼ f ðw4Þ ;

and then the derivatives of f with respective to x1 read:

df
dx1
¼

df
dw4

dw4

dw3

dw3

dw1

dw1

dx1
:

Here we assume x1 and x2 are independent variables, and 
wi represents an elementary evaluation. Differentiation 
with respect to x2 can be performed similarly. Forward- 
mode AD evaluates the derivatives from left to right. 
Taking the function

f ¼ x1 sinðx2Þ þ x2 cosðx1Þ ;

¼ w1 sinðw2Þ þ w2 cosðw1Þ ;

¼ w1w3 þ w2w4 ;

¼ w5 þ w6 ;

¼ w7 ;

we demonstrate a forward-mode derivative calculation in 
Table III.

II.B. Automatic Differentiation Implementation

The classes in MetaPhysicL were originally developed 
and tested in the Manufactured Analytical Solution 
Abstraction (MASA) library,9 which is used for generating 
manufactured solutions for realistic physics simulations. 
Early in the development of MASA, it was discovered that 
multiple symbolic differentiation packages were suffering 
software failures on sufficiently large problems. Symbol- 

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 907

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021                                                                                        



ically differentiating manufactured solution fields through, 
for example, three-dimensional (3-D) Navier-Stokes equa-
tions, caused a combinatorial explosion, leading to corre-
sponding forcing functions that were hundreds of kilobytes 
in length, or that required many man-hours of manual sim-
plification, or that failed to evaluate altogether on some 
computer algebra system software. Automatic differentiation 
allowed for the generation of a manufactured solution and 
forcing functions using code that was hardly more complex 
than the physics equations themselves. The classes used for 
this effort were eventually published as an independent 
library, MetaPhysicL, for wider use and further development.

DualNumber is MetaPhysicL’s centerpiece class 
for AD. DualNumber stores value and derivatives 
members that correspond to f ð~xÞ and Ñf ð~xÞ, respectively. 
Value and derivatives types are determined by T and 
D template parameters, where T is some floating point 
type, and D is equivalent to T for single-argument func-
tions or equal to some container type for a generic 
vector of arguments. MetaPhysicL overloads unary 
and binary operators, ensuring any calculation invol-
ving a DualNumber propagates both the function 
value and its derivatives.

MOOSE leverages one of two MetaPhysicL container 
class templates depending on user configuration. The default 
MOOSE configuration uses the NumberArray class template, 
which accepts N and T template arguments where N denotes 
the length of an underlying array that holds the NumberArray 
data, and T is the floating-point type held by the array. As for 
DualNumber, MetaPhysicL provides arithmetic, unary, and 
binary function overloads for manipulation of its container 
types. NumberArray is an ideal derivative container choice 
when there is dense coupling between physics variables; this 
is because operator and function overloads for NumberArray 
operate on the entire underlying array. The second 
MetaPhysicL container class leveraged by MOOSE is 
SemiDynamicSparseNumberArray, which is a more ideal 

choice for problems in which variable coupling is sparse or 
when a user wishes to solve a variety of problems with 
a single library configuration. In contrast to NumberArray, 
which only holds a single array of floating-point data, 
SemiDynamicSparseNumberArray additionally holds an 
array of integers corresponding to DOF indices. The exis-
tence of this additional data member enables sparse opera-
tions that may involve only a subset of the elements in the 
underlying floating-point data (typically double precision, 
but single or quadruple precision may be used). As an explicit 
example of when these sparse operations are useful, consider 
a user who may configure MOOSE with an underlying 
derivative storage container size of 81 for solid-mechanics 
simulations on 3-D second-order hexagonal finite elements 
(3 displacement variables × 27 DOFs per variable per finite 
element = 81 local DOFs). When running 3-D, second-order 
cases, the nonsparse NumberArray container would be 100% 
efficient. However, if the user wishes to run a two- 
dimensional (2-D), second-order case with the same 
MOOSE configuration, they would be performing 81=18 ¼
4:5 times more work than is necessary if using NumberArray. 
Since SemiDynamicSparseNumberArray tracks the sparsity 
pattern, it will only initialize and operate on the floating-point 
array elements that are required for the run-time problem 
(e.g., 18 elements for the 2-D, second-order solid- 
mechanics example). Of course, tracking the sparsity 
pattern has nonzero cost, so if users know they will 
always be running a certain kind of problem, they may 
be best served by configuring with an intelligently sized 
NumberArray container. It should be noted that both 
NumberArray and SemiDynamicSparseNumberArray 
use containers that are statically sized, or in other words 
are sized at compile time as opposed to dynamically 
during run time. If ever a user tries to index 
a NumberArray outside its static size or tries to add 
more sparsity to a SemiDynamicSparseNumberArray 
than its static size allows, then MOOSE emits a helpful 

TABLE III 

Derivative Calculation with Respect to x1 at ð1; 0:5Þ Using AD*

Function Computation Derivative Evaluation

w1 ¼ x1 ¼ 1 _w1 ¼ 1 (seed)
w2 ¼ x2 ¼ 0:5 _w2 ¼ 0 (seed)
w3 ¼ sinðw2Þ ¼ 0:48 _w3 ¼ cosðw2Þ � _w2 = 0
w4 ¼ cosðw1Þ ¼ 0:54 _w4 ¼ � sinðw1Þ � _w1 ¼ � 0:84
w5 ¼ w1w3 ¼ 0:48 _w5 ¼ _w1w3 þ w1 _w3 ¼ 0:48
w6 ¼ w2w4 ¼ 0:27 _w6 ¼ _w2w4 þ w2 _w4 ¼ � 0:42
w7 ¼ w5 þ w6 ¼ 0:75 _w7 ¼ _w5 þ _w6 ¼ 0:06

*Demonstrative example. 
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error message. The static size of both classes can be 
changed through MOOSE’s configure script.

II.C. Automatic Differentiation in MOOSE

For a finite element framework like MOOSE, derivative 
seeding begins when constructing local finite element solu-
tions. The finite element solution approximation is given by

uh ¼
Xi

N
uiϕi ;

where 

ui = DOFs

ϕi = shape function associated with the DOF

N = number of shape functions.

For a Lagrange basis, shape functions and DOFs are tied to 
mesh nodes. To illustrate the initiation of the AD process, 
we will consider the construction of a local finite element 
solution on a first-order QUAD4 element, that is to say 
a quadrilateral with a number of nodes equal to the number 
of vertices. This element type, when combined with 
a Lagrange basis, has four DOFs that contribute to the 
local solution (one for each element node). In MOOSE we 
assign these local DOF solution values (the local ui) to 
a variable class data member called _ad_dof_values, 
where the ad prefix denotes AD. We then seed 

a derivative value of 1 (recognizing that qui
quj
¼ 1 when 

i ¼ j) at a corresponding local DOF index determined 
through a somewhat arbitrary numbering scheme. We 
choose a variable major numbering scheme such that the 
local DOFs are in a contiguous block for each variable, e.g., 
if we have two variables in the system, u and v, then the 
numbering scheme for a QUAD4 element with Lagrange 
basis would look like u0; u1; u2; u3; v0; v1; v2; v3 with 

subscripts corresponding to the local node number. 
We can examine the dependence of the local finite 
element solution on each DOF for an arbitrary point 
in the domain; we know analytically the expected deri-

vatives: 
quh

quj
¼ ϕj. For a given Gaussian integration 

point ð�; ηÞ ¼ ð� :577; � :577Þ, we know the corre-
sponding Lagrange ϕ values: ϕ0 ¼ :622; ϕ1 ¼ :167, 
ϕ2 ¼ :0447; ϕ3 ¼ :167, and we can check and verify 
whether our automatically differentiated solution 
ad_u.derivatives() matches (see Table IV). 
The first four derivative indices correspond to the deri-
vatives of u with respect to uj. The remaining indices 
are for derivatives with respect to other variables’ 
DOFs (e.g., vj). Note that some of the unused values 
in indices 4 through 7 appear to contain nonsensical 
values. This is actually desirable since it indicates the 
SemiDynamicSparseNumberArray container has unne-
cessary components of the derivative vector left 
uninitialized.

In general, the quality of AD derivatives is verified with 
unit testing in MetaPhysicL and using 
a PetscJacobianTester in MOOSE, which compares 
the Jacobian produced against that generated using finite 
differencing of the residuals. The latter test relies on using 
well-scaled problems; for poorly scaled problems, floating 
point errors can result in a loss in accuracy of the finite 
differenced Jacobian, as described in Sec. I.

II.D. MOOSE AD Limitations

For problems with many variables, computation of the 
full Jacobian matrix through AD (or through a hand-coded 
method) can be very expensive in terms of memory. For 
these types of problems, a matrix-free or derivative-free 
method is preferred. We have already discussed the limita-
tions of methods like PJFNK in which the Jacobian action is 
approximated using finite differences; truncation error due 
to a noisy or poorly scaled function can destroy the accuracy 
of the approximation. In such a case where the matrix is too 
memory intensive to compute and the function is too noisy 
to difference, an alternative method should be considered. 
In recent years there has been a resurgence in the investiga-
tion of derivative-free optimization techniques.10 The solu-
tion of nonlinear systems can be easily recast as 
a minimization of a least-squares problem, e.g.,

f ðxÞ ¼ jjFðxÞjj22 ¼
Xm

i¼1
FiðxÞ2 : ð1Þ

TABLE IV 

Verification of qu
quj

Derivative Index AD Result Expected Result

0 0.6220085 0.6220085
1 0.1666667 0.1666667
2 0.04465820 0.04465820
3 0.1666667 0.1666667
4 0 0
5 4:82� 10� 317 0
6 4:82� 10� 317 0
7 3:95� 10� 323 0
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The PETSc/TAO (Ref. 11) library, which is a dependency 
of MOOSE, contains a derivative-free model-based algo-
rithm called POUNDerS for solving the nonlinear least- 
squares problems. In the future we wish to pursue the use 
of POUNDerS or similar algorithms when AD and 
PJFNK are not applicable; however, that is beyond the 
scope of current work.

One area where the full benefit of AD has not yet been 
realized is in multibody problems that require projection of 
one moving domain face onto another. Specific physics 
include mechanical and thermal contact on displaced 
meshes. Mesh displacement, and consequently the location 
of projections, the evaluation of shape functions, and the 
computation of variable values on the interface are all 
determined by nonlinear displacement variable DOFs. At 
this time there is no way to store the dependence of the 
mesh nodes on the displacement DOFs, so consequently it 
is not possible to use AD to form a perfect Jacobian for the 
two-body interface physics. Because AD cannot form 
a perfect Jacobian, a PJFNK method has to be used. The 
current MOOSE AD implementation adds some overhead 
to function evaluations, so the use of AD and PJFNK 
(which perform a function evaluation at every linear itera-
tion) together can slow simulations down relative to the 
use of a fairly accurate hand-coded preconditioning matrix 
with PJFNK. However, as described in Sec. IV, we plan to 
develop dynamic derivative storage containers that will 
enable the addition of derivative information to mesh 
nodes, and consequently allow AD information to properly 
propagate all the way down to multibody interface phy-
sics. When that task is complete, mechanical and thermal 
contact problems will be able to use an explicit matrix for 
the Jacobian and avoid function evaluations at linear 
iterations.

III. PHYSICS APPLICATION

III.A. Laser Melt Pool

Additive manufacturing, also known as 3-D printing, 
is a technique for creating objects from 3-D models that 
has grown incredibly popular in the past decade.12 

Selective laser melting (SLM) is a powder bed–based 
additive manufacturing technique that has garnered sig-
nificant attention in the modeling and simulation commu-
nity. In this directed-energy technology, the material 
deposition is localized and occurs at the same time as 
the laser heat deposition. The powders absorb the directed 
energy and form a local melt pool. Within the multiphase 
material, heat will transfer by convection and conduction, 

forming a nonuniform temperature profile. The phenom-
ena that describes the melt pool behavior can be categor-
ized as a nonlinear, nonequilibrium multiphysics process. 
As such, sophisticated modeling techniques are required 
to capture the associated phenomena. In Refs. 13 and 14, 
the authors simulate temperature and mechanical stress 
fields during SLM using commercial finite element 
packages ANSYS (Ref. 15) and MSC Marc,16 respec-
tively. In Ref. 17, the authors consider the hydrodynamics 
of the melt pool, surface tension effects, and thermal 
transport using the ALE3D multiphysics code.18 As indi-
cated by its name, the ALE3D code uses an arbitrary 
Lagrangian-Eulerian (ALE) formulation in which the 
computational mesh is neither fixed in space (Eulerian) 
nor tied to the motion of the material within the computa-
tional domain (Lagrangian). The authors in Ref. 19 also 
explore the thermal and mechanics phenomena of laser 
melt using ALE as well as with the interface-tracking 
level-set method. Other methods for simulating interface 
physics include volume of fluid and molecular dynamics, 
which are demonstrated in additive manufacturing con-
texts in Refs. 20 and 21, respectively. Motivated largely 
by the work in Ref. 19, MOOSE has developed support 
for both ALE and the level-set simulation of laser melt 
pools. Demonstration of ALE support will be shown in 
Sec. III.A.1 for melt dynamics of stainless steel.

III.A.1. Melt Pool ALE

Details of the equations, boundary conditions, and 
material properties used to model melt pool evolution are 
given in Ref. 19. In summary, the pressure and velocity are 
determined by the transient incompressible Navier-Stokes 
equations, and the temperature is determined by a transient 
conduction-convection equation. The problem is driven by 
an incident laser energy flux that heats the surface and 
eventually begins to evaporate material, exerting a recoil 
force and displacing the melt pool. Additional forces are 
exerted by the Marangoni effect; however, these are not 
included in the AD proof-of-concept results since remesh-
ing is required to properly resolve tangential gradients. 
Mesh displacement enters the residual calculation process 
in subtle, but very important ways, by changing the finite 
element Jacobian matrix, which maps the element from the 
reference to physical space. Mesh displacement also 
changes shape function gradients, consequently modifying 
both local element solution gradients as well as test func-
tion gradients. Tracking this dependence on displacements 
by hand would be nearly impossible. Alternatively, 
a modeler may choose to use a matrix-free approximation 
to the Jacobian, but this approximation is subject to errors 
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from floating-point round off, which can become signifi-
cant in these multiphysics problems. The melt pool simu-
lation described here includes a viscosity that varies by 
eight orders of magnitude; other material properties only 
add to scaling complexity. Indeed, the PJFNK solution of 
melt pool physics in MOOSE fails to converge because of 
the difficult scaling. However, through AD, we are able to 
form perfect Jacobians for the melt pool, enabling the 
following results.

MOOSE 3-D simulation results for the ALE equa-
tions are shown in Fig. 1. The simulation was performed 
with adaptive mesh refinement, with refinement based on 
gradient jumps in the temperature and z-displacement 
variables. The number of elements and DOFs changed 
with refinement, but at the conclusion of the simulation 
the 3-D domain contained 29 310 elements and 424 018 
DOFs. The problem was solved with 12 processes, with 
approximately 35 000 DOFs per process. The laser is 
rotated counterclockwise around the top surface of 
a 3-D cube. When the surface reaches the boiling point 
of the medium, it recoils, creating an imprint in the sur-
face that tracks with the rotating laser spot. 
A representative 2-D simulation is shown in Fig. 2, 
where the laser is swept back and forth repeatedly across 

the surface. As with the 3-D simulation, melted material 
is displaced away from the impinging laser spot.

III.A.2. Multiscale Coupling: Grain Growth in 
Heat-Affected Zone Near Laser Melt Pool

In processes such as laser welding where a melt pool 
is formed on the surface of two parts being joined, local 
changes in the material’s microstructure can result in 
significant changes in the properties of the material near 
the weld. As the melt pool resolidifies, the solidification 
process controls the microstructure and properties of this 
region. However, the heat input from the laser also causes 
temperatures to increase significantly outside the melt 
pool. The region outside the melt pool where tempera-
tures increase enough to cause microstructural changes, 
but not enough to cause melting, is referred to as the heat- 
affected zone22 (HAZ).

One of the most significant microstructural changes 
that can occur in the HAZ is grain growth.22 Grain 
growth is the process by which the average size of grains 
increases, driven thermodynamically by the reduction in 
grain boundary surface area, and therefore, grain bound-
ary energy. Kinetically, grain growth is controlled by the 

(a) half-rotation, top view (b) full-rotation, top view

(c) half-rotation, bottom view (d) full-rotation, bottom view

Fig. 1. Visualization of just the top surface of the melt pool after a half and full rotation of the laser. Solid coloring is based on the 
temperature ranging from 300 K (dark blue) at the bottom of the domain (not shown here) to 3200 K (dark red) at the center of the 
laser spot. Arrow vectors are based on the velocity vector. Arrow lengths are based on the velocity magnitude and are scaled 10× 
larger for viewing purposes for the half rotation compared to the full rotation.
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re-arrangement of atoms at grain boundaries and is 
a strong function of temperature. The average grain size 
can have a significant impact on mechanical properties. 
In order to predict the properties, and therefore the per-
formance of a part processed using laser-based techniques 
such as powder bed fusion or laser welding, it is impor-
tant to be able to predict microstructural evolution in the 

HAZ in addition to the resolidifying melt pool. The 
average grain size in materials is typically much smaller 
than the size of engineering-scale parts, and it is not 
computationally practical to perform simulations of 
microstructural evolution of the entire component. In 
this section, we employ the multiscale capabilities of 
the MOOSE framework to address this challenge.

Fig. 2. Two-dimensional melt pool simulation. Arrows represent unscaled velocity vectors. Solid coloring is based on the 
temperature. Times in arbitrary units are 50, 100, 150, 200, 210, and 220.
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The multiscale coupling strategy employed here uses 
the ALE-based model of laser melt pool dynamics 
described in Sec. III.A.1 at the engineering scale, includ-
ing the temperature field in both the melt pool and the 
surrounding HAZ. To simulate grain growth in the HAZ, 
multiple instantiations of the MOOSE phase-field model 
of grain growth23,24 are run concurrently with the engi-
neering-scale model using the MOOSE MultiApp 
system.25 Each instantiation represents microstructural 
evolution at a different position within the HAZ of the 
engineering-scale simulation domain. Thus, each grain 
growth simulation is a representative volume element 
(RVE) of the macroscale simulation domain. The tem-
peratures at each RVE’s position are passed from the 
engineering-scale model to the corresponding grain 
growth simulation using the MOOSE Transfer system.25 

A schematic of the coupled simulations is shown in 
Fig. 3.

Grain growth simulations were conducted in RVEs as 
shown in Fig. 3. The RVEs are 2-D with a size of 
100 × 100 μm. The grain structure in the initial conditions 
is constructed with a Voronoi tessellation as described in 
Ref. 24, and there are 100 grains in the initial conditions 
for each simulation. Simplified physical parameters for 
grain boundary properties were chosen such that 
a reasonable amount of grain growth occurred in the time 
span of the weld pool simulation.

The microstructures in both RVEs at the end of the 
simulation time (t ¼ 2779 s) are shown in Fig. 3. The 
average grain size in the RVE at y ¼ 0:5 mm is larger 
than that in the RVE at y ¼ 0:3 mm. The higher tempera-
tures throughout the simulation for the RVE at y ¼ 0:5 
cause the grain boundary mobility to be greater there, result-
ing in faster grain growth. Further details of the grain 
growth kinetics will be given in a forthcoming publication.

In this section, we have demonstrated the coupling of 
an engineering-scale model of laser melt pool formation, 
enabled by AD, to a phase-field model to quantify the effect 
of laser heat input on the microstructure in the HAZ. Due to 
the strong dependence of grain boundary mobility on tem-
perature, relatively small changes in distance from the melt 
pool result in significantly different grain growth kinetics. 
This example demonstrates the advantage of leveraging 
existing multiscale capabilities within the MOOSE frame-
work when using new AD-enabled modeling capabilities.

III.A.3. Melt Pool Level Set

The level-set method is an alternative approach to 
tracking the free interface in melt pool modeling. In the 
level-set method, the location of the moving interface is tied 
to an iso-contour of a scalar field. The mesh is fixed in time 
and the material moves through the mesh, which makes this 
technique suitable for severe interface deformations and 
topology changes. In this work, we use a conservative 
level-set method27–30 to accurately model evolution of the 
liquid-gas interface. The level-set evolution is written as

qϕ
qt
þ~uð~x; tÞ � Ñϕþ FpjÑϕj ¼ 0 ; ð2Þ

where 

ϕ = level-set variable

~uð~x; tÞ = fluid velocity

Fp = powder addition speed.

For computational efficiency, powder particles are 
approximately represented as a homogenized continuum 

Fig. 3. Multiscale demonstration of laser welding with 
coupled phase-field simulations to determine microstruc-
tural evolution in the HAZ. The engineering-scale laser 
melt pool formation simulation domain is shown in the 
upper left, with the domain colored by temperature. The 
simulation domain is 2-D with a size of 0:8� 0:8 mm. The 
laser is incident on the top boundary and travels left to 
right at a rate of 1 m/min, a typical rate for welding of 
stainless steel.26 Grain growth simulations are conducted 
in RVEs at a height of 0.3 and 0.5 mm from the bottom of 
the engineering-scale simulation domain, as shown with 
white boxes (boxes are enlarged to ensure visibility). The 
grain structures at t ¼ 2779 s are shown in expanded view 
at the bottom and right. Grain growth simulations are 
2-D with a size of 100 � 100 μm. Temperatures from 
the engineering-scale simulations are passed to individual 
grain growth simulations using the MOOSE Transfer sys-
tem. The higher temperatures for the grain growth simula-
tions conducted in the RVE at 0.5 mm from the bottom 
result in a larger grain size, as seen at right.

AUTOMATIC DIFFERENTIATION IN MOOSE · LINDSAY et al. 913

NUCLEAR TECHNOLOGY · VOLUME 207 · JULY 2021                                                                                        



medium. The properties are smoothly varied across the 
interface between gas and solid-liquid using a smeared- 
out heaviside function defined by the level-set variable.31 

The density ρ, enthalpy h, thermal conductivity k, and 
dynamic viscosity μ in the transition region are provided 
in Ref. 29. The solid-liquid region of metal is described 
by pure solid, pure liquid, and solid-liquid mixture 
(mushy zone) in which the material properties are deter-
mined by the mass and volume fraction.

A continuum finite element model is used to describe 
relevant multiphysics phenomena, including the genera-
tion of the powder layer, melting and solidification, melt 
pool dynamics, and thermal-capillary, buoyant, conduc-
tive, and convective heat transport processes. The con-
servation equations of mass, energy, and momentum are 
solved with MOOSE.

The gas and liquid flow is assumed to be incompres-
sible, so the mass conservation equation simplifies to

Ñ �~u ¼ 0 : ð3Þ

The energy conservation equation is described by

ρ
qh
qt
þ ρÑ � ð~uhÞ ¼ Ñ � ðkÑTÞ

þ
2Pα
πR2

b
exp

� 2r2

R2
b

� �

Ñϕj j

� AhðT � T0Þ Ñϕj j

� σ 2 ðT4 � T4
0 Þ Ñϕj j ; ð4Þ

where the last three terms on the right represent heat flux 
from the laser, heat loss through convection, and heat loss 
through radiation, respectively, and where 

P = laser power

Rb = effective beam radius

α = laser energy absorption coefficient

Ah = heat transfer coefficient

σ = Stefan-Boltzmann constant

2 = material emissivity

T0 = ambient temperature.

The momentum equation is expressed by

ρ
q~u
qt
þ~u � Ñ~u

� �

¼ Ñ � pIþ μ Ñ~uþ Ñ~uT� �� �

� ρlβl T � Trð Þ~g �
μm
K
~u

þ γ~nκjÑϕj � γT ÑsT jÑϕj ; ð5Þ

where the last four terms on the right represent buoyancy 
force, Darcy damping, capillary, and thermal-capillary 
(Marangoni) forces, respectively, and where 

βl = thermal expansion coefficient

~g = gravity vector

Tr = reference temperature

K = isotropic permeability

γ = surface tension coefficient

κ = surface curvature

~n = normal vector to the free surface

γT = thermal-capillary coefficient

Ñs = surface gradient operator.

Equations (2) through (5) are solved implicitly in 
MOOSE. These equations are highly nonlinear and strongly 
coupled, so accurate Jacobians are required for Newton’s 
method to converge appropriately. With AD, we are able to 
form perfect Jacobians and solve the equations in a fully 
coupled manner. In the example considered, only three to 
four nonlinear iterations are needed to solve each time step, 
making the overall simulation remarkably efficient. The 
material considered here is 316L stainless steel; parameters 
relevant to the simulation can be found in Refs. 27 through 30. 
The initial and melting temperatures are set to be 300 and 
1673 K, respectively. The predicted sequential track evolution 
during 0.4 s of the process is illustrated in Fig. 4. The melt 
pool is generated at the front of the track corresponding to the 
laser spot. Due to the high cooling rate, the melt solidifies 
shortly after the laser moves away. The fluid motion in the 
melt pool is shown in Fig. 5. The liquid flows from the higher- 
temperature region toward the lower-temperature region due 
to thermal-capillary forces. The fluid velocity is damped out-
side the fluid domain due to the Darcy effect. Two vortices 
form in the melt pool by t = 0.2 s; the vortex pattern is 
consistent with simulation results shown in Refs. 27 and 29. 
Although only 2-D results are shown here, the model and 
implementation can be readily applied to three dimensions.

III.B. Neural Network–Based Free Energies in Phase-Field 
Modeling

In the field of mesoscale materials modeling, the phase- 
field method has emerged as a well-established approach for 
simulating the co-evolution of microstructure and proper- 
ties.32,33 The description of phase-state and concentrations 
through field variables with finite-width smooth interfaces 
has proven to be an extremely flexible approach resulting in 
a broad range of applications from solidification34,35 to 
over-phase transformation36,37 to grain growth.23,38
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Quantitative phase-field modeling of realistic material 
systems requires thermodynamic and kinetic input data in 
the form of Gibbs free energies and atomic mobilities. The 
assessment and compilation of such data through 
a combination of theoretical and experimental data are for-
malized by the CALPHAD approach.39 In CALPHAD, 
Gibbs free energies are expressed as phenomenological func-
tion expansions combined with semi-empirical entropy 

models. As a standard machine readable delivery format for 
these free energies, the thermodynamic database ASCII- 
based file format has been established, and a large swath of 
open thermodynamic and kinetic data exists on the web and 
can be explored with search engines such as the 
Thermodynamic DataBase DataBase.40

CALPHAD free-energy databases present users with 
two challenges. Commercial databases are often encrypted 

(a) t = 0.1 second (b) t = 0.2 second

(c) t = 0.3 second (d) t = 0.4 second

Fig. 4. Sequential deposition profile and temperature distribution. The coloring is based on the temperature ranging from 300 to 
1782 K.

(a) t = 0.1 second (b) t = 0.2 second

(c) t = 0.3 second (d) t = 0.4 second

Fig. 5. Sequential fluid motion velocity fields in the melt pool. Arrows represent scaled velocity vectors. The scale of the 
temperature is shown in Fig. 4. The white line shows the contour of the melting temperature.
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and do not permit the extraction of functional forms and 
parameter sets. Free-energy formulations in the compound 
energy formalism allow for phases with multiple sublattices. 
The distribution of the local solute concentrations onto the 
different sublattices requires solving a local free-energy mini-
mization problem, which comes at a computational cost. 
Both issues can be addressed by pretabulating the free- 
energy functions over the configuration space relevant to 
the phase-field problem at hand and generating a surrogate 
model for the tabulated free energy to ensure differentiability 
and smoothness.

In this work, we propose the use of multilayer neural 
networks as a generic function fitting tool to generate 
surrogate free-energy models from pretabulated free- 
energy data, which can be obtained from thermodynamic 
database software, such as ThermoCalc or pycalphad. We 
rely on the universal function approximation theorem,41 

which states that any continuous function over the R n can 
be approximated with an arbitrarily small error using 
a neural network with one hidden layer and a finite 
number of neurons.

We chose a fully connected network topology with 
a variable number of hidden layers and hidden layer 
nodes. The input nodes of the network are connected to 
the state space coordinates ~s or arguments of the free- 
energy function, such as temperature, concentrations, 
pressure, etc. The output node is the value of the free 
energy. We note that while the implementation of training 
and evaluation of the neural network allows for an arbi-
trary number of input and output nodes, in the context of 
this work we use a single output node for the value of the 
free energy.

The chemical potential data are not fitted indepen-
dently from the free-energy data, as the chemical 
potentials are the derivatives of the free energy with 
respect to its arguments, or in terms of a neural net-
work, the derivatives of the output node with respect to 
the input nodes. We have derived an analytical expres-
sion for these derivatives. Not having independent 
training for the chemical potentials ensures the free 
energy and chemical potentials remain consistent and 
that a closed loop in state space does not incur 
a difference in free energy.

A multilayer perceptron network with two hidden 
layers can be described by

Fð~sÞ ¼ ~s �W1 þ~b1

h i

g
�W2 þ~b2

� �

g
�W3 þ~b3 ; ð6Þ

where

Wi = ni � ni� 1 weight matrices that code the 
connectivity between the adjacent layers con-
taining ni and ni� 1 neurons, respectively

~bi = a bias vector

½. . .�g = elementwise application of the activation func-
tion (a sigmoid or softsign).

Training of the networks has been implemented 
using the PyTorch machine learning framework,42 

which supports GPU-accelerated learning. The net-
works are trained outside of MOOSE in a standalone 
PyTorch-based python code. Once trained, the network 
topology and parameterization contained in the Wi 

matrices and ~bi vectors are exported to a simple text 
file format. We read these files in the MOOSE-based 
Marmot application for mesoscale microstructure mod-
eling. Evaluation of the networks and the first deriva-
tive of the output node(s) with respect to the input 
nodes are performed in Marmot.

We utilize dual numbers and forward-mode AD to 
obtain the second derivatives of the output node (i.e., the 
first derivative of the chemical potentials with respect to 
the DOFs of the state-space variables we are solving for). 

The derivative 
qF
q~s 

is straightforward to derive analyti-

cally. This permits us to construct the exact Jacobian 
matrix for the Cahn-Hilliard phase-field problem.

To test the feasibility of a neural network–based free- 
energy density, we trained a network on an analytical 
free-energy density function. This approach allows us to 
compare the neural network results to the exact solution. 
We generated an evenly sampled set of data points of the 
regular solution free-energy density function

Fðc;TÞ ¼ ωcpð1 � cpÞ

þ χT cp logðcpÞ þ ð1 � cpÞ logð1 � cpÞ
� �2

;

ð7Þ

with ω ¼ 1 and χ¼ 10� 3 at intervals Δc¼ 10� 3 in the 
interval ½0:05; 0:95�, and ΔT ¼ 6 K in the interval 
½445K; 475 K�. The loss function L is computed using 
the values of the free-energy training values �Fn and the 
network’s predicted value Fn, as well as their derivatives 
with respect to the input node values ~s ¼ ðc;TÞ as

L ¼
1
N
XN

n

�Fn � Fnð Þ
2
þ

q�Fn

q~s
�

qFn

q~s

� �

: ð8Þ

Training was stopped at 400 000 epochs and a wall time 
of about 1 h on a GeForce RTX 2080 (Fig. 6a). 
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A comparison of the free energies returned by the neural 
network and the training data is shown in Fig. 6b. As 
expected from the loss function value, the curves are 
visually indistinguishable.

Next, we implemented the evaluation of the neural 
network in Marmot. Here the forward-mode AD simpli-
fied the implementation effort greatly by providing us 
with the derivatives of the chemical potentials with 
respect to the finite element DOFs.

To test the neural network free energy, we set up two 
concentration fields cp and cn. Both fields were initialized 
with identical fields generated from a uniform random dis-
tribution of values between 0.45 and 0.55, right in the middle 
of the spinodal region of the phase diagram for the free- 
energy density function Fðc;TÞ. We evolved both fields 
using the time-dependent Cahn-Hilliard equation, choosing 
the analytical free-energy expression from Eq. (7) for the cp 
field and the neural network free energy for the cn field. The 
simulations were run with T ¼ 460 K for 750 time units.

The results of the simulation are shown in Fig. 7. 
The time-integrated concentration fields are qualita-
tively very similar. Only differencing the fields, as 
shown in Fig. 7a, reveals a subtle difference on the 
order of 1% in concentration. This is an indication of 
how sensitive the microstructural evolution is to even 
small changes in the free-energy density function.

In summary, we believe using neural network–based 
surrogate models for thermodynamic potentials is a viable 
approach that needs to be investigated further. Automatic 
differentiation in MOOSE significantly accelerated the 
implementation of a neural network in our mesoscale 
microstructure evolution code.

III.C. Nuclear Fuel Performance Simulations

Fuel performance simulation is a powerful tool uti-
lized to try and predict the behavior of actinide fuel and 
steel cladding in the high-temperature irradiation condi-
tions experienced in nuclear reactor cores.43 Such simula-
tions are made difficult not only by the complex 
operating environment, but also by the inability to obtain 
the high volume of data required to build comprehensive 
empirical constitutive models that can be used to describe 
the thermomechanical response of the fuel and cladding 
beyond typical operating conditions. Consequently, the 
need for predictive rather than descriptive tools to fill in 
the holes between sparse data sets requires mechanistic 
models that stretch both academic understanding and 
computational limits.

Like all nuclear fuel, metallic fuel (here, metallic will 
only refer to zirconium-based metallic fuel, e.g., U-Zr 
and U-Pu-Zr) suffers from volumetric swelling during 
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Fig. 6. Loss function and free-energy density.

Fig. 7. Cahn-Hilliard spinodal decomposition phase-field simulation showing the concentration field cn for (a) neural network– 
based free energy, (b) the concentration field cp for the corresponding analytical free energy, which the neural network was trained 
on, and (c) the difference between the two fields.
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irradiation due to the accumulation of fission gas into 
bubbles. Once the bubbles interconnect with an outside 
surface, the fission gas is released into the fuel plenum, 
imparting a pressure loading on the thin cladding. Over 
time, the internal pressure in the fuel pin plenum will 
result in thermal and irradiation creep of the cladding. If 
enough deformation occurs, the swelled fuel pin can 
place the core at risk of overheating due to coolant 
channel restriction, further enhancing plastic deformation. 
If left unchecked, the cladding could fail, releasing radio-
active gases into the coolant. Using this simplified 
description of nuclear fuel pin behavior during irradia-
tion, two driving factors can be identified as key compo-
nents in understanding cladding failure: fission gas 
swelling in the fuel and creep behavior in the cladding.

While lower-length-scale atomistic and microstruc-
tural simulations of nuclear fuel utilize a wide range of 
computational methods such as density functional theory, 
molecular dynamics, and Monte Carlo, fuel performance 
simulations almost always rely on a finite element frame-
work to capture the thermomechanical response of fuel 
systems.44 Such highly coupled nonlinear problems often 
have been explored with the MOOSE framework, primar-
ily through the BISON code.43 Although the historical 
focus of BISON has been primarily on the UO2/Zircaloy 
system due to familiarity of the fuel system in the United 
States, recent progress at modeling zirconium-based 
metallic fuel has accelerated due to the AD methods 
described here.45 Several examples of advanced mechan-
istic models will be summarized in order to provide 
a sense of how AD has enabled rapid implementation of 
advanced mechanistic constitutive models into BISON.

III.C.1. The Tangent Modulus

The strain in a material ε can be decomposed into 
several components:

ε ¼ εel þ εth þ εswðσÞ þ εcrðσÞ ; ð9Þ

where 

εel = elastic strain

εth = thermal strain

εsw = swelling strain (e.g., fission gas or void swelling)

εcr = creep strain.

The typical constitutive equation used to compute the 
stress σ to the elastic strain, is

σ ¼ C : εel ¼ C : ε � εswðσÞεth � εcrðσÞ
� �

; ð10Þ

where C is the elasticity tensor. Since the swelling and 
creep strains can be dependent on the stress, Eq. (10) 
becomes a complex set of nonlinear partial differential 
equations that is typically solved using inner Newton- 
Raphson root-finding loops such as radial return 
algorithms.46 This in turn requires a proper Jacobian 
once converged, which is typically in the form of the so- 
called tangent modulus J:

dσnþ1 ¼ J : dεnþ1 ; ð11Þ

where J represents the change in stress as a function of 
strain and typically describes the stiffness of a material in 
the plastic range. In the limit where a material response is 
primarily elastic J ’ C. However, due to the nonlinearity 
introduced by stress-dependent strain, J quickly becomes 
a nontrivial derivation with potentially no closed form. 
Like the other Jacobians described here, Eq. (10) can be 
solved without a perfectly defined J, either through brute 
force computation using perturbation techniques, small 
time steps, or finite differencing.47 Unfortunately, these 
simplifications tend to result in unacceptable increases in 
computational cost or time to justify their implementation 
in fuel performance simulations. Even formulation of an 
analytical J leads to extensive mathematic manipulation 
that quickly overshadows the implementation of any 
mechanistic modeling.

With the introduction of AD into MOOSE, the for-
mulation of J is handled automatically, even allowing for 
Jacobian information to propagate through to the outer 
Newton-Raphson algorithm. This has allowed rapid pro-
totyping of advanced constitutive models for the fuel and 
cladding, both of which are descried briefly here and will 
be explored in detail in future publications. The goal of 
the following examples is to convey how the use of AD 
in MOOSE has allowed for implementation and testing of 
advanced mechanistic models before fully committing to 
a comprehensive derivation by forgoing the need to for-
mulate an accurate J.

III.C.2. Fission Gas Swelling

While the driving mechanism for the growth of fission 
gas bubbles is simple (i.e., accumulation of fission gas), the 
volumetric strain response is nontrivial. In general, the bubble 
surface can be assumed to be in equilibrium with the sur-
rounding material due to the fast mobility and high concen-
tration of vacancies present in the fuel during irradiation.48 

As a first approximation, the bubble radius r can be estimated 
via the Young-Laplace equation with a van der Waals 
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equation of state by equating the pressure of the gas Pgas to 
the pressure exerted by the surface Psurf (Ref. 45):

Pgas ¼ Psurf ð12Þ

and

kBT
vbðrÞ=gbðrÞ � B

¼ 2γs=r � σhydroðrÞ ; ð13Þ

where 

kB = Boltzmann constant

T = temperature

vb = volume of the bubble

B = van der Waals constant for the gas

γs = surface tension

σhydro = bulk stress at the surface of the bubble.

By turning Eq. (13) into a residual, an inner Newton 
loop can be utilized to solve for the bubble radius r. This 
in turn can be used to apply a volumetric strain on the 
cladding:

ΔV
V
¼

4
3
πr3Cb ; ð14Þ

where Cb is the concentration of bubbles in the solid. Despite 
the many built-in simplifications, Eq. (13) turns into a seven- 

order polynomial due to the stress coupling term in σ. 
Furthermore, the growth of the porosity in the fuel f can be 
calculated from the individual swelling strain components:

_f ¼ ½1:0 � f � � _2sw
xx þ _2sw

yy þ _2sw
zz

� �
: ð15Þ

The growing porosity will impact the strength of the fuel 
via the elasticity tensor C and the temperature of the fuel 
via the thermal conductivity, convoluting the solution of 
Eq. (10) even further.

The ability to quickly implement a complex model 
like Eq. (13) using AD has allowed for rapid prototyping 
and model refinement. More importantly, advanced mod-
els allow for quantification of potential approximations 
rather than being forced to make decisions a priori. 
Following the results from the example simulations 
(Fig. 8), the rapid prototyping has led to increased interest 
and funding in refining and calibrating this bubble model.

III.C.3. Reduced-Order Model for Cladding Creep

With cladding strain as one of the primary concerns for 
core integrity, accurate estimations of the creep response to 
internal plenum pressure is essential to help reduce costly 
overestimations resulting in unnecessarily large failure mar-
gins or dangerous underestimations that could allow for 
dangerous core failures. In order to maximize the utilization 

(a) (b) (c) (d)

Fig. 8. Results from simulation of a prototypical U-Pu-Zr rodlet fuel performance simulation at an intermediate time in order to 
illustrate the impact of the bubble model on the (a) von Mises stress, (b) hydrostatic stress, (c) radius, and (d) creep strain.45 Note, 
cladding is omitted for clarity. The radial variation is due to phase-dependent bubble concentrations and sizes.
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of irradiated steel experimental campaigns, mechanistic mod-
eling must be used to bridge the sparsity of data.

Recently, a mechanistic-based constitutive creep 
model for HT9 stainless steels was developed through 
extensive simulations using the visco-plastic self- 
consistent (VPSC) approach.49,50 This provided a tool to 
estimate creep response for standard fast reactor cladding 
in a predictive manner. Unfortunately, this lower-length 
(i.e., microstructural) code is too vastly expensive to run 
concurrently within a fuel performance simulation. In 
addition, the creep strain response in HT9 is dependent 
on several evolving parameters, such as dislocation den-
sity, preventing an analytical creep rate formulation.

In order to overcome the computational cost of the 
VPSC simulations while still enabling a mechanistic, 
lower-length-scale-informed constitutive HT9 model, 
a reduced-order method (ROM) to condense hundreds 
of precomputed VPSC results into orthogonal Legendre 
polynomials has shown promise in similar stainless 
steels.51 These polynomials carry the form

εcrðσÞ ¼
Xdeg

w¼0
. . .
Xdeg

z¼0
αw...zPw xwð Þ . . . Pz xzð Þ ; ð16Þ

where

Pi xð Þ = polynomial of degree i

deg = maximum degree of polynomial to be used in 
the model (typically two or three) 

αi regression coefficients for the terms formed from the 
product of the i’th degree polynomial of input xi.

By calibrating the various Legendre coefficients to 
the VPSC data, Eq. (16) can be trained to provide 
a nearly identical creep strain response with a fraction 
of the computational cost.

Although an analytical expression for the tangent 
modulus that derives from Eq. (16) may be possible, the 
rapid implementation in MOOSE using AD allowed for 
early prototyping to support adoption of an HT9 ROM 
using a limited number of VPSC simulations to formulate 
the Legendre polynomial coefficients. Similar to the fis-
sion gas swelling model, increased resources were con-
sequently diverted to develop a fully calibrated ROM for 
use in metallic fuel performance simulations.

IV. CONCLUSIONS AND FUTURE WORK

The introduction of MetaPhysicL and AD into the 
MOOSE framework has opened doors to simulation 

types that were not previously possible because of the 
complexity of forming accurate hand-coded Jacobians 
or because the multiphysics nature of the problem 
inhibited the accuracy of finite difference approxima-
tions. Examples of these simulations include ALE and 
level-set models of laser melt pools, phase-field mod-
els with neural network–based free energies, and 
metallic nuclear fuel performance calculations that 
rely on extensive inner Newton loops for material 
property evaluation. Future AD work includes the 
exploration of dynamic derivative storage containers 
using a memory pool in order to reduce the memory 
footprint for dynamic mesh calculations that require 
storing derivative information with respect to displa-
cements for each mesh node. If the memory pool 
implementation is successful, it will allow expansion 
of AD into more complex discretization schemes such 
as mortar methods for nonconforming interfaces.

Acronyms

2-D:   two dimensional
3-D:   three dimensional
AD:   automatic differentiation
ALE:   arbitrary Lagrangian-Eulerian
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JFNK:  Jacobian-Free Newton-Krylov
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MOOSE: Multiphysics Object Oriented Simulation 

Environ-ment
PJFNK: preconditioned Jacobian-Free Newton-Krylov
SLM:  selective laser melting
ROM:  reduced-order method
RVE:  representative volume element
VPSC:  visco-plastic self-consistent
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