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Finite Element Method Simulations

Develop and prototype implementations of component level FEM element simulations:
1. Successfully integrated the surrogate model into to FEM solvers

2. Demonstrated capture of transient loading response of a component part enabled
through the preserved connection to microstructure, where driving physics occur

3. Rapidly responded to stakeholder interest in specific simulation capabilities with
prototype demonstrations
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Verifies FEM Infrastructure
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Evaluate FEM for physical response

« Develop and verify the FEM implementation and infrastructure with a staggered approach

» Microstructure connection from surrogate model results in component level sensitivity

Microstructure
variations and
gradients impact

Capture of
cyclic loading
history influence

Sensitivity to
variations in
applied pressure

Temperature
variation effect in
simulations

Response to
multiaxial
mechanical loads

N

Engage industry with
advancement over traditional
engineering scale FEM models
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Performs with Multiaxial Loads i o  ENERGY

Demonstrate initial implementation of the 316H surrogate model into an FEM solver with a series of
simulations of the stepped pressurized tube geometry designed by ORNL

« ldentify and correct initial robustness issues with integration, in cooperation with LANL
 Verification will be performed with the complex geometry and loading, and will freeze parameters
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Impact of the initial microstructure is propagated
5MPa, 825K 10MPa, 825K 15MPa, 825K to the component level simulation by the
surrogate model, consistent with expected physics
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Captures Cyclic Pressure Effect ‘i@

16
’E 1.0e-04
E 14 _
.E 8.0e-05 §
? 125 .
£ 6.0e-05 = Time: 45870
3 108 8.00e+12 7.2000e+11
g 40e05 E 45.0 1.0e-04 7.90e+12 7.1998e+11
g ° 5 9.50-5 7.80e+12 719960411 ~
& 2.0e-05 = 40.0 9085 = 7.70e+125" ' =
P 6 8565 £ 7600412 E 7.1994e+11°E
2 506400 350 3 ;.gg-g E 75064122 7.1992e+11 2
. o /.06 >
0 2 3 6 8 10 2 ¢ | 300 = - 70e5 £ | 7.40e+12 Z - 7.1990e+11 2
Time (hours) = | g-ge-g £ - 7.30e+12 2 - 7.1988e+11 C
. o . 250 © 2882 0 —7.20e+12 & 7.1986e+11 8
— Effective Inelastic Strain = Pressure Load (right) % | 5:09_5 i 7.10e+12 = g =
16 — 200 § | j_ge_g % ~ 7.00e+128 , 7.1984e+11§
NASOE+12 15.0 S 1 352:5 c 6£.90e+12 8 - 7.1982e+11 8
E R 30e5 @ 6.80e+12 2 7.1980e+11.2
S 7.8e+12 14 & 2 W @
< 5 100 § 2509 % 6.70e+12 5 7.1978e+11 8
3 7.5e+12 . 1565 & 6.60e+125 7.1976e+115
g v 50 1.0e-5 W 6.50e+12 0 719746+11 =
7.2e+12 2 '
5 108 0.1 0.0e+00 6-40e+12 7.1972e+11
G 7.0e+12 & N 6.23e+12 7.1970e+11
ke = s
& 6.8e+12 & S Z
= =
3 6.5e+12 6 ‘ ‘ ‘
£ P y
= 6.2e+12 .
0 2 4 6 8 10 12
Time (hours)
- Cell Dislocations = Pressure Load (right)

Successful capture of loading history and rate on the component part behavior is enabled
by the inclusion of microstructure characteristics such as the dislocation evolution
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 ldealized weld problem to demonstrate the influence of microstructure gradients on the component
level strain behavior in rapid response to stakeholder inquiry

* Lessons learned with the MOOSE development efforts aid integration into additional FEM solvers

« Two cases: a) constant internal pressure and temperature, b) cyclic loads (1day cycles), for a year
» Simulations performed with two different surrogate models: 316H (austenitic steel) and P91 (ferritic steel)
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Baral et al., J Nuclear Mater, 490 (2017) 333-343

Heterogeneous microstructure demonstrates
accelerated deformation near the weld,

S consistent with experiments
Pandey et al., Arch Civil Mech Eng, 19 (2019) 297-310
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Qualitatively Response Aligns @
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e HAZ * Prediction of the HAZ as the region experiencing the highest strain
IS consistent with experimental data despite short timeframe
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FZ by the surrogate model, enable transient response simulations
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« Demonstrated the FEM implementation through multiple problems, with rapid response to industry
» Successfully integrated surrogate model-FEM framework results for transient loading conditions
gualitatively agree with physical observations

Validate the integrated ‘ - /\ i
surrogate model-FEM l | ot
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Extend framework to
model the mechanical
aspects of oxide
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Stress Triaxiality Measure (Pa/Pa)

4 \
Engage industry with a vision of tailor-made lifetime predictions for
components and structures, validated with carefully designed experiments

/N .

NATIONAL p— = -

N AMES LABORATORY ‘ . . || Lawrence Livermore oS mos OAK RIDGE 4

TL &%g’;ﬂg&\f A e A M daho Nationa Loboradory ‘ National Laboratory ’ NL”,ONA@N"OR, g‘\alimulI.‘clmral-'ln Pacific Northwest 7

(((((((




