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ABSTRACT 

Nuclear power plants are experiencing significant cost challenges to remain competitive with 
other energy-generation utilities. Unlike other industries, the cost of operation and maintenance 
activities is mostly attributed to workforce costs. To mitigate this, nuclear power plant stakeholders 
are increasingly interested in the development and deployment of machine learning methods to 
potentially automate or augment manually intensive tasks to reduce O&M costs, especially for 
monitoring activities. One monitoring function that is visually demanding and that can frequently 
occur to meet the requirements of a fire protection program is visually monitoring an area for fire 
occurrence. Currently, fire watch activities consist of a worker physically stationed at a given 
location with the sole responsibility of observing a given area to ensure a fire is detected and 
mitigated promptly. 

This effort focused on the development and evaluation of a suitable deep convolutional neural 
network to classify individual video frames at a sub-second frequency for the occurrence of “fire” 
and “no fire” in varying industrial environments similar to nuclear power plants. It is believed that 
a trained network architecture could be integrated with existing facility video surveillance camera 
networks to generate alerts when “flame” inferences occur in individual frames captured at sub-
second temporal resolutions. Extensive effort was dedicated to identifying and curating suitable 
imagery training data representing varying environments and scene settings with and without flame 
features to maximize generalization in nuclear power plant environments. The data collection effort 
resulted in the aggregation of a large, labeled image library exceeding 12,000 images to support 
model training for diverse industrial environments.  

A deep network architecture incorporating parallel multi-scale capabilities was developed and 
trained to support accurate image-based detection of flame incidents of varying size and spectral 
feature properties within heterogeneous scenes with low false positive incidents. Analysis results 
show that the trained model architecture is capable of achieving high inference accuracy despite 
heterogeneous scene environments and components. Testing accuracy exceeded 95 percent with 
very low false positive and false negative inferences.  

Key Words: fire watch, nuclear power plant, machine learning, computer vision, convolutional 
neural networks 

1  INTRODUCTION 

Nuclear power plants (NPPs) are experiencing a significant cost challenge to remain competitive with 
other energy-generation industries. Unlike other industries, the cost of operations and maintenance (O&M) 
activities at an NPP is mostly attributed to workforce cost. The NPP industry has therefore resorted to 
automation to reduce O&M costs, especially for monitoring manually intensive tasks. One monitoring 
function that is visually demanding and can be required frequently in an NPP is fire watch. 



A fire watch ensures fire is detected and mitigated in time. The U.S. Nuclear Regulatory Commission 
(NRC) Regulatory Guide 1.189 defines the fire watch as “Individuals responsible for providing additional 
(e.g., during hot work) or compensatory (e.g., for system impairments) coverage of plant activities or areas 
to detect fires or to identify activities and conditions that present a potential fire hazard. The individuals 
should be trained in identifying conditions or activities that present potential fire hazards, as well as in the 
use of fire extinguishers and the proper fire notification procedures” [1]. A person conducting a fire watch 
could spend hours watching a certain equipment, room, or environment. 

Throughout the nuclear power industry level of fire watch performed varies depending on the condition 
of the plant and plant-safety policies and requirements. If the plant is in a condition that results in frequent 
fire-watch needs, then the cost burden may be elevated. Because of advancements in sensor technology and 
increased video and image data capture over recent years, there is a greater potential for automating 
detection of fire or smoke in real time using remote sensing and robust trained algorithms. 

A significant amount of literature is available on detecting fire in video imagery. From a high-level 
perspective, many approaches incorporate multistage methods using color detection and differentiation, 
image-change detection, image-edge softening (due to the presence of smoke), feature extraction, and either 
a rules-based segmentation approach or a classification model, such as a support vector machine (SVM) 
[2], artificial neural networks (ANNs) [3], etc. Çetin et al. [4] provide a comprehensive review of recent 
efforts in video-based fire detection (VFD). Many VFD algorithms address specific problems, each with its 
own characteristics, as opposed to a more generalized problem resulting in a broad solution. Specific 
engineering-based criteria and parameters, including whether single or multiple sensors are utilized, 
whether they are active or passive instruments, and their spatial, spectral, and temporal resolutions, 
influence algorithm choice and performance. Although it is possible to model fire behavior in video imagery 
using varying methods, many current systems can yield false positives or alarms, resulting from changing 
light conditions, shadows, and other image features. VFD methods reviewed in this section can be subsumed 
into the following sections: fire detection using either image-processing or advanced machine-learning 
methods. This review is intended to capture high-level insights from some recent research in both areas. 

1.1 Image Processing Methods 
Many VFD techniques focus on fire color and shape characteristics. Although research in this area 

shows much promise, inconsistencies in the behavior of fire or smoke, background scenes, combustion 
sources, and sensors impede development of generalized solutions. Color detection (based on visible 
wavelengths relative to the human eye) was an early technique employed for fire detection and often makes 
use of sensor red, green, and blue (RGB) channels. These channels are often included in modern sensors. 
Visual sensors are also less costly and more widely available relative to spectrally higher-resolution sensors. 
Rules-based methods can exploit a known relationship among RGB values where pixel values of visible 
channels comprised of flames often exhibit a consistent relationship of R > G > B. Smoke-based pixels 
often exhibit RGB values that are close to each other [4].  

Çelik & Demirel, [5] tested for a set of expected spectral relationships between channels derived from 
the RGB image, including luminance, the distance of the luminance value from red, the distance of the 
luminance value from blue, and saturation for each pixel. If these conditions are met, the pixel is considered 
a fire pixel. A similar approach is used by Thou-Ho et al. [6] using a different rules-based detection in the 
RGB feature space.  

Marbach et al. [7] utilized spectral relationships of luminance and chrominance derived from RGB 
channels coupled with temporal variation occurring in image sequences to identify candidate regions within 
scenes and classify as fire or non-fire based on the persistence of potential fire features. 

Motion and flicker analysis have also been of interest relative to VFD as a means of reducing error 
that can occur from dependence upon color signatures alone. Fire flicker has been found to occur near 10 
Hz and is not greatly affected by the combustion material [8]. Good results have been shown when 



attempting to detect flame in video-image data at a frame rate of 24 frames-per-second (fps) by combining 
a Gaussian mixture model to extract moving foreground objects from a still background and categorizing 
moving objects into flame or non-flame regions using a color-filtering algorithm [9].  

Although image processing techniques show much promise, multiple confounding factors impact 
classification accuracies and overall generalization capabilities. Industrial scenes such as those found in 
NPPs have the potential to include moving objects of varying size, shape, color, and movement speed, 
which introduce potential sources of error. Also, uncontrolled fires exhibit chaotic tendencies and nonlinear 
instabilities, making it difficult to classify based on flicker patterns alone. Motion-based approaches also 
represent a significant challenge in that models need to be developed for specific sensor frame rates, which 
can vary widely in existing systems.   

1.2 Machine-Learning Methods 
Recently, machine-learning methodologies based on ANNs have gained traction due to advancements 

and improvements in computing power and the increasing availability of training data and deep learning 
libraries such as TensorFlow [10] for common programming languages such as Python [11]. The advantage 
of machine learning over the previously referenced methods is that these methods do not have to be 
explicitly programmed with the differentiation rules, such as those needed for color feature extraction or 
motion detection. However, due to their supervised learning process, machine-learning methods require 
large amounts of diverse training data to achieve adequate generalization. In order to successfully develop 
a robust fire-detection system using machine learning, it is important to account for varying parameters 
impacting a classification model’s development and biases. A few examples of machine-learning methods 
are listed here for demonstration. 

Muhammad et al. [12] proposed a system using convolutional neural networks (CNNs) to predict fire 
occurrences in video-imagery data. Their experimental results indicate high classification accuracies, 
greater than 90%, are achievable. However, the authors acknowledged lower accuracies on image datasets 
dominated by red fire-colored objects and fire-like sunlight scenarios that yielded higher levels of false 
positives. Dunnings and Breckon [13] demonstrated high classification accuracies by coupling a super-
pixel localization framework using the K-means clustering algorithm [14] to a simplified CNN architecture. 
However, parametrization of the K-means algorithm used to delineate super-pixel boundaries and scene 
variability could greatly impact classification accuracy and model generalization.  

Researchers achieved high fire-detection accuracies in video-imagery data using deep convolutional 
long-recurrent networks (DCLRNs) combined with optical flow methods, indicating that temporal or 
sequential dynamics within the data can improve model accuracy [15]. Their analysis also indicated 
DCLRN outperformed a CNN when flame features were not as dominant in the images due to increasing 
distances between the camera and the target. However, model performance was negatively impacted by 
very slow-moving fires, especially at longer distances from the sensor, and dynamic image disturbances 
such as moving lights.  

Traditional machine-learning classifiers are often developed using balanced datasets where the number 
of instances for each class are similar. However, when developing classifiers intended to detect rare 
occurrences such as fire, data among classes are often imbalanced. Sharma et. al [16] successfully 
implemented deep, pretrained CNN architectures enhanced with additional dense layers trained on 
imbalanced data favoring “no-fire” scenes. 

1.3 Project Approach 
Although image processing methods have demonstrated some success for the detection of flame 

features in imagery, it was decided to utilize machine learning for detection of fire in imagery data for this 
analysis. Algorithms such as CNNs represent the state-of-the-art in computer vision and offer advantages 



over traditional image processing methods including inference speed and the fact that they are “self-taught” 
in that they are capable of learning complex patterns not obvious to humans during training.  

The overall project approach was divided into two tasks: (1) aggregate and curate suitable training and 
testing image data and (2) develop an image-based classification CNN fire watch model to determine 
whether or not flame features were present within an image.  

2 MATERIALS AND METHODS 

2.1 Data Collection 
Unlike other approaches, in which models are developed on known and explicitly defined rules, 

machine-learning algorithms require large, heterogeneous, and labeled datasets for training and validation 
to maximize model accuracy and improve generalization. If suitable data are not available, they must be 
generated. In this case, it was not feasible to set up and film fires in varying industrial scenes approximating 
NPPs at a scale necessary for the development of a computer vision model. This, in turn, necessitated 
searching for publicly available datasets containing fire imagery and industrially relevant scenes. Sourcing, 
organizing, and formatting suitable datasets are complex and time-consuming endeavors. If data used are 
not suitable, resultant models will not have the ability to generalize a problem, which severely limits their 
real-world applications. During the literature review, multiple online repositories were discovered 
containing imagery data. Extensive efforts were made to aggregate suitable data consisting of varying 
environments (indoor, outdoor, low-light, daylight, artificial illuminance, etc.) and scene composition 
(people, equipment, vehicles, various activities, etc.) with and without flame features of varying size and 
shape in an effort to account for what could be encountered in industrial settings like that of an NPP.  

The Yahoo Flickr Creative Commons 100 Million (YFCC100m) dataset was utilized as the primary 
source for image data [17]. YFCC100m was compiled from publicly available Yahoo’s Flickr content and 
houses 100 million total image and video records (99.2 million and 0.8 million respectively) in native 
formats (i.e., .mp4 and .jpg) suitable for viewing. Although the dataset is too large to download in its 
entirety, an index table containing a complete list of the unique file IDs and associated user content tags 
supplied by the content provider at the time of upload was downloaded and parsed to identify suitable data.  

Additionally, images were downloaded from The Fire Smoke (FiSmo) dataset, a compilation of images 
and videos taken from scenes showing emergency situations where fire, smoke, or explosions occur [18]. 
This dataset was compiled from online repositories including Yahoo’s Flickr and Google’s YouTube. The 
intended purpose is to support ongoing research to apply computational techniques to support video and 
image processing for emergency situations. Data supporting [16] were also publicly available and 
downloaded to support this modelling effort. 

2.2 Model Development 
CNNs are a type of ANN with fully connected layers designed to mimic the natural image-processing 

pathways found in humans. The CNN concept has seen significant utilization and development over the 
past several years as improvements in computer processing power have facilitated widespread use. At a 
base level, CNNs were designed to recognize important features in imagery data through a network of 
convolution steps producing modified inputs for a densely connected neural network trained to deliver a 
classification as an output. Like other neural networks, CNNs are considered a black-box learner in that no 
rules are explicitly determinative of the classification output. Instead, the model learns the mathematical 
relationships between the input features and output class during training. 

An input image array comprised of red, green and blue color channels is passed into a series of 
convolutional moving-window filters (kernels). Features are extracted from the various kernel layers by 
Equation 1: 



𝐹𝐹𝑖𝑖 = 𝑋𝑋 ∗𝑊𝑊𝑖𝑖 + 𝑏𝑏𝑖𝑖  1 

where X represents the input features, Wi, the shared weights, and bi, a bias factor for the ith filter kernel.  

A nonlinear activation function encapsulates Fi to calculate the signal value passed to the next neuron. 
The rectified linear unit activation function (ReLU) [19] is commonly used as it typically leads to faster 
convergence, does not plateau or saturate in the positive direction, and it is sparsely activated as all negative 
inputs are converted to zero within the network. ReLU is shown in Equation 2: 

  

𝑓𝑓(𝑥𝑥) = � 0,𝐹𝐹𝑖𝑖 < 0
𝐹𝐹𝑖𝑖,𝐹𝐹𝑖𝑖 ≥ 0�  2 

where f(x) is always positive and is not bounded in the positive direction.  

Additionally, batch normalization functions [20] are added to the network to mitigate a potential 
gradient diffusion problem that can occur within deep CNN structures. Batch normalization utilizes the 
mean and variance of batched input data to normalize the inputs for the subsequent layer. This is shown in 
Equation 3: 

𝑋𝑋�𝑖𝑖 =
𝑋𝑋𝑖𝑖 − 𝜇𝜇
√𝜎𝜎2+∈

 3 

where input Xi is normalized by subtracting 𝜇𝜇, the batch mean and dividing by the 𝜎𝜎2, the batch 
variance plus ∈, a small value to ensure that the denominator remains nonzero.  

Softmax regression is used to determine the resultant class of the input features at the end of the 
network by calculating a normalized probability score for each possible class using an exponential function. 
The class with highest score is then assigned as the output. This is shown in equation 4: 

𝑃𝑃�𝑘𝑘 =
exp (𝑠𝑠𝑘𝑘(𝑥𝑥))

∑ exp (𝑠𝑠𝑗𝑗(𝑥𝑥))𝐾𝐾
𝑗𝑗=1

 4 

where K is the number of classes and 𝑠𝑠𝑘𝑘(𝑥𝑥) is a vector containing the scores of each class for the input 
data for instance x. The output is normalized by dividing by the sum of all exponentials. Additionally, a 
categorical cross-entropy loss function is applied to support the model’s learning progress resulting from 
back propagation. 

For this analysis, the CNN architecture was assembled using TensorFlow 2.1 based on a modular, 
multi-scale structure introduced by Yuan et al. [21]. This was done to accommodate varying flame feature 
sizes occurring at varying distances from image sensors. Figure 1 shows the individual module 
architectures. The basic module accepts an input and passes it to three parallel convolutional filter steps 
each with a different kernel size of 1 x 1, 3 x 3, and 5 x 5 windows for n number of kernels. Those outputs 
are normalized individually and merged via concatenation. A ReLU activation function is applied to the 
concatenation output which is then passed out of the module. A second version of the module includes a 
pooling step that was not included in [21] that reduces data dimensionality and further extracts potential 
useful features. It is important to note that [21] used a summation method to merge the normalized 
convolution outputs to reduce data dimensionality. For this analysis, concatenation was used instead to 
preserve the input features while using pooling to reduce data dimensionality. 



 
Module 

 
Module with pool 

Figure 1.  The module architectures used for CNN fire watch model. The basic module (left) includes parallel 
convolution steps of varying window sizes, batch normalization, and concatenation to merge the outputs, and 
ReLU activation function output. The module with pooling (right) includes a max pooling step in between the 

convolution and normalization steps. 

The modules with varying numbers of convolutional kernel filters were assembled to form the deep 
CNN fire watch classification model shown in Figure 2. Although [21] included a convolution step between 
the image input and the first module, initial testing showed the classifier was more accurate by passing the 
input image directly to the first module. Starting with an image input size of 400 x 400 pixels with red, 
green, and blue channels, the data are passed sequentially to two modules each generating 16 convolutional 
layers in parallel based on the different window sizes. Next, the number of convolutional filters is increased 
by 32 with a pooling step followed by three modules each generating 32 convolutional filters in parallel. 
The number of parallel convolutional outputs are increased to 64 with a pooling module followed by two 
additional non-pooling modules yielding 64 parallel convolutional filters each. Next, convolutional filter 
outputs are increased to 128 with a pooling module followed by a non-pooling module with another 128 
parallel convolutional filter outputs. At this point, global average pooling is applied to the resultant features 
which generates the average output of each feature map extracted during convolution and pooling steps 
which further reduces data dimensionality while extracting useful features for the final classification output 
that incorporates the binary softmax function to predict “flame” or “no flame” labels.  

 
Figure 2.  The fire watch deep CNN model architecture incorporating the modules shown in Figure 2. 



The fire watch CNN was compiled and executed on Idaho National Laboratory’s High Performance 
Computing Sawtooth environment. Each node consists of 4 NVIDIA V100 GPUs along with a total of 
384 GB of RAM.  

3 RESULTS 

3.1 Data Collection 
A total of 12,372 images were aggregated and curated split evenly between scenes with and without 

fire. The data were then split randomly into training and testing data using an 80/20 split ratio (9,898 and 
2,474 images respectively) while maintaining a balanced ratio of fire and no-fire scenes. Additionally, 10 
percent of the training data (990 images) were randomly selected for validation after each training epoch. 
Figure 3 shows a sample of downloaded images. 

  

  

  



Figure 3.  A sample of images collected to support the development of the fire-watch model. Images on the 
right depict scenes with flame features. Those on the left show normal states. 

3.2 Model Development 
The fire watch deep CNN model trained for 905 epochs where training terminated when the model’s 

loss function output stopped decreasing over 150 consecutive epochs. To mitigate potential overfitting, only 
the model was saved that yielded the lowest loss function output at epoch 755. Model training and validation 
loss and accuracy plots by epoch are shown in Figure 4. They show that model validation accuracy exceeded 
90 percent by the end of training and that the loss function decreased to slightly less than 0.2 at the lowest 
point (epoch 755).  

 
Model accuracy 

 
Model loss 

Figure 4.  Model accuracy (left) and loss (right) metrics for training and validation datasets during training. 

After training and validation, the model was tasked to predict image labels (“flame”, “no flame”) for 
the randomly selected test image dataset consisting of 2,474 images. The trained fire watch deep CNN 
model achieved an accuracy of 0.954 on the test data. The mean inference time was 40.2 milliseconds per 
image with a standard deviation of 1.5 milliseconds per image. Figure 5 shows a confusion matrix for the 
test dataset. It shows the trained model misclassified 45 images without flame as “flame” and a slightly 
higher number, 69, as “no flame” that did contain flame features.  

 
Figure 4.  Model accuracy (left) and loss (right) metrics for training and validation datasets during 

training. 



4 CONCLUSIONS 

For this analysis, over 12,000 images containing scenes of varying environments (indoor, outdoor, 
low-light, daylight, artificial illuminance, etc.) and scene composition (people, equipment, vehicles, various 
activities, etc.) with and without flame features of varying size and shape where aggregated and curated. 
The purpose of this effort was to try to account for what could be encountered in industrial settings like that 
of an NPP. The majority of the images were downloaded from the YFCC100m repository along with 
additional images from datasets used to support previous analysis efforts to develop image-based fire 
detection algorithms.  

A deep CNN architecture was developed incorporating modules consisting of parallel convolutional 
channels of varying spatial scales to improve model robustness for complex environments where potential 
fire events could vary relative to size, distance from the image sensor, and background complexity. The 
results indicate that the fire watch deep CNN architecture was able to learn necessary features to achieve a 
high classification accuracy (0.954) on the test dataset consisting of heterogenous flame features and scene 
environments and compositions. Additionally, the model was able to make image inferences at a mean rate 
of 40.2 milliseconds per image indicating that it could be used to monitor video-based images at a sub-
second interval.  

Because fire watch is a safety requirement for the nuclear regulator license, performance needs to be 
maximized to present the case for regulators to accept such solutions as a replacement for the conventional 
fire watch. Although this effort yielded promising results, additional testing is recommended to evaluate 
performance and identify potential performance gaps leading to false negative and false positive outcomes.  
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