INL/RPT-22-65684-Revision-0

ATR Complex and Plant Modifications 2020 2021

January 2022

Changing the World's Energy Future

Brandon G Andrus

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

ATR Complex and Plant Modifications 2020 2021

Brandon G Andrus

January 2022

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

ATR Complex and Plant Modifications 2020-2021

TGATR174

Utility Corridor Upgrade

Utility Corridor Upgrade

- The ATR Complex Utility Corridor Upgrade provides reliable and adequate supply and/or use of potable water, firewater, sewer, electrical power, and voice/data capacity to support current and proposed future growth.
- Electrical portion
 - Extended the 13.8 kV electrical from existing TRA-785 along the southern edge of the complex and along the western edge.

Utility Corridor Electrical Upgrade

G

D

SCALE: NOTED

Cold Waste Upgrade

VFD Control Panel

No.	USE
1	Start
2	Stop
3	Activate reference setting
4	Forward direction of rotation
5	Reverse direction of rotation
6	Fault reset
7	Change between Local/Remote

	USE
ACT	Actual Signal Display Mode
PAR	Parameter Mode
FUNC	Function Mode
DRIVE	Forward direct of rotation

HMI (Red Lion Graphite Series G10S000

Figure 3. ATR Cold Waste HMI Display and Control Panel.

Cold Waste Tank Level Indication

Loss of Power to HMI

- VFD fault strobe locked in
- HI Water Level alarm locked in
- Level indication will still be sent to VFD to allow for long term local control.

TRA-604 Automatic Transfer Switch

What is the function of the TRA 604 Automatic Transfer Switch

 ATS function: Provide diesel-commercial power to transformer 604-T-5. when commercial power is interrupted and power availability is sensed from the diesel source, the ATS changes its upstream power source from a commercial-powered feeder to a diesel-power feeder.

- Loss of commercial power to the outer area: Results in ATS switching to diesel power (assuming commercial power remains unavailable)
 - 0 sec: TRA-604-E-2 (ATS No.1)
 - 2 sec: TRA-609 compressor room
 - 4 sec: TRA-605 Warm Waste (ATS No. 3)
 - 6 sec: TRA-619-E-2 Raw Water Pumphouse (ATS No. 4)

The new ATS derives its commercial power from the right-hand side of 604-E-1 switchgear

Old ATS (417811)

New ATS

- Replaces antiquated switch that required commercial power outage to switch the ATS back to its normal commercial feed after transferring to diesel power
- Transfer from normal to standby
 - Break-before-make
- Two selected modes for transfer from standby to normal
 - Mode No 1 is manual and permits break-before-make.
 - Mode No 2 is automatic whereby an automatic synchronization check feature initiates make-before-break

• Top Left

- Diesel Feed from 609-E-101
- Bottom Left
 - Commercial Feed from 604-E-1

604-E-2 ATS

 604-E-2 ATS Commercial **Breaker Panel** -Breaker Control -Lockout Relay Control -Breaker status lights Open Closed -EDR-3000 -EDR-3000 Test Switch -BKR Pendant Port

- 604-E-2 ATS Diesel Breaker Panel
 - -AUTO/MANUAL Selector Switch -Breaker Control Switch
 - -Lockout Relay Control Switch
 - -Breaker status lights
 - Open
 - Closed
 - -EDR-3000
 - -EDR-3000 Test Switch
 - -Test Switch Voltage
 - -Unit Status Panel (IQTS)
 - -BKR Pendant Port

F:T•N

Unit Status

	Main Me	enu	06:56:47 AM	
		Load	Currents	
2404 V	0 V	0 V		
2391 V	0 V	0 V	(No DCT Module)	
2410 V	0 V	0 V		
60.0 Hz	0.0 Hz	0.0 Hz	and the state	
	Under-V			
View Setpoints	Change Setpoints	listorical S Data	ystem USB Info Menu	

Image: state of the state of the

604-E-2 Unit Status Panel

Unit Status Panel

- Provides voltage of three phases for both sources of power
- Provides frequency for both sources of power
- Provides current status of both sources of power

ATS selected to Commercial then Commercial is lost

Waiting on M-6 to start

M-6 starts and loads

Breaker for Diesel

OPEN CLOSED

Breaker for Commercial

ATS selected to Commercial then Commercial is lost

ATS selected to Diesel with Commercial not available

Commercial Source Returns

Breaker for Diesel

Breaker for Commercial
ATS selected to Diesel with Commercial not available

RPU Cabinet 1 DPU and I/O Modules

RPU Cabinet 2 A/B Network Switches

@ Valmet 2018

Analog I/O

Modules

Digital I/O Modules

SAFE1 (Front View)				
SECURITY NETWORK SWITCH				
DPU NETWORK SWITCH A				
DPU NETWORK SWITCH B				
LOCSENG1				
10056				
LOCS5				
LOCS4				
LOCS3				
LOCS2				
LOCS1				

SAFE 2 (Front View) SECURITY NETWORK SWITCH QNAP NAS SECONDARY SECURITY SERVER PRIMARY SECURITY SERVER AUTO TRANSFER SWITCH AUTO TRANSFER SWITCH LOCSENG2 LOCSHIST2 LOCSHIST1

Power Supply Upgrade to Workstation Safe #2

- The current power supply to Safe #2 is Diesel/Commercial from E-18 through ATS 670-E-345 with UPS backup.
- Power is routinely lost during outages for PMs and UPSs would run down.
- Two automatic power transfer switches are being installed
 - Power will be supplied to both power transfer switches from 670-E-455 (Diesel/Commercial) and 670-E-50 (LP-10 Commercial)

670-E-80 Upgrade

670-E-80 Rod Drive Power – 1st Basement East Side

Objectives #2 and 3

670-E-80 Rod Drive Power – 1st Basement East Side

Objectives #2 and 3

670-E-80 Rod Drive Power – Cubicle 2A

Idantifier AOP-12

OSCC MOVEMENT FAILURE	Revision: Effective Date:	10 09/17/20	Page: 4 of 7
	identifier.	AOF-1.2	
	OSCC MOVEMENT FAILURE	OSCC MOVEMENT FAILURE Revision: Effective Date:	OSCC MOVEMENT FAILURE Revision: 10 Effective Date: 09/17/20

Appendix A

OSCC Motor Current Measurement

- Using a digital multimeter (Fluke Model 8020A or equivalent), <u>SET</u> the meter to the appropriate range to measure a max 10 Vdc signal.
- <u>CONNECT</u> the multimeter to pin jacks just below the "OSCC Motor Current Selector Switch and Monitoring Points" label on MCC [E-80].

Objectives #2, 3, and 8

670-E-80 Rod Drive Power – Switches

Objectives #2 and 3

Center Flux Trap Baffle Collar Modification

Center Flux Trap Baffle Collar

Top Head Closure Plate Modification

Top Head Closure Plate

0

The new top head closure plate was installed on the ATR top head during CIC-VI.

ATR

Wide Range Neutron Level Channel B Replacement

All WRNL Recorders and Monitors are Digital

Digital Radiation Monitoring System Upgrade

ATR Reactor Building TRA-670: Replace active Berthold RAMs/CAMs

- Mirion/Canberra Equipment
 - Replace (49) Radiation Area Monitors (RAMs) with
 (35) G64 and
 (16) EcoGamma
 - Replace (23) CAMs with (18) mobile iCAMs
 (6) iCAM_PING skid
 CAMs 23, 24 & 25
 not being replaced
 CAM 4 – mobile and fixed

Canberra G64 and EcoGamma RAMs

- G64 Area Gamma Monitor solid state detector
 - Detector head can be at the unit or remote up to 100 meters away
 - 10µREM/hr to 10 REM/hr
 - 55 kev to 7 Mev
 - 30 min. Back up battery
 - Stand alone or in a system

- - 30 kev to 5 Mev
 - LED Status Indicator
 - Solid Green = Operatoinal
 - Blinking Green 50% = Initializing
 - Blinking Green 10% = Internal Fault
 - Solid Red = High Dose Rate Alarm
 - Blinking Red = Alert Dose RateAlarm
 - No LED = No power
 - Direct ethernet connection
 - No local alarm or readout

USB Connector / Ethernet Connector / LED Indicator Light /

Low Range Detector '

Canberra iCam

- Particulate Silicon Semiconductor Detector for α/β with optional second detector for gamma compensation
- Iodine Nal Detector
- Noble Gas Plastic Scintillation Beta Detector
- Flow Path Particulate, Iodine, Noble Gas, Pressure Transducer, Pump

iCAM PING Air Sampling Flow Path

sole(Remote Monitoring Terminals)

e devices

Horizon Console/Servers/Backup

- The Horizon OPC (Open Productivity & Connectivity) Server manages the communication with the radiological instruments and converts the data stream into the OPC intercommunication standard protocol.
- The Horizon SCADA (Supervisory Control And Data Acquisition) Server receives the data from the OPC Server and continuously maintains in its memory an instantaneous status of the instrumentation system (measured values and alarm status). Operator interface
- Sequel Server Database Storage

Network Components

- Control System Interface (CSI)
 - Servers in RDAS
 - Two Cabinets in RDAS with three systems/servers in each rack and a back up in the Simulator
- Computer/Network system with Horizon Software
 - Each terminal is considered a Remote Monitoring Terminal
 - RCO(2 ea.), RCR, ECC, and Simulator
 - Many layers of redundancy in the system
- 7 CSI cabinets in the plant
 - 2 in RDAS, 1 in laydown and 2 each in first and second basements
 - Servers are in the 2 CSI cabinets in RDAS

Power Supplies

Diesel/Commercial

- Power for iCAMs 1-6, 12, 15-17, 19, 20, and 22
- G64 RAMS 1, 3-6, 9-12, 14-23, 28, 29, 34, 38-40 and 44

Instrument UPS

- Power for iCAMs 7-11, 13, 14, 18, 21, and 25
- RCUs in RCO
- Battery bank in Switchgear (670-E-428 fed from 670-E-117)
- G64 RAMs 2, 7, 8, 13, 24-27, 35
- Dual Power Source Equipment (fed from both power sources)
 - CSI Racks
 - Evacuation System "A" (EcoGamma RAMs 5, 6, 23 and 34)
 - Evacuation System "B" (EcoGamma RAMs 2, 13, 24 and 35)

Permissive Relays Upgrade

Background

- Original GE relays installed in 1965
 were failing catastrophically
- New GE CR120 relays installed these were failing rapidly for withdrawal circuits on the 1/5 second timer

Relay Replacement

- 175 GE CR120 relays are being removed
- 196 new relays are being installed
 - Why more?
 - All new relays are 4 pole relays. Some existing relays are 8 Pole, so it will require two new relays to replace them
- Two types of new relays being installed
 - Allen Bradley 700 HC relays (Whiteish Gray)
 - Orange tab allows the relay to be blocked
 - Mors Smitt D Relays (Plastic Cover)
 - Used for special cases
 - 10 Amp relays
 - Relays requiring a long physical life
 - Cannot be blocked

NOTES

Drawing showing contacts and wiring being removed
671 Chemical Supply Modification

New Contractor for Chemicals

- Water and Energy Systems Technology, Inc. (WEST) will be providing corrosion control and biocide chemicals for ATR's Secondary Coolant System (SCS).
 - 671-M-63 C-328 chemical storage tank will hold 1750 gallons of the corrosion control chemical (where the old CC tanks were).
 - 671-M-64 C-328 chemical storage tank will hold 1750 gallons of the corrosion control chemical (where the old CC tanks were).
 - 671-M-79 chemical storage tank will each hold 360 gallons of the biological control dispersant chemical (North/East side of the chemical storage area in TRA-671).
 - 671-M-181 Sodium Hypochlorite chemical storage tank will hold 700 gallons of biological control chemical (South wall of the pump area in TRA-671).

New Contractor for Chemicals

- C-328 corrosion control concentration will be maintained between 80-120 ppb.
- C-328 corrosion control chemical will be added to the secondary coolant system through one of two pumps:
 - -671-M-182
 - -671-M-183
- C-328 concentration in the secondary coolant system will be continuously monitored and adjusted by WEST's controller.
- Both 671-M-182 and 671-M-183 pumps can be placed in off, manual (hand) or auto from the selector switch on 671-E-191.

New Contractor for Chemicals

- Bellacide 335 biological control dispersant concentration will be maintained dependent on the secondary coolant makeup.
- Bellacide 335 biological control dispersant chemical will be added to the secondary coolant system through one of two pumps:
 - -671-M-184
 - -671-M-185
- Bellacide 335 will be automatically added to the secondary coolant system by WEST's controller.
- Both 671-M-184 and 671-M-185 pumps can be placed in off, manual (hand) or auto from the selector switch on 671-E-192.

Chemical Addition Panel

671-E-191/192

- Switch to select pump (M-182-185)
- Hand-Off-Auto Selector Switch
- Light to indicate pump status (lit if pump is running)

Four Pumps (M-182, 183, 184, 185)

Valve Nest below to align proper flow paths for pump operation

New Contractor for Chemicals

- Sodium Hypochlorite biological control chemical will be manually batch added to the secondary coolant system dependent on the concentration of free chlorine currently in the system.
- Sodium Hypochlorite biological control chemical will be added to the secondary coolant system through 671-M-181 batch pump.
- The Sodium Hypochlorite batch pump is pre-programed to add the following volumes to the secondary coolant system:
 - 5-gallons (option # 1)
 - 10 gallons (option # 2)
 - 15 gallon (option # 3)

Bypass Demineralizer M-20 and M-21 Upgrade

Warm Waste Lifting Station Upgrade

Lifting Station 716 Electrical One-Line