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a b s t r a c t

Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs).
HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation
in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention
efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique
for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we
develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs)
to detect anomalies in manually collected surveillance data in NPPs. More speci�cally, our GAN is trained
to detect mismatches between automatically recorded sensor data and manually collected surveillance
data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a
real-world dataset and an external dataset obtained from a testbed, and we benchmark our results
against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector
machine and isolation forest. Our results show that the proposed GAN provides improved anomaly
detection performance. Our study is promising for the future development of arti�cial intelligence based
HE detection systems.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Human error (HE) poses risk to any industry that relies on
humans to complete tasks. The consequences of HE can be wide-
spread and signi�cant, ranging from �nancial losses and system
unavailability to loss of life [1]. HE is an especially important
concern in safety-critical industries and settings, such as aviation,
transportation, healthcare, and nuclear power plants (NPPs). As
seen in the past accidents at NPPs, failure of safety-critical systems
can result in loss of life, economic damage, widespread health risks,
and environmental contamination [2].

HE is of particular interest regarding NPPs as they can be linked
to many system failures and accidents in history, including the

Three Mile Island accident (TMI), Chernobyl, and Fukushima acci-
dents [2,3]. According to [4], approximately 70% of NPP operation-
related errors appear to be directly or indirectly result from HE.
Furthermore, according to the studies from the Institute of Nuclear
Power Operation (INPO), about 48% of all events in NPPs from 2010-
2011 were a result of HE [5]. Deadly accidents and HE-induced in-
cidents in safety-critical systems have sparked the interest of re-
searchers across various disciplines in regard to �nding ways to
manage and mitigate the effects of HE, especially in NPPs.

HE in NPPs can result from a variety of factors (e.g., personal and
environmental stressors, task complexity, lack of training or expe-
rience for the role, ergonomics, and complex or unfamiliar user
interfaces) [6e8]. Human operators in NPPs are faced with a large
number of tasks, including monitoring the status of plant in-
struments, observing speci�c plant areas, and taking measure-
ments [9]. Furthermore, when system conditions deviate from
normal, many alarms may send out warning messages simulta-
neously, causing cognitive overload for the operator [10].
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Given this stressful taskload and the importance of the stable
operation of the NPP, HE can arise in various ways in NPPs (e.g.,
when an operator performs a task from memory, does not under-
stand the instructions clearly, or omits parts of a procedure) [4,11].
Other common types of HE in NPPs include forgetting to perform
tasks or incorrectly diagnosing system state [12]. Given these op-
portunities for human error, it is critical to �nd ways to both assist
human operators with their tasks and alert them of the potential
presence of HE.

In recent years, the use of arti�cial intelligence (AI) has received
signi�cant attention. AI has been applied across many domains to
solve complex problems. As data volumes increase, AI systems for
digesting these data are becoming increasingly prevalent. The sheer
volume of data collected in NPPs makes them valuable locations for
incorporating AI-based technologies, though the high-stakes
environment of NPPs make implementation a slow and cautious
process. Balanced usage of AI technologies in NPPs can improve
plant productivity and ef�ciency [13], lower long-term operating
and maintenance costs [14], and reduce opportunities for HE [15].
AI has been applied in NPPs in various ways, including in operator
decision-making support systems [16e18] and real-time moni-
toring and automation systems [19,20].

One branch of AI is anomaly detection, which involves �nding
data patterns that differ from the expected behavior [21]. The
challenge lies in cases where some samples differ, based on a given
metric, from the rest of the dataset. Depending on the application
domain, these anomalous patterns may be referred to as outliers,
anomalies, or faults in the dataset. In recent years, anomaly
detection has attracted the attention of the research community
due to the relevance of its implementation in real-world applica-
tions, such as image processing, intrusion detection, fraud detec-
tion, and system health monitoring, among many others [21].

Anomaly detection algorithms are broadly categorized as either
supervised, unsupervised, or semi-supervised. The differences lies
in the amount of labeled data required for training the algorithm.
Speci�cally, supervised algorithms require that the data be fully
labeled, unsupervised algorithms do not require labeled data, and
semi-supervised algorithms require only that a small subset of the
data to be labeled. In supervised anomaly detection, both non-
anomalous (i.e., normal) and anomalous data are labeled. The al-
gorithm can build a predictive model based on the given labels.
While supervised anomaly detection techniques are prevalent in
the recent literature, they are generally hampered by the need for
large datasets of labeled data to train the algorithms. This is further
complicated by the fact that anomalies may come in different types.
Hence, training supervised models to detect each of these anomaly
types would require very large datasets containing adequate rep-
resentation from each anomaly type.

Given the challenges faced in training supervised algorithms,
unsupervised or semi-supervised anomaly detection algorithms
may often be more appropriate. In unsupervised anomaly detec-
tion, the observations do not have labels. The algorithm trains
based on the assumption that non-anomalous data will be more
common in the dataset than anomalous instances [22]. If this
assumption is untrue, unsupervised methods can suffer from a high
false positive rate, with non-anomalous points being classi�ed as
anomalous instances. Semi-supervised anomaly detection falls
somewhere between unsupervised and supervised models, and
takes advantages of whatever labeled data are present [23].

Anomaly detection is especially important in NPPs, since NPP
safety is highly dependent on stable operation. An anomaly in a
safety-critical system, such as an NPP, can indicate atypical condi-
tions that can impact system performance [24]. NPPs store a large
amount of data collected from various sources, including equip-
ment, condition reports, maintenance logs, and process

instrumentation and control, to name a few [25]. Anomalies can
occur in various areas of the plant, for various reasons, including
instrument error and HE [24]. Some of these anomalies may be hard
for operators to detect, or as aforementioned, even be caused by the
operator. As such, AI allows for correlating all data and fusing the
data collected from various sources in the NPP in order to detect
potential anomalies in manually collected data.

In the context of NPPs, HEs can be treated as anomalies. In
general, the presence of HE through erroneous data collection can
result in data points that do not conform to usual patterns [26].
Although the risk associated with HEs can be signi�cant, the overall
likelihood of occurrence of a consequential HE is rather low, given
the extensive training and expertise of NPP personnel. According to
[12], the HE rate in an NPP is not expected to exceed 10%. Hence,
anomaly detection methods can serve as promising tools to detect
the presence of HE in NPPs.

In this study, we take a data-driven look at the issue of identifying
HEs in NPPs via anomaly detection. Speci�cally, we develop an un-
supervised HE anomaly detection model based on a generative
adversarial network (GAN) and compare it against state-of-the-art
anomaly detection benchmarks, including one-class support vector
machine (OCSVM) and isolation forest (iForest). Speci�cally, by using
an unlabeled dataset provided by an operational NPP, we analyze
automatically collected sensor data and manually collected vibration
data from an NPP balance of plant. Under the assumption that sensor
data are non-anomalous, we developed an approach to correlate
automatically collected and manually collected data in order to
identify mismatches (i.e., anomalies) possibly arising from manual
data collection (HE) and evaluate the model performance under
various assumed anomaly rates, bounded above at 10%. Furthermore,
we validated our approach on an external dataset collected from a
testbed, with known labels and intentionally introduced erroneous
data during collection process associated with HE. To the best of our
knowledge, our study is the �rst to develop a GAN-based unsuper-
vised anomaly detection technique for HE anomaly detection in
NPPs. The framework developed in this study has the potential to
foster HE mitigation by immediately alerting human operators of
potential errors and prompting operators to further evaluate or
retake measurements. Additionally, it can lay the foundation for
future studies addressing HE identi�cation and developing a human-
in-the-loop (HITL) system for smooth NPP operations.

The rest of the manuscript is organized as follows. Section 2
reviews the related literature on HEs and unsupervised anomaly
detection. Section 3 presents the data and methods. Section 4
presents the results, and Section 5 discusses the �ndings. Finally,
Section 6 concludes the paper and provides future directions.

2. Literature review

Due to the impact of HEs on plant safety and operations, HE
identi�cation and mitigation have been the subject of extensive
research [16,27]. For example, studies have investigated the cor-
relation between performance shaping factors and errors in NPPs
[28]. Other studies developed various frameworks for evaluating
the effects of maintenance-related HEs in NPPs [29] and for iden-
tifying accidents that the NPP’s operator support system cannot
diagnose with certainty [30]. [31] considered the use of SACADA
(Scenario Authoring, Characterization, and Debrie�ng Application)
and HuREX (human reliability data extraction) databases for HE
probability estimation. Other works such as [32] and [33] also
considered the issue of calculating HE probabilities.

Recent literature has explored various approaches for using
anomaly detection, a subset of AI, across many domains. Anomaly
detection has been covered extensively in the recent literature, and
surveyed in various works such as [21] and [34]. Anomaly detection
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techniques are generally classi�ed into two main categories (i.e.,
model-based and data-driven [35]) and are further subdivided into
distribution, distance, density, clustering, and classi�cation tech-
niques [36] based on how they categorize instances as anomalous
anomalies. Numerous efforts have been made to detect anomalous
sensor data in safety-critical systems by using different data-driven
techniques. Due to the complexity of data dimensions and the
scarcity of labeled data, much of the existing anomaly detection
research employs a combination of different anomaly detection
techniques. In [36], the authors proposed the combination of yet
another segmentation algorithm (i.e., YASA), a novel fast and high-
quality segmentation algorithm, with an OCSVM approach for
ef�cient anomaly detection in turbomachines in the petroleum
industry. OCSVM learns a region containing all training data in-
stances (a boundary) and �ags as anomalies any instances that fall
outside the boundary. In [37], the authors compared different
machine learning (ML) methods to estimate power output perfor-
mance and detect anomalies in a combined-cycle power plant,
based on 5 years of recorded data and using autoencoders, SVMs,
random forest, and iForest.

Most current studies on anomaly detection in NPPs relate to
fault detection and diagnosis [38], a review of which is provided in
[35,39]. In supervised anomaly detection, the authors of [40] apply
anomaly detection for condition monitoring in NPPs by using
symbolic dynamic �ltering (SDF). The results of this study are
compared with principal component analysis, a popular data-
driven method. The authors found that SDF-based anomaly
detection outperformed principal component analysis, proving that
SDF can be a useful tool for real-time anomaly detection. Recently,
the authors of [41] used arti�cial neural networks (ANN) - more
speci�cally, recurrent neural networks, which incorporate histori-
cal anomalies in the training-as a means of detecting anomalous
sensor signals. Semi-supervised and unsupervised anomaly
detection have also been explored in the recent literature. In [42], a
semi-supervised variational graph autoencoder method was pro-
posed for identifying system-level anomalies in NPP data. In [43], a
deep learning approach using a combination of convolutional
neural networks (CNN), k-means clustering, and denoising
autoencoders was used to unfold nuclear power reactor signals.
Other approaches to anomaly detection in NPPs include using
Kalman �lters for instrument failure detection [44].

ML and anomaly detection have also been speci�cally considered
in the context of HE detection/evaluation. In [45], an unsupervised
anomaly detection model was developed to evaluate data quality,
which could be negatively impacted by manual data entry and/or
measurement errors. The authors of [46] predicted HE using
anomaly detection based on Shallow CNN through analyzing the
human operators' electroencephalography (EEG) signals. In the
context of NPPs [47], considered the use of a long short-term
memory variational autoencoder (LSTM-VAE) based anomaly
detection model to detect system and component anomalies to
reduce HE in NPP diagnostic tasks. Another study [48], proposed the
use of ANNs to predict the trends of 55 plant parameters and detect
the presence of HE. In [49], the authors developed a framework
based on deep neural networks and colored Petri nets to determine
operator errors with the goal of reducing HE in NPP operations.

In recent years, the use of GANs for anomaly detection has
gained traction. The ability of GANs to model high-dimensional
data make them suitable candidates for anomaly detection [50].
The use of GANs in anomaly detection has been surveyed in various
works such as in [51] and [52]. The �rst GAN was proposed by [53]
and [54] �rst proposed using GANs for unsupervised anomaly
detection (AnoGAN). Other variations of GAN-based anomaly
detection techniques have since been proposed. The authors of [55]
proposed MAD-GAN for detecting cyber-intrusion-caused

anomalies in time series data. In [56], the authors applied GAN-
based anomaly detection to multivariable time series data in a
power plant [50]. considered the application of BiGAN as a novel
anomaly detection model using the GAN architecture.

Despite the popularity of deep learning and anomaly detection
in the literature, there is comparatively little literature on using
GANs as a form of anomaly detection in NPPs. The authors of [57]
developed a GAN-based model that can be used to reconstruct
missing signals under emergency situations in NPPs. While this
paper also uses a GAN-based approach for the purpose of anomaly
detection in NPPs, the focus of the study/methodology differ from
ours. Whereas that paper focused on signal reconstruction during
emergency situations, our study aims to detect anomalies in the
day-to-day plant operations. Additionally, that study only consid-
ered sensor data while ours takes in both automatically collected
sensor data and manually collected data as input, and identi�es
potential mismatches in order to detect anomalies. In [58], the
authors use VAEs and iForest to detect anomalous operation state
in NPP. They compare VAE performance in extracting data from
thermal hydraulic transient operation parameters to a traditional
GAN architecture, as well as to Deep Boltzmann machine and an
autoencoder. The results suggest VAE to be the more appropriate
preprocessing method for detecting abnormal operation in NPPs.
However, it should be noted that this study considers NPP accident
conditions (e.g., loss of coolant and steam generator tube rupture),
and not necessarily HE detection, which is the focus of our study.

3. Methods

3.1. Data, challenges, and preprocessing

Two datasets are used in this study. The �rst dataset, referred to
as the NPP dataset, was obtained from an electric utility corporation
in the United States. The second dataset, referred to as the testbed
dataset, was obtained from a testbed at the Department of Nuclear
Engineering at the University of Tennessee, Knoxville.

The NPP dataset has two facets, the automatically collected
sensor data and the manually collected surveillance data. All data
are collected from a main feed pump in an NPP. This dataset is
considered to have rare incidents of HE, attributing to the high
standards and reliability of the NPP personnel. The corresponding
data types from the main feed pump are as follows:

- Sensor data: Continuous, minute-by-minute, datastreams were
collected from the pump via mounted sensors. The datastreams
captured vibrations and turbine speed. Speci�cally, ten vibration
datastreams (in units of one-thousandth of an inch [mils]) were
collected from the inboard, outboard, and thrust bearings, and
one speed datastream (in units of RPM) was collected from the
turbine. The datastreams were captured from 2016 through
2020.

- Surveillance data: Surveillance data were manually collected by
�eld workers and/or operators via vibration monitors. These
data are extremely rich and include the vibration waveform and
spectrum; however, they are not fully captured in the mainte-
nance records. Rather, the records that are available include the
time of data collection, speed (RPM), plus the parameters ob-
tained from spectral analysis. These speci�cally include vibra-
tion parameters across three different axes (i.e., vertical,
horizontal and axial, expressed in in./second). During the time
window for collecting the sensor data, i.e., 2016e2020, sur-
veillance data were intermittently collected in 844 instances.
Hence, at each of these instances, a total of 13 parameters (10
from the sensors and three from the surveillance data) are
available to use for HE detection.
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Human error was introduced in the testbed dataset, as shown in
Table 1. Similar to the NPP dataset, two different sets of data types
were collected from the testbed dataset:

- Sensor data: Continuous datastreams were collected from the
system via mounted sensors. Permanently mounted sensors
captured the temperature (in C�) and coolant �ow (in milliamps)
for the primary and secondary loops. These readings were
captured at a frequency of .25Hz. The currents of the variable
frequency drive, motor-operated valve, and the heater were also
outputted by the controllers. Additionally, the permanently
mounted sensors captured vibrations. Speci�cally, high-
frequency tri-axial acceleration readings (in units of millivolts)
were collected from the accelerometer. A �ow loop diagram of
the testbed is provided in Figure A.1 of the Appendix. The data-
streams were captured intermittently from June to October 2021.

- Surveillance data: Surveillance data were manually collected via
Fluke handheld probes used by the research team. During each
reading, Fluke probes were used to collect data from two loca-
tions, and HE may be intentionally introduced when collecting
measurements from location 1, location 2, or both. Table 1 sum-
marizes the HEs introduced during the data collection.

For each surveillance reading, multiple speed datastreams (in
units of ’RPM’) were estimated for the pump. Additionally, as with
the surveillance data in the NPP dataset, the tri-axial acceleration
data (mm/sec) collected by the Fluke monitors include the vibra-
tion waveform and spectrum making them extremely rich. Thus,
this data are not fully captured in the Fluke-generated reports,

which simply include graphs obtained via order analysis. For each
of the two Fluke probe locations, we extracted eight peaks from the
relevant low-range graphs [59] (below order 1, and between orders
i and i þ 1, i 2 {1, 7}) across three axes (i.e., horizontal, tangential,
and radial), for a total of 24 readings parameters per location).
Although the reports provide both low- and high-range graphs, the
low-range graphs were speci�cally used, as the higher orders did
not contain any valuable information.

In total, for each reading, we extracted 48 parameters for each of
the 32 normal and 8 anomalous instances collected.

3.1.1. Data challenges
Each dataset is subject to certain limitations. The NPP dataset is

unlabeled (i.e., no labels are associated with the anomalous and
non-anomalous data), making model validation efforts dif�cult. In
the testbed dataset, the Fluke-generated graphs are in PDF format.
Hence, data are manually extracted from the graphs using the
open-source Engauge Digitizer Software [60], restricting the gran-
ularity with which they are recorded in the dataset. The readings
are recorded to two decimal points to preserve the level of detail
and provide more information to the models for analysis. We
address these challenges through data preprocessing, cleaning, and
experimental design efforts.

3.1.2. Data Preprocessing and Cleaning - NPP dataset
In the NPP dataset, the two sub-datasets of sensor and surveil-

lance data were merged based on timestamps. Before data merging,
the surveillance data were preprocessed as shown in Algorithm 1.
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Each surveillance data entry consisted of the timestamp, the
speed, and vibration data in one of the three axes (i.e., vertical,
horizontal, and axial). By matching the timestamps (with a
maximum variation of 1 min), the corresponding vibration data in

the three axes were combined into a single entry.
After preprocessing the surveillance data, they were merged

with the sensor data by matching the corresponding timestamps. In
this data merging, speed values from the sensor and surveillance
data were both preserved for further �ne-tuning. Our goal was to
conduct the analysis for the period in which the system was in
steady state (normal operation). As such, only the observations
with speed values in the range of 4800e5100 RPM in either the
sensor or surveillance data were considered. Selection of this range
is guided by our industry partners and was based on the frequency
distribution of the sensor-collected speed data, as shown in Fig. 4.

A high-level overview of the data curation and cleaning process
for the NPP dataset is presented in Fig. 5. The clean data contain a
total of 189 sensor-surveillance observations. As discussed in Sec-
tion 3.1, each observation has 13 parameters (10 from the sensors
and three from surveillance) used in the learning models.

3.1.3. Data Preprocessing and Cleaning - Testbed dataset

Fig. 1. GAN-based method architecture (adapted from [65]). Note that GE and GD

denote the autoencoder network that acts as a generator, E denotes the encoder
network, and D denotes the discriminator network. Further, x and z represent the non-
anomalous data and the features extracted from x, respectively, and x0 and z0 represent
the reconstructed data and the features of the reconstructed data, respectively.

Table 1
Testbed Fluke HE descriptions.

HE Error type Description of HE

1 Base Measurement No HE in either location, correct position for both locations
2 Off axis Axis rotated 90� CW in 1st location,90� CCW in 2nd location
3 Off axis (45�) Axis rotated 45� CCW in both locations
4 Off position Axis rotated 180� in �rst location,
5 First location for both measurements Both measurements taken from �rst location
6 Second location for both measurements Both measurements taken from second location
7 Off position 1st measurement Measurement from 1st location off position (axis rotated 180�)
8 Off position 2nd measurement Measurement from 2nd location off position (moved ‘left’ to offset position 45�)
9 Swapped locations Locations for 1st and 2nd measurements swapped

CW: clockwise, CCW: counterclockwise.
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A brief overview of the algorithm used for testbed data cleaning
is provided in Algorithm 2. As with the NPP dataset, in the testbed
dataset, the two sub-datasets of sensor and surveillance data were
merged based on timestamps. Since the testbed data were collected
at high frequency, prior to merging the sub-datasets, we �rst per-
formed stationary wavelet transform (SWT) [61] on the sensor
datastreams collected during the minute of interest in order to
extract features. In particular, we opted to use SWT for feature
extraction, as the datastream from the sensors is non-stationary
[62,63]. Furthermore, by using the SWT, the coef�cients are pro-
vided in a “non-decimated” manner in which the length of the
coef�cients are the same as the length of the original signal,
allowing us to merge the SWT-transformed sensor data with the
surveillance data, without conducting any additional preprocessing

on the datasets. As in the literature [62], we used the Daubechies
fourth-order (db4) wavelet and recorded the mean of the �rst-level
approximation coef�cients corresponding to the 1-min interval.
While SWT provides both approximation and detail coef�cients, we
opted to solely use the approximation coef�cients, as they repre-
sent the low frequencies and contain the signal’s key features for
examining long-term trends [64]. To further enable testing of the
method’s robustness to our choice of transform, we also pre-
processed the sensor datastreams using fast Fourier transform
(FFT), itself a well-established approach to feature extraction from
signals [63]. The clean dataset contained a total of 40 sensor-
surveillance observations: 32 normal and 8 anomalous.

3.2. Models and benchmarks

This section outlines the GAN-based model used for anomaly
detection in this study. It also discusses the traditional anomaly
detection algorithms (i.e., OCSVM and iForest) we used for initial
labeling of the data, as well as benchmarking.

3.2.1. GAN-based method
GAN is an unsupervised learning technique originally proposed

in [53] for the purpose of generating photorealistic images. GANs
utilize two subnetworks: a generator and a discriminator. The
generator works to generate new instances, and the discriminator
attempts to classify them as real or fake (i.e., generated by the
generator). The generator and the discriminator train adversarially,
with the goal of having the generator mislead the discriminator
into categorizing the generated instances as real inputs. The
objective of GAN is expressed with a two-player minimax loss
function, de�ned as:

min
G

max
D

VðD; GÞ … E
x�px

‰log DðxÞ� þ E
z�pz

‰logð1 � DðGðzÞÞÞ�; (1)

where V(D, G) is the cost function, G denotes the generator, D de-
notes the discriminator, x denotes an instance which is randomly
drawn from the data px, and z denotes the latent variable which is
randomly drawn from prior pz. In essence, equation (1) learns
model parameters such that it maximizes the likelihood of the
discriminator D correctly distinguishing between real-world data
and generated data. At the same time, it seeks to minimize the
probability of the generator G generating new instances that are
categorized correctly by the discriminator D.

The GAN-based method adapted in this study for the purpose of
anomaly detection was introduced in [65] as a novel anomaly
detection model. It improves upon the original GAN architecture by
employing an autoencoder network that acts as a generator (GE and
GD), the encoder network E, and the discriminator network D.
Further, to cater to the requirements of our dataset, the input sizes
and convolutional layer dimensions were changed accordingly. This
is required since our dataset has textual data unlike the image

Fig. 5. High-level overview of the NPP dataset preprocessing and cleaning scheme
used to curate a clean dataset of sensor and surveillance data.

Fig. 2. Convergence of the discriminator and generator losses for GAN training
optimization.

Fig. 3. Representation of temporal window Wi, which includes all the data between
time points t � i and t. In this study, window lengths up to W3 are considered.

Fig. 4. Frequency distribution of speed (RPM), as recorded by mounted sensors. The
4800e5100 RPM range is considered as steady state (normal operation).
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dataset that was used in [65]. The objective function for the
generator takes into consideration three loss functions: adversarial
loss, contextual loss, and encoder loss. The autoencoder networks
helps the model in better understanding the features of the dataset.
Fig. 1 depicts the architecture of the GAN-based implementation
where x denotes non-anomalous data, z denotes the features
extracted from x, x0 denotes the reconstructed data, and z0 denotes
the features of the reconstructed data.

The adversarial loss measures how successfully the generator G
can distinguish between real and generated instances. Given the
function f($) which represents the output of the discriminator D’s
interior layer, the formula for adversarial loss is given as follows:

Ladv … E
x�px

kf ðxÞ � E
x�px

f ðGðxÞÞk2: (2)

where k $k2 denotes the L2 norm of the interior features of the real
instance, x ~ px, and the generated instance, G(x).

The contextual loss optimizes the generator to learn contextual
information from the input instances, i.e.,

Lcon … E
x�px

kx � GðxÞk1; (3)

where k $k1 denotes the L1 norm.
Lastly, the encoder loss measures the degree to which the

generator successfully encodes the features of the generated
instance. The encoder loss calculates the difference between the
encoded features of the generated instance GE(x) and the features of
the real instance E(G(x)) [65]. The formula for encoder loss is given
by:

Lenc … E
x�px

kGEðxÞ � EðGðxÞÞk2: (4)

Given these losses, the objective function of the GAN-based
method is given by:

L … wadvLadv þ wconLcon þ wencLenc; (5)

where wadv, wcon, and wenc represent the weights of the adversarial,
contextual, and encoder losses in the overall objective function,
respectively.

Once the GAN-based model is trained, the encoder loss Lenc,
de�ned in equation (4), is used to determine the anomaly score
AðbxÞ in a test instance bx. The formula for the anomaly score is given
by:

AðbxÞ … kGEðbxÞ � EðGðbxÞk1; (6)

where k $k1 denotes the L1 norm. The anomaly score is computed
for the instances in the test set bD, which gives a set of anomaly
scores S … fsi : Að bxiÞ; bxi 2 bDg. Finally, the anomaly scores are
scaled from [0, 1] as follows:

s0
i …

si � minðSÞ
maxðSÞ � minðSÞ

: (7)

Anomalies are determined based on an optimal threshold. If the
output exceeds the pre-determined threshold, the instance is
considered to be anomalous; otherwise, it is considered to be
normal.

A 1-D GAN architecture was used in this study, with the sensor
and the surveillance data being fed as a 1-D array. As is consistent
with literature [50,66,67], the feature layer was used. The archi-
tecture used for the GAN-based method in this study is presented in
Table A.1 of the Appendix. To ensure that the model was suf�ciently
trained and optimized, the losses of the discriminator and

generator were plotted. The convergence of the respective losses
was considered as a measure for the algorithm optimization. Fig. 2
depicts the convergence of the discriminator and generator losses.
For our preliminary analysis, a 2-D GAN architecture was also
implemented, with the sensor and the surveillance data being fed
as a 2-D “image.” However, because the preliminary results did not
show model improvement, we ultimately opted for a 1-D GAN.

3.2.2. OCSVM
OCSVM is an extension of the popular supervised learning

method, SVM, and establishes a hyperplane to separate a dataset
into two or more subsets. OCSVM computes a non-linear decision
distribution or boundary around the training data, using a given
kernel. It consequently categorizes them as “suspicious” if the
training data fall outside this boundary with respect to the kernel
chosen. The dataset is mapped to a high-dimensional feature space.
The origin is labeled as � 1, and the training instances are labeled
as þ 1 [68]. The goal in OCSVM is to build a hyperplane that features
the maximum distance between the training instances and the
origin [69].

In OCSVM, the optimal hyperplane is found by solving the
following optimization problem:

min
w;r

1
2

kwk2 þ
1

n$v

X n
i…1

maxð0; r � Cw; f ðyÞDÞ � r ; (8)

where n represents the number of data points, v 2 (0, 1) is a
parameter that controls the tradeoff between maximizing the dis-
tance to the origin and false positives, r and w are the hyperplane
parameters, and f is a mapping function [70]. Consequently, the
hyperplane is constructed as follows:

f ðxÞ … w$f ðxÞ � r : (9)

As is consistent with the literature [71], [72], we used the Gaussian
kernel in this study, since it is a widely adopted kernel for SVM with
regard to high-dimensional data.

3.2.3. iForest
iForest is an unsupervised ML algorithm based on decision trees.

Speci�cally, iForests detect anomalies by using binary trees [73].
iForests work on the basis of two main assumptions: (1) anomalous
instances tend to occur at a lower frequency than do normal in-
stances, and (2) the parameter values of these anomalous instances
differ from those of normal instances. These assumptions mean
that anomalies are more susceptible to becoming isolated from the
rest of dataset. The goal of iForest is to create a collection of isola-
tion trees (iTrees), a tree structure in which the anomalous in-
stances are grouped closer to the root and the normal instances
form the leaves of the tree [73].

Partition selection in the algorithm is random. That is, iForest
chooses a random feature and then selects a value between the
maximum and the minimum values of that feature [73]. Parti-
tioning occurs until all instances have been isolated. Anomalies are
then determined based on the path length. Given the above as-
sumptions about anomalies, they require fewer partitions to be
isolated from the rest of the dataset (i.e., they have a shorter path
length to isolation).

Given n instances in the dataset where n > 2, the path length is
given by

cðnÞ … 2Hðn � 1Þ �
2ðn � 1Þ

n
; (10)

where H(n) is approximated by the harmonic number ln(n) þ g
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(Euler’s constant). Consequently, the anomaly score of an instance x
is calculated using the following formula:

sðx; nÞ … 2�EðhðxÞÞ
cðnÞ ; (11)

where h(x) represents the path length or the number of iterations
to isolate instance x. If the sample x returns an s that is higher than
the pre-de�ned threshold (typically � 0:5), x is marked as anom-
alous; otherwise it is considered non-anomalous [73].

3.3. Experimental design

As discussed in Section 3.1.1, the NPP dataset is unlabeled.
Although this does not prohibit us from using unsupervised
learning algorithms, it makes model validation efforts dif�cult. As
such, in this section we design experiments to enable model vali-
dation. More speci�cally, in these experiments, we �rst use a given
learning algorithm for labeling the observations in the clean dataset
as being either normal or anomalous. Then we test the performance
of the GAN-based method in detecting the anomalous instances
against state-of-the-art benchmarks. For the benchmarks, we
perform grid search and hyperparameter tuning to ensure training
the best models possible. To further validate the models, we apply
the models to testbed data, with known labels.

To evaluate model performance, we randomly split the data into
training/validation/testing sets. We use the training/validation sets
for �ne-tuning the models and the test sets for objective model
evaluation. We repeat the process 10 times to report the mean
performance for the test set along with the corresponding con�-
dence intervals. The experiments are repeated for various potential
anomaly rates x, x 2 X … {1%, 2.5%, 5%, 10%} in the NPP dataset, for
which the true anomaly rate is unknown. Note that we do not
consider anomaly rates above 10%, as NPP personnel are generally
highly trained and the HE rate is not expected to exceed 10% [12].
The experiments are repeated for various anomaly rates x,
x 2 X … {10%, 20%} in the testbed dataset. The higher anomaly rates
of 10 and 20% are especially considered, as smaller rates would
require too many normal instances. The different anomaly rates
mentioned above were incorporated during the training, validation,
and testing splits of the normal and anomalous datasets. Table A.2
and A.3 show these splits for the NPP dataset and testbed dataset,
respectively.

3.3.1. Experiment NPP-I: OCSVM labeled anomaly detection
In this experiment, we use OCSVM for the initial labeling of the

dataset. The labeled data are then split to create training/validation
and testing sets. The size of the training/validation set is deter-
mined based on the testing set. To get equal proportions of
anomalous and non-anomalous datastreams in the testing set, the
training and testing split for the datasets must be carefully
considered. The iForest and GAN-based methods are trained on the
training/validation data and then tested on the testing data to
compare their performance.

In the iForest anomaly detection, the model is trained on the
training set that includes both normal and anomalous data. The
proportion of anomalies in the training dataset (i.e., the contami-
nation rate) is given to the algorithm as an input. This allows iForest
to create branches that can isolate a predetermined proportion of
the data as anomalies.

In contrast, in the GAN-based method, the GAN architecture is
trained only on the non-anomalous data. This allows the GAN to
learn the behavior of normal data without the need for any a priori
known contamination rate. Once this behavior is learned, the
validation set that includes both normal and anomalous data is

used to optimize the threshold for anomaly scores, as discussed in
Section 3.2.1. Figs. 6 and 7 provide an overview of the pipelines used
for implementing OCSVM Labeled iForest and GAN-based anomaly
detection methods, respectively.

3.3.2. Experiment NPP-II: iForest labeled anomaly detection
Unlike Experiment NPP-I, this experiment employs iForest for

the initial labeling of the dataset. Once the data are labeled, they are
split to create training/validation and testing sets, just as in
Experiment I. The OCSVM and GAN-based methods are trained on
the training/validation data and then tested on the testing data to
compare their performance. In the OCSVM anomaly detection, the
model is trained on the training set that includes both normal and
anomalous data, with the contamination rate fed to the algorithm
as an input. In the GAN-based method, the GAN architecture is
trained only on the non-anomalous data, and the validation set is
then used to optimize the threshold for anomaly scores. Figs. 8 and
9 provide an overview of the pipelines used for implementing
iForest Labeled OCSVM and GAN-based anomaly detection
methods, respectively.

3.3.3. Experiment Testbed-III: Anomaly detection in the testbed
data

In this experiment, we implement anomaly detection algo-
rithms on the testbed data. Recall that, as mentioned in Section 3.1,
the labels are already known in the corresponding dataset. For this
experiment, the dataset is divided into normal and anomalous data,
based on the location of where the anomaly was introduced, as
summarized in Table 1. We consider two cases: one in which the
dataset is considered holistically (with HEs potentially being pre-
sent throughout the entire data collection process), and one that is
location-speci�c (with HEs being present at the speci�c locations
where the data are collected). As with the NPP experiments, the
data are then split to create training/validation and testing sets,
given the anomaly rate considered. The iForest, OCSVM, and the
GAN-based methods are subsequently trained on the training/
validation sets and then tested on the test set.

3.4. Evaluation metrics

The metrics that are used to evaluate the performance of the
anomaly detection approaches are accuracy, sensitivity, speci�city,
and geometric mean (G-Mean). Each of these metrics is based on
true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). The detailed formulas and descriptions are as
follows:

Accuracy …
TP þ TN

TP þ TN þ FP þ FN
Sensitivity …

TP
TP þ FN

Specificity …
TN

TN þ FP
G � Mean …

����������������������������������������������������
Sensitivity � Specificity

p

Accuracy is the proportion of correctly identi�ed normal and
anomalous instances. Due to unbalanced data (i.e., over-
representation of normal data vs. anomalous data), accuracy does
not holistically capture the performance of anomaly detection al-
gorithms [74]. However, because it is a commonly reported metric
in the literature, we chose to include it among our model evaluation
metrics.

Sensitivity, or the true positive rate, is the proportion of
correctly identi�ed anomalous instances. Sensitivity provides in-
formation on how well a given model performs in detecting
anomalous instances; hence, a model with high sensitivity would
be ideal.
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Speci�city, or the true negative rate, is the proportion of
correctly identi�ed normal instances. This metric provides infor-
mation on how well a given model performs in detecting normal
instances; hence, a model with a high speci�city would be ideal.

G-Mean is the product of sensitivity and speci�city. Thus, G-
Mean takes into consideration both the true positive and true
negative rates. This makes it a holistic evaluation metric for
anomaly detection algorithms. Hence, we use G-Mean as our pri-
mary evaluation metric in this study.

4. Results

In this section, we present the anomaly detection performance
in regard to the NPP and testbed datasets. We �rst present the
descriptive statistics of the two datasets (Section 4.1). Next, we
examine the differences between OCSVM and iForest labeling in the
NPP dataset (Section 4.2). We then reveal the anomaly detection
performance for the NPP (Section 4.3) and testbed datasets (Section
4.4).

Fig. 6. OCSVM labeled iForest anomaly detection pipeline.

Fig. 7. OCSVM labeled GAN-based anomaly detection pipeline.

Fig. 8. iForest labeled OCSVM anomaly detection pipeline.
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4.1. Descriptive statistics

Tables 2 and 3 present the descriptive statistics of the NPP
sensor and surveillance data, respectively. As seen in the two tables,
although the sensor and surveillance data both measure vibration,
they do so in fundamentally different ways. Sensors are mounted
inside the system and measure internal vibrations, whereas sur-
veillance data are collected through vibration monitors that mea-
sure data at a much higher frequency and provide spectral analysis
results for the data. Hence, although sensor and surveillance data
generally correlate with each other, they do not exactly match.

Tables 4 and 5 present the descriptive statistics of the testbed
sensor and surveillance data, respectively. Note that in the former,
the statistics were compiled after implementing SWT on the raw
sensor values.

4.2. Anomalous vs. normal labeling in NPP dataset e OCSVM vs.
iForest

As discussed in Section 3.3, the unlabeled dataset was initially
labeled using OCSVM and iForest in the two experiments. In this
section, we investigate the differences in the corresponding
anomalous-/normal-labeled data resulting from these two
algorithms.

Figs. 10 and 11 present the boxplots of the normal and anoma-
lous surveillance data under anomaly rates x 2 X … {1%, 2.5%, 5%,
10%}, as labeled by OCSVM and iForest, respectively. As seen in
Fig. 10, the median, fourth spread, and the range of normal data are
somewhat consistent under the anomaly rates x 2 X … {1%, 2.5%,
5%, 10%}. However, the characteristics of the anomalous data are
generally more sensitive to the choice of the anomaly rate and
present more variability in terms of the anomaly rate. These ob-
servations are consistent with those made in Fig. 11, in which the
characteristics of the normal data are somewhat consistent under
the anomaly rates considered, and the anomalous data are gener-
ally more sensitive with respect to this choice.

Interestingly, even though both OCSVM and iForest are state-of-
the-art approaches, as seen in Figs. 10 and 11, they do not provide
consistent anomalous data under the anomaly rates x 2 X … {1%,
2.5%, 5%, 10%}. This is evident from comparing the characteristics of
the anomalous data under the different anomaly rates considered
across the two �gures. As discussed in Section 3, OCSVM and iForest
use very different approaches to detect anomalies in the high-
dimensional data and hence, differences between the resulting
anomalous- and normal-labeled data are expected. Also as ex-
pected, sensor data generally present behavior similar to that of
surveillance data. That is, the characteristics of normal data are
somewhat consistent under the anomaly rates considered, whereas

Fig. 9. iForest Labeled GAN-based anomaly detection pipeline.

Table 2
Descriptive statistics of the automatically collected NPP sensor data (mils).

Count Mean SD Min 1st Quartile Median 3rd Quartile Max

Sensor 1 189 2.583 2.875 0.0 0 1.6 1.7 7.5
Sensor 2 189 2.671 2.846 0.0 0 1.8 1.9 7.5
Sensor 3 189 2.555 2.813 0.1 1 1 1 7.5
Sensor 4 189 2.376 2.954 0.0 0 1.2 1.2 7.5
Sensor 5 189 2.543 2.82 0.2 0.9 1 1.1 7.5
Sensor 6 189 2.195 3.034 0 0 0.8 0.9 7.5
Sensor 7 189 4.11 1.946 0.2 2.9 3.2 3.4 7.5
Sensor 8 189 4.086 1.954 0.1 3 3 3.1 7.5
Sensor 9 189 5.502 3.052 0.2 5.8 7.1 7.4 8.1
Sensor 10 189 5.748 3.199 0.2 6 7.4 7.8 8.6

Table 3
Descriptive statistics of the manually collected NPP surveillance data (in./sec).

Count Mean SD Min 1st Quartile Median 3rd Quartile Max

Overall - Vertical 189 0.141 0.083 0.031 0.087 0.114 0.174 0.432
Overall - Horizontal 189 0.190 0.111 0.053 0.116 0.145 0.233 0.516
Overall - Axial 189 0.139 0.05 0.041 1.095 0.133 0.175 0.288
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those of the anomalous data change in accordance with the
anomaly rate. In addition, again, anomalous data do not seem to
follow the same characteristics when labeled by OCSVM vs. iForest.
For the detailed boxplots of the normal and anomalous sensor data
under anomaly rates x 2 X … {1%, 2.5%, 5%, 10%}, as labeled by
OCSVM and iForest, see Figures A.2 and A.3 in the Appendix,
respectively.

4.3. Anomaly detection performance in the NPP dataset

Here, we present the results of Experiments NPP-I and NPP-II
described in Section 3.3. We �rst present the models in which
only the data collected within a span of a minute are used for
anomaly detection. We next examine whether including the tem-
poral history of sensor data can improve model performance.
Through these experiments, we examine whether or not the GAN-
based approach can consistently retrieve anomalies, regardless of
how the initial labeling is done.

4.3.1. Baseline models
Tables 6 and 7 present the mean and standard deviation of the

performance metrics for Experiment I: OCSVM Labeled Anomaly
Detection and Experiment II: iForest Labeled Anomaly Detection,
respectively. The training, validation, and testing splits are pre-
sented in Table A.2 of the Appendix. Paired t-tests are performed to
compare the results between iForest/OCSVM and GAN-based ap-
proaches. The results are bolded if they are statistically better at the
0.05 signi�cance level (a).

As seen in Table 8, the GAN-based approaches outperform
iForest regardless of the anomaly rate with respect to the primary
metric of G-Mean. Additionally, iForest is generally more accurate
and sensitive; however, this comes at the cost of reduced speci-
�city, which ultimately results in a lower G-Mean. Overall, the
GAN-based approach is more successful than iForest at retrieving
the data correctly when the data are labeled by OCSVM. As seen in
Table 9, the GAN-based approach outperforms OCSVM under the
x … 1, 2.5, and 5% anomaly rates and presents comparable perfor-
mance to OCSVM under x … 10% anomaly rate with respect to the
primary metric of G-Mean. Hence, in summary, in both Experi-
ments NPP-I and NPP-II, the GAN-based method proved superior
with respect to speci�city and G-Mean, except in the case of the
x … 10% anomaly rate in Experiment NPP-II, for which the difference
in the results between OCSVM and the GAN-based method are not

statistically signi�cant.

4.3.2. Inclusion of temporal history
In this section, we examine whether including temporal sensor

data can help model performance. That is, we include a temporal
window W of sensor data when merging sensor data with sur-
veillance data at time t. We speci�cally use three time windows,
which we denote by Wi, corresponding to the temporal sensor data
in the interval (t � i, t), i.e., Wi2fðt �i; tÞ : i … 1; …; 3g (See Fig. 3). As
such, the surveillance data at time t is merged with the sensor data
in window Wi associated with time t. Contrast this with the base-
line model in Section 4.3.1, in which only sensor data from time t
are included. The data and instances used in this section are
otherwise consistent with those in Section 4.3.1.

Tables 8 and 9 present the results under window W1 for Ex-
periments NPP-I and NPP-II, respectively. As seen in the tables,
compared with the results obtained under the baseline model in
Section 4.3.1, the results of the OCSVM labeled models remain
statistically similar. At 1% anomaly, the iForest-labeled GAN slightly
improves with regards to accuracy, G-Mean, and sensitivity (paired
t-test p-value < 0.05). Additionally, the speci�city improves for
iForest-labeled GAN at x … 10% anomaly rate.

However, increasing the window length to include more tem-
poral sensor data seemingly leads to diminishing returns or even
decreased model performance. That is, in some instances, the re-
sults under window W1 are better than those under windows W2
and W3 (Tables A.5 - A.8 from the Appendix for the detailed re-
sults). Hence, only window lengths up to W3 are considered in this
analysis. Regardless, across all models and windows, our GAN-
based method outperforms iForest and OCSVM with respect to G-
Mean and speci�city at the signi�cance level of 0.05 (paired t-test
p-value < 0.05). The exception is seen in Table A.6, with iForest-
labeled anomaly detection under window W2, where OCSVM and
GAN-based method perform comparably across all evaluation
metrics at the x … 10% anomaly rate.

4.4. Anomaly detection performance in the testbed dataset

Here, we present the results of Experiment Testbed-III as
described in Section 3.3. Recall that, as discussed in Section 3.1,
surveillance data from Fluke probes are collected from two loca-
tions, with HEs potentially being intentionally introduced when
collecting measurements from location 1, location 2, or both. We

Table 4
Descriptive statistics of the testbed sensor data (SWT).

Count Mean SD Min 1st Quartile Median 3rd Quartile Max

Overall - Acceleration x 40 0.022 0.021 0.002 0.007 0.013 0.026 0.079
Overall - Acceleration y 40 0.015 0.016 -0.006 0.005 0.008 0.020 0.064
Overall - Acceleration z 40 0.031 0.028 0.004 0.011 0.021 0.035 0.102

Table 5
Descriptive statistics of the manually collected testbed surveillance data (mm/sec).

Count Mean SD Min 1st Quartile Median 3rd Quartile Max

Overall - Axial 40 0.812 0.858 0.000 0.055 0.200 0.855 19.911
Overall - Tangential 40 1.274 1.998 0.000 0.059 0.243 1.051 13.050
Overall - Radial 40 0.918 1.784 0.000 0.070 0.251 1.053 9.000
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�rst present the results for anomalous instances that can be present
in either location. We next examine the performance under
location-speci�c anomaly detection. The former allows us to pull
the instances together to create a larger dataset; however, the task
of anomaly detection may be more dif�cult in this case as the
pro�les of the HEs may be slightly different across the two loca-
tions. The latter task may be a bit easier for the algorithms; how-
ever, the dataset is smaller. Indeed, the dataset in the latter case is
too small to execute models for location 2 data in a meaningful
manner; hence, this exercise is only performed with location 1 data.
The training, validation, and testing splits of the testbed are pre-
sented in Tables A.3 and A.4 in the Appendix.

Table 10 presents the results when data from either location are
used. At x … 10% anomaly rate, the GAN-based method outperforms
iForest in terms of both speci�city and G-Mean. At x … 20% anomaly
rate, the GAN-based method outperforms OCSVM with regards to
accuracy and G-Mean. Hence, as is consistent with the model per-
formance observed for NPP data in Section 4.3, the GAN-based
method outperforms other state-of-the-art models. Interestingly,
however, overall the performance of all methods are generally
higher when applied to the testbed data. This may be partly
attributable to the fact that in this dataset, the labels are known a
priori.

Additionally, we present the results of location-speci�c anomaly
detection in the testbed dataset. Table 11 presents the results when
data are collected from location 1 only. As seen in the table, at
x … 10% anomaly rate, the GAN-based method outperforms OCSVM
in terms of G-Mean, and outperforms both OCSVM and iForest in
terms of speci�city. All three models perform comparably under
the accuracy and sensitivity metrics. Additionally, at x … 20%
anomaly rate, the GAN-based method outperforms both models in
terms of the G-Mean and speci�city metrics. These results are
largely consistent with the ones presented in Section 4.3.1, where
the GAN-based method outperforms the other methods in terms of
G-Mean and speci�city.

Finally, to further test the robustness of our analysis, we re-
generated the model performance results in this section when we
use FFT instead of SWT to process the sensor data. As expected, the

results remain largely consistent, with the GAN-based method
outperforming other state-of-the-art methods. The detailed results
are found in Table A.9 and A.10 of the Appendix.

5. Discussion

In this study, we established a GAN-based approach to detect HE
in a manual data collection process in NPPs. Given the assumption
that the automatically collected data were non-anomalous
(collected from well-calibrated sensors, etc.) and that they were
correlated with manually collected surveillance data, any anoma-
lies observed in the data were hence assumed to be attributed to
HE. As such, the GAN-based approach was developed to detect HE.
We used both real-world NPP data and a testbed that contained
both manually collected surveillance data and automatically
collected sensor data. The performance of the GAN-based model
was benchmarked against iForest and OCSVM. We labeled the ob-
servations in the unlabeled NPP dataset by using iForest and
OCSVM. As shown by the box plots and explained in Section 4.2,
even though both OCSVM and iForest are state-of-the-art unsu-
pervised ML algorithms, there are noticeable discrepancies in how
they label the data as either anomalous and non-anomalous across
the different anomaly rates. In particular, the differences become
more noticeable for the anomalous data. Due to the lack of
consensus between the two models, and in the absence of a ground
truth (i.e., the lack of existing labels in the NPP dataset), it is at �rst
dif�cult to ascertain the extent to which our labeling effort pro-
duces meaningful results. Clearly, although labeled data are not
required for unsupervised learning methods, they could aid in
evaluating the performance of the models, which we address by
introducing the labeled testbed data.

Despite the lack of labels in the NPP dataset, we devised ex-
periments to evaluate the performance of the models through
pairwise comparison of the GAN-based method with OCSVM and
iForest. Speci�cally, we examined whether the GAN-based method
does a reasonably good job of retrieving the designated labels,
regardless of how the initial labeling was done. This is based on the
hypothesis that the GAN-based method can learn the distribution

Fig. 10. Boxplots of normal and anomalous surveillance data (in./sec) under anomaly rates x 2 {1%, 2.5%, 5%, 10%}, as labeled by OCSVM.
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of any normal data and consequently mark as anomalous any
instance that does not match that distribution. This is extremely
powerful, as, if the GAN-based method does reasonably well at
retrieving the designated labels in the two experiments, it could
potentially be used as the basis for a HE detection tool (when labels
are known) to ef�ciently learn the distribution of the normal data.
We further validate this using the testbed data in which the labels
are known a priori.

The results presented in Section 4.3 show the performance of
the GAN-based method, compared with OCSVM and iForest, for the
NPP dataset. As is consistent with our hypothesis, the results

indicate that the GAN-based method can indeed retrieve the
designated labels reasonably well. More speci�cally, as seen in
Tables 8 and 9, it outperforms iForest across all anomaly rates, and
outperforms OCSVM under all but one anomaly rate, with respect
to our primary evaluation metric, G-Mean.

We next validated our �ndings using the labeled testbed data in
Section 4.4. The results show that, as is consistent with the results
for the NPP data, the GAN-based method generally outperforms
iForest and OCSVM in terms of the G-Mean for the testbed data.
Interestingly, this is regardless of how the anomalous and normal
data are de�ned (i.e., whether they come from readings from two

Fig. 11. Boxplots of normal and anomalous surveillance data (in./sec) under anomaly rates x 2 {1%, 2.5%, 5%, 10%}, as labeled by iForest

Table 7
Mean and standard deviation of the performance metrics for NPP-II: iForest Labeled Anomaly Detection (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

1% OCSVM 0.886 ± 0.085 0.918 ± 0.088 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.503 ± 0.140 0.486 ± 0.145 1.000 ± 0.000 0.700 ± 0.105

2.5% OCSVM 0.948 ± 0.041 0.968 ± 0.043 0.400 ± 0.516 0.391 ± 0.505
GAN-based 0.638 ± 0.225 0.625 ± 0.233 1.000 ± 0.000 0.777 ± 0.151

5% OCSVM 0.907 ± 0.054 0.933 ± 0.051 0.200 ± 0.422 0.194 ± 0.410
GAN-based 0.607 ± 0.157 0.593 ± 0.163 1.000 ± 0.000 0.760 ± 0.126

10% OCSVM 0.875 ± 0.064 0.936 ± 0.071 0.367 ± 0.246 0.513 ± 0.292
GAN-based 0.725 ± 0.195 0.748 ± 0.224 0.533 ± 0.172 0.611 ± 0.128

Table 6
Mean and standard deviation of the performance metrics for NPP-I: OCSVM Labeled Anomaly Detection (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

1% iForest 0.969 ± 0.011 0.993 ± 0.015 0.300 ± 0.483 0.296 ± 0.477
GAN-based 0.697 ± 0.100 0.686 ± 0.104 1.000 ± 0.000 0.826 ± 0.063

2.5% iForest 0.943 ± 0.048 0.970 ± 0.046 0.200 ± 0.422 0.198 ± 0.418
GAN-based 0.664 ± 0.143 0.652 ± 0.148 1.000 ± 0.000 0.800 ± 0.096

5% iForest 0.939 ± 0.041 0.959 ± 0.041 0.400 ± 0.516 0.391 ± 0.504
GAN-based 0.786 ± 0.303 0.685 ± 0.139 1.000 ± 0.000 0.824 ± 0.081

10% iForest 0.886 ± 0.041 0.972 ± 0.033 0.167 ± 0.176 0.286 ± 0.302
GAN-based 0.804 ± 0.097 0.824 ± 0.104 0.633 ± 0.189 0.713 ± 0.129
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different locations, or from a single speci�c location).
Overall, the �ndings of this study are encouraging and lay the

ground work for providing a novel way to detect HE in manually
collected surveillance data in NPPs. The results of this study show
promise for a HITL anomaly detection system in NPPs, which le-
verages the expertise of humans with the machine intelligence of
AI.

6. Conclusion and future work

HEs contribute to a considerable percentage of incidents in
NPPs, and HE detection is as important as HE mitigation efforts.

While NPPs are evolving to be highly automated and AI systems
are likely to alleviate part of the burden placed on human oper-
ators, there remains little doubt that humans will continue to play
an integral part in NPP operations. The current work developed an
anomaly detection approach to uncovering anomalous surveil-
lance data. Such an approach has the potential to foster HE miti-
gation by immediately alerting human operators of potential
errors.

This study developed a GAN-based anomaly detection approach
for uncovering anomalies in NPP sensor and surveillance data. The
approach was benchmarked against two state-of-the-art anomaly
detection techniques: OCSVM and iForest. Model evaluation was

Table 8
Mean and standard deviation of the performance metrics for NPP-I: OCSVM Labeled Anomaly Detection under window W1 (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

1% iForest 0.966 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.793 ± 0.149 0.786 ± 0.154 1.000 ± 0.000 0.883 ± 0.086

2.5% iForest 0.954 ± 0.029 0.979 ± 0.026 0.200 ± 0.422 0.200 ± 0.422
GAN-based 0.793 ± 0.149 0.786 ± 0.154 1.000 ± 0.000 0.877 ± 0.122

5% iForest 0.950 ± 0.042 0.970 ± 0.034 0.500 ± 0.527 0.492 ± 0.519
GAN-based 0.711 ± 0.118 0.730 ± 0.157 0.978 ± 0.070 0.838 ± 0.077

10% iForest 0.900 ± 0.040 0.972 ± 0.019 0.300 ± 0.332 0.407 ± 0.373
GAN-based 0.718 ± 0.174 0.704 ± 0.210 0.767 ± 0.225 0.706 ± 0.101

Table 9
Mean and standard deviation of the performance metrics for NPP-II: iForest Labeled Anomaly Detection under window W1 (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

1% OCSVM 0.897 ± 0.104 0.911 ± 0.098 0.600 ± 0.516 0.487 ± 0.514
GAN-based 0.709 ± 0.164 0.700 ± 0.169 1.000 ± 0.000 0.831 ± 0.103

2.5% OCSVM 0.942 ± 0.040 0.954 ± 0.038 0.600 ± 0.516 0.585 ± 0.504
GAN-based 0.752 ± 0.142 0.742 ± 0.147 1.000 ± 0.000 0.858 ± 0.086

5% OCSVM 0.902 ± 0.065 0.930 ± 0.056 0.300 ± 0.483 0.290 ± 0.470
GAN-based 0.768 ± 0.160 0.760 ± 0.166 0.979 ± 0.07 0.866 ± 0.101

10% OCSVM 0.854 ± 0.059 0.916 ± 0.076 0.400 ± 0.306 0.449 ± 0.325
GAN-based 0.625 ± 0.163 0.620 ± 0.208 0.666 ± 0.223 0.611 ± 0.044

Table 10
Mean and standard deviation of the performance metrics for Testbed-III when using all data from either location (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

10% iForest 0.833 ± 0.136 0.940 ± 0.097 0.300 ± 0.483 0.300 ± 0.483
GAN-based 0.867 ± 0.172 0.840 ± 0.207 1.000 ± 0.000z 0.909 ± 0.123z

OCSVM 0.767 ± 0.211 0.720 ± 0.253 1.000 ± 0.000 0.833 ± 0.168
20% iForest 0.833 ± 0.157 0.860 ± 0.135 0.700 ± 0.483 0.658 ± 0.456

GAN-based 0.917 ± 0.162* 0.900 ± 0.194 1.000 ± 0.000 0.942 ± 0.117*
OCSVM 0.733 ± 0.225 0.720 ± 0.253 0.800 ± 0.422 0.667 ± 0.388

* and z denote signi�cance with respect to OCSVM and iForest, respectively.

Table 11
Mean and standard deviation of the performance metrics for Testbed-III when using the data from location 1 only (Results bolded if statistically better at a … 0.05).

x Model Accuracy Sensitivity Speci�city G-Mean

10% iForest 0.867 ± 0.131 0.912 ± 0.140 0.600 ± 0.516 0.567 ± 0.493
GAN-based 0.850 ± 0.146 0.911 ± 0.302 1.000 ± 0.000*z 0.901 ± 0.098*
OCSVM 0.750 ± 0.142 0.880 ± 0.169 0.100 ± 0.316 0.089 ± 0.283

20% iForest 0.883 ± 0.157 0.880 ± 0.169 0.600 ± 0.516 0.556 ± 0.484
GAN-based 0.850 ± 0.123 0.820 ± 0.148 1.000 ± 0.000*z 0.902 ± 0.083*z

OCSVM 0.800 ± 0.189 0.840 ± 0.207 0.600 ± 0.516 0.542 ± 0.479

* and z denote signi�cance with respect to OCSVM and iForest, respectively.
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made complicated by the fact that the surveillance data were not
properly labeled to record true anomalies. To overcome this,
OCSVM and iForest were used to detect and initially label the data
under different percentages of suspected anomalies. The GAN-
based method and the benchmarks were then implemented and
consequently evaluated to examine the extent to which they were
able to retrieve these labeled data. The results were validated on a
testbed dataset with known labels. The results of both the NPP and
testbed dataset analyses show that the GAN-based approach
generally outperformed the state-of-the-art benchmarks in
detecting anomalous data that may be attributed to HE. Hence,
GAN-based approach shows promise for further development as
part a HE detection AI tool.

This work is subject to some limitations. As discussed in the
study, labels as well as true anomaly rates are not known for the
real-world data. Hence, future work includes collecting more
detailed data that include such information and then using them
for model development and validation. Furthermore, our valida-
tion using the testbed data was somewhat limited due to the size
of our dataset, particularly the number of our normal instances.
Given that the HE rate in an NPP is not expected to exceed 10%,
ideally the models can be tested on lower anomaly rates than
those used in our study. However, this requires collecting a large
sample of normal data (e.g., 99 normal samples for every anom-
alous sample). This is exacerbated by the fact that separate sets
must be used for training, validation, and testing to avoid over-
�tting. Hence, for this proof-of-concept study, we chose to use
larger anomaly rates. However, future work includes collecting
more samples from the testbed and expanding on the testbed data
analysis. Another limitation of this study is our assumption that
the sensor data are non-anomalous. While sensor data are not
perfectly non-anomalous (e.g., subject to noise), we assume that
they are collected from well-calibrated sensors, and hence any
minor anomalies present in the sensor data will not take away
from the purpose of our study.

Furthermore, future models may be developed to perform data
fusion to potentially improve model performance. That is, for
example, data of various types (e.g., temperature and �ow current)
can be fused as part of the greater anomaly detection scheme to
provide a more accurate picture of the system state. Future work
also includes error identi�cation. That is, instead of simply
detecting whether or not an anomaly/a HE has occurred, the
models may be set to identify speci�c error types. This can allow for
presenting the human operator with meaningful messages that
further enable effective error mitigation. Hence, the resulting
approach can serve as the basis for a HITL system that synergizes
with humans to promote smooth NPP operations.
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Fig. A.1. Testbed �ow loop diagram
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Table A.1
1D GAN Architecture

Layer Kernel size Stride size Output size

Generator’s Encoder
Input (11, 26, 1)
Conv (LeakyReLU/Batchnorm) (1,5) (1,1) (11, 26, 32)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (6, 13, 64)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (3, 7, 128)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (2, 4, 128)
Global Average Pooling (None, 128)

Generator’s Decoder
Input (None, 128)
ConvTran (ReLU) (1,3) (1,1) (3, 8, 128)
ConvTran (ReLU) (1,3) (1,1) (5, 20, 64)
ConvTran (ReLU) (1,3) (1,1) (7, 22, 32)
ConvTran (ReLU) (1,3) (1,1) (9, 24, 32)
ConvTran (Tanh) (1,3) (1,1) (11, 26, 1)

Encoder
Input (11, 26, 1)
Conv (LeakyReLU/Batchnorm) (1,5) (1,1) (11, 26, 32)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (6, 13, 64)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (3, 7, 128)
Conv (LeakyReLU/Batchnorm) (1,3) (2,2) (2, 4, 128)

Discriminator
Input (1, 5) (1,1) (11, 26, 1)
Conv (LeakyReLU/Batchnorm) (1, 3) (2,2) (11, 26, 32)
Conv (LeakyReLU/Batchnorm) (1, 3) (2,2) (6, 13, 64)
Conv (LeakyReLU/Batchnorm) (1, 3) (2,2) (3, 7, 128)
Dense (Sigmoid) (2, 4, 128)

Optimizer Adam
Learning rate 0.002

Fig. A.2. Boxplots of normal and anomalous NPP sensor data (mils) under anomaly rates x 2 {1%, 2.5%, 5%, 10%}, as labeled by OCSVM
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Fig. A.3. Boxplots of normal and anomalous NPP sensor data (mils) under anomaly rates x 2 {1%, 2.5%, 5%, 10%}, as labeled by iForest

Table A.2
Training, validation, and testing set split for NPP dataset [N: Non-anomalous; A: Anomalous]

x Train set Validation set Test set

N A N A N A
OCSVM Labeled Dataset 1% 129 2 28 1 28 1

2.5% 128 4 28 1 27 1
5% 125 7 27 2 27 1
10% 118 13 26 3 25 3

iForest Labeled Dataset 1% 130 1 29 1 28 1
2.5% 128 3 28 1 28 1
5% 125 7 27 2 27 1
10% 118 13 26 3 25 3

Table A.3
Training, validation, and testing split for testbed dataset, either location

x Train set Validation set Test set

N A N A N A

10% 22 2 5 1 5 1
20% 22 5 5 2 5 1

Table A.4
Training, validation, and testing split for testbed dataset, location 1

x Train set Validation set Test set

N A N A N A

10% 23 2 6 1 5 1
20% 23 4 6 1 5 1
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Table A.6
Mean and standard deviation of the performance metrics for NPP-II: iForest Labeled Anomaly Detection under window W2 (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

1% OCSVM 0.714 ± 0.213 0.732 ± 0.216 0.200 ± 0.422 0.183 ± 0.387
GAN-based 0.824 ± 0.162 0.825 ± 0.171 1.000 ± 0.000 0.900 ± 0.094

2.5% OCSVM 0.859 ± 0.093 0.879 ± 0.103 0.300 ± 0.483 0.269 ± 0.435
GAN-based 0.662 ± 0.130 0.650 ± 0.135 1.000 ± 0.000 0.802 ± 0.083

5% OCSVM 0.932 ± 0.043 0.956 ± 0.042 0.300 ± 0.483 0.292 ± 0.471
GAN-based 0.736 ± 0.150 0.726 ± 0.155 1.000 ± 0.000 0.848 ± 0.092

10% OCSVM 0.829 ± 0.067 0.892 ± 0.068 0.300 ± 0.246 0.428 ± 0.307
GAN-based 0.654 ± 0.153 0.657 ± 0.186 0.633 ± 0.246 0.616 ± 0.110

Table A.5
Mean and standard deviation of the performance metrics for NPP I: OCSVM Labeled Anomaly Detection under window W2 (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

1% iForest 0.966 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.776 ± 0.121 0.768 ± 0.125 1.000 ± 0.000 0.874 ± 0.071

2.5% iForest 0.936 ± 0.028 0.970 ± 0.029 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.854 ± 0.064 0.848 ± 0.067 1.000 ± 0.000 0.920 ± 0.036

5% iForest 0.939 ± 0.041 0.963 ± 0.030 0.300 ± 0.483 0.298 ± 0.480
GAN-based 0.789 ± 0.184 0.781 ± 0.191 1.000 ± 0.000 0.878 ± 0.108

10% iForest 0.882 ± 0.029 0.976 ± 0.028 0.100 ± 0.161 0.171 ± 0.275
GAN-based 0.850 ± 0.093 0.888 ± 0.123 0.533 ± 0.233 0.666 ± 0.114

Table A.7
Mean and standard deviation of the performance metrics for NPP-I: OCSVM Labeled Anomaly Detection under window W3 (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

1% iForest 0.966 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.790 ± 0.171 0.861 ± 0.167 0.921 ± 0.167 0.879 ± 0.100

2.5% iForest 0.950 ± 0.025 0.985 ± 0.026 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.767 ± 0.142 0.785 ± 0.165 0.974 ± 0.082 0.785 ± 0.165

5% iForest 0.922 ± 0.033 0.955 ± 0.034 0.000 ± 0.000 0.000 ± 0.000
GAN-based 0.803 ± 0.156 0.797 ± 0.162 1.000 ± 0.000 0.797 ± 0.162

10% iForest 0.879 ± 0.035 0.972 ± 0.038 0.100 ± 0.161 0.171 ± 0.274
GAN-based 0.689 ± 0.069 0.684 ± 0.091 0.734 ± 0.211 0.684 ± 0.091

Table A.8
Mean and standard deviation of the performance metrics for NPP-II: iForest Labeled Anomaly Detection under window W3 (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

1% OCSVM 0.740 ± 0.099 0.750 ± 0.101 0.444 ± 0.527 0.385 ± 0.457
GAN-based 0.816 ± 0.132 0.809 ± 0.137 1.000 ± 0.000 0.896 ± 0.077

2.5% OCSVM 0.805 ± 0.113 0.845 ± 0.129 0.212 ± 0.421 0.194 ± 0.386
GAN-based 0.763 ± 0.188 0.754 ± 0.194 1.000 ± 0.000 0.862 ± 0.113

5% OCSVM 0.877 ± 0.098 0.893 ± 0.105 0.444 ± 0.527 0.411 ± 0.490
GAN-based 0.790 ± 0.131 0.782 ± 0.135 1.000 ± 0.000 0.881 ± 0.078

10% OCSVM 0.829 ± 0.056 0.907 ± 0.066 0.185 ± 0.242 0.266 ± 0.323
GAN-based 0.595 ± 0.056 0.582 ± 0.053 0.704 ± 0.111 0.639 ± 0.073

Table A.9
Mean and standard deviation of the performance metrics for Testbed-III when using all data from either location using FFT (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

10% iForest 0.817 ± 0.146 0.880 ± 0.139 0.900 ± 0.316 0.467 ± 0.497
GAN-based 0.850 ± 0.160 0.820 ± 0.220* 1.000 ± 0.000 0.899 ± 0.112
OCSVM 0.450 ± 0.177 0.440 ± 0.207 0.500 ± 0.527 0.307 ± 0.342

20% iForest 0.833 ± 0.166 0.820 ± 0.220 0.900 ± 0.316 0.467 ± 0.497
GAN-based 0.883 ± 0.158 0.860 ± 0.189 1.000 ± 0.000 0.922 ± 0.107
OCSVM 0.467 ± 0.153 0.540 ± 0.165 0.100 ± 0.316 0.078 ± 0.245

* and z denote signi�cance with respect to OCSVM and iForest, respectively.

E. Gursel, B. Reddy, A. Khojandi et al. Nuclear Engineering and Technology 55 (2023) 603e622

620



References

[1] Jeffrey Thomas, Clifford C. Baker, Thomas B. Malone, John T. Malone, Christina
L. Hard, Ivan C.L. Rezende, Sally Caruana, Mark Witten, Application of Human
Factors in Reducing Human Error in Existing Offshore Facilities, 34, United
States Department of Transportation - Publication & Papers, 2002. https://
digitalcommons.unl.edu/usdot/34.

[2] Seongkeun Kang, Poong Hyun Seong, Performance shaping factor taxonomy
for human reliability analysis on mitigating nuclear power plant accidents
caused by extreme external hazards, Annals of Nuclear Energy 145 (2020),
107533.

[3] Jinkyun Park, Hee Eun Kim, Inseok Jang, Empirical estimation of human error
probabilities based on the complexity of proceduralized tasks in an analog
environment, Nuclear Engineering and Technology (2021).

[4] S Dhillon Balbir, Safety, Reliability, Human Factors, and Human Error in Nu-
clear Power Plants, CRC Press, 2017.

[5] KONIS (KOrea Hydro & Nuclear Power Company Nuclear Information System).
[6] David Gertman, Harold Blackman, Julie Marble, James Byers, Curtis Smith, et

al., The spar-h human reliability analysis method, US Nuclear Regulatory
Commission 230 (4) (2005) 35.

[7] Seong Poong Hyun, Kang Hyun Gook, Man Gyun Na, Jong Hyun Kim,
Gyunyoung Heo, Yoensub Jung, Advanced mmis toward substantial reduction
in human errors in npps, Nuclear Engineering and Technology 45 (2) (2013)
125e140.

[8] Cha Kab-Mun, Lee Hyun-Chul, A novel qeeg measure of teamwork for human
error analysis: an eeg hyperscanning study, Nuclear Engineering and Tech-
nology 51 (3) (2019) 683e691.

[9] Ahmad Al Rashdan, Michael Griffel, Roger Boza, Donna Guillen, Subtle Process
Anomalies Detection Using Machine Learning Methods, Idaho National Lab-
oratory, Idaho Falls, ID (USA), 2019. Technical Report INL/EXT-19-55629.

[10] Jung Sung Kang, Seung Jun Lee, Concept of an intelligent operator support
system for initial emergency responses in nuclear power plants, Nuclear En-
gineering and Technology (2022).

[11] Won Chul Cho, Tae Ho Ahn, A classi�cation of electrical component failures
and their human error types in south Korean npps during last 10 years, Nu-
clear Engineering and Technology 51 (3) (2019) 709e718.

[12] E. Swaton, V. Neboyan, L. Lederman, Human factors in the operation of nuclear
power plants, IAEA Bulletin 29 (4) (1987) 27e30.

[13] Hardik A. Gohel, Himanshu Upadhyay, Leonel Lagos, Kevin Cooper,
Andrew Sanzetenea, Predictive maintenance architecture development for
nuclear infrastructure using machine learning, Nuclear Engineering and
Technology 52 (7) (2020) 1436e1442.

[14] Jacques V. Hugo, David I. Gertman, A method to select humanesystem in-
terfaces for nuclear power plants, Nuclear Engineering and Technology 48 (1)
(2016) 87e97.

[15] Robert E. Uhrig, Use of Arti�cial Intelligence to Enhance the Safety of Nuclear
Power Plants, Oak Ridge National Laboratory, Oak Ridge, TN (USA), 1988.
Technical report.

[16] Meenu Sethu, Nesar Ahmed Titu, Dingyu Hu, Mahboubeh Madadi,
Jamie Coble, Ronald Boring, Klaus Blache, Vivek Agarwal, Vaibhav Yadav,
Anahita Khojandi, Using arti�cial intelligence to mitigate human factor errors
in nuclear power plants: a review, in: 12th Nuclear Plant Instrumentation,
Control and Human-Machine Interface Technologies (NPICHMIT 2021), ANS,
2021, pp. 129e141.

[17] Min-Han Hsieh, Sheue-Ling Hwang, Kang-Hong Liu, Sheau- Farn Max Liang,
Chang-Fu Chuang, A decision support system for identifying abnormal oper-
ating procedures in a nuclear power plant, Nuclear Engineering and Design
249 (2012) 413e418.

[18] Kwae Hwan Yoo, Ju Hyun Back, Man Gyun Na, Seop Hur, Hyeonmin Kim,
Smart support system for diagnosing severe accidents in nuclear power
plants, Nuclear Engineering and Technology 50 (4) (2018) 562e569.

[19] Yuyun Zeng, Jingquan Liu, Kaichao Sun, Lin-wen Hu, Machine learning based
system performance prediction model for reactor control, Annals of Nuclear
Energy 113 (2018) 270e278.

[20] Mario Gomez Fernandez, Akira Tokuhiro, Welter Kent, Qiao Wu, Nuclear
energy system's behavior and decision making using machine learning, Nu-
clear Engineering and Design 324 (2017) 27e34.

[21] Varun Chandola, Arindam Banerjee, Vipin Kumar, Anomaly detection: a sur-
vey, ACM Computing Surveys (CSUR) 41 (3) (2009) 1e58.

[22] Nari S. Arunraj, Robert Hable, Michael Fernandes, Karl Leidl, Michael Heigl,
Comparison of supervised, semi-supervised and unsupervised learning
methods in network intrusion detection system (nids) application, Anwen-
dungen und Konzepte der Wirtschaftsinformatik 6 (2017).

[23] Villa-P�erez Miryam Elizabeth, Miguel �A. �Alvarez-Carmona, Octavio Loyola-
Gonz�alez, Miguel Angel Medina-P�erez, Juan Carlos Velazco-Rossell, Kim-
Kwang Raymond Choo, Semi-supervised anomaly detection algorithms: a
comparative summary and future research directions, Knowledge-Based
Systems (2021), 106878.

[24] Prasanta Gogoi, K. Dhruba, Bhattacharyya, Bhogeswar Borah, Jugal, K. Kalita,
A survey of outlier detection methods in network anomaly identi�cation, The
Computer Journal 54 (4) (2011) 570e588.

[25] Ahmad Al Rashdan, St Shawn, Germain. Methods of data collection in nuclear
power plants, Nuclear Technology 205 (8) (2019) 1062e1074.

[26] Hermine N. Akouemo, Richard J. Povinelli, Probabilistic anomaly detection in
natural gas time series data, International Journal of Forecasting 32 (3) (2016)
948e956.

[27] Thomas B. Sheridan, Understanding human error and aiding human diag-
nostic behaviour in nuclear power plants, in: Human Detection and Diagnosis
of System Failures, Springer, 1981, pp. 19e35.

[28] Jooyoung Park, Wondea Jung, Jonghyun Kim, Inter-relationships between
performance shaping factors for human reliability analysis of nuclear power
plants, Nuclear Engineering and Technology 52 (1) (2020) 87e100.

[29] Gyunyoung Heo, Jinkyun Park, A framework for evaluating the effects of
maintenance-related human errors in nuclear power plants, Reliability Engi-
neering & System Safety 95 (7) (2010) 797e805.

[30] Jaemin Yang, Jonghyun Kim, An accident diagnosis algorithm with untrained
accident identi�cation, in: Transactions of the Korean Nuclear Society Spring
Meeting, Jeju, Korea, 2019.

[31] Yochan Kim, Yung Hsien James Chang, Jinkyun Park, Criscione Lawrence,
Sacada and hurex part 2: the use of sacada and hurex data to estimate human
error probabilities, Nuclear Engineering and Technology 54 (3) (2022)
896e908.

[32] Jinkyun Park, Yochan Kim, Wondea Jung, Calculating nominal human error
probabilities from the operation experience of domestic nuclear power plants,
Reliability Engineering & System Safety 170 (2018) 215e225.

[33] Wolfgang Preischl, Mario Hellmich, Human error probabilities from opera-
tional experience of German nuclear power plants, Reliability Engineering &
System Safety 109 (2013) 150e159.

[34] Markus Goldstein, Seiichi Uchida, A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data, PloS One 11 (4) (2016),
e0152173.

[35] Jianping Ma, Jin Jiang, Applications of fault detection and diagnosis methods
in nuclear power plants: a review, Progress in Nuclear Energy 53 (3) (2011)
255e266.

[36] Luis Martí, Nayat Sanchez-Pi, Jos�e Manuel Molina, Ana Cristina Bicharra
Garcia, Anomaly detection based on sensor data in petroleum industry ap-
plications, Sensors 15 (2) (2015) 2774e2797.

[37] Prabhas Hundi, Rouzbeh Shahsavari, Comparative studies among machine
learning models for performance estimation and health monitoring of ther-
mal power plants, Applied Energy 265 (2020), 114775.

[38] Ioannou George, Thanos Tagaris, Georgios Alexandridis, Andreas Stafylopatis,
Intelligent techniques for anomaly detection in nuclear reactors, in: EPJ Web
of Conferences, ume 247, EDP Sciences, 2021, p. 21011.

[39] Xingang Zhao, Junyung Kim, Kyle Warns, Xinyan Wang, Pradeep Ramuhalli,
Sacit Cetiner, Hyun Gook Kang, Michael Golay, Prognostics and health man-
agement in nuclear power plants: an updated method-centric review with
special focus on data-driven methods, Frontiers in Energy Research 9 (2021)
294.

[40] Xin Jin, Yin Guo, Soumik Sarkar, Asok Ray, Robert M. Edwards, Anomaly
detection in nuclear power plants via symbolic dynamic �ltering, IEEE
Transactions on Nuclear Science 58 (1) (2010) 277e288.

[41] Minhee Kim, Elisa Ou, Po-Ling Loh, Todd Allen, Robert Agasie, Kaibo Liu, Rnn-
based online anomaly detection in nuclear reactors for highly imbalanced
datasets with uncertainty, Nuclear Engineering and Design 364 (2020),
110699.

[42] Le Zhang, Wei Cheng, Xue Liu, Xuefeng Chen, Fengtian Chang, Junying Hong,
Xiaofei Li, System-level anomaly detection for nuclear power plants using
variational graph auto-encoders, in: 2021 IEEE International Conference on
Sensing, Diagnostics, Prognostics, and Control (SDPC), IEEE, 2021,

Table A.10
Mean and standard deviation of the performance metrics for Testbed-III when using the data from location 1 only using FFT (Results bolded if statistically better at a … 0.05)

x Model Accuracy Sensitivity Speci�city G-Mean

10% iForest 0.833 ± 0.111 0.860 ± 0.135 0.700 ± 0.483 0.635 ± 0.443
GAN-based 0.817 ± 0.123 0.779 ± 0.148 1.000 ± 0.000 0.879 ± 0.084
OCSVM 0.550 ± 0.209 0.580 ± 0.220 0.400 ± 0.516 0.308 ± 0.402

20% iForest 0.833 ± 0.176 0.820 ± 0.199 0.900 ± 0.316 0.809 ± 0.308
GAN-based 0.780 ± 0.111 0.740 ± 0.135 1.000 ± 0.000 0.857 ± 0.078
OCSVM 0.550 ± 0.209 0.580 ± 0.220 0.400 ± 0.516 0.308 ± 0.402

* and z denote signi�cance with respect to OCSVM and iForest, respectively.
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