
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/CON-22-67920-Revision-0

Assembling Multiphysics
Nuclear Reactor Simulations
Using the MOOSE
Framework

November 2022

Guillaume Louis Giudicelli, Cody J Permann, Fande Kong, Derek R Gaston,
A. Abdelhameed, Emily Shemon, Yinbin Miao



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.



INL/CON-22-67920-Revision-0

Assembling Multiphysics Nuclear Reactor Simulations
Using the MOOSE Framework

Guillaume Louis Giudicelli, Cody J Permann, Fande Kong, Derek R Gaston, A.
Abdelhameed, Emily Shemon, Yinbin Miao

November 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



Assembling Multiphysics Nuclear Reactor Simulations Using the MOOSE Framework 

C. Permann,* A. Lindsay,* G. Giudicelli,* F. Kong,* D. Gaston,* E. Shemon,† Y. Miao,† A. Abdelhameed†

*Idaho National Laboratory, 1955 N. Fremont Avenue, Idaho Falls, ID, 83415, cody.permann@inl.gov
†Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, eshemon@anl.gov 

INTRODUCTION 

The Multiphysics Object-Oriented Simulation 
Environment (MOOSE) [1] is an open-source, parallel finite 
element framework which provides the foundation for many 
advanced modeling and simulation tools developed under the 
Department of Energy’s (DOE’s) Nuclear Energy Advanced 
Modeling and Simulation (NEAMS) program [2] for the 
analysis of advanced reactors. The MOOSE framework 
provides the common foundational capability on which many 
NEAMS codes for reactor analysis are built. The MOOSE 
framework also includes several systems to assemble unique 
workflows and coupling among MOOSE-based applications. 
In particular, the MultiApp and Transfer systems are widely 
used to assemble different MOOSE-based or MOOSE-
wrapped physics applications together to perform loosely or 
tightly coupled multiphysics simulations. The National 
Reactor Innovation Center’s (NRIC’s) Virtual Test Bed 
(VTB) [3] hosts publicly available nuclear reactor 
multiphysics simulation examples which leverage MOOSE’s 
MultiApp system to meet the modeling needs of different 
reactor types. The flexibility and robustness of coupling 
provided by MOOSE permits rapid development of coupled 
physics models for a wide range of reactor types and events. 

MOOSE PLUG-AND-PLAY MODEL FOR 
MULTIPHYSICS REACTOR ANALYSIS 

The MultiApp and Transfer systems within MOOSE 
provide the functionality to couple different MOOSE-based 
or MOOSE-wrapped physics applications without additional 
code being written to execute the interactions. The coupling 
workflow and transfer of data is specified within input files, 
and all operations are handled internally by MOOSE. In 
today’s nuclear reactor landscape which consists of a wide 
variety of proposed advanced reactor concepts, each with 
specific physics needs, the MOOSE plug-and-play model 
provides the flexibility to assemble existing “single” physics 
applications such as neutronics, thermal hydraulics, thermo-
mechanics, chemistry, fuel performance, and systems 
analysis into a customized multiphysics workflow. A liquid-
fueled molten-salt reactor, for example, would have a 
different workflow from a liquid-metal-cooled fast reactor, 
although both workflows may leverage some common 
physics components. 

Common NEAMS tools for reactor analysis which can 
be assembled using MOOSE’s MultiApp system include 
Griffin [4] (neutronics), Pronghorn [5] (engineering scale 
flow), Bison [6] (fuel performance), SAM [7] (systems 
analysis), Sockeye [8] (heat-pipe simulator), and Cardinal [9] 
(includes NekRS computational fluid dynamics), although 
this list is not exhaustive. 
Numerous examples of customized multiphysics workflows 
for reactor analysis are publicly available on the VTB site. 
These examples leverage subsets of the above codes to model 
steady state and transient events for liquid and solid-fueled 
reactors, gas and liquid coolants, and thermal and fast 
spectrums. Documentation on using MOOSE’s MultiApp 
system to construct multiphysics reactor workflows is 
available on the VTB site. Additionally, a more general 
tutorial on MultiApps is available on the MOOSE website 
[10]. 

Multiphysics Simulation Hierarchy 

The MultiApp System in MOOSE can be used to build 
multiphysics workflows leveraging loose or tight coupling 
(fixed point iterations). These workflows can be visualized as 
a hierarchy in which the top-level application is referred to as 
the “parent application,” and next level applications are 
referred to as “child applications.” The parent application has 
awareness of its children and can push and pull data from 
them. Children are not aware of their parents, or the fact they 
are children themselves. 

MOOSE supports parallel execution for MultiApp 
multiphysics simulations. The entire simulation is given a set 
of processors, and each MultiApp branch executes in serial, 
one level at a time. Therefore, all processors are made 
available to each MultiApp; meaning that for many types of 
multi-level simulations, no CPUs are left idle during different 
stages of execution. However, developers may optionally 
limit the number of processors used when running on smaller 
domains or when coupling to legacy codes, which may only 
support serial execution. 

The parent application imposes the maximum time steps 
used for the entire simulation, and this, as well as mesh 
globality, is generally the criteria of choice for the parent 
application. The child applications may use smaller timesteps 
than the parent application, which is called sub-cycling in this 
context. 
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Multiphysics Data Transfers 
 

The hierarchy indicates the flow of information from one 
application to another as well as dependencies for 
convergence and time step inheritance. Many types of 
transfers are available: direct copy (when working on an 
identical mesh), projection, nearest node, user-object based, 
field sampling, postprocessor-based, etc. Additionally, many 
transfers support conserving the quantity of interest being 
transferred and can be restricted to operate only on a subset 
of the domain (such as when moving data from one surface 
to another in a volume). 

Until recently, child applications have not been able to 
communicate directly to each other, instead being required to 
communicate through the parent application to receive each 
other’s data. This design was intentional to reduce the 
complexity of assembling MultiApp simulations since it 
supported the design of not having applications aware of their 
presence in a hierarchical configuration. It also made it 
straightforward for the framework to schedule transfers in a 
typical well-defined traversal of the MultiApp tree. However, 
there were two significant drawbacks to this design. First, 
data, otherwise not needed by the parent, still had to pass 
through the parent to reach a sibling application in a tree. This 
meant two potentially expensive transfers to get data into its 
final destination. Additionally, if the parent mesh was 
unrelated or perhaps coarser than its children, there was a real 
possibility that significant information could be lost during 
the child-to-child transfer. To solve both of these issues, data 
transfer among “siblings” (children of the same parent) has 
been enabled [11]. In the new design, the parent application 
still fully manages all transfers among siblings, but data can 
be moved directly in a single transfer. This has several speed, 
efficacy, and accuracy implications.  

Transferring information between applications that may 
have different orientations in space (rotation), units (scaling), 
coordinate system types (Cartesian vs. cylindrical), and 
translations is also recently supported [11]. The coordinate 
transformation class is essential for performing reactor 
multiphysics computations such as coupling three-
dimensional Cartesian neutronics calculations with two-
dimensional axisymmetric nuclear fuel performance 
computations. Most transformation information such as units 
(scaling), physical orientation (rotation), and coordinate 
system type is encapsulated within each MultiApp’s 
application code or input file, which is consistent with the 
philosophy of allowing each application to focus on its own 
domain physics, leaving MOOSE to handle the internals of 
data transfer transformations. 

 
MULTIAPP SIMULATION OF ADVANCED 
REACTORS 
 
A selection of MultiApp models of advanced reactors 
present on the VTB is described in the following sections.  
 

Heat-Pipe-Based Microreactors [12] 
The heat-pipe microreactor model uses a two-level 
MultiApps approach with a Bison parent application to 
govern the thermal physics within all the solid reactor 
components except for heat pipes and a Sockeye child app 
to deal with heat-pipe performance. Development is in 
progress to add a Griffin neutronics model as the new parent 
application. 
 
Molten-Salt-Cooled Reactors [13] 
The molten-salt fast reactor model adopts a two-level 
MultiApps structure with Griffin as the parent app and 
Pronghorn as the child app. The parent app governs 
neutronics simulation, providing power distribution to the 
child app. The child app handles fluid dynamics simulation 
of molten-salt fuels, providing temperature information as 
feedback to the parent app. Molten-salt reactors are a special 
class of reactors as the molten salt is both fuel and coolant. 
As the molten salt flows out of the core region to transfer 
heat, the delayed neutron precursors concentrations are also 
calculated and transferred back to Griffin. 
 
Pebble-Bed Gas and Fluoride Salt-Cooled Reactors [14, 
15] 
Both pebble-bed microreactor and fluoride high-temperature 
models are available on the VTB using multi-level 
MultiApps structure. Griffin is the parent application 
governing neutronics simulations, while Pronghorn solves a 
homogenized porous media flow problem. A 
CentroidMultiApp is then used to calculate the 
representative temperature profile within pebbles and 
TRISOs (tristructural isotropics). This is an example of 

Fig. 1: Examples of coupling between a parent application 
and two child applications (top) and directly between 

sibling applications (bottom) 



using MultiApps to handle similar physical phenomena 
(thermal heat transfer here) at different space scales. 
 
Sodium Fast Reactor [16] 
The sodium-cooled fast reactor model on the VTB presently 
has the most complex MultiApp hierarchy. Neutronics 
(Griffin) is naturally the parent application as it considers 
the entire system and is not a transient calculation. The 
radial thermal expansion is simulated by a child application 
using the Tensor Mechanics module on the support plate 
with a fixed inlet coolant temperature. The fuel behavior 
and notably the axial temperature profile are simulated by a 
Bison child application. The fuel temperature radial 
boundary condition is calculated by a grandchild SAM 
coolant channel model. A special approach used in this 
example is that the axial expansion of the fuel is simulated 
by another grandchild Bison (i.e., two Bison 
simulations/MultiApps are involved) application instead of 
fully coupled with fuel thermal physics. 
 
EXECUTION OF MULTIPHYSICS SIMULATIONS 
 

To launch a MOOSE-based multiphysics simulation 
example hosted on the VTB site, three steps are needed: (1) 
clone input files from the VTB open git repository, (2) obtain 
relevant code licenses from the appropriate authority (contact 
Idaho National Laboratory’s (INL’s) Nuclear Computational 
Resource Center (NCRC) [17]), and (3) utilize pre-compiled 
binaries on the INL High Performance Computing (HPC) 
system through job script submission or the NEAMS 
Workbench [18]. As an alternative to step (3), the user can 
download binary files on their own system using conda 
commands [19] or compile binaries from source. 
 

Binary distribution, local and on INL HPC 
 
The INL HPC system uses pre-built NEAMS code 

binaries which can be accessed by licensed users. The 
BlueCRAB application is a “super-application” containing 
most of the codes of interest needed to run VTB examples 
(the main exception being Cardinal). Otherwise, dynamic 

linking options in the multiphysics input files can be used to 
invoke connections between different applications. 

Alternatively, the user can use the `conda install Bison` 
command to install local binaries on their own system or 
compile binaries from source if they have that level of access.  

 
Continuous Integration Testing 
 

Continuous integration testing of VTB multiphysics 
inputs against current code versions ensures the inputs are 
kept up to date and functioning correctly. The testing is 
performed both on every update to every MOOSE-based 
code and code-package and on every update to the VTB 
models. This makes sure that regressions in each model are 
caught during the development cycle of the codes and not 
later during a release. The testing is performed in several 
layers. First a syntax check makes sure the input file syntax 
is not deprecated. Then each individual input file is ran 
separately using the relevant application. The outputs of a 
few relevant key metrics are compared to a “gold” file for 
each input file. Finally, the multiphysics models are ran by 
combined applications such as BlueCRAB and tested for 
regression on the key metrics in the context of the coupled 
calculation. This layered workflow ensures regressions are 
caught as early and as clearly as possible. 

 
 
SUMMARY 
 

MOOSE-based (or MOOSE-wrapped) physics 
applications such as Griffin, Pronghorn, and Bison may be 
assembled into a customized multiphysics workflow for 
reactor analysis using the MultiApp and Transfer systems 
within MOOSE. The plug-and-play capabilities of MOOSE’s 

MultiApp system allow a common suite of reactor analysis 
codes to be leveraged for multiple reactor types while 
tailoring multiphysics coupling and workflows to each 
reactor type and event using input file syntax only. This plug-
and-play paradigm allows rapid development of multiphysics 
modeling capabilities for a diverse set of problems by non-
expert users.  

Fig. 2: Example of MultiApp reactor model on the VTB (Virtual Test Bed) 



New features include the ability for MOOSE to transfer 
data between “sibling” applications, rather than just between 
parent and child, and new syntax to facilitate data transfer 
between codes using different coordinate systems. The VTB 
hosts numerous nuclear reactor multiphysics examples using 
the MOOSE capabilities described here. Documentation on 
multiphysics coupling for nuclear reactors using MOOSE is 
also available on the VTB. Continuous integration testing is 
performed on VTB code inputs to ensure they are kept up to 
date and functional with most recent code versions. 
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