
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/CON-22-67920-Revision-0

Assembling Multiphysics
Nuclear Reactor Simulations
Using the MOOSE
Framework

November 2022

Guillaume Louis Giudicelli, Cody J Permann, Fande Kong, Derek R Gaston,
A. Abdelhameed, Emily Shemon, Yinbin Miao

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/CON-22-67920-Revision-0

Assembling Multiphysics Nuclear Reactor Simulations
Using the MOOSE Framework

Guillaume Louis Giudicelli, Cody J Permann, Fande Kong, Derek R Gaston, A.
Abdelhameed, Emily Shemon, Yinbin Miao

November 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Assembling Multiphysics Nuclear Reactor Simulations Using the MOOSE Framework

C. Permann,* A. Lindsay,* G. Giudicelli,* F. Kong,* D. Gaston,* E. Shemon,† Y. Miao,† A. Abdelhameed†

*Idaho National Laboratory, 1955 N. Fremont Avenue, Idaho Falls, ID, 83415, cody.permann@inl.gov
†Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, eshemon@anl.gov

INTRODUCTION

The Multiphysics Object-Oriented Simulation
Environment (MOOSE) [1] is an open-source, parallel finite
element framework which provides the foundation for many
advanced modeling and simulation tools developed under the
Department of Energy’s (DOE’s) Nuclear Energy Advanced
Modeling and Simulation (NEAMS) program [2] for the
analysis of advanced reactors. The MOOSE framework
provides the common foundational capability on which many
NEAMS codes for reactor analysis are built. The MOOSE
framework also includes several systems to assemble unique
workflows and coupling among MOOSE-based applications.
In particular, the MultiApp and Transfer systems are widely
used to assemble different MOOSE-based or MOOSE-
wrapped physics applications together to perform loosely or
tightly coupled multiphysics simulations. The National
Reactor Innovation Center’s (NRIC’s) Virtual Test Bed
(VTB) [3] hosts publicly available nuclear reactor
multiphysics simulation examples which leverage MOOSE’s
MultiApp system to meet the modeling needs of different
reactor types. The flexibility and robustness of coupling
provided by MOOSE permits rapid development of coupled
physics models for a wide range of reactor types and events.

MOOSE PLUG-AND-PLAY MODEL FOR
MULTIPHYSICS REACTOR ANALYSIS

The MultiApp and Transfer systems within MOOSE
provide the functionality to couple different MOOSE-based
or MOOSE-wrapped physics applications without additional
code being written to execute the interactions. The coupling
workflow and transfer of data is specified within input files,
and all operations are handled internally by MOOSE. In
today’s nuclear reactor landscape which consists of a wide
variety of proposed advanced reactor concepts, each with
specific physics needs, the MOOSE plug-and-play model
provides the flexibility to assemble existing “single” physics
applications such as neutronics, thermal hydraulics, thermo-
mechanics, chemistry, fuel performance, and systems
analysis into a customized multiphysics workflow. A liquid-
fueled molten-salt reactor, for example, would have a
different workflow from a liquid-metal-cooled fast reactor,
although both workflows may leverage some common
physics components.

Common NEAMS tools for reactor analysis which can
be assembled using MOOSE’s MultiApp system include
Griffin [4] (neutronics), Pronghorn [5] (engineering scale
flow), Bison [6] (fuel performance), SAM [7] (systems
analysis), Sockeye [8] (heat-pipe simulator), and Cardinal [9]
(includes NekRS computational fluid dynamics), although
this list is not exhaustive.
Numerous examples of customized multiphysics workflows
for reactor analysis are publicly available on the VTB site.
These examples leverage subsets of the above codes to model
steady state and transient events for liquid and solid-fueled
reactors, gas and liquid coolants, and thermal and fast
spectrums. Documentation on using MOOSE’s MultiApp
system to construct multiphysics reactor workflows is
available on the VTB site. Additionally, a more general
tutorial on MultiApps is available on the MOOSE website
[10].

Multiphysics Simulation Hierarchy

The MultiApp System in MOOSE can be used to build
multiphysics workflows leveraging loose or tight coupling
(fixed point iterations). These workflows can be visualized as
a hierarchy in which the top-level application is referred to as
the “parent application,” and next level applications are
referred to as “child applications.” The parent application has
awareness of its children and can push and pull data from
them. Children are not aware of their parents, or the fact they
are children themselves.

MOOSE supports parallel execution for MultiApp
multiphysics simulations. The entire simulation is given a set
of processors, and each MultiApp branch executes in serial,
one level at a time. Therefore, all processors are made
available to each MultiApp; meaning that for many types of
multi-level simulations, no CPUs are left idle during different
stages of execution. However, developers may optionally
limit the number of processors used when running on smaller
domains or when coupling to legacy codes, which may only
support serial execution.

The parent application imposes the maximum time steps
used for the entire simulation, and this, as well as mesh
globality, is generally the criteria of choice for the parent
application. The child applications may use smaller timesteps
than the parent application, which is called sub-cycling in this
context.

doi.org/10.13182/T127-39768

Multiphysics Data Transfers

The hierarchy indicates the flow of information from one
application to another as well as dependencies for
convergence and time step inheritance. Many types of
transfers are available: direct copy (when working on an
identical mesh), projection, nearest node, user-object based,
field sampling, postprocessor-based, etc. Additionally, many
transfers support conserving the quantity of interest being
transferred and can be restricted to operate only on a subset
of the domain (such as when moving data from one surface
to another in a volume).

Until recently, child applications have not been able to
communicate directly to each other, instead being required to
communicate through the parent application to receive each
other’s data. This design was intentional to reduce the
complexity of assembling MultiApp simulations since it
supported the design of not having applications aware of their
presence in a hierarchical configuration. It also made it
straightforward for the framework to schedule transfers in a
typical well-defined traversal of the MultiApp tree. However,
there were two significant drawbacks to this design. First,
data, otherwise not needed by the parent, still had to pass
through the parent to reach a sibling application in a tree. This
meant two potentially expensive transfers to get data into its
final destination. Additionally, if the parent mesh was
unrelated or perhaps coarser than its children, there was a real
possibility that significant information could be lost during
the child-to-child transfer. To solve both of these issues, data
transfer among “siblings” (children of the same parent) has
been enabled [11]. In the new design, the parent application
still fully manages all transfers among siblings, but data can
be moved directly in a single transfer. This has several speed,
efficacy, and accuracy implications.

Transferring information between applications that may
have different orientations in space (rotation), units (scaling),
coordinate system types (Cartesian vs. cylindrical), and
translations is also recently supported [11]. The coordinate
transformation class is essential for performing reactor
multiphysics computations such as coupling three-
dimensional Cartesian neutronics calculations with two-
dimensional axisymmetric nuclear fuel performance
computations. Most transformation information such as units
(scaling), physical orientation (rotation), and coordinate
system type is encapsulated within each MultiApp’s
application code or input file, which is consistent with the
philosophy of allowing each application to focus on its own
domain physics, leaving MOOSE to handle the internals of
data transfer transformations.

MULTIAPP SIMULATION OF ADVANCED
REACTORS

A selection of MultiApp models of advanced reactors
present on the VTB is described in the following sections.

Heat-Pipe-Based Microreactors [12]
The heat-pipe microreactor model uses a two-level
MultiApps approach with a Bison parent application to
govern the thermal physics within all the solid reactor
components except for heat pipes and a Sockeye child app
to deal with heat-pipe performance. Development is in
progress to add a Griffin neutronics model as the new parent
application.

Molten-Salt-Cooled Reactors [13]
The molten-salt fast reactor model adopts a two-level
MultiApps structure with Griffin as the parent app and
Pronghorn as the child app. The parent app governs
neutronics simulation, providing power distribution to the
child app. The child app handles fluid dynamics simulation
of molten-salt fuels, providing temperature information as
feedback to the parent app. Molten-salt reactors are a special
class of reactors as the molten salt is both fuel and coolant.
As the molten salt flows out of the core region to transfer
heat, the delayed neutron precursors concentrations are also
calculated and transferred back to Griffin.

Pebble-Bed Gas and Fluoride Salt-Cooled Reactors [14,
15]
Both pebble-bed microreactor and fluoride high-temperature
models are available on the VTB using multi-level
MultiApps structure. Griffin is the parent application
governing neutronics simulations, while Pronghorn solves a
homogenized porous media flow problem. A
CentroidMultiApp is then used to calculate the
representative temperature profile within pebbles and
TRISOs (tristructural isotropics). This is an example of

Fig. 1: Examples of coupling between a parent application
and two child applications (top) and directly between

sibling applications (bottom)

using MultiApps to handle similar physical phenomena
(thermal heat transfer here) at different space scales.

Sodium Fast Reactor [16]
The sodium-cooled fast reactor model on the VTB presently
has the most complex MultiApp hierarchy. Neutronics
(Griffin) is naturally the parent application as it considers
the entire system and is not a transient calculation. The
radial thermal expansion is simulated by a child application
using the Tensor Mechanics module on the support plate
with a fixed inlet coolant temperature. The fuel behavior
and notably the axial temperature profile are simulated by a
Bison child application. The fuel temperature radial
boundary condition is calculated by a grandchild SAM
coolant channel model. A special approach used in this
example is that the axial expansion of the fuel is simulated
by another grandchild Bison (i.e., two Bison
simulations/MultiApps are involved) application instead of
fully coupled with fuel thermal physics.

EXECUTION OF MULTIPHYSICS SIMULATIONS

To launch a MOOSE-based multiphysics simulation
example hosted on the VTB site, three steps are needed: (1)
clone input files from the VTB open git repository, (2) obtain
relevant code licenses from the appropriate authority (contact
Idaho National Laboratory’s (INL’s) Nuclear Computational
Resource Center (NCRC) [17]), and (3) utilize pre-compiled
binaries on the INL High Performance Computing (HPC)
system through job script submission or the NEAMS
Workbench [18]. As an alternative to step (3), the user can
download binary files on their own system using conda
commands [19] or compile binaries from source.

Binary distribution, local and on INL HPC

The INL HPC system uses pre-built NEAMS code

binaries which can be accessed by licensed users. The
BlueCRAB application is a “super-application” containing
most of the codes of interest needed to run VTB examples
(the main exception being Cardinal). Otherwise, dynamic

linking options in the multiphysics input files can be used to
invoke connections between different applications.

Alternatively, the user can use the `conda install Bison`
command to install local binaries on their own system or
compile binaries from source if they have that level of access.

Continuous Integration Testing

Continuous integration testing of VTB multiphysics
inputs against current code versions ensures the inputs are
kept up to date and functioning correctly. The testing is
performed both on every update to every MOOSE-based
code and code-package and on every update to the VTB
models. This makes sure that regressions in each model are
caught during the development cycle of the codes and not
later during a release. The testing is performed in several
layers. First a syntax check makes sure the input file syntax
is not deprecated. Then each individual input file is ran
separately using the relevant application. The outputs of a
few relevant key metrics are compared to a “gold” file for
each input file. Finally, the multiphysics models are ran by
combined applications such as BlueCRAB and tested for
regression on the key metrics in the context of the coupled
calculation. This layered workflow ensures regressions are
caught as early and as clearly as possible.

SUMMARY

MOOSE-based (or MOOSE-wrapped) physics
applications such as Griffin, Pronghorn, and Bison may be
assembled into a customized multiphysics workflow for
reactor analysis using the MultiApp and Transfer systems
within MOOSE. The plug-and-play capabilities of MOOSE’s

MultiApp system allow a common suite of reactor analysis
codes to be leveraged for multiple reactor types while
tailoring multiphysics coupling and workflows to each
reactor type and event using input file syntax only. This plug-
and-play paradigm allows rapid development of multiphysics
modeling capabilities for a diverse set of problems by non-
expert users.

Fig. 2: Example of MultiApp reactor model on the VTB (Virtual Test Bed)

New features include the ability for MOOSE to transfer
data between “sibling” applications, rather than just between
parent and child, and new syntax to facilitate data transfer
between codes using different coordinate systems. The VTB
hosts numerous nuclear reactor multiphysics examples using
the MOOSE capabilities described here. Documentation on
multiphysics coupling for nuclear reactors using MOOSE is
also available on the VTB. Continuous integration testing is
performed on VTB code inputs to ensure they are kept up to
date and functional with most recent code versions.

ACKNOWLEDGEMENTS

Argonne National Laboratory's work was supported by

the U.S. Department of Energy (DOE), Office of Nuclear
Energy, Advanced Modeling and Simulation Program
(NEAMS) under contract DE-AC02-06CH11357. We also
thank the National Reactor Innovation Center program for
their support for the Virtual Test Bed and targeted model
development. This manuscript was also authored by Battelle
Energy Alliance, LLC under contract no.~DE-AC07-
05ID14517 with the U.S. Department of Energy . The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license to
said article, enabling it to reproduce the article, prepare
derivative works, distribute copies to the public, and publicly
perform or display portions thereof, by or on behalf of the
U.S. Government. DOE will provide public access to these
results of federally sponsored research, in accordance with
the DOE Public Access Plan:
http://energy.gov/downloads/doe-public-access-plan.

REFERENCES

1. C.J. PERMANN, et al, “MOOSE: Enabling massively

parallel multiphysics simulation,” SoftwareX, 11, 100430
(2020) https://doi.org/10.1016/j.softx.2020.100430.

2. C. STANEK, “Overview of the DOE-NE NEAMS
Program,” LA-UR-19-22247, Los Alamos National
Laboratory, (2019).

3. National Reactor Innovation Center Virtual Test Bed
Website, https://mooseframework.inl.gov/vtb/.

4. C. H. LEE, J. ORTENSI, et al., “Griffin Software
Development Plan,” ANL/NSE-21/23, INL/EXT-21-
63185, Argonne National Laboratory and Idaho National
Laboratory (2021).

5. A.J. NOVAK, et al, “Pronghorn: A Multidimensional
Coarse-Mesh Application for Advanced Reactor Thermal
Hydraulics,” Nuclear Technology, 7 (2021)
https://doi.org/10.1080/00295450.2020.1825307.

6. R.L. WILLIAMSON, et al, “BISON: A Flexible Code for
Advanced Simulation of the Performance of Multiple
Nuclear Fuel Forms,” Nuclear Technology, 0, 1 –27 (2021)
https://doi.org/10.1080/00295450.2020.1836940.

7. R. HU, “SAM Theory Manual,” ANL/NE-17/4 Rev. 1,
Argonne National Laboratory (2021).

8. E. HANSEL, R. Berry, D. ANDRS, M. KUNICK, R.
MARTINEAU, “Sockeye: A One-Dimensional, Two-
Phase, Compressible Flow Heat Pipe Application”,
Nuclear Technology, 207, number = {7}, 1096-1117,
(2021), https://doi.org/10.1080/00295450.2020.1861879}

9. E. MERZARI, et al, “Cardinal: A Lower Length-Scale
Multiphysics Simulator for Pebble-Bed Reactors,” Nuclear
Technology, 7 (2021),
https://doi.org/10.1080/00295450.2020.1824471.

10. MOOSE MultiApps System Documentation,
https://mooseframework.inl.gov/syntax/MultiApps/index
.html.

11. A.D. LINDSAY, et al. “User-oriented Improvements in
the MOOSE Framework in Support of Multiphysics
Simulation,” INL/RPT-22-67144, Idaho National
Laboratory (2022).

12. N.E. STAUFF, et al, “Preliminary Applications of
NEAMS Codes for Multiphysics Modeling of a Heat Pipe
Microreactor,” Trans. Am. Nucl. Soc., 124 (2021).

13. A. ABOU-JAOUDE, et al, “A Workflow Leveraging
MOOSE Transient Multiphysics Simulations to Evaluate
the Impact of Thermophysical Property Uncertainties on
Molten-Salt Reactors,” Annals of Nuclear Energy, 163
(2021), https://doi.org/10.1016/j.anucene.2021.108546.

14. P. BALESTRA, et al, “PBMR-400 Benchmark Solution
of Exercise 1 and 2 Using the Moose-Based Applications:
MAMMOTH, Pronghorn,” EPJ Web of Conferences,
(2021), https://doi.org/10.1051/epjconf/202124706020.

15. G. GUIDICELLI, et al, “Coupled Multiphysics
Multiscale Transient Simulations of The Mk1-Fhr
Reactor Using Finite Volume Capabilities of The Moose
Framework,” Proc. Int. Conf. of Math and Comp. for
Nucl. Sci. and Eng. (2021).

16. N. MARTIN, R. STEWART, S. BAYS, “A multiphysics
model of the versatile test reactor based on the MOOSE
framework”, Annals of Nuclear Energy, 172, (2022),
https://doi.org/10.1016/j.anucene.2022.109066.

17. Idaho National Laboratory Nuclear Computational
Resource Center, https://inl.gov/ncrc/.

18. B. R. LANGLEY, A. R. LEFEBVRE, “Workbench
Analysis Sequence Processor and {MOOSE} Framework
Parser Benchmarks,” ORNL/LTR-2022/16, Oak Ridge
National Laboratory (2021).

19. Conda-Forge Community, “The conda-forge Project:
Community-based Software Distribution Built on the
conda Package Format and Ecosystem,” Zenodo (2015)
http://doi.org/10.5281/zenodo.4774216.

