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Radiation-induced composition redistribution (RIS)

1  Bachhav	et	al. , J. Nucl.Mater. 453 2014 334− 339
2 	Marquis	et	al.	J.	Nucl.	Mater.	413	(2011)	1 − 4
3 	Ardell	and	Bellon,	Curr.	Opin.	Solid	State	Mater	Sci.	20(3)	(2016)	115

Monotonous V-shaped RIS profiles [1]

APT image of segregation of neutron irradiated 
Fe-6at.% Cr (1.82 dpa, 290 C)

W-shaped RIS profile [2]

Concentration across GB in Fe-15at.%Cr 
(left) unirradiated,(right) ion irradiated to 8 dpa
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• RIS has complex dependence on temperature, irradiation 
conditions and microstructural features

• Capability required: multicomponent alloys, non-ideal kinetics, 
non-ideal GB sink and other segregation mechanisms



Diffusion theory for RIS: atom-defect coupled transport

[1]	Was,	G.	S.	Fundamentals	of	Radiation	Materials	Science,	Springer	(2016)3

Atom-vacancy exchange 
mechanism

Self-interstitial dumbbell mechanism

Enrichment/ depletion of 
atoms due to difference in 
partial fluxes

Atomic redistribution

[Ref. Gary Was; Ardell & Bellon review]

GB GB

Point defect concentration near GB

Sink

[Ref. Gary Was; Ardell & Bellon review]

GB GB

Point defect concentration near GB
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Diffusion theory for RIS: atom-defect coupled transport

[1]	Wolfer,	W.G.,	J.	Nucl.	Mat.,	114	(1983)	292−304
[2]	Aagesen	et	al.,	Comp.	Mat.	Sci.	161	(2019)	35−454
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Partial fluxes for atoms A, B, C…

Diffusion model for RIS:
• Full thermodynamic & kinetic coupling 

between atomic components and defects
• Solve evolution equation in terms of chemical 

potentials: required chemical susceptibilities
• MOOSE: open-source, finite element, C++
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Chemical potential-based diffusion, rate theory
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Temperature Dislocation density Defect production rate

Skorokhod & 
Koropov (2019) 

Verification of implementation of MIK model for Fe-Cr-Ni

MOOSE



Parameterization for FCC NiCrFe: thermodynamics & kinetics

1  Yang	et	al. , J. Nucl.Mater. 473 2016 	35 − 53
2  Allen	et	al. , J. Nucl.Mater. 255 1998 44− 58 (MIK model)

Partial diffusivities for Ni-18Cr-9Fe

300 C450 C700 C

𝐷!"# > 𝐷$%# 

• CALPHAD free energy is approximated using Taylor 
expansion about nominal composition

• Ideal solution free energy for point defects

• Interstitial-based transport: equal migration barrier from 
MIK model; binding energies used as fitting parameters [2]
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• Vacancy-based transport: from CALPHAD mobility data [1]
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Onsager transport from partial diffusivities using 
Manning-type analytic relation
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Verification of RIS implementation for FCC Ni-9Fe-18Cr

1  Yang	et	al. , J. Nucl.Mater. 473 2016 	35 − 53
2  Allen	et	al. , J. Nucl.Mater. 255 1998 44− 58 (MIK model)
3  Skorokhod	&	Koropov, Phys. of	the	Solid	State, 61 2019 	2269− 2276

Point defect profile

𝑆!" = 10#1/s

𝐾$ = 7×10%&	𝑑𝑝𝑎/𝑠
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General assumptions:
• Ideal kinetics, ideal GB sink, only RIS mechanism
• Simple 1D geometries: planar, stationary GB
 
Phase-field method can relax these assumptions 

Cr depletionNi enrichment Comparison with experimental data

• Using parameters of Yang (2016), good match with existing 
models and experimental data of Allen-Was (1998)



RIS coupled with grand potential phase-field model 

[1]	MOOSE	workshop, PhaseField	module, INL	
[2]	Aagesen	et	al.,	Phys.	Rev.	E	98	(2018)	0233098
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• Potential and phase-dependent kinetics:

• Phase-dependent susceptibilities: A𝝌 𝜇$	 , 𝜇&	 , 𝜂 ,
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Chemical potential evolution 
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Phase-dependent local atomic concentration

Allen-Cahn for 𝜂 evolution

Grand potential functional



Grand potential phase-field model: cross-verification

1 Atomistic	data	from	Yongfeng	Zhang, UW−Madison

𝐽&# + 𝐽&' =0
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Steady-state fluxes from phase-field model

𝐽( + 𝐽& + 𝐽! = 0

Comparing different schemes

Fe-19Cr-13Ni (at.%)

Temperature: 873 K
Source: 1×10!" dpa/s
Sink strength: 2×10# 1/s

Onsager coefficients from 
AKMC calculations
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Onsager coefficients from AKMC [1]
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Effect of grain boundary sink coefficient 𝑺𝒈𝒃 on RIS

10

• Sink absorption rate: 
𝑆-.	 (𝜌, 𝜃) 𝑥' − 𝑥'JKLMN 𝑔 𝜂

• Verified simulation results with 
analytic solution derivable for 
Dirac/step-function 

1  Duh	et	al. , J. Nucl.Mater. 294 2001 	267− 273
2  Nichols, J. Nucl.Mater. 	75 1978 	32 − 41

Non-ideal

Ideal

Profiles across GB GB concentration

𝑥OPP = 𝑥'JKLMN + 𝐾Q𝐿RLNN/𝑆-.𝜆-.

Ideal

Non-ideal

• Gibbs solute excess at GB with 
reference to bulk: better metric 
for RIS quantification



RIS in the presence of thermodynamic segregation for FeCrNi

1 	Kamachali, R.D. , RSC	Adv. 10 2020 	26728
2 	Kim	et	al. , Acta	Mat. 112 2016 	150− 160

𝑓&!STU!V = 𝐺! 𝜌 𝑥! + 𝐺$ 𝜌 𝑥$ +⋯+ 𝐿!$ 𝑥, 𝑇, 𝜌 𝑥!𝑥$ +⋯− 𝑇Δ𝑆WJX 

Bulk free energy Grain boundary free energy

Cr

Ni Ni

Cr

Bulk 𝜌 = 1 Relative GB atomic density 𝜌 = 0.95

• Simple model to provide modified free energy landscape at grain boundary[2] due to 
atomic structure difference (can include GB-characteristic 𝐸!, 𝐸$, 𝐿!$ parameters)

• Successfully predicts steady-state W- or M-shaped profiles!

W-shaped profile ≫ 10 dpa

Cr

Ni

𝑆!" = 10&1/s

𝐾$ = 10%+	𝑑𝑝𝑎/𝑠

𝑇 = 500	C
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Transient W-shape due to strong non-ideality in kinetics

• System with strong negative coupling of solute with vacancy (non-dilute limit) [1]
• Potential flip in sign of RIS or change in extent of RIS
• Long diffusion tails in near-GB region can result in W or M-shaped transient profiles
• Full kinetic coupling: can model solute drag mechanism for ratio > -1

Effect of non-ideal kinetics on transient profiles 
(irradiation dose ≪ 0.1 dpa)

Ni

Cr

1 	Mao	et	al. Acta	Mat. 60 2012 1871− 1888
2 	Senninger	et	al. , Acta	Mat. 103 2016 	1 − 1112

𝐿;<!
𝐿;<;<! =

−(𝐿;<;<
! + 𝐿;<"=

! + 𝐿;<$>
! )

𝐿;<;<! < −1

𝐿 =

Strong cross-coupling in kinetic transport 
AKMC calculation for NiAlCr [1]

Non-ideal kinetics for Ni and Cr



Future scope

• A phase-field RIS model is being developed with capability of modeling non-ideal kinetics, equilibrium 
GB segregation and non-ideal GB sink

 
• Better predictions are possible with improved input/ coupling with atomistic calculations (especially 

interstitials)

• Scope for systematic investigation of RIS for different grain boundary characters/ misorientations, 
validation of W-shaped profiles

• Scope for extension to multi-order parameter polycrystalline phase-field model

• Coupling with cluster dynamics-type model can provide physically-based fluxes to GB can improve RIS 
predictions
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