
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/RPT-22-68471-Revision-0

Tabulated Fluid Properties
Research Report

September 2022

Benjamin Thomas Spaude



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.



INL/RPT-22-68471-Revision-0

Tabulated Fluid Properties Research Report

Benjamin Thomas Spaude

September 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



Tabulated Fluid Properties

Benjamin Spaude∗

Department of Physics, St. Norbert College, DePere, WI 54115

(Dated: July 28th, 2022)

The Multiphysics Object-Oriented Simulation Environment (MOOSE) enables a wide range of

advanced nuclear reactor simulations.[6] Under the guidance of MOOSE’s Thermal Hydraulics Team,

I worked to expand the capabilities of Tabulated Fluid Properties (TFP) in the fluid properties

module. The fluid properties module allows the user to determine a variety of fluid properties by

interpolating points between tabulated data. I implemented the ability to use bilinear interpolation

instead of bicubic interpolation for interpolating tabulated data. I also changed the method of

variable set inversions to use a 2-dimensional Newton’s Method utility that I created. Variable set

inversions are often done from (v,e) to (p,T), where v is specific volume, e is specific internal energy,

p is pressure and T is temperature. New routines have also been added into TFP such that it can be

used with more applications, such as the Navier Stokes and Thermal Hydraulics modules in MOOSE

for Pronghorn[5] and RELAP-7[1] respectively. This work was spurred by interest from NASA in

testing a Nuclear Thermal Propulsion (NTP) engine system. NTP engines have drastically different

fluid properties throughout the engine and Tabulated Fluid Properties provides the flexibility needed

to properly simulate and test these engines.



2

I. INTRODUCTION

While at the Idaho National Laboratory, I worked un-
der the guidance of Dr. Guillaume Giudicelli on compu-
tational framework in MOOSE’s [6] fluid properties mod-
ule, specifically Tabulated Fluid Properties (TFP). Tab-
ulated Fluid Properties allows for the calculation of vari-
ous fluid properties by using tabulated data and interpo-
lation methods to determine the values of fluid properties
between data points. TFP makes use of many different
variable sets and can invert between them before interpo-
lation. If tabulated data doesn’t exist, TFP will generate
tabulated data with the aid of another fluid property ob-
ject within the fluid properties module. I modified the
bilinear interpolation utility in MOOSE to be used with
TFP. Prior to this, bicubic interpolation was the only
interpolation method used in TFP. When variable set
inversions are initially performed, a 2-dimensional New-
ton’s method is used to invert between variable sets. This
led me to develop a Newton Method utility for the whole
fluid properties module. The Newton Method utility can
be used in 1-dimension as well as 2-dimensions.

II. TABULATED FLUID PROPERTIES
OVERVIEW

Tabulated Fluid Properties (TFP) allows the user to
compute a variety of fluid properties by interpolating be-
tween tabulated data points. TFP is especially useful
when tabulated data already exists as it cuts down on
computation time needed to generate tabulated data. If
analytical formulas or functional fits exist for a fluid prop-
erty, they should be used to compute the fluid properties
instead of tabulated data. If tabulated data is not al-
ready present, it is generated with another fluid proper-
ties object. Bicubic or Bilinear Interpolation is used to
determine the fluid properties at points in between the
table of data points. The fluid properties module can use
a variety of variable sets, but will perform a variable set
inversion to a (p,T) variable set if (p,T) data does not al-
ready exist. There are numerous ways variable set inver-
sions can be done, but for TFP I created a 2-dimensional
Newton’s Method utility due to its quick convergence
(converges after about five iterations). Currently TFP
can calculate 13 different fluid properties from a variety
of variable sets. The 13 fluid properties used in TFP can
be seen in Table I. The current variable sets used by TFP
are (p,T), (v,e), (v,h), (h,s), (p,h), and (p,ρ), however the
most commonly used variable sets are (p,T), (v,e), and
(v,h). New routines have been added into TFP which al-
low it to be used in more applications, such as the Navier
Stokes and Thermal Hydraulics modules in MOOSE for
Pronghorn[5] and RELAP-7[1], respectively. Tabulated
Fluid Properties has the flexibility needed to simulate
situations where fluid properties can vary drastically.

Table I: Table showing the different fluid properties
used by TFP.

Symbol Fluid Property Units

p Pressure Pa

T Temperature K

v Specific Volume m3/kg

e Specific Internal Energy J/kg

h Specific Enthalpy J/kg

s Specific Entropy J/kg·K
g Gibbs Free Energy J

cp Specific Heat Capacity at Constant Pressure J/kg·K
cv Specific Heat Capacity at Constant Volume J/kg·K
ρ Density kg/m3

c Speed of Sound in Fluid m/s

µ Dynamic Viscosity Pa·s
k Thermal Conductivity W/m·K

III. VARIABLE SETS

A variety of different variable sets are used to deter-
mine the desired fluid properties. Different variable sets
are used as some experiments allow for specific variable
sets to be measured easier than others. Most commonly,
(p,T) variable sets are used as pressure and temperature
are often the easiest variables to measure. Some applica-
tions may use other variable sets, such as (v,e) or (v,h).
Fluid properties can vary drastically when different vari-
able sets are used. An example of this can be seen in
Figure 1 and 2, where the density is plotted as a func-
tion of (p,T) and (v,e). Certain applications do not

Figure 1: Density as a function of (p,T).

initially have access to (p,T) or other variable sets, in
which case inversions between variable sets are needed.
Inversions between variable sets are performed using a
2-dimensional (2D) Newton’s Method. These variable
set inversions come at a cost to computation time since
Newton’s Method is an iterative method. Fortunately,
Newton’s Method tends to converge quadratically (if the



3

Figure 2: Density as a function of (v,e)

Jacobian is exact), making it an ideal option for these
necessary variable set inversions. It is important to note
that if variable sets other than (p,T) are used, a (p,T)
variable set is constructed before tabulated data can be
interpolated. As a result, when variable sets such as (v,e)
are used, variable set inversions are always being done.

IV. GENERATING TABULATED DATA

TFP may be used to generate tabulations. Tabula-
tions are generated when they do not exist in the data
file given. To generate tabulated data, pressure and tem-
perature ranges are divided in a regular grid using their
maximum and minimum values. The user may choose
how many subdivisions, but the default is 100. The pro-
cess of dividing the data into equal segments is done using
the following equation

∆x =
xmax − xmin

N − 1
,

where N is the number of points, and xmax and xmin

are the maximum and minimum values, respectively, of
the relevant variable, x. Tabulated data can then be
generated for each fluid property at the pressure and
temperature points by evaluating the fluid properties
routine at each point. Once tabulated data is generated,
it is used to create interpolation tables.

It is important to note that the interpolation process
varies slightly depending on the variable set. If (p,T)
variable sets are used, interpolation is done immediately
to determine the value for the desired fluid property. If
a variable set such as (v,e) or (v,h) is used, we invert the
variable set to (p,T) before interpolation. Upon initial-
ization, inversion is done using a 2D Newton’s Method,
else calls to the fluid properties routines are made. Vari-
able set inversions to (p,T) are desired due to (p,T) for-
mulations being less complicated than other variable sets.
The method of generating tabulated data is often better
than using iterative methods as iterations tend to re-

quire more computation time and memory. As a result,
it is preferred to use Tabulated Fluid Properties when-
ever possible.

V. INTERPOLATION METHODS

Tabulated Fluid Properties has two different interpo-
lation methods that can be used, bicubic interpolation
or bilinear interpolation. In most cases, bicubic in-
terpolation is a better option as it has continuous
derivatives, unlike bilinear interpolation. However,
concerns about the monotonicity for the fluid properties
during conversions between (p,T) and (v,e) justify
the introduction of a monotonic bilinear interpolation.
Interpolation methods are used after tabulated data
has been generated to determine the fluid properties
value between tabulated data points. Depending on the
variable set used, the interpolation process may differ.
When (p,T) is not the variable set used, TFP must
first convert to a (p,T) variable set before interpolating
the tabulated data. If a (p,T) variable set is available,
TFP can interpolate the tabulated data immediately.
When initializing tabulated data tables, TFP creates
grids for the variable set used based on the maximum
and minimum values of the data set. Then, variable set
inversions can take place using 2D Newton’s Method
before interpolation occurs. If the tabulated data tables
already exist for the fluid properties, Newton’s Method
is not needed and interpolation can be done without
variable set inversions by making calls to the fluid
properties routine.

I implemented bilinear interpolation as an alternative
method to bicubic interpolation. With bicubic interpo-
lation, there were concerns during variable set inversion
where inversion to (p,T) gives values out of user-defined
bounds. Because of this I added the capability of using
bilinear interpolation instead of bicubic interpolation to
avoid these concerns. In order to efficiently add this ca-
pability, I used polymorphism to avoid rewriting shared
code. Polymorphism is a C++ technique that can be
used to improve run time or compile time. Two poly-
morphism techniques were used to accomplish this: tem-
plating and inheritance.

A. Templating

Templating is a technique used when the same routines
are used with different typenames within the same file.
This allows the developer to avoid rewriting the same
code within a file. It helps to improve the compile time
of a code, however it adds to the run time of the code.
When used in combination with inheritance, templating
can cause some issues. Inheritance often makes use of
virtual routines such that they can be overridden in the
derived class. If a routine is templated in MOOSE, it



4

can not be made into a virtual routine, in which case the
routine will not function as desired. This is a limitation
of the C++ language, common to many other languages.
This limits the use of templating in some instances, but
not all. An example of templating can be seen in Figure
3.

Figure 3: An example of templating used in bicubic
interpolation.

B. Inheritance

Inheritance is a technique used to create new classes
from existing classes. The base class (existing class) is
the primary class, while the derived classes are secondary
classes (new classes). The derived classes will inherit the
properties of the bass class, with the ability to add new
features. A bass class is only one file, while each de-
rived class has a file of their own. An example of in-
heritance can be seen in Figure 4, where inheritance in
the fluid properties module is shown. The base class
is fluid properties which has many branches of derived
classes (Figure 4 is not a complete list of the derived
classes in the fluid properties module). I split TFP be-

Figure 4: Inheritance system in the fluid properties
module.

tween three files, ”TabulatedFluidProperties”, ”Tabulat-
edBicubicFluidProperties”, and ”TabulatedBilinearFlu-
idProperties”. TFP holds the routines and shared code
between the interpolation methods, while the other two
files just have the routines specific to the interpolation
method.

VI. NEWTON’S METHOD

As different applications use different variable sets,
fluid properties are most often provided as functions of
pressure and temperature. To evaluate the properties, a
conversion to (p,T) must first occur. In order to save on
computation time, I created a utility in the fluid prop-
erties module capable of doing Newton’s Method in 2-
dimensions (2D) as well as 1-dimension (1D). MOOSE
already had a Newton’s Method utility but it did not
have the 2D capabilities needed for use in TFP. New-
ton’s Method in 2D is given by the following iterative
formula[2] ,

x⃗i+1 = x⃗i − J−1f(x⃗i), (1)

where x⃗i+1 is the i + 1 vector, x⃗i is the ith vector, and
f(x⃗i) is a function at the point x⃗i. The vectors are 2D

vectors of the form

[
x

y

]
. J is a 2x2 Jacobian Matrix

given by

J =

[
df
dx

df
dy

dg
dx

dg
dy

]
. (2)

The Jacobian in Equation 2 is comprised of the deriva-
tives of the function f(x, y) and g(x, y). These functions
represent the properties we are converting from. For
example, if we have a (v,e) variable set and want (p,T),
f(x, y) represents v(p,T) and g(x, y) represents e(p,T).
In equation 1, the function f(x⃗i) is obtained by making
a call to the fluid property from the variable set the
property is being converted from. Using the same
example above, this would mean a call is made to the
routine for v from (p,T). In C++, lambda functions
were needed to accomplish this since different routines
using Newton’s Method have to make calls to properties
from different variable sets. An example of the code can
be seen in Figure 5.

Figure 5: Newton’s Method in 2D used to get (p,T)
from (v,e). The results are stored as p and T, as seen in

the last line of code.



5

When using Newton’s Method, an initial guess is
needed for x⃗i in order to start the first iteration (i = 0).
In TFP, the user sets the initial guess in the input
file for all calls to variable set inversions. If no initial
guess is set, there are default values that will be used,
however the default values may be non-physical for
some fluid properties. It is recommended to set the
initial guesses manually. Newton’s Method will iterate
until convergence is reached. Convergence occurs when
a certain criterion has been reached. The criteria is
based on a tolerance of the difference between the new
and old solution. The tolerance defaults to 1e-8, but
can be changed in the input file depending on the
user’s desired level of precision. Note, a higher level of
precision requires more iterations and will cause a longer
run-time. Newton’s Method tends to converge quickly,
usually only requiring approximately five iterations. If
100 iterations are reached, iteration stops and the solve
does not converge. The result is then saved as a reference
in ”x final” and ”y final”. A snippet of the code for the
Newton Method utility can be seen in Figure 6.

Figure 6: The main block of code for 2D Newton’s
Method. Newton’s Method iterates through until the

convergence criteria is met and stores results.

Previously Tabulated Fluid Properties used a nearest-
point method to invert variable sets. This method
generated concerns as there is no guarantee that the
data point is near any of the tabulated data. With
Newton’s Method this problem is avoided since the
new data is determined directly from existing tabulated
data. During the variable set inversion, it is possible
that new data will be out of bounds (user sets (p,T)
bounds in an input file). With Newton’s Method, we
were able to resolve this by setting the data equal to
the maximum or minimum value of the property (the
(p,T) maximum or minimum can be set in an input
file). Ultimately, Newton’s Method allowed for easy
inversions between variable sets without the flaws of the
nearest-point method. TFP currently uses Newton’s
method to invert to (p,T) from (v,e), (v,h), and (h,s).
The (h,s) variable set is relatively rare, but extremely

useful in isentropic thermal hydraulic applications where
entropy is conserved, making for easy measurements of s.

Newton’s Method in 1D is also given by Equation 1,
however the Jacobian is different. In this instance, f is a
function of one variable, and there is no function g. Thus,
the Jacobian is equal to the derivative of the function and
the 1D Newton’s method takes the form:

xi+1 = xi −
f(xi)
∂f
∂x

.

In TFP, x represents the desired fluid property from some
variable set (y, z), while f(x) represents a fluid property
as a function of x. For example, if we want tempera-
ture from (p,rho), x is the temperature, while f(x) is
ρ(T ). TFP currently only uses Newton Method in 1D
for determining T(p,ρ) and T(p,h). These two formula-
tions are difficult to obtain analytically, and so numerical
methods are needed to obtain them. Newton’s Method
is ideal here due to its fast convergence. The utility for
1D Newton’s Method is made using the same technique
as in 2D, with one major difference. The 2D Newton’s
Method has a 2×2 Jacobian and requires the use of ma-
trices. While the 1D utility used ”Real” values, the 2D
utility made use of ”RealEigenMatrix” and ”RealEigen-
Vector”, matrix formats defined by the Eigen[3] library
from libmesh[4].

VII. CONCLUSION

During my internship at Idaho National Laboratory,
I have improved the capabilities and documentation
of the Tabulated Fluid Properties program. First, I
added the ability to choose between bicubic or bilinear
as the interpolation method. This was done using C++
templating and inheritance to maximise code reuse and
maintainability. In order to make bilinear interpolation
compatible with TFP, I added a routine to calculate
derivatives in bilinear interpolation. Secondly, I added
a variety of new routines to calculate fluid properties
from new variable sets. This allowed for TFP to be
used in other MOOSE modules, such as the Navier
Stokes and Thermal Hydraulics Modules. Some of the
new routines used a 1D Newton Method along with
finite difference to determine the desired fluid property
and its derivatives. This was the first time this was
done in the fluid properties module. I also modified
the method of variable set inversions by replacing the
old method, nearest-point method, with a 2D Newton’s
Method. This was an efficient way of inverting between
variable sets, however it required a fix for values out
of user-defined bounds. Using Newton’s Method for
variable set inversions led me to develop a Newton
Method utility that can be used throughout the fluid
properties module. There is still minor work to be
done on TFP, but I have ultimately gotten Tabulated



6

Fluid Properties to a point where it can be used for a
variety of applications, especially when tabulated data
is already present.

This internship allowed me to improve my program-
ming skills in C++, my problem solving abilities, and
helped me become more familiar with methods of numer-
ical analysis. I was also able to learn a lot of professional
development by engaging in department meetings and
through intern-enrichment activities. My internship has
also allowed me to obtain exposure to research that can
help me achieve my goal of attending graduate school.
Overall, I was able to have a positive internship experi-
ence where I made many connections and learned a lot
about a career in research.

VIII. ACKNOWLEDGEMENTS

I would like to thank the Department of Energy and
SULI program for funding my internship as well as the
MOOSE team for allowing me the opportunity to work
with them and for the help they provided during my in-
ternship. I would also like to give a special thanks to Dr.
Guillaume Giudicelli for the research and career guidance
he gave me.

REFERENCES

[1] David Andrs et al. “RELAP-7 Level 2 Milestone Report:
Demonstration of a Steady State Single Phase PWR Sim-

ulation with RELAP-7”. In: (May 2012). doi: 10.2172/
1047196. url: https://www.osti.gov/biblio/1047196.

[2] A. Galántai. “The theory of Newton’s method”. In: Jour-
nal of Computational and Applied Mathematics 124.1
(2000). Numerical Analysis 2000. Vol. IV: Optimization
and Nonlinear Equations, pp. 25–44. issn: 0377-0427.
doi: https://doi.org/10.1016/S0377-0427(00)00435-
0. url: https://www.sciencedirect.com/science/
article/pii/S0377042700004350.

[3] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org. 2010.

[4] Benjamin S Kirk et al. “libMesh: a C++ library for par-
allel adaptive mesh refinement/coarsening simulations”.
In: Engineering with Computers 22.3 (2006), pp. 237–254.

[5] April J. Novak et al. “Pronghorn Theory Manual”. In:
(Feb. 2018). doi: 10.2172/1467396. url: https://www.
osti.gov/biblio/1467396.

[6] Cody J. Permann et al. “MOOSE: Enabling mas-
sively parallel multiphysics simulation”. In: SoftwareX
11 (2020), p. 100430. issn: 2352-7110. doi: https : / /

doi.org/10.1016/j.softx.2020.100430. url: http:
/ / www . sciencedirect . com / science / article / pii /

S2352711019302973.


