
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/JOU-22-69491-Revision-0

Enabling scientific machine
learning in MOOSE using
Libtorch

July 2023

Peter German, Dewen Yushu

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/JOU-22-69491-Revision-0

Enabling scientific machine learning in MOOSE using
Libtorch

Peter German, Dewen Yushu

July 2023

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

SoftwareX 23 (2023) 101489

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Enabling scientificmachine learning inMOOSE using Libtorch
Péter German a,∗, Dewen Yushu b

a Computational Frameworks Department, Idaho National Laboratory, Idaho Falls, ID 83415, United States of America
b Computational Mechanics and Materials Department, Idaho National Laboratory, Idaho Falls, ID 83415, United States of America

a r t i c l e i n f o

Article history:
Received 21 December 2022
Accepted 24 July 2023

Keywords:
MOOSE
Libtorch
Scientific machine learning
Reinforcement learning

a b s t r a c t

A neural-network-based machine learning interface has been developed for the Multiphysics Object-
Oriented Simulation Environment (MOOSE). The interface relies on Libtorch, the C++ front-end of
PyTorch, and enables an online interaction between modern machine learning algorithms and all
the existing simulation, modeling, and analysis processes available in MOOSE. New capabilities in
MOOSE include the native generation and training of artificial neural networks together with options
to load pretrained neural networks in TorchScript format. Furthermore, the MOOSE stochastic tools
module (MOOSE-STM) has been enhanced with neural network-based surrogate and reduced-order
model generation options for efficient stochastic analyses. Lastly, a reinforcement learning capability
has been added to MOOSE-STM for the interactive control and optimization of complex multiphysics
problems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version N/A (uses continuous stable branch)
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00435
Legal Code License LGPL 2.1
Code versioning system used Continuous stable branch with git
Software code languages, tools, and services used C++
Compilation requirements, operating environments & dependencies C++17 compiler (GCC or Clang)

Memory: 16GB+
Disk: 30GB+
OS: Mac OS 10.13+, Linux (POSIX)
Deps: MPI, PETSc,
libMesh, Libtorch 1.4+

If available Link to developer documentation/manual https://mooseframework.inl.gov/
Support email for questions https://github.com/idaholab/moose/discussions

1. Motivation and significance

The modeling and simulation of complex systems utilizing
computational software have become a cornerstone of modern
industrial design and research practices considering that it can
greatly reduce financial burden by partially (or fully) eliminating
the need for expensive experiments and measurements. At the
same time, scientific machine learning (ML), including neural
network (NN) based algorithms, has reached a level where its
application can greatly enhance the simulation-based design and
research processes. However, most closed- and open-source soft-
ware used for the numerical solution of complex multiphysics

∗ Corresponding author.
E-mail address: peter.german@inl.gov (Péter German).

problems have poor support when it comes to inclusive modern
ML capabilities. In many cases, this support is limited to file-based
communication at the input–output level, which does not allow
an online interaction between the numerical simulation and ML
algorithms. Clearly, this loose-coupling is error-prone and not
suitable for use cases that require constant interaction with the
simulation environment (e.g., reinforcement learning [RL]). For
this reason, an ML interface has been developed within the Mul-
tiphysics Object-Oriented Simulation Environment (MOOSE) [1]
using Libtorch (C++ Frontend of PyTorch) [2], which enables di-
rect access to NN-based learning algorithms within multiphysics
simulations.

MOOSE is a C++ based open-source simulation framework that
has been widely used for the modeling and simulation of complex
systems and processes, such as mechanical, thermal, chemical,

https://doi.org/10.1016/j.softx.2023.101489
2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101489
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101489&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00435
https://mooseframework.inl.gov/
https://github.com/idaholab/moose/discussions
mailto:peter.german@inl.gov
https://doi.org/10.1016/j.softx.2023.101489
http://creativecommons.org/licenses/by/4.0/

Péter German and Dewen Yushu SoftwareX 23 (2023) 101489

electrochemical behavior of nuclear materials [3], additively man-
ufactured materials [4,5], electromagnetic phenomena [6], etc.
By enabling a tight interaction between MOOSE and Libtorch,
we provide functionalities such as classification, surrogate and
reduced-order model generation, and NN-based controller design
natively within MOOSE and consequently in every MOOSE-based
application (i.e., Bison [7], Griffin [8], Marmot [9], etc.). This is
achieved by dynamically linking the MOOSE and Libtorch libraries.
The main applications of this enhancement include but are not
limited to the substitution of materials’ constitutive relations by
NN-based models in modeling nuclear materials, neutron trans-
port, phase-field simulations, NN-based control and optimization
of complex physical systems, etc.

2. Software description

The newly implemented functionalities provided by Libtorch
are part of MOOSE and therefore follow its design considerations,
continuous integration, and documentation directions [10]. The
interface has been tested (using continuous integration) on Linux
and Intel Mac machines. The new capabilities have been enabled
by dynamically linking MOOSE with Libtorch, which can be easily
done by setup and configure scripts distributed within MOOSE.

2.1. Software architecture

MOOSE, as shown in Fig. 1, can be divided into core capabili-
ties, located in the framework, and physics-specific capabilities,
which have been placed in physics modules. The Libtorch-based
ML functionalities have been divided between the framework
and the MOOSE stochastic tools module (MOOSE-STM) [11], which
incorporates algorithms necessary for efficient stochastic analysis,
surrogate generation, and data analysis. Even though the syntax
of Libtorch is directly available in MOOSE and MOOSE-based ap-
plications, several wrapper classes have been created to simplify
the utilization, creation, and training of NN models in MOOSE.
Fig. 1 presents the integration of Libtorch-based functionalities
in MOOSE:

2.2. Software functionalities

2.2.1. Capabilities in the framework
As shown in Fig. 2, the framework is now equipped with a

general NN module (i.e., LibtorchNeuralNet), which contains
an evaluation (forward) function to make sure that the different
types of NN models can be used in an abstract way. Two major
classes inherit from this class. The first class is LibtorchArti-
ficialNeuralNet. It allows the user to set up an NNmodel with
a given architecture using the constructor presented below:

LibtorchArtificialNeuralNet::LibtorchArtificial
NeuralNet(

const std::string name,
const unsigned int num_inputs ,
const unsigned int num_outputs ,
const std::vector<unsigned int> & num_neurons_
per_layer ,
const std::vector<std::string> & activation_
function);

This allows the user to specify the number of hidden layers
together with the number of neurons and activation function
used for each hidden layer.

The other class is LibtorchTorchScriptNeuralNet. It
reads a TorchScript file, which can be the output of a completed
training process using the Python API of PyTorch. This capability
provides a streamlined method for training NNs in Python and
deploying them in MOOSE, which can be useful if users do not

need a direct integration between the NN models and the system
or if they need specific training capabilities only available in the
Python-based layers of PyTorch.

A class LibtorchArtificialNeuralNetTrainer has also
been added for training LibtorchArtificialNeuralNetwork-
s. It utilizes a standard backpropagation-based gradient descent
algorithm [12], which takes parameters like the learning rate
or optimizer type. The trainer is designed to enable training in
parallel using Message Passing Interface (MPI) and a central-
ized scheme (based on MPI_Allreduce) for the computation
of the gradient [13]. This scheme splits the samples in every
training batch among the processes and computes a gradient
estimate on each process. The final gradient estimate is then
obtained by averaging the gradients over all the processes. This
involves an MPI_Allreduce operation which can be expen-
sive if called frequently. As a last step, the parameters of the
neural network are updated using the averaged gradient on
every process independently. One can instantiate a trainer using
a LibtorchArtificialNeuralNetwork object and a Paral-
lel::Communicator, which is a wrapper around MPI_Comm,
located in libMesh [14], the library that provides the algorithms
for the discretization of partial differential equations (PDE) in
MOOSE:

LibtorchArtificialNeuralNetTrainer(
std::shared_ptr <LibtorchNeuralNet <torch::nn
:: Module>> nn,
const Parallel::Communicator & comm);

and train it with the train(...) function, which requires a data
set and corresponding training options:

virtual void train(LibtorchDataset & dataset,
const LibtorchTrainingOptions &
options);

The detailed description of each object is available in the in-code
Doxygen documentation of MOOSE. The weak- and strong-scaling
of the training process are shown in Fig. 3. The study was per-
formed on an AMD EPYC 7702 processor with up to 32 cores
and using Rocky-8 operating system. We see that the central-
ized scheme performs well if the number of batches (gradient
updates in each epoch) is relatively small. As the number of
batches increases, the communication costs increase simultane-
ously. This behavior is attributed to the fact that in the centralized
parallel training scheme an average gradient is computed over
the processes using MPI_Allreduce which has a considerable
overhead in terms of communication. Future work is targeted at
the addition of a decentralized training system (such as [15]) to
avoid extensive communication costs.

Additionally, the framework has been extended to be able to
read or receive NNs that can control physical processes. These
controllers (LibtorchNeuralNetControl and LibtorchDRL-
Control) are able to read either parameter files for fixed NN
architectures or TorchScript files of arbitrary NNs trained using
the Python API of PyTorch.

2.2.2. Capabilities in the stochastic tools module
The MOOSE-STM builds upon the utility classes in the frame-

work and contains more complex structures. For example, it can
now train artificial NNs to be surrogates of MOOSE-based appli-
cations for stochastic analyses (i.e., sensitivity analysis, uncer-
tainty quantification). This is achieved by LibtorchANNTrainer
and LibtorchANNSurrogate. These objects have user interfaces
that enable the user to customize the NN architecture together
with the training parameters at an input-file level:

2

Péter German and Dewen Yushu SoftwareX 23 (2023) 101489

Fig. 1. The flowchart of MOOSE utilizing Libtorch with dark blue fields representing objects directly harnessing functionalities from Libtorch.

[Trainers]
[train]

type = LibtorchANNTrainer
sampler = sample
response = values/g_values
num_epochs = 40
num_batches = 10
num_neurons_per_layer = ’64 32’
learning_rate = 0.001
activation_function = ’relu relu’

[]
[]

Another functionality added to the MOOSE-STM is the genera-
tion of controllers using Proximal Policy Optimization (PPO) [16],
which belongs to the family of RL algorithms. The implementation
is application-agnostic within MOOSE as long as the observations
on the system are measured using MOOSE’s Postprocessors
and the simulations are controlled using the Control system.
The training also utilizes the MultiApp system, meaning that
there is a main application that can run and communicate with
the sub-applications that simulate complex multiphysics prob-
lems, for more details see [3]. In this scenario, the main ap-
plication will contain a LibtorchDRLControlTrainer object
that trains the critic and actor (control) NNs commonly used
in the PPO algorithm [16]. The control NN in each iteration is
transferred to the sub-application by LibtorchNeuralNetCon-
trolTransfer, which uses it to control the physical process
and gather data for further training. The reward of the train-
ing process can be monitored using Postprocessors such as
DRLRewardReporter.

Fig. 2. The neural network wrapper classes in MOOSE framework together with
their possible training options.

3. Illustrative examples

To illustrate the applicability of Libtorch within MOOSE, we
present two examples. The first example is meant to demonstrate

3

Péter German and Dewen Yushu SoftwareX 23 (2023) 101489

Fig. 3. Strong (left) and weak (right) scaling of the training of an NN in MOOSE using a centralized scheme.

Fig. 4. Approximation of f (x1, x2, x3) =
∏3

i=1 |4xi − 2| with NNs within
MOOSE-STM. Results are plotted along the (x1 = 0.25, x2 = 0.25, x3) line.

the applicability of Libtorch-based NNs in MOOSE to approxi-
mate functions. This capability can be of interest to users who
want to use NNs as surrogates of material properties or other
physical processes. The function of interest in this example is
f (x1, x2, x3) =

∏3
i=1 |4xi − 2|, meaning that we attempt to fit a

function in a three-dimensional space. We pick samples of the
inputs in the (x1, x2, x3) ∈ [0, 1]3 interval uniformly using a
tensor product approach and fix the NN architecture to have three
hidden layers with 128, 64, and 32 neurons each. Fig. 4 presents
three NN function approximations over a line parallel to the x3
axis, at x1 = x2 = 0.25. The presented networks were trained
by utilizing different amounts of data, with 5, 10, and 20 grid
points per dimension, resulting in 125, 1,000 and 8,000 samples
in total. Furthermore, Table 1 presents the Root Mean Square
Error (RMSE) over a tests set consisting of 106 additional samples
over the same domain. It is clear that the more samples available
for the training, the more accurate the NN is.

In the second example, we train a controller for keeping the
temperature within a room at an optimal value under changing
environment conditions using RL. The problem setting is depicted
in Fig. 6. It consists of a 2D room where the temperature of the
side walls changes with the environmental temperature, which
varies throughout the day using the following function: Tenv(t) =

Fig. 5. The problem setup of the deep reinforcement learning controller for air
conditioning in MOOSE-STM.

Table 1
Root Mean Square Error (RMSE) between the neural network
approximations and target function evaluations over a test set of
106 samples.
of samples used for training Test set RMSE

125 0.265
1,000 0.088
8,000 0.032

273 + 15 sin
(

π t
86400

)
. The top wall, on the other hand, acts as an

air-conditioner capable of heating or cooling the room using a
controlled heat flux (Neumann boundary condition). The room
is assumed to be filled with air, and the temperature profile in
the room is determined by solving a transient heat-conduction
equation.

The goal of this example is to train an NN-based controller that
can keep the temperature at a comfortable level in the middle
of the room. This means that the observation (input for the
controller) is the temperature at the sensor location (see Fig. 5),
while the control value (output of the controller) is the heat flux
value on the top. A PPO algorithm [16] is used for training and
needs two NNs: a critic and an actor (controller). The control
NN is chosen to be a simple two-layer feed-forward NN with 16
and 6 neurons on the hidden layers. The critic NN, which tries to
approximate the return function, is slightly more complex; it has
two hidden layers with 64 and 27 neurons, respectively. Fig. 6
shows that the trained control NN can keep the temperature at

4

Péter German and Dewen Yushu SoftwareX 23 (2023) 101489

Fig. 6. The evolution of the reward during training (left) and the results obtained using the final controller (right), where 1 episode = 10 simulations.

the location of the sensor very close to the desired value. The
remaining oscillations are the result of allowing variability in the
control action during training to avoid overfitting. This example
is readily available in MOOSE-STM.

4. Impact

A Libtorch interface has been developed in MOOSE to en-
able integrated ML solutions. The interface has been designed to
enable:

• Full and flexible access to Libtorch syntax within MOOSE for
a variety of research topics;

• Allow online interaction between the ML and numerical
methods that are used to solve multiphysics problems;

• User-friendly setup procedure and utilization of NN-based
algorithms at the input file level.

This opens the door towards the adaptation of advanced ML al-
gorithms in MOOSE. Furthermore, every MOOSE-based application
inherits this capability. This entails that NN-based learning is
available for a wide variety of complex physics problems that
MOOSE-based applications tackle. These applications include but
are not limited to advanced thermal hydraulics, nuclear material
performance, particle transport, seismic, etc.

A key focus of this deployment is the development of RL
capabilities in MOOSE that require a close interaction between
the simulated system and the NN training process. This cannot
be achieved with file-based interaction alone at the input–output
level. Practical examples can be the training of controllers for
complex problems, such as advanced manufacturing processes,
nuclear systems, etc.

Lastly, an advantage of enabling these capabilities is that
MOOSE has been developed using nuclear quality assurance stan-
dards [10], allowing for an easier adaptation for design and
research projects in the industry.

5. Limitations

The linking between MOOSE and Libtorch has certain limita-
tions that have been actively worked on. First, Mac computers
with Apple Silicon chips are not fully supported yet. Second,
if the user chooses to install the dependencies of MOOSE using
the official MOOSE anaconda packages, a conflict arises between
the GLIBC versions of the conda-based compiler stack on Linux
(uses Version 2.17 to support older Linux distributions) and the
Libtorch distributions (uses Version 2.28+). Nevertheless, modern
Linux distributions come with up-to-date GLIBC versions, which

allow the manual installation of MOOSE dependencies, and con-
sequently, the linking with Libtorch. Lastly, we note that MOOSE
is a central processing unit (CPU) based library and is set up to
work with the CPU-based functionalities of Libtorch using MPI
for parallelism. Enabling the graphics processing unit (GPU) based
capabilities of Libtorch within MOOSE is part of future work.

6. Conclusions

Scientific ML capabilities have been enabled for complex mul-
tiphysics simulations by developing an interface between MOOSE
and Libtorch. Multiple wrapper classes have been added to MOOSE
and the MOOSE-STM to create, train, and evaluate NN models
using Libtorch. The wrappers can be used to train an NN model
within MOOSE or to read pre-trained NN models using the Torch-
Script format. Furthermore, MOOSE-based training algorithms al-
low CPU-based parallel training using an MPI with a centralized
scheme. The Control system of MOOSE has also been extended to
allow the utilization of NNs as control agents in complex multi-
physics simulations. Building on this, a PPO algorithm has been
implemented in the MOOSE-STM to natively train RL-based NN
models for the control of multiphysics simulations. The PPO algo-
rithm in MOOSE is agnostic of physics so users can harness it for
every MOOSE-based application with input file-level interactions
alone.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Peter German reports financial support was provided
by Idaho National Laboratory. Dewen Yushu reports financial
support was provided by Idaho National Laboratory.

Data availability

The code to produce the data is available in the moose repos-
itory.

Acknowledgments

This work was supported through the Idaho National Labo-
ratory Directed Research & Development, United States Program
under Department of Energy Idaho Operations Office contract
no. DE-AC07-05ID14517. The United States Government retains
and the publisher, by accepting the article for publication, ac-
knowledges that the U.S. Government retains a nonexclusive,

5

Péter German and Dewen Yushu SoftwareX 23 (2023) 101489

paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so,
for U.S. Government purposes. We would also like to give special
thanks to Dr. Zonggen Yi for his help in the development of the
PPO algorithm.

References

[1] Lindsay AD, Gaston DR, Permann CJ, Miller JM, Andrš D, Slaughter AE, et
al. 2.0 - MOOSE: Enabling massively parallel multiphysics simulation. Soft-
wareX 2022;20:101202. http://dx.doi.org/10.1016/j.softx.2022.101202, URL
https://www.sciencedirect.com/science/article/pii/S2352711022001200.

[2] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch:
An imperative style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A, d’Alché Buc F, Fox E, Garnett R, editors.
Advances in neural information processing systems. Vol. 32. Curran As-
sociates, Inc; 2019, p. 8024–35, URL http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[3] Gaston DR, Permann CJ, Peterson JW, Slaughter AE, Andrš D, Wang Y, et al.
Physics-based multiscale coupling for full core nuclear reactor simulation.
Ann Nucl Energy 2015;84:45–54.

[4] Grilli N, Hu D, Yushu D, Chen F, Yan W. Crystal plasticity model of residual
stress in additive manufacturing. 2021, arXiv preprint arXiv:2105.13257.

[5] Yushu D, McMurtrey MD, Jiang W, Kong F. Directed energy deposition pro-
cess modeling: A geometry-free thermo-mechanical model with adaptive
subdomain construction. Int J Adv Manuf Technol 2022;1–20.

[6] Icenhour CT. Development and validation of open source software for elec-
tromagnetics simulation and multiphysics coupling (Ph.D. thesis), North
Carolina State University; 2023.

[7] Williamson R, Gamble K, Perez D, Novascone S, Pastore G, Gardner R, et al.
Validating the BISON fuel performance code to integral LWR experiments.
Nucl Eng Des 2016;301:232–44.

[8] Wang Y, Schunert S, Ortensi J, Laboure V, DeHart M, Prince Z, et al.
Rattlesnake: A MOOSE-based multiphysics multischeme radiation transport
application. Nucl Technol 2021;207(7):1047–72.

[9] Schwen D, Aagesen LK, Peterson JW, Tonks MR. Rapid multiphase-
field model development using a modular free energy based approach
with automatic differentiation in MOOSE/MARMOT. Comput Mater Sci
2017;132:36–45.

[10] Slaughter A, Permann CJ, Miller J, Alger B, Novascone S. Continuous
integration, in-code documentation, and automation for nuclear quality
assurance conformance. Nucl Technol 2021;1–8. http://dx.doi.org/10.1080/
00295450.2020.1826804.

[11] Prince Z, Slaughter A, German P, Halvic I, Jiang W, Spencer B, et al. Moose
stochastic tools: A module for performing parallel, memory-efficient in
situ stochastic simulations. 2022, SSRN, URL http://dx.doi.org/10.2139/ssrn.
4049487.

[12] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by
back-propagating errors. nature 1986;323(6088):533–6.

[13] Seide F, Fu H, Droppo J, Li G, Yu D. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech DNNs. In:
Fifteenth annual conference of the international speech communication
association. Citeseer; 2014.

[14] Kirk BS, Peterson JW, Stogner RH, Carey GF. libMesh: A C++ library for
parallel adaptive mesh refinement/coarsening simulations. Eng Comput
2006;22(3–4):237–54. http://dx.doi.org/10.1007/s00366-006-0049-3.

[15] Ghosh S, Aquino B, Gupta V. EventGraD: Event-triggered communication
in parallel machine learning. Neurocomputing 2022;483:474–87.

[16] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy
optimization algorithms. 2017, arXiv preprint arXiv:1707.06347.

6

http://dx.doi.org/10.1016/j.softx.2022.101202
https://www.sciencedirect.com/science/article/pii/S2352711022001200
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb3
http://arxiv.org/abs/2105.13257
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb9
http://dx.doi.org/10.1080/00295450.2020.1826804
http://dx.doi.org/10.1080/00295450.2020.1826804
http://dx.doi.org/10.1080/00295450.2020.1826804
http://dx.doi.org/10.2139/ssrn.4049487
http://dx.doi.org/10.2139/ssrn.4049487
http://dx.doi.org/10.2139/ssrn.4049487
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb13
http://dx.doi.org/10.1007/s00366-006-0049-3
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00185-1/sb15
http://arxiv.org/abs/1707.06347

