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ABSTRACT 

We develop a theoretical model for thermal conductivity of 𝛼𝛼 -U which combines density 

functional theory calculations and coupled electron-phonon Boltzmann transport equation. The 

model incorporates both electron and phonon contributions to thermal conductivity, achieves good 

agreement with experimental data over a wide temperature range. The dominant scattering 

mechanism governing thermal transport in 𝛼𝛼 -U at different temperatures is examined. By 

including phonon-defect and electron-defect scatterings in the model, we study the effect of point 

defects including U-vacancy, U-interstitial, and Zr-substitution on thermal conductivity of 𝛼𝛼-U. 

The degradation of anisotropic thermal conductivity due to point defects as a function of defect 

concentration, defect type, and temperature is reported. This model provides insights into the 

impact of defects on both phonon and electronic thermal transport. It will promote the fundamental 

understanding of thermal transport in 𝛼𝛼-U and provide a ground for investigation of coupled 

electron-phonon transport in metallic materials.  

1. INTRODUCTION 

Uranium is a crucial element in the actinide series that is widely used as a nuclear fuel in 

the fission reactor [1]. Uranium is not only one of the heaviest naturally occurring element on earth 

[2] but also an unique element where a charge density wave (CDW) state has been observed [1, 3, 
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4]. From 0 K to 43 K, it exhibits a series of low CDW transitions and stabilizes as the face-centered 

orthorhombic 𝛼𝛼 phase at 43 K and above. At higher temperature, 𝛼𝛼-U transforms to 𝛽𝛽 phase at 

around 933 K and then to the 𝛾𝛾 phase at around 1050 K [2]. Numerous studies have investigated 

the structural, electronic, optical properties, and phase stability of 𝛼𝛼-U [1, 4, 5, 6, 7]. 

Determining the thermal properties of 𝛼𝛼-U is crucial for its applications in nuclear reactors. 

However, compared to the large number of works studying the electronic and other ground-state 

properties of 𝛼𝛼-U, relatively few studies focus on the thermal properties of 𝛼𝛼-U. For the past few 

decades, the thermal conductivity data of 𝛼𝛼 -U was obtained primarily via experimental 

measurements [8, 9, 10, 11]. However, the high cost and limited accuracy of the experimental 

techniques make it difficult to obtain thermal conductivity data over a wide range of temperature 

and material conditions. Moreover, the thermal transport in 𝛼𝛼-U depends on different scattering 

contributions: electron-electron scattering, phonon-phonon scattering, phonon-electron scattering, 

various defect scattering and so on. The available experimental techniques cannot distinguish the 

contributions of different scattering mechanisms towards the thermal conductivity. Therefore, it is 

essential to develop theoretical models not only to separate out phenomena but also to shed light 

into the fundamental physics of thermal transport in 𝛼𝛼-U. To the best of our knowledge, the only 

thermal conductivity model of 𝛼𝛼-U is found in a recent work by Shuxiang et al. [12]. However, 

Shuxiang’s work evaluates electronic thermal conductivity using the Wiedemann-Franz law [13], 

known to break down for inelastic electron scattering processes [13, 14]. Moreover, this model 

includes parameters fitting of many experimental data, leading to uncertainty in the predicted 

thermal conductivity. The previous model’s shortcoming warrants a more sophisticated theoretical 

model for the thermal conductivity of 𝛼𝛼-U.  
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Point defects such as vacancies, interstitials, and substitutional atoms that alter the 

crystalline structures, have a detrimental effect on thermal conductivity of nuclear fuels. Several 

previous studies have reported the effect of point defects on thermal transport in Uranium 

compounds. For instance, a molecular dynamics (MD) simulations study reports the thermal 

conductivity degradation in uranium dioxide (UO2), as a function of defect concentration and 

temperature [15]. Another MD study [16] shows that a 0.1% U vacancy in UO2 degrades the 

thermal conductivity by 24.6% [16]. The influence of carbon vacancies and oxygen substitutional 

impurities on thermal properties of uranium monocarbide (UC) was also studied within the density 

functional theory (DFT) [17]. Whereas, in the case of 𝛼𝛼-U, the existing point defect studies on the 

defected crystals are limited to its structural, kinetics and the energetics properties [18, 19, 20]. A 

thorough investigation on the effect of point defects on thermal transport in 𝛼𝛼-U seems to be still 

lacking. Thermal transport in 𝛼𝛼-U is dominated by the electrons due to its metallic nature [12], 

therefore, it is critical to understand the electron-defect scatterings contributions in the thermal 

conductivity of defected 𝛼𝛼-U. Nevertheless, in Shuxiang et al.’s thermal conductivity model of 𝛼𝛼-

U, the contribution from electron-defect scattering to thermal conductivity is represented by a 

constant value extracted from experimental data [12]. Thus, a more careful examination of the 

impact of point defects on electronic thermal transport in 𝛼𝛼-U is necessary. 

The present work develops a theoretical model of 𝛼𝛼-U thermal conductivity that combines 

DFT calculations with Boltzmann transport equation (BTE) of coupled electron and phonon 

transport. The model developed here considers all electron- and phonon-scattering mechanisms 

governing thermal transport in 𝛼𝛼-U, without including any fitting parameter from experimental 

data. We also go beyond the traditional Wiedemann-Franz law, which is commonly used in 

evaluating the electronic contribution to thermal conductivity in metals. The thermal conductivity 
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of pure 𝛼𝛼-U crystal predicted by our model are in better agreement with the experimental data than 

the results obtained using the Wiedemann-Franz law. By including the phonon-defect and electron-

defect relaxation times (RTs) into the thermal conductivity model of pure 𝛼𝛼-U, the impact of 

different defects including U vacancy, U interstitial, and Zr substitution on the anisotropic thermal 

conductivity of 𝛼𝛼-U as a function of defect type, defect concentration, and temperature is reported.  

2. THERMAL CONDUCTIVITY MODEL 

In metals, the primary heat carriers are electrons and phonons [13, 21]. Thus, the total 

thermal conductivity (k) can be expressed as 

 𝜅𝜅 = 𝜅𝜅𝑒𝑒 + 𝜅𝜅𝑝𝑝ℎ (1) 

where the total thermal conductivity depends on various scattering processes involving electrons 

and phonons. In this work, phonon thermal conductivity 𝜅𝜅𝑝𝑝ℎ is affected by the phonon-phonon, 

phonon-electron, and phonon-defect scattering processes, while electronic thermal conductivity 

𝜅𝜅𝑒𝑒  is influenced by the electron-phonon, electron-electron, and electron-defect scattering. 

Evaluation of 𝜅𝜅𝑒𝑒 and 𝜅𝜅𝑝𝑝ℎ requires harmonic properties of phonons, electronic band energy, and 

the RTs of the aforementioned scattering processes. In this section, a detailed description of the 

model used for calculating the thermal conductivity of 𝛼𝛼-U is presented. 

2.1 Phonon thermal conductivity 

The phonon thermal conductivity 𝜅𝜅𝑝𝑝ℎ is formulated within the phonon BTE framework as 

[13, 22] 

 𝜅𝜅𝑝𝑝ℎ = �𝐶𝐶𝜈𝜈𝜈𝜈�⃗�𝑣𝜈𝜈𝜈𝜈⨂�⃗�𝑣𝜈𝜈𝜈𝜈𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ

𝜈𝜈𝜈𝜈

 (2) 
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where the index 𝜈𝜈𝜈𝜈 refers to the phonon mode with branch index 𝜈𝜈 at wavevector 𝜈𝜈, 𝐶𝐶𝜈𝜈𝜈𝜈 is the 

phonon volumetric specific heat capacity,  �⃗�𝑣𝜈𝜈𝜈𝜈 is the phonon group velocity, and 𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ is the phonon 

RT. By discretizing the Brillouin zone (BZ) into a grid that contains 𝑁𝑁𝜈𝜈 number of q points, the 

mode-dependent phonon specific heat 𝐶𝐶𝜈𝜈𝜈𝜈 can be calculated using the phonon dispersion [23] 

 𝐶𝐶𝜈𝜈𝜈𝜈�𝜔𝜔𝜈𝜈𝜈𝜈,𝑇𝑇� =
𝑘𝑘𝐵𝐵
𝑁𝑁𝜈𝜈𝑉𝑉

 �
ℏ𝜔𝜔𝜈𝜈𝜈𝜈
𝑘𝑘𝐵𝐵𝑇𝑇

�
2 𝑒𝑒−

ℏ𝜔𝜔𝜈𝜈𝜈𝜈
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑒𝑒−
ℏ𝜔𝜔𝜈𝜈𝜈𝜈
𝑘𝑘𝐵𝐵𝑇𝑇 − 1)2

 (3) 

where 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑉𝑉 is the volume of the unit cell, ℏ is the Planck constant, and 

𝜔𝜔𝜈𝜈𝜈𝜈 is the phonon frequency. The group velocity is also calculated using the phonon dispersion as 

�⃗�𝑣𝜈𝜈𝜈𝜈 = 𝜕𝜕𝜔𝜔𝜈𝜈𝜈𝜈

𝜕𝜕𝜈𝜈�⃗
. 

The phonon RT combining all scattering processes can be calculated using the 

Matthiessen’s rule [21, 24] 

 
1
𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ =

1
𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑝𝑝ℎ +

1
𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑒𝑒 +

1
𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑑𝑑 (4) 

where 𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑝𝑝ℎ, 𝜏𝜏𝜈𝜈𝜈𝜈

𝑝𝑝ℎ−𝑒𝑒, and 𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑑𝑑 are the RTs of phonon-phonon, phonon-electron, and phonon-

defect scattering processes, respectively. The relatively rare cases when the Matthiessen’s rule fail 

are beyond the interests of this work. 

For the phonon-phonon scattering, we limit our discussion to three-phonon processes. The 

higher order scattering processes are important when the higher order scattering potential or phase 

space becomes relatively large [25], usually for strongly anharmonic materials or at very high 

temperature. In this work, we deem that the contributions from these higher order scattering 

processes to thermal transport in 𝛼𝛼-U at the temperature range of interests would be small.  The 
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ShengBTE code was used [22] to calculate the three-phonon scattering RTs. For simplicity, let 

𝑔𝑔 = 𝜈𝜈𝜈𝜈  represents a phonon mode. The RT 𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑝𝑝ℎ  includes contributions from the phonon 

absorption and emission processes [22], 

 
1

𝜏𝜏𝑔𝑔
𝑝𝑝ℎ−𝑝𝑝ℎ =

1
𝑁𝑁𝜈𝜈

( � Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′
+

+

𝑔𝑔′𝑔𝑔′′
+

1
2
� Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′

−
−

𝑔𝑔′𝑔𝑔′′
) (5) 

where Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′
+  and Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′

−  represents the scattering rates of the fusion and fission processes, 

respectively. The scattering rates can be calculated using the scattering matrix Ψ𝑔𝑔𝑔𝑔′𝑔𝑔′′
±  as 

 

Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′
+ =

ℏ𝜋𝜋
4
∙
𝑛𝑛0′ − 𝑛𝑛0′′

𝜔𝜔𝑔𝑔𝜔𝜔𝑔𝑔′𝜔𝜔𝑔𝑔′′
�Ψ𝑔𝑔𝑔𝑔′𝑔𝑔′′

+ �
2
𝛿𝛿(𝜔𝜔𝑔𝑔 + 𝜔𝜔𝑔𝑔′ − 𝜔𝜔𝑔𝑔′′) 

 

Γ𝑔𝑔𝑔𝑔′𝑔𝑔′′
− =

ℏ𝜋𝜋
4
∙
𝑛𝑛0′ + 𝑛𝑛0′′ + 1
𝜔𝜔𝑔𝑔𝜔𝜔𝑔𝑔′𝜔𝜔𝑔𝑔′′

�Ψ𝑔𝑔𝑔𝑔′𝑔𝑔′′
− �

2
𝛿𝛿(𝜔𝜔𝑔𝑔 − 𝜔𝜔𝑔𝑔′ − 𝜔𝜔𝑔𝑔′′) 

(6) 

where 𝑛𝑛0′ = 𝑛𝑛0�𝜔𝜔𝑔𝑔′� = 1/(𝑒𝑒ℏ𝜔𝜔𝑔𝑔′/𝑘𝑘𝐵𝐵𝑇𝑇 − 1) represents phonon distribution at equilibrium which 

obeys the Bose-Einstein statistics. The conservation of energy in the absorption and emission 

processes is enforced by the Dirac delta function in Eq. (6). Finally, the scattering matrix can be 

calculated from the third-order force constants and phonon eigenvectors [22, 26] 

 Ψ𝑔𝑔𝑔𝑔′𝑔𝑔′′
± = ���Φ𝑖𝑖𝑖𝑖𝑘𝑘

𝛼𝛼𝛼𝛼𝛼𝛼 𝑒𝑒𝑔𝑔
𝛼𝛼(𝑖𝑖)𝑒𝑒𝑔𝑔′

𝛼𝛼 (𝑗𝑗)𝑒𝑒𝑔𝑔′′
𝛼𝛼 (𝑘𝑘)

�𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑘𝑘𝛼𝛼𝛼𝛼𝛼𝛼𝑖𝑖𝑘𝑘𝑖𝑖

 (7) 

where 𝑖𝑖𝑗𝑗𝑘𝑘  are the atomic indices, 𝛼𝛼𝛽𝛽𝛾𝛾  denote Cartesian coordinates, 𝑒𝑒𝑔𝑔𝛼𝛼(𝑖𝑖)  represents the 𝛼𝛼 

component of the eigenvector of phonon mode 𝑔𝑔 at the 𝑖𝑖𝑡𝑡ℎ atom, 𝑀𝑀𝑖𝑖 is the mass of the 𝑖𝑖𝑡𝑡ℎ atom, 

and Φ𝑖𝑖𝑖𝑖𝑘𝑘
𝛼𝛼𝛼𝛼𝛼𝛼 is the third-order force constant matrix. 

The phonon-electron RT is estimated by Pippard’s theory [21, 27] 
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1

𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑒𝑒 =

𝜋𝜋𝑛𝑛𝑒𝑒𝑚𝑚𝑣𝑣𝐹𝐹
6𝑑𝑑𝑣𝑣𝜈𝜈𝜈𝜈

𝜔𝜔𝜈𝜈𝜈𝜈 (8) 

where 𝑛𝑛𝑒𝑒 is the electron density, 𝑚𝑚 is the electron mass, 𝑣𝑣𝐹𝐹 is electron Fermi velocity, and 𝑑𝑑 is the 

ionic mass density. The Pippard’s formula has been used to predict phonon thermal conductivity 

of Cu alloy [28], Ni-doped CoSb3 [29], and transition metal carbides [30] where phonon-electron 

scatterings play an important role in determining the thermal conductivity. 

For phonon-defect scatterings, the RT is given by Klemens [31] 

 
1

𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑑𝑑 =

𝐺𝐺𝑉𝑉𝑎𝑎
4𝜋𝜋𝑣𝑣𝜈𝜈𝜈𝜈3

𝜔𝜔𝜈𝜈𝜈𝜈4  (9) 

where V𝑎𝑎 is the average atomic volume at the defect site and 𝐺𝐺 is the phonon-defect scattering 

parameter. In the case of a single element material like 𝛼𝛼-U, the scattering parameter can be 

calculated by [32] 

 𝐺𝐺 = �𝑛𝑛𝑑𝑑𝑖𝑖 �
〈Δ𝑀𝑀2������〉
〈𝑀𝑀�2〉

+ 2�
〈Δ𝐾𝐾����〉
〈𝐾𝐾�〉

− 2𝑄𝑄𝛾𝛾
〈Δ𝑅𝑅����〉
〈𝑅𝑅�〉

�
2

�
𝑖𝑖

 (10) 

where 𝑛𝑛𝑑𝑑𝑖𝑖  is the fractional defect concentration at the 𝑖𝑖th atomic site, 𝑄𝑄 is the number of distorted 

nearest-neighbor bonds around the defect (3.2 for substitutional defect and 4.2 for vacancies), ∆𝑀𝑀, 

∆𝐾𝐾 , and ∆𝑅𝑅  are the mass difference, harmonic force constant difference, and atomic radius 

difference of the defected site. In Eq. (10), the atomic site averages are denoted with a bar, while 

the stoichiometric averages are denoted with angled brackets. The average mass variance and 

average mass are given by 

 Δ𝑀𝑀2������ = �𝑛𝑛𝑑𝑑𝑖𝑖 (𝑀𝑀𝑖𝑖 −𝑀𝑀�)2
𝑖𝑖

,𝑀𝑀� = �𝑛𝑛𝑑𝑑𝑖𝑖 𝑀𝑀𝑖𝑖
𝑖𝑖

 (11) 
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For vacancy and interstitial defects of which the perturbation is due to both mass difference and 

removal/creation of nearest neighbor bonds, the virial theorem drops the potential terms and 

modifies the change in mass at a vacancy site as 𝑀𝑀𝑖𝑖 −𝑀𝑀� = −𝑀𝑀𝑣𝑣𝑎𝑎𝑐𝑐 − 2𝑀𝑀�  and at an interstitial site 

as 𝑀𝑀𝑖𝑖 −𝑀𝑀� = 𝑀𝑀𝑖𝑖𝑖𝑖𝑡𝑡 + 2𝑀𝑀�  [33].  

2.2 Electronic thermal conductivity 

The expression for calculating the electronic thermal conductivity in metals can be derived 

from the linearized BTE of electrons [13, 34]. Under the RT approximation, the transport 

distribution function is given by 

 Ξ(𝜖𝜖,𝑇𝑇) = ��𝑣𝑣𝑏𝑏𝑘𝑘⨂𝑣𝑣𝑏𝑏𝑘𝑘𝜏𝜏𝑏𝑏𝑘𝑘𝑒𝑒 𝛿𝛿(𝜖𝜖 − 𝜖𝜖𝑏𝑏𝑘𝑘)
𝑑𝑑𝑘𝑘

(2𝜋𝜋)3
𝑏𝑏𝑘𝑘

 (12) 

where 𝜖𝜖𝑏𝑏𝑘𝑘 is the electronic band energy, 𝑣𝑣𝑏𝑏𝑘𝑘 is the electronic group velocity, and 𝜏𝜏𝑏𝑏𝑘𝑘𝑒𝑒  is the RT for 

electron scattering processes. Using the transport distribution function, the generalized transport 

coefficients ℒ0, ℒ1, and ℒ2 can be calculated as 

 

ℒ𝑝𝑝(𝜇𝜇,𝑇𝑇) = 𝑒𝑒2 �Ξ(𝜖𝜖,𝑇𝑇)(𝜖𝜖 − 𝜇𝜇)𝑝𝑝 �−
𝜕𝜕𝑓𝑓0(𝜖𝜖; 𝜇𝜇,𝑇𝑇)

𝜕𝜕𝜖𝜖
�𝑑𝑑𝜖𝜖 

=
𝑒𝑒2𝑛𝑛𝑘𝑘
𝑉𝑉

�(𝜖𝜖𝑏𝑏𝑘𝑘 − 𝜇𝜇)𝑝𝑝 �−
𝜕𝜕𝑓𝑓𝑏𝑏𝑘𝑘0

𝜕𝜕𝜖𝜖
� 𝑣𝑣𝑏𝑏𝑘𝑘⨂𝑣𝑣𝑏𝑏𝑘𝑘𝜏𝜏𝑏𝑏𝑘𝑘𝑒𝑒

𝑏𝑏𝑘𝑘

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝 = 0,1,2 

(13) 

with 𝑓𝑓0(𝜖𝜖; 𝜇𝜇,𝑇𝑇) being the Fermi-Dirac distribution function, 𝜇𝜇 being the chemical potential which 

in metals is usually taken as the Fermi energy 𝜇𝜇 = 𝐸𝐸𝐹𝐹 [21], 𝑒𝑒 is the elementary charge, and 𝑛𝑛𝑘𝑘 is 

the number of k points in the BZ. The electrical and heat current is then given by the transport 

coefficients as 

 𝚥𝚥𝑒𝑒 = ℒ0𝐸𝐸�⃗ +
ℒ1
𝑒𝑒𝑇𝑇

�−∇��⃗ 𝑇𝑇� (14) 
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𝚥𝚥𝑄𝑄 =
ℒ1
𝑒𝑒
𝐸𝐸�⃗ +

ℒ2
𝑒𝑒2𝑇𝑇

�−∇��⃗ 𝑇𝑇� 

with 𝐸𝐸�⃗  the external electrical field and ∇��⃗ 𝑇𝑇  the temperature gradient. By setting the electrical 

current and thermal gradient to zero in Eq. (14) respectively, the electronic thermal conductivity 

and electrical conductivity is finally obtained as 

 𝜎𝜎 = ℒ0 (15) 

 
𝜅𝜅𝑒𝑒 =

1
𝑒𝑒2𝑇𝑇 �

ℒ12

ℒ0
− ℒ2� (16) 

The 𝜅𝜅𝑒𝑒  can be calculated using Eq. (13) and (16) where the electronic band structure and RT 

corresponding to various electron scatterings are used as inputs. There are two RTs for electrons 

– 𝜏𝜏𝑏𝑏𝑘𝑘,𝜅𝜅
 𝑒𝑒  responsible for thermal relaxation of electrons which is used in Eq. (16) and 𝜏𝜏𝑏𝑏𝑘𝑘,𝜎𝜎

𝑒𝑒  

responsible for electronic relaxation of electrons which is used in Eq. (15). Two approaches can 

be adopted to calculate 𝜅𝜅𝑒𝑒.  

In the first approach, one considers 𝜏𝜏𝑏𝑏𝑘𝑘,𝜅𝜅
 𝑒𝑒 = 𝜏𝜏𝑏𝑏𝑘𝑘,𝜎𝜎

𝑒𝑒  when the scattering mechanisms 

involving electrons are elastic. By dividing Eq. (16) by Eq. (15), the Lorenz number is defined as 

 𝐿𝐿 =
𝜅𝜅𝑒𝑒
𝜎𝜎𝑇𝑇

=
1

𝑒𝑒2𝑇𝑇2
 ��
ℒ1
ℒ0
�
2

−
ℒ2
ℒ0
� (17) 

Letting 𝜏𝜏𝑏𝑏𝑘𝑘,𝜅𝜅
 𝑒𝑒 = 𝜏𝜏𝑏𝑏𝑘𝑘,𝜎𝜎

𝑒𝑒 , adopting free electron gas assumption, and neglecting the higher order term 

in Eq. (17), the famous Wiedemann-Franz law is obtained [13] 

 𝜅𝜅𝑒𝑒
𝜎𝜎𝑇𝑇

= 𝐿𝐿0 =
𝜋𝜋2

3 �
𝑘𝑘𝐵𝐵
𝑒𝑒 �

2

= 2.4453 × 10−8 𝑊𝑊Ω/𝐾𝐾2 (18) 

where the ratio of the electronic thermal conductivity to electrical conductivity is proportional to 

the absolute temperature, and the proportionality constant is the Sommerfeld value 𝐿𝐿0 [35] for the 
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Lorenz number. In this work, we refer to this approach as the WF approach, signifying the use of 

the Wiedemann-Franz law. To calculate 𝜅𝜅𝑒𝑒, the electrical conductivity (𝜎𝜎) is calculated using the 

Drude theory, 

 𝜎𝜎 =
𝑛𝑛𝑒𝑒𝑒𝑒2

𝑚𝑚
𝜏𝜏𝜎𝜎𝑒𝑒  (19) 

Here, 𝜏𝜏𝑏𝑏𝑘𝑘,𝜎𝜎
𝑒𝑒  is written as 𝜏𝜏𝜎𝜎𝑒𝑒 , since in this work, isotropic RTs for all the electron scattering 

processes are considered. The obtained electrical conductivity 𝜎𝜎 is then used to calculate 𝜅𝜅𝑒𝑒 using 

Eq. (18). 

The Wiedemann-Franz law is usually well obeyed at high temperatures. However, it has 

been shown to fail at low- and intermediate-temperatures when electrons participate in inelastic 

scattering events [13, 14]. In these situations, it is essential to distinguish between the electronic 

and thermal RTs of electron scatterings.  

In the second approach, one considers 𝜏𝜏𝑏𝑏𝑘𝑘,𝜅𝜅
 𝑒𝑒 ≠ 𝜏𝜏𝑏𝑏𝑘𝑘,𝜎𝜎

𝑒𝑒  for electron scattering processes. The 

transport coefficients are evaluated first using Eq. (13). In determining the electrical conductivity 

𝜎𝜎, the transport coefficient ℒ0 is calculated using the electronic RT, 𝜏𝜏𝜎𝜎𝑒𝑒 . On the other hand, in 

determining the electronic thermal conductivity 𝜅𝜅𝑒𝑒, the transport coefficients ℒ𝑝𝑝(𝑝𝑝 = 0,1,2) are 

calculated using the thermal RT, 𝜏𝜏𝜅𝜅𝑒𝑒. We refer to this approach as the TC approach to indicate the 

use of the transport coefficients.  

For both WF and TC approach, the electron RTs - both 𝜏𝜏𝜅𝜅 𝑒𝑒 and 𝜏𝜏𝜎𝜎𝑒𝑒  – can be calculated using 

Matthiessen’s rule [21, 24] 

 
1

𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒 =

1
𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒−𝑝𝑝ℎ +

1
𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒−𝑒𝑒 +

1
𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒−𝑑𝑑  (20) 
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where 𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒−𝑝𝑝ℎ , 𝜏𝜏𝜅𝜅(𝜎𝜎)

𝑒𝑒−𝑒𝑒 , and 𝜏𝜏𝜅𝜅(𝜎𝜎)
𝑒𝑒−𝑑𝑑  are the thermal (electronic) RTs of electron-phonon, electron-

electron, and electron-defect scattering processes, respectively.  

Considering the electron-phonon scattering, the RT is determined by the coupling function 

for the electron-phonon interaction. By treating electrons as free electrons and limiting the 

available phonons for electron-phonon scattering in the long-wavelength limits, the coupling 

function 𝐶𝐶𝑒𝑒−𝑝𝑝ℎ is given by [36] 

 𝐶𝐶𝑒𝑒−𝑝𝑝ℎ = �𝜆𝜆
𝜋𝜋2ℏ3𝜔𝜔𝜈𝜈𝜈𝜈
𝑚𝑚𝑘𝑘𝐹𝐹

 (21) 

where 𝑘𝑘𝐹𝐹 is the Fermi wavevector. The dimensionless parameter 𝜆𝜆 is calculated as 

 𝜆𝜆 =
2𝑍𝑍𝑚𝑚
3𝑀𝑀

 �
𝐸𝐸𝐹𝐹
𝑘𝑘𝐵𝐵Θ𝑠𝑠

�
2

 (22) 

where 𝑍𝑍 is the ionic charge and 𝐸𝐸𝐹𝐹 is the Fermi energy. The temperature Θ𝑠𝑠 = 𝑣𝑣𝑠𝑠ℏ𝑘𝑘𝐹𝐹
𝑘𝑘𝐵𝐵

 represents 

the Bloch-Grüneisen temperature [37, 38] where 𝑣𝑣𝑠𝑠 is the group velocity of longitudinal acoustic 

phonons in the long-wavelength limit. Using the coupling function obtained from Eq. (21), the 

RT can be calculated from the collision integral of the electron BTE. The detailed derivation is 

found in [21, 36], from which the electronic and thermal RTs are given as [36] 

 
1

𝜏𝜏𝜎𝜎
𝑒𝑒−𝑝𝑝ℎ =

𝜋𝜋
2
𝜆𝜆
𝑘𝑘𝐵𝐵𝑇𝑇5

ℏΘ𝑠𝑠4
𝐽𝐽5 (23) 

 
1

𝜏𝜏𝜅𝜅
𝑒𝑒−𝑝𝑝ℎ =

𝜋𝜋
2
𝜆𝜆
𝑘𝑘𝐵𝐵𝑇𝑇5

ℏΘ𝑠𝑠4
𝐽𝐽5(1 +

3Θ𝑠𝑠2

𝜋𝜋2𝑇𝑇2
−

𝐽𝐽7
2𝜋𝜋2𝑇𝑇2

) (24) 

where 𝐽𝐽𝑖𝑖 = ∫ 𝑥𝑥𝑛𝑛

4sinh2(𝑥𝑥2)

2Θ𝑠𝑠
𝑇𝑇

0 𝑑𝑑𝑑𝑑.  

The electronic and thermal RT for electron-electron scattering is [21, 39, 40] 
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1

𝜏𝜏𝜅𝜅𝑒𝑒−𝑒𝑒
=

1
𝜏𝜏𝜎𝜎𝑒𝑒−𝑒𝑒

=
𝑒𝑒4(𝑘𝑘𝐵𝐵𝑇𝑇)2

16𝜋𝜋ℏ4𝜖𝜖02𝑘𝑘𝐹𝐹𝑣𝑣𝐹𝐹3
 �1 + �

𝐸𝐸𝐹𝐹
𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

�
2

� 𝑌𝑌 �
2𝑘𝑘𝐹𝐹
𝑘𝑘𝑇𝑇𝐹𝐹

�   (25) 

where 𝜖𝜖0 is vacuum permittivity, 𝑣𝑣𝐹𝐹  is electron Fermi velocity, 𝑘𝑘𝑇𝑇𝐹𝐹 = �4𝑘𝑘𝐹𝐹𝑚𝑚𝑒𝑒2

𝜋𝜋ℏ2
 is the Thomas-

Fermi screening parameter and the analytical function 𝑌𝑌(𝑑𝑑) = 𝑥𝑥3

4
[tan−1 𝑑𝑑 + 𝑥𝑥2

1+𝑥𝑥2
−

1
√2+𝑥𝑥2

tan−1 𝑑𝑑 √2 + 𝑑𝑑2]. Eq. (25) has been applied to estimate electrical resistivity of a number of 

metals including Al, Mg, In, and so on [40].   

Finally, the electronic and thermal electron-defect RT due to a static charged defect of 

valance 𝑍𝑍 that occupies a lattice site is given by [21] 

 
1

𝜏𝜏𝜅𝜅𝑒𝑒−𝑑𝑑
=

1
𝜏𝜏𝜎𝜎𝑒𝑒−𝑑𝑑

=
2𝜋𝜋𝑛𝑛𝑑𝑑𝐸𝐸𝐹𝐹𝑍𝑍2

3ℏ𝑛𝑛𝑒𝑒
𝐹𝐹 �

2𝑘𝑘𝐹𝐹
𝑘𝑘𝑇𝑇𝐹𝐹

� (26) 

where the function 𝐹𝐹(𝑑𝑑) = 2[ln(1+𝑥𝑥)−𝑥𝑥/(1+𝑥𝑥)]
𝑥𝑥2

. Through a screened Coulomb interaction, the 

electric filed generated by the charged defect drives the electrons to redistribute around the defect 

site and perturbs the ion-electron potential energy. The expression of 𝜏𝜏𝜅𝜅𝑒𝑒−𝑑𝑑 is derived using the 

perturbation potential energy. Eq. (26) was used to calculate the change in electrical resistivity of 

Cu due to Ag and Au defects and compares well with experimental data [21]. In this work, all 

defects are considered as charged defects. 

3 COMPUTATIONAL DETAILS 

In this section, we present the details of the computational procedure. DFF was used to 

compute the phonon and electronic band structure required for the thermal conductivity 

calculations, as well as the anharmonic force constants required as input in phonon-phonon 

scattering rates. All the DFT calculations were performed using VASP [41]. Initial lattice constants 

and atomic coordinates for the 𝛼𝛼 -U unit cell was taken from X-ray diffraction experiments 
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conducted at 298K [5]. The exchange-correlation functional with the Perdew, Burke, and 

Ernzerhof (PBE) [42] form under the Generalized Gradient Approximation (GGA) [43] was 

chosen. The cutoff energy for the plane-wave basis set was set to 450 eV and the first Brillouin 

zone (BZ) was sampled with a 8 × 8 × 8 Monkhorst-Pack k-point mesh grid. For lattice structural 

relaxation, the conjugate-gradient algorithm was used where the stopping criteria for self-

consistent electronic loop and ionic relaxation were set to 0.1 and 1 meV, respectively. Density 

functional perturbation theory (DFPT) [44] as implemented in the VASP code was used for the 

calculation of phonon properties. The phonon dispersion spectra were obtained using the Phonopy 

code [45], considering a 4 × 4 × 4 supercell and a 4 × 4 × 4 Monkhorst-Pack q-point mesh grid. 

For electronic band structure calculations, a 10 × 10 × 10 Monkhorst-Pack k-point mesh grid was 

used. For the phonon-phonon RT calculations where third-order force constant matrix is needed, 

an auxiliary python module thirdorder.py in the ShengBTE code  [22] was used. The anharmonic 

force constants were calculated using a 4 × 4 × 4 supercell. For all the other RTs, the required 

parameters were extracted from the already obtained phonon dispersion, electronic band structure, 

and ground-state data such as Fermi energy, Fermi velocity, and so on. 

To study the impact of defects on thermal transport in 𝛼𝛼-U, three different defects are 

considered: U-vacancy, U-interstitial, and Zr-substitution. A defected lattice site is created in 

3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 U supercells for each defect, resulting in defect concentration 

of 𝑛𝑛𝑑𝑑 = 0.4%, 0.78%,  and 1.85% , respectively. The supercell shape and internal atomic 

coordinates of all the defected supercells were relaxed to obtain equilibrium configuration. The 

Monkhorst-Pack k-point mesh used in the relaxation were 4 × 4 × 4, 4 × 4 × 4, and 2 × 2 × 2 

for the 3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 supercells, respectively. For Zr-substitution in 𝛼𝛼-U, 

we adopted DFT+U functional [46], which has been shown to produce more accurate total energy 
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and lattice structure for U-Zr systems than the standard DFT [47]. The VASP inputs for DFT+U 

functional were set as 𝑈𝑈 = 1.75 and 𝐽𝐽 = 0.51, which are the same setting as a previous study on 

electronic and structural properties of U-Zr system [47]. The force constants at the defected lattice 

site were calculated by moving the target atom from its equilibrium position from -0.05 Å to 0.05 

Å in increment of 0.01 Å, along three cartesian directions. The resultant energy-displacement 

curves were fit to second-order polynomials where the coefficients were taken as half of the force 

constants. 

4 RESULTS AND DISCUSSION 

4.1 Lattice structure 

The 𝛼𝛼-U crystal has a face-centered orthorhombic structure with two atoms per primitive 

unit cell (space group: Cmcm, No. 63), as shown in Figure 1. The conventional unit cell contains 

four atoms at 4𝑐𝑐, (0,𝑦𝑦, 0.25) Wyckoff positions. In Table 1, we list the lattice parameters and 

fractional coordinates of the atoms from our DFT calculations compared to other published results. 

Our calculated lattice parameters are well within the range of other theoretical calculations. The 

lattice parameters 𝑎𝑎 , 𝑏𝑏 , 𝑐𝑐 , and volume per atom is only slightly smaller compared to the 

experimental data. We conclude that the crystal structure of 𝛼𝛼-U is well reproduced by our DFT 

calculation. 



Page | 15 
 

 

Figure 1. (a) Top view and (b) side view of the lattice configuration of a 3 × 3 × 3 𝛼𝛼-U supercell. The primitive unit 
cell is represented by the black boxes, each consisting of two U atoms. The red lines outline the orthorhombic unit 
cell, with the lattice parameters 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 represented by the red arrows.  

 

Table 1. Lattice parameters (𝑎𝑎, 𝑏𝑏, and 𝑐𝑐), the fractional coordinate of the atoms (𝑦𝑦), and atomic volume of 𝛼𝛼-U from 
simulations (Sim), experiments (Exp), and this work.  

 Reference 𝑎𝑎 (Å) 𝑏𝑏 (Å) 𝑐𝑐 (Å) 𝑦𝑦 Volume/atom (Å3) 

Sim 

PBE-DFT [48] 2.793 5.849 4.894 0.098 19.987 
PW91-DFT [49] 2.8 5.896 4.893 0.097 20.194 
Full-potential [6] 2.845 5.818 4.996 0.103 20.674 
LDA-DFT [50] 2.809 5.447 4.964  19.026 
PBE-DFT [12] 2.794 5.844 4.913 0.098 20.057 

Exp 
T=4.2 K [5] 2.844 5.869 4.932 0.102 20.535 

T=298 K [51] 2.854 5.87 4.956  20.751 
T=298 K [52] 2.8553 5.8701 4.9568  20.77 

Present 
work PBE-GGA DFT 2.817 5.867 4.875 0.098 19.99 

 

4.2 Phonon dispersion and electronic band structure 

In our thermal conductivity model, the accuracy of the phonon dispersion and electronic 

band structure data is important. In Figure 2, the calculated phonon dispersion and density of states 

(DOS) are compared with other published results. Our results agree well with experimental data 

along the [100] direction [53, 54, 55, 56]. Specifically, the phonon frequencies and the slope of 

the dispersion of the acoustic branches near the Γ  point show excellent agreement with the 

experimental data. Large discrepancies between theory and experimental dispersion data of the 



Page | 16 
 

optical branches along the [010] and [001] are observed. These optical branches obtained from 

other DFT calculations [56, 57] also show similar discrepancies in comparison to the experimental 

data.  The possible explanations include large uncertainty in the measurements for these modes 

[53, 56], the temperature difference between our DFT calculations (0K) and experiments (300K), 

and the charge-density-wave transition which could potentially affect the optical phonons [1]. 

Figure 3 shows our calculated electronic band structure and DOS, which agrees well with other 

DFT calculations [47] and experimental measurements [58].  

 

 

 

Figure 2. Phonon dispersion curves and DOS calculated using Phonopy and VASP. The dispersion is compared with 
Crummette’s inelastic neutron scattering measurements data [53] and Manley’s X-ray scattering measurements data 
[54]. The DOS data is compared with data obtained from neutron scattering experiments (Exp) at 50K [55] and MD 
simulation [59].  
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Figure 3. Electronic band structure and DOS of 𝛼𝛼-U. The electronic bands are compared with results obtained from 
other DFT calculations [47]. The DOS data is compared with DFT calculations [47] and X-ray photoemission 
spectroscopy measurements [58]. 

 

4.3 Thermal properties of defect-free 𝜶𝜶-U 

The thermal conductivity of defect-free 𝛼𝛼-U serves as a reference point to investigate the 

effect of defects on thermal transport. We calculate the thermal conductivity of 𝛼𝛼-U from 43K to 

933K and show the results in Figure 4(a, b). Overall, the thermal conductivity calculated using the 

TC approach agrees better with experimental data than the WF approach. The two main reasons 

for the difference between 𝜅𝜅𝑒𝑒  obtained from the TC and WF approaches are: firstly, complete 

information of the electronic band structure is incorporated into the calculation of 𝜅𝜅𝑒𝑒 in the TC 

approach by Eq. (13) and (16), while the complex electronic band structure is overly simplified as 

the classical free electron gas model in the WF approach, leading to inaccurate value of 𝜅𝜅𝑒𝑒 . 

Secondly, in the WF approach, the Sommerfeld value of the Lorenz number is used, whereas, in 

the TC approach, the Lorenz number is temperature dependent. We plot the Lorenz number in the 
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WF and TC approach in Figure 4(c). It is seen that the Lorenz numbers along three directions are 

all temperature dependent, and rarely equals the classical Sommerfeld value. It has already been 

shown that the Lorenz number is temperature-dependent and varies with different materials [60, 

61]. As pointed out by Ziman and Kittel, the Lorenz number for metals can deviate from the 

Sommerfeld value due to different RTs of electron scattering processes in electrical and thermal 

transport [62, 13]. Hence, we conclude that for evaluating electronic thermal conductivity of 𝛼𝛼-U, 

one should adopt the TC method instead of the WF approach. For the rest of this paper, the results 

presented are all obtained using the TC approach. In Figure 4(d), specific heat from phonon and 

electronic contributions are shown. The phonon-specific heat shows a 𝑇𝑇−3  dependence at low 

temperatures and approaches the Dulong-petit limit (around 25 J/mol/K) at high temperatures. The 

electronic specific heat depends linearly on temperature, with the linear coefficient 𝛾𝛾 =

5.3 × 10−3 J/mol/K comparable to other metals such as Fe and Co [14]. The total specific heat 

from our DFT calculation agrees well with the experimental data from 43 K to 350 K. Our 

calculated specific heat values from 350 K to 933 K could aid the future experimental 

measurements on the 𝛼𝛼-U specific heat. 
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Figure 4. Thermal conductivity of defect-free 𝛼𝛼-U using the (a) WF and (b) TC approach from 43K to 933K. The 
solid lines represent thermal conductivity along [100], [010], and [001] directions, while the dashed line represents 
total thermal conductivity κtot = 1

3
(κ[100] + κ[010] + κ[001]). The scatter points represent experimentally measured 

thermal conductivity values [9, 8, 63, 64, 11, 65, 10]. (c) Lorenz number obtained from TC approach along three 
directions. The dashed line represents the Sommerfeld value used to determine κe from σ in the WF approach. (d) The 
total, phonon, and electronic volumetric specific heat from our DFT calculations compared to experimental 
measurements data [66]. 

 

To distinguish between the electron and phonon contributions towards the total thermal 

conductivity, we plot 𝜅𝜅𝑒𝑒 and 𝜅𝜅𝑝𝑝ℎ as a function of temperature in Figure 5(a). At low temperatures, 

phonon transport dominates the thermal transport in 𝛼𝛼-U along all three directions. As temperature 

increases, phonons are scattered more frequently by phonons and electrons, resulting in a 

continuous decrease in phonon thermal conductivity. On the other hand, as temperature rises, the 

population of excited electrons increases, resulting in increasing 𝜅𝜅𝑒𝑒. Phonons and electrons make 
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almost equal contributions to thermal conductivity along [100], [010], and [001] directions at 175 

K, 60 K, and 100 K, respectively. Therefore, electrons are major heat carriers at room temperature 

and above and dominate the thermal transport in 𝛼𝛼-U, which agrees with the other DFT model of 

𝛼𝛼-U thermal conductivity [12]. The thermal conductivity of 𝛼𝛼-U exhibits temperature-dependent 

anisotropy, as is shown in Figure 5(b). Both our and Shuxiang et al.’s [12] results show that the 

anisotropy of thermal conductivity decreases with increasing temperature. Thermal conductivity 

tends to be more isotropic at high temperatures. For phonon thermal conductivity 𝜅𝜅𝑝𝑝ℎ , at low 

temperatures, most of the excited phonons are low energy, acoustic phonons with different 

magnitude of group velocities along different directions, as is shown in Figure 2. Thus, the 

calculated 𝜅𝜅𝑝𝑝ℎ  according to Eq. (2) shows strong anisotropy. As temperature increases, more 

higher energy phonons are excited, of which the group velocity magnitude becomes less 

directional dependent. As a result, the anisotropy decreases. For the electronic thermal 

conductivity 𝜅𝜅𝑒𝑒 , as temperature rises, the difference among the electron velocities along three 

directions is amplified in calculating the generalized transport coefficients ℒ0 , ℒ1 , and ℒ2 

according to Eq. (13). As a result, the electronic thermal conductivity becomes more directional-

dependent.  
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Figure 5. (a) Phonon and electronic thermal conductivity along three directions. (b) Thermal conductivity anisotropy 
of 𝛼𝛼-U from our and Shuxiang et al.’s DFT [12] calculations. (c) Phonon thermal conductivity calculated using only 
1/𝜏𝜏𝜈𝜈𝜈𝜈

𝑝𝑝ℎ−𝑝𝑝ℎ  (dashed lines) and using both 1/𝜏𝜏𝜈𝜈𝜈𝜈
𝑝𝑝ℎ−𝑝𝑝ℎ  and 1/𝜏𝜏𝜈𝜈𝜈𝜈

𝑝𝑝ℎ−𝑒𝑒  (solid lines) in Eq. (4). (d) Electronic thermal 
conductivity calculated using 1/𝜏𝜏𝜅𝜅

𝑒𝑒−𝑝𝑝ℎ only (dashed lines) and using both 1/𝜏𝜏𝜅𝜅
𝑒𝑒−𝑝𝑝ℎ and 1/𝜏𝜏𝜅𝜅𝑒𝑒−𝑒𝑒 (dashed lines) in Eq. 

(20).  
 

Figure 5(c) shows the impact of phonon-electron scatterings on the phonon thermal 

conductivity, by displaying the impact of the phonon-phonon process (dashed lines) versus the 

phonon-phonon plus the phonon-electron process (solid lines). The figure shows that adding the 

phonon-electron scattering degrades the thermal conductivity by only a small amount at all 

temperatures. At room temperature, the phonon-electron scatterings only reduce the conductivity 

by about 7.6%, 3%, and 7.3% relative to the phonon thermal conductivity along [100], [010], and 

[001] directions, respectively, when considered in addition to the phonon-phonon process. A 

similar conclusion has been drawn in other metals such as Al and Ag, where the effect of phonon-
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electron scatterings on phonon thermal conductivity is negligible above room temperature [67]. 

Therefore, we conclude that the phonon-phonon scatterings dominate the phonon thermal 

conductivity of 𝛼𝛼-U at all temperatures. Figure 5(d) shows the impact of electron-electron and 

electron-phonon scattering on the electronic thermal conductivity, by displaying the impact of the 

electron-electron plus the electron-phonon processes (solid lines) versus the electron-phonon 

process alone (dashed lines). With the electron-electron scattering added to the electron-phonon 

scattering, the electronic thermal conductivity is only reduced slightly at all temperatures. 

Therefore, the electronic thermal transport in 𝛼𝛼-U is dominated by the electron-phonon scatterings. 

The electrons scattering by phonons thus plays a decisive role in determining the electronic thermal 

conductivity whereas the phonons scattering by electrons has negligible influence on the phonon 

thermal conductivity. 

4.4 Effect of point defects on thermal conductivity 

The lattice configurations of U-vacancy, U-interstitial, and Zr-substitution defected 𝛼𝛼-U 

supercells obtained from DFT calculations are shown in Figure 6.  The vacancy and substitution 

defects are created on the U atomic sites. For the U-interstitial, the U interstice is placed at the so-

called free space site, as is shown in Figure 6(b) [68]. Among the four possible interstitial sites 

around a lattice site in 𝛼𝛼 -U unit cell: free space, the [100], [010], and [001] split dumbbell 

interstitials, the free space interstitial defected lattice configuration has the lowest formation 

energy and thus more energetically favorable when an interstitial defect is created [68, 69]. The 

structural properties of the defected supercell and the formation energy of defects are listed in 

Table 2. Our calculated defect formation energies agree well with other published results. The 

formation energy of the U-interstitial (4.9 eV) is much larger than the value of vacancy (1.9 eV) 

due to the large atomic radius of U and the close-packed nature of the lattice structure [69].  
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Figure 6. Equilibrium lattice configuration of (a) U-vacancy, (b) U-interstitial, and (c) Zr-substitution defected 
3 × 3 × 3 𝛼𝛼-U supercell obtained from DFT calculations. The internal coordinates of the U interstice are (0.49, 0.802, 
0.78) based on the basis vector of the conventional cell of 𝛼𝛼-U. These values compare well with the other DFT 
calculation of the U interstice coordinates (0.5, 0.812, and 0.8) [68]. 
 

Table 2. Lattice parameters and formation energy of defected 𝛼𝛼-U. The vacancy formation energy is calculated using 
𝐸𝐸𝑉𝑉 = 𝐸𝐸𝑖𝑖−1 −

𝑖𝑖−1
𝑖𝑖
𝐸𝐸𝑖𝑖 where 𝐸𝐸𝑖𝑖−1 and 𝐸𝐸𝑖𝑖 is the total energy of the supercell after and before the vacancy is created, 

𝑛𝑛 = 54 is the number of atoms in the supercell. Similarly, the interstitial formation energy is calculated using 𝐸𝐸𝐼𝐼 =
𝐸𝐸𝑖𝑖+1 −

𝑖𝑖+1
𝑖𝑖
𝐸𝐸𝑖𝑖 where 𝐸𝐸𝑖𝑖+1 is the total energy of the supercell after the interstitial defect is created. The substitution 

formation energy is calculated using 𝐸𝐸𝑆𝑆 = 𝐸𝐸(𝑖𝑖−1)𝑈𝑈+𝑍𝑍𝑍𝑍 −
𝑖𝑖−1
𝑖𝑖
𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑍𝑍𝑍𝑍  where 𝐸𝐸(𝑖𝑖−1)𝑈𝑈+𝑍𝑍𝑍𝑍  is the total energy of the 

supercell after the interstitial defect is created and 𝐸𝐸𝑍𝑍𝑍𝑍 is the energy of one Zr atom in the 𝛼𝛼-U phase. 

 a (Å) b (Å) c (Å) 
Volume/atom 

(Å3) 
Formation 

energy (eV) References 

Perfect 2.817 5.867 4.875 19.99   

U vacancy 2.797 5.83 4.886 19.92 1.9 1.95 [49], 
1.86 [68]  

U interstitial 2.829 5.847 4.932 20.39 4.9 3.53 [68], 
4.42 [69] 

Zr substitution 2.871 5.887 4.999 21.13 3.9  

 

The phonon and electronic thermal conductivities along the [100] direction of three types 

of defected 𝛼𝛼-U are plotted in Figure 7(a)(c)(e). All defects lead to reductions of both 𝜅𝜅𝑝𝑝ℎ and 𝜅𝜅𝑒𝑒 

since the phonon-defect and electron-defect scatterings hinder thermal transport. For 𝜅𝜅𝑝𝑝ℎ , the 

reduction due to the phonon-defect scatterings is gradually diminished as temperature increases. 

This is because the phonon-defect scatterings are predominant only at low temperatures. As 
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temperature increases, the phonon-phonon and phonon-electron scatterings become more and 

more dominant so that the contribution from the phonon-defect scattering to 𝜅𝜅𝑝𝑝ℎ  decreases. 

However, a reverse trend is observed for 𝜅𝜅𝑒𝑒 where the reduction due to electron-defect scatterings 

increases as temperature increases. The temperature dependence of 𝜅𝜅𝑒𝑒 can be explained by Eq. (7), 

where the electronic thermal conductivity can be written as 𝜅𝜅𝑒𝑒 = 𝐿𝐿𝐿𝐿𝑇𝑇 . For electron-defect 

scatterings, the electrical resistivity 𝐿𝐿 is temperature independent since the electron-defect RT 

given by Eq. (26) is temperature independent. Therefore, 𝜅𝜅𝑒𝑒 exhibits almost linear dependence on 

temperature. The contribution of electron-defect scatterings to thermal conductivity is more 

prominent at high temperatures. By summing up 𝜅𝜅𝑒𝑒 and 𝜅𝜅𝑝𝑝ℎ, the total thermal conductivities along 

the [100] direction of defected 𝛼𝛼-U are obtained and plotted in Figure 7(b)(d)(f). The temperature 

at which the total thermal conductivity reaches minimum decreases with increasing defect 

concentration, denoted by the green arrows. This is because at low temperatures, the phonon-defect 

scattering greatly reduces phonon thermal conductivity which contributes most to the total thermal 

conductivity. Meanwhile, the electronic thermal conductivity is almost unaffected by the electron-

defect scattering. Therefore, the contribution from electrons starts to dominate the total thermal 

conductivity at a lower temperature when more defects are introduced into the crystal. As a result, 

the temperature dependence of the total thermal conductivity reverses at a lower temperature.  
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Figure 7. Phonon and electronic thermal conductivity ([100] direction) of (a) U-vacancy, (c) U-interstitial, and (e) Zr-
substitution defected 𝛼𝛼-U with different defect concentrations. Total thermal conductivity of (b) U-vacancy, (d) U-
interstitial, and (f) Zr-substitution defected 𝛼𝛼-U.  

To quantitatively compare thermal conductivity reduction due to different types of defects 

at different temperatures, we choose three representative temperatures to show thermal 

conductivity as a function of defect concentration in Figure 8(a)(c)(e). The effect of defects on 

thermal conductivity is more prominent at low temperatures. As is shown in Figure 8(a), the U-

vacancy defect greatly reduces thermal conductivity at 50 K where 1.85% U-vacancy degrades 

thermal conductivity from 53.3 W/m/K to 25.3 W/m/K. At room temperature, thermal conductivity 
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decreases from 27.7 W/m/K to 26.3 W/m/K, 25.4 W/m/K, and 23.5 W/m/K for vacancy 

concentration of 0.4%, 0.78%, and 1.85%, respectively. At 600 K, the percentage thermal 

conductivity reductions due to vacancy are almost identical to the reductions at room temperature. 

Similar observations are made for U-interstitial and Zr-substitutional defects that the largest 

thermal conductivity reduction occurs at 50 K. This is clearly shown in Figure 8(b)(d)(f), where 

we plot 𝜅𝜅𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑡𝑡/𝜅𝜅𝑝𝑝𝑝𝑝𝑍𝑍𝑒𝑒 of different defects as a function of temperature. The percentage reduction 

of thermal conductivity due to defects decreases as temperature is raised. Moreover, the percentage 

reductions of thermal conductivity due to defects along all three directions are isotropic at high 

temperatures (T>600 K) whereas at low temperatures (T<200 K), the reductions are anisotropic. 

This is because the thermal conductivity reduction is dominated by phonon-defect scatterings at 

low temperatures. Since the phonon-defect RTs calculated using Eq. (9) is phonon mode-

dependent, the phonon thermal conductivity of defected 𝛼𝛼-U is anisotropic. However, at high 

temperatures, the thermal conductivity reduction is dominated by electron-defect scatterings for 

which we adopt an isotropic electron-defect RTs in Eq. (26). Therefore, the electronic thermal 

conductivity reduction by including electron-defect RTs is isotropic. 
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Figure 8. Thermal conductivity (50K, 300K, and 600K) of defected 𝛼𝛼-U as a function of (a) U-vacancy, (c) U-
interstitial, and (e) Zr-substitution defect concentration. The ratio between the thermal conductivity along all three 
cartesian directions of defected and pure 𝛼𝛼-U as a function of temperature and defect concentration for (b) U-vacancy, 
(d) U-interstitial, and (f) Zr-substitution.  

 

To understand the effect of defect type on thermal conductivity of 𝛼𝛼-U, we show the 

percentage reduction of room temperature thermal conductivity due to different defects in  Figure 

9(a). The presence of U vacancy in 𝛼𝛼-U has the most substantial influence on thermal conductivity 
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compared to U-interstitial and Zr-substitution. As is shown in Table 3, the phonon scattering 

parameter of U-vacancy defect is the largest among three defects, leading to the greatest reduction 

in phonon RTs. Despite the same mass difference due to U-vacancy and U-interstitial defects, the 

difference in the stoichiometric average of the lattice and interstitial sites used in Eq. (11) leads to 

different scattering parameters for these two defects.  

Table 3. Scattering parameters 𝐺𝐺 for each defected type in 𝛼𝛼-U with defect concentration 𝑛𝑛𝑑𝑑 = 1.84%. The average 
mass, force constant, and radius per atom site for perfect 𝛼𝛼-U are 𝑀𝑀 = 238.03 𝑎𝑎𝑚𝑚𝑎𝑎, 𝐾𝐾 = 14.11 𝑒𝑒𝑉𝑉/Å2, and 𝑅𝑅 =
1.69 Å, respectively. The interstitial atom has a stoichiometry corresponding to the ratio of interstitial sites to lattice 
sites [33], which in the 𝛼𝛼-U case is 3.5 since there are 7 interstitial sites and 2 lattice sites per unit cell. 

Defect type Δ𝑀𝑀 (amu) Δ𝐾𝐾(𝑒𝑒𝑉𝑉/Å2) Δ𝑅𝑅(Å) 𝐺𝐺 
U-vacancy -714.087   0.594 

U-interstitial 714.087   0.169 
Zr-substitution -146.805 -2.404 0.025 0.389 

  

To gain a better understanding of the effect of point defects on phonon RTs, we show the 

phonon RTs of pure 𝛼𝛼-U and defected 𝛼𝛼-U with a concentration of 1.84% at room temperature in 

Figure 9(b)(c)(d). All three defects lead to a reduction in phonon RTs, most noticeably in the high-

frequency phonons – the optical modes. However, since the contributions from the optical modes 

towards phonon thermal conductivity are small due to their low group velocities, the resulting 

reduction in thermal conductivity is relatively small. To explore the effect of point defects on 

thermal transport at different temperature, in Figure 9(d)(e)(f), the phonon RTs of pure and Zr-

substitution defected 𝛼𝛼-U with 1.84% defect concentration at three representative temperatures – 

50 K, 300 K, and 600 K – are shown. The phonon RTs of both pure and defected 𝛼𝛼-U decrease 

with increasing temperatures, leading to the decreasing phonon thermal conductivity with 

increasing temperature we have already shown in Figure 7(a)(c)(e). Moreover, the reduction in the 

phonon RTs due to Zr-substitution defects also decreases with increasing temperature, as we 

compare the difference between the RTs of pure and defected 𝛼𝛼-U in at the three temperatures. 
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This explains why phonon thermal conductivity appears to be not affected by the Zr-substitution 

defect at around 900 K while reduced by 31.0 W/m/K at 43 K, as is shown in Figure 7(e). 

 

Figure 9. (a) Thermal conductivity ([100] direction, T=300 K) of 𝛼𝛼-U as a function of defect concentration for the 
three types of point defects. Phonon-phonon RTs of pure 𝛼𝛼-U and (b) U-vacancy, (c) U-interstitial, and (d) Zr-
substitution defected 𝛼𝛼-U with a defect concentration of 1.84%. Phonon-phonon RTs Zr-substitution defected 𝛼𝛼-U 
with a defect concentration of 1.84% at (d) 300 K, (e) 50 K, and (f) 600 K. In (d)(e)(f), a general trend of decreasing 
RTs with increasing temperature can be observed by taking the dashed line as a reference. Also, the difference between 
RTs of pure and Zr-substitution defected 𝛼𝛼-U also becomes smaller as temperature is raised, as more overlapping 
between the red and blue scatter points appear at high temperature. 
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5 CONCLUDING REMARKS 

We have developed a theoretical model of 𝛼𝛼-U thermal conductivity which is based on 

DFT calculation and phonon/electron BTE. The thermal conductivity incorporates both electron 

and phonon contributions, where the phonon thermal conductivity accounts for the phonon-phonon, 

phonon-electron, and phonon-defect scattering processes and the electronic thermal conductivity 

accounts for the electron-phonon, electron-electron, and electron-defect scattering processes. All 

the parameters are produced using DFT methods, without fitting to any experimental data. The 

model also goes beyond the traditional Wiedemann-Franz law that assumes constant Lorentz 

number and adopts temperature-dependent Lorentz number for evaluating the electronic thermal 

conductivity.  

The thermal conductivity values from 43 K to 933 K of pure 𝛼𝛼-U produced by our model 

agrees better with experimental data than the model using the Wiedemann-Franz law. We show 

that at room temperature and above, electrons are the major heat carriers. Over the entire 

temperature range, the phonon-phonon scatterings dominate phonon thermal conductivity while 

the electron-phonon scatterings dominate electronic thermal conductivity. The effects of three 

different defects – U-vacancy, U-interstitial, and Zr-substitution – on thermal conductivity of 𝛼𝛼-U 

are studied. Defects reduce thermal conductivity significantly at low temperatures where phonon-

defect scattering becomes dominant mechanism in thermal transport. The degradation of thermal 

conductivity along all three crystallographic directions due to defects are almost isotropic. Among 

the three defects, U-vacancy has the most substantial impact on thermal conductivity due to largest 

changes in mass and force constants that leads to the greatest reduction in phonon RTs.  

Based on the current work, there are several directions for future work. Both the electron-

defect and phonon-defect RTs can be calculated using the first-principle methods so as to testify 
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the classical models used in this work, such as the Klemen’s model for phonon-defect RTs. With 

the RTs data of various scattering processes that we have produced in this work, a transport 

solution to the coupled electron-phonon BTE would also be promising. For instance, a Monte 

Carlo scheme can be developed for solving the BTE in metallic materials with the capability of 

studying electron and phonon transport in complex geometries. Moreover, exploring the effect of 

defects other than point defects, such as vacancy clusters and dislocation loops, on thermal 

transport in 𝛼𝛼-U is also an intriguing problem. 
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