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Abstract7

We present a new Subset Simulation approach using Hamiltonian neural network-based Monte Carlo8

sampling for reliability analysis. The proposed strategy combines the superior sampling of the Hamiltonian9

Monte Carlo method with computationally efficient gradient evaluations using Hamiltonian neural networks.10

This combination is especially advantageous because the neural network architecture conserves the Hamil-11

tonian, which defines the acceptance criteria of the Hamiltonian Monte Carlo sampler. Hence, this strategy12

achieves high acceptance rates at low computational cost. Our approach estimates small failure probabilities13

using Subset Simulations. However, in low-probability sample regions, the gradient evaluation is particu-14

larly challenging. The remarkable accuracy of the proposed strategy is demonstrated on different reliability15

problems, and its efficiency is compared to the traditional Hamiltonian Monte Carlo method. We note16

that this approach can reach its limitations for gradient estimations in low-probability regions of complex17

and high-dimensional distributions. Thus, we propose techniques to improve gradient prediction in these18

particular situations and enable accurate estimations of the probability of failure. The highlight of this19

study is the reliability analysis of a system whose parameter distributions must be inferred with Bayesian20

inference problems. In such a case, the Hamiltonian Monte Carlo method requires a full model evaluation21

for each gradient evaluation and, therefore, comes at a very high cost. However, using Hamiltonian neural22

networks in this framework replaces the expensive model evaluation, resulting in tremendous improvements23

in computational efficiency.24

Keywords: Subset Simulation; Hamiltonian Neural Networks; Hamiltonian Monte Carlo; Rare event25

simulation; Bayesian inference26

1. Introduction27

Engineers are responsible for designing reliable structures, considering the cost and consequences of28

structural damage/failure. To this end, methods such as the first-order reliability method (FORM) [1] and29

second-order reliability method (SORM) [2] have become standard procedures to estimate the probability of30

failure. However, structures require different thresholds for the probability of failure. Irreplaceable parts and31

those whose failure will have dire consequences, i.e., components in space structures or nuclear power plants,32

need to be constructed such that failure is extremely unlikely. Since structures generally behave nonlinearly33

before they fail and distributions for uncertain variables may deviate significantly from Gaussian, evaluating34

the failure probability is usually not straightforward. That is, the failure probability cannot be solved35

analytically such that numerical and/or statistical reliability methods are required [3].36

The Monte Carlo method is the benchmark statistical method since it provides an unbiased estimate of37

the failure probability. However, it requires a huge number of model evaluations to provide a reasonable38

estimate, especially if the probability of failure is very low. Therefore, it is necessary to significantly speed39

up this method. Methods aimed at significantly decreasing computational cost generally fall into three40
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major categories: (i) methods that speed up each sample evaluation, (ii) methods that improve sampling41

efficiency and reduce the number of necessary model evaluations, and (iii) methods that combine categories42

(i) and (ii). To speed up model evaluations, it is common to employ model order reduction strategies,43

e.g., [4–10] or construct a surrogate model that approximates the model response, e.g., [11–18]. Other44

approaches combine these strategies in a multi-fidelity framework wherein data are fused from reduced order45

models and high-fidelity simulations [19–22]. To improve sampling efficiency, numerous strategies have been46

developed. Established methods include importance sampling [23], Latin Hypercube sampling [24], and47

Subset Simulation [25], among others. The highest computational benefits can be achieved by combining48

the speed up of sample evaluation and reducing model evaluations. For example, model order reduction has49

been combined with importance sampling and subset simulations [26, 27] and Kriging and neural network50

surrogate models have been integrated with importance sampling [28, 29].51

In this paper, we will focus on a specific aspect of the second strategy, namely efficient sampling. Our52

approach is rooted in the widely-used Subset Simulation method, which has become a standard approach for53

Monte Carlo-based reliability analysis [25, 30–32]. Subset Simulation requires Markov Chain Monte Carlo54

(MCMC) methods to sample from the conditional distributions at each level of the method. Initially, this55

was done with a modification to the random walk-based Metropolis-Hastings sampler [33, 34] to perform56

component-wise steps [25]. Since that time, numerous schemes have been proposed that use enhanced57

MCMC methods to improve efficiency, including repeated generation of pre-candidate states [35], delayed58

rejection [36], and conditional sampling [37]. Zuev et al. also proposed a Bayesian postprocessor for Subset59

Simulation to further estimate the probability density function to quantify the uncertainty of the failure60

probability [38].61

The aforementioned methods generally consider Subset Simulation formulated in the standard Gaussian62

space. However, performing Subset Simulation in the original physical space is often desirable because an63

isoprobabilistic transformation to standard Gaussian is not easily obtained. In the original space, however,64

Subset Simulation can be complicated by strong nonlinear dependence among variables coupled with strong65

non-Gaussianity and degeneracy of high-dimensional distributions. Two recent approaches have specifically66

aimed to address this issue. Shields et al. [39] applied the random walk-based affine invariant ensemble67

“Stretch” sampler in Subset Simulation for problems where sampling the conditional distributions may be68

difficult. Meanwhile, Wang et al. [40] proposed algorithms that leverage Hamiltonian Monte Carlo (HMC)69

to generate samples by simulating the evolution of time-reversible Hamiltonian dynamics using a symplectic70

numerical integrator. This work was further extended to use Riemannian manifold HMC in [41].71

The major disadvantage of HMC compared to Metropolis-Hastings and other random walk methods is72

the computational cost. The proposal of a new state in HMC requires simulating the evolution of time-73

reversible Hamiltonian dynamics numerically using symplectic integration. Therein, evaluating gradients of74

the Hamiltonian causes the greatest computational effort. To improve the efficiency, Strathmann et al. [42]75

proposed a gradient-free approach based on exponential kernels. Furthermore, Broccardo et al. combined the76

HMC with Gaussian process modeling [43]. Li et al. [44] proposed to use neural networks to approximate the77

numerical gradient in HMC, while Levy et al. [45] proposed to learn a neural network operator that serves78

as an efficient kernel for the HMC method. These neural network methods, however, were not constrained79

by the Hamiltonian dynamics. Greydanus et al. [46] proposed the Hamiltonian neural network (HNN), a80

physics-informed neural network that conserves energy over long trajectories. Recently, Dhulipala et al. [47]81

proposed to use HNNs for efficient HMC sampling for Bayesian inference and its integration with an advanced82

version of HMC called the No-U-Turn Sampler (NUTS). Dhulipala et al. [47] also proposed a modified version83

of HNNs called latent HNNs. This acceleration of HMC with HNNs has been further verified in [48].84

In this paper, we propose to integrate pre-trained HNNs with HMC, termed Hamiltonian Neural Network85

Monte Carlo (HNNMC), to accelerate Subset Simulations. The proposed method provides the same robust86

probability of failure estimates using the standard HMC methods, earlier proposed by Wang et al. [40], while87

reducing the cost of the Hamiltonian integration considerably. We achieve greater than 20 times speedup88

in the propagation of the Hamiltonian trajectories, which makes conditional sampling in Subset Simulation89

far more efficient than the standard HMC. Furthermore, we provide strategies to overcome the limitations90

of pretraining the HNNs that make extensions of the proposed HNNMC algorithm possible for even more91
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challenging problems such as those where Bayesian inference and reliability analysis are conducted together.92

The final example of this paper explores this special case in which model evaluations are required at every93

HMC step. However, the proposed HNNMC predicts the gradient directly, such that model evaluations are94

not needed for Hamiltonian integration. In fact, model evaluation is only required once to accept or reject95

the conditional state, as in the conventional standard Subset Simulation, resulting in a significant speed-up.96

Section 2 briefly introduces Subset Simulations before the HNNMC method is presented in Section 3.97

Using HNNMC within Subset Simulations is proposed in Section 4 followed by a proof of concept in Section 5.98

Section 6 demonstrates the strategy on systems with uncertain parameters. Finally, Section 7 concludes the99

results of the proposed strategy.100

2. Subset Simulation for Reliability Analysis101

To determine whether structural failure occurs, one must define a limit state based on engineering deci-102

sions. The limit state function g(x) is defined as a function of the random vector x describing uncertainties103

in the system and its inputs such that g(x) ≤ 0 corresponds to failure of the system. The probability of104

failure is then determined by the multi-dimensional integral of the probability density function fX(x) over105

the failure domain [49]:106

PF = P (F ) =
∫
· · ·
∫

g(x)≤0

fX(x) dx , (1)

where F is the failure region corresponding to the event g(x) ≤ 0. The equation can be reformulated using107

an indicator function IF (x), for which IF (x) = 1 if x ∈ F and IF (x) = 0 otherwise, as follows:108

PF =
∫ ∞

−∞
· · ·
∫ ∞

−∞
IF (x)fX(x) dx . (2)

Using standard Monte Carlo methods, the probability of failure can be estimated by the expectation of109

the indicator function, written as:110

PF = E[IF (x)] ≈ 1
m

m∑

k=1
IF (x(k)) . (3)

where x(k) are m independent samples drawn from fX(x). In general, this method gives accurate and111

robust probability of failure estimates, but it converges slowly – requiring large numbers of samples in which112

m ∝ 1
PF

. For small PF , this is clearly problematic.113

Subset Simulation, proposed by Au and Beck [25], aims to reduce the number of samples by defining PF

through a nested sequence of failure regions F1 ⊃ F2 ⊃ · · · ⊃ Fn = F so that F = ∩k
i=1Fi, k = 1, . . . , n. The

probability of failure is then evaluated using conditional probabilities as follows:

P (F ) = P (F1)
n−1∏

i=1
P (Fi+1 | Fi) . (4)

The conditional probabilities are set to be larger values, typically around 0.1, and are estimated using Monte114

Carlo simulation by drawing samples from the conditional distributions at each level. These samples are115

drawn using various MCMC algorithms to be constrained within the conditional subsets. As previously116

mentioned, a great deal of research has focused on using different MCMC algorithms for this task. Of117

particular interest in this work is the use of HMC, which we discuss next.118
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3. Hamiltonian Neural Networks in Hamiltonian Markov Chain119

In this section, we first provide a brief overview of the Hamiltonian Monte Carlo method. Next, we120

introduce Hamiltonian Neural Networks (HNNs), a type of physics-informed neural network specifically121

designed to learn Hamiltonian dynamics. We then show how HNNs can be integrated into HMC to accelerate122

the sampling process.123

3.1. Hamiltonian Monte Carlo124

Hamiltonian Monte Carlo makes the analogy between sampling and a set of particles moving through a125

probability distribution, π(x), with no external forces (i.e., only conservative forces). Under these conditions,126

the moving particles are governed by the following principles of Hamiltonian mechanics, wherein the state of127

the particles can be fully described by the position vector q and the momentum vector p. Since the system128

is conservative, its energy (Hamiltonian) is constant and composed of the kinetic and potential energy, K129

and U , which depend only on the position and momentum. The Hamiltonian is written as follows:130

H(q, p) = U(q) + K(p) . (5)

The state of the system evolves with time using Hamilton’s equations relating the position q and the
momentum p as:

dq
dt

= ∂H

∂p ,

dp
dt

= −∂H

∂q . (6)

Solving this system of equations in time results in a constant energy (Hamiltonian) trajectory in the (p, q)131

phase space. Importantly for HMC, these equations describe a system that is reversible and symplectic (i.e.,132

conserves energy and preserves volume). The importance of these properties for HMC has been detailed in133

other works [40, 50] and will not be discussed further here.134

HMC leverages Hamiltonian dynamics by treating the sample x drawn from π(x) as a set of particles135

having positions q in the Hamiltonian trajectory (i.e., x ≡ q). We then define the joint probability density136

between the position q and momentum p to take the following form:137

π(p, q) ∝ e−H(p,q) = e−U(q)e−K(p) . (7)

We then define the potential energy by:138

U(q) = − log π(q) , (8)

and the kinetic energy by:139

K(p) = 1
2pM−1p , (9)

which results in the position following the target distribution π(q) and the momentum independently fol-140

lowing a Gaussian distribution with covariance M. Selecting M to be a non-diagonal, positive semi-definite141

covariance matrix results in the Riemannian Manifold HMC, which has been demonstrated to improve the142

acceptance rate for non-Gaussian distributions but requires determining the best M matrix for a given prob-143

lem [41, 51]. However, in this work, as is often done, we select M = αI where I is the identity matrix, and144

α is a scalar value, which corresponds to the momenta being independent Gaussian random variables.145

To perform HMC, we then consider the current state of the Markov chain as the position q and assign146

a Gaussian random momentum p, which completely defines a state in phase space such that Eq. (6) defines147

a reversible trajectory of constant energy (Hamiltonian). Hamilton’s equations (Eq. (6)) are then solved148

numerically using a symplectic integrator. Here, we use the synchronized leapfrog scheme, which first149
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updates the positions written as:150

q(t + ∆t) = q(t) + ∆t

mi
p(t) + ∆t2

2mi
ṗ(t) = q(t) + ∆t

mi
p(t)− ∆t2

2mi

∂H

∂q(t) , (10)

where ∆t is the integration time step and ṗ(t) = − ∂H
∂q(t) . Then, the momenta are updated by:151

p(t + ∆t) = p(t) + ∆t

2

(
ṗ(t) + ṗ(t + ∆t)

)
= p(t)− ∆t

2

(
∂H

∂q(t) + ∂H

∂q(t + ∆t)

)
, (11)

where again ṗ(t) = − ∂H
∂q(t) .152

A new state (q∗, p∗) is determined by integrating forward L time steps for a total time of tf = L∆t.153

Because the integration is performed numerically, there is some error that causes a deviation in the Hamilto-154

nian (i.e., H is not strictly conserved). Therefore, a Metropolis-Hastings type acceptance-rejection criterion155

is introduced that accepts the new state with probability156

α = min [1, exp(H(q, p)−H(q∗, p∗))] . (12)

The HMC process is highly sensitive to both L and ∆t such that large ∆t can cause large integration157

errors and thus high rejection rates. Meanwhile, small L can result in undesirable random-walk-type behavior,158

while large L can result in unnecessarily high computation costs. To avoid the need to manually tune the159

parameters, one may apply methods such as the No-U-Turns Sampler (NUTS) [52]. However, in the context160

of Subset Simulation, Wang et al. [40] proposed methods for setting tf , which will be discussed in Section 4.161

Here, we apply strategies similar to NUTS to generate the samples from the original distribution and rely162

on methods of Wang et al. for sampling from conditional distributions at subsequent levels.163

For completeness, the Hamiltonian Monte Carlo method is detailed in Algorithm 1.164

Algorithm 1 Hamiltonian Monte Carlo
Initial state: q, Hamiltonian: H, Leapfrog steps: L, Step size: ∆t
p0 ← N (0, 1)
q0 ← q
p 1

2
← p0 − ∆t

2
∂H
∂q

for 1 ≤ n < L do
qn ← qn−1 + ∆tpn

pn+ 1
2
← pn− 1

2
−∆t ∂H

∂q
end for
pL ← pL−1 − ∆t

2
∂H
∂q

q∗ ← qL

p∗ ← −pL

α = min [1, exp (−H(q∗, p∗) + H(q0, p0))]
if α ≥ U(0, 1) then

return (q∗, p∗)
else

return (q0, p0)
end if

3.2. Hamiltonian Neural Networks165

HMC requires the computation of the gradient of the system
(

∂H
∂q

)
at each time step, which can be166

computationally expensive, and each proposal of HMC requires many time steps. To reduce this cost, gradient167

evaluation can be accelerated using a surrogate model. Li et al. [44] showed that standard feedforward neural168
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networks, such as that shown in Fig. 1(a), result in a high speed-up. However, recent enhancements in169

physics-informed neural networks that conserve energy promise high accuracy in long-run time integration170

of Hamiltonian systems. One example of particular interest is the Hamiltonian Neural Network (HNN) [46].171

The idea of HNNs is to learn the Hamiltonian H(q, p) such that energy is conserved – that is, Hamilton’s172

equations are satisfied. This is achieved by constructing a neural network that learns the parameters θ by173

solving174

argmin
θ

∥∥∥∥
dq
dt −

∂Hθ

∂p

∥∥∥∥
2

+
∥∥∥∥

dp
dt + ∂Hθ

∂q

∥∥∥∥
2

, (13)

where the gradients ∂Hθ

∂p and ∂Hθ

∂q are obtained directly from the neural network through automatic differ-175

entiation as illustrated in Fig. 1(b). Recently, a variation of HNNs, termed Latent HNNs (L-HNNs), was176

proposed in which the network output is a set of d latent variables λ = {λ1, λ2, . . . , λd} where d is the177

number of random variables such that178

Hθ =
d∑

i=1
λi , (14)

which has been shown to improve the expressivity of the network [47]. The L-HNN structure is shown in179

Fig. 1(c). Next, we will briefly discuss the nuances of training these different neural networks and their180

implications for HMC.181

The standard feedforward neural network approach takes as input the position and momentum (q, p) and182

returns the gradients ( dq
dt , dp

dt ) directly. Hence, training data consists of trajectories of Hamilton’s equations,183

where each time step provides a training point. In HNNs, the training data are the same, but the network184

is constructed to learn a function Hθ intended to approximate the Hamiltonian. By establishing the loss185

function in Eq. (13), the network learns Hθ such that energy is conserved by comparing the gradients of186
∂Hθ

∂p and ∂Hθ

∂q with the gradients ( dq
dt , dp

dt ) in the training data. Finally, the L-HNN takes advantage of the187

fact that the gradient is a linear operation and instead predicts a set of d latent variables from which Hθ188

can be computed by Eq. (14), thus improving expressivity, particularly for high-dimensional problems. We189

therefore notice that, although the training data are identical, the HNNs and L-HNNs will have far superior190

performance – especially for long trajectories – because they are designed to conserve energy.191

3.3. The HNNMC Algorithm192

Integration of HNNs into HMC is straightforward but can have significant computational benefits. This193

method, which we refer to as HNNMC simply replaces the standard numerical gradient evaluation in the194

leapfrog integration (Eqs. (10) and (11)) with HNN approximated gradients ∂Hθ

∂p and ∂Hθ

∂q . This way, the195

Hamiltonian trajectories necessary for generating the next state of the Markov chain can be computed196

without the expensive numerical gradients that would typically be required when performing the conventional197

approach. The resulting algorithm is provided in Algorithm 2.198

Of course, the HNN requires sufficient training data, and in its application to HMC, this training data199

is generated a priori. Consequently, the cost of the HNNMC is incurred up-front, and the subsequent chain200

propagation comes at little cost. Generally, this up-front cost is far less than the cost of numerical integration201

and it becomes increasingly efficient as the number of time steps and the number of samples increases.202

3.4. HNNMC Illustration203

In this section, we briefly demonstrate the use of HNNs in HMC. To achieve good results, it is crucial to204

accurately reproduce the Hamiltonian system. First, we show that the HNN accurately conserves the Hamil-205

tonian for a 1D bimodal distribution. We then show that the HNN gradients produce accurate Hamiltonian206

trajectories for a 2D distribution with correlations.207

For the first demonstrative example, we choose a bimodal Gaussian with µ = [0, 3] and σ = [1, 1] as the208

target distribution, where the second peak has a higher weight, having a pdf given by:209

p(q) = σ√
2π

(
1
4 exp

(
−0.5

(
q − µ1

σ

)2
)

+ 3
4 exp

(
−0.5

(
q − µ2

σ

)2
))

. (15)
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(a) Standard feedforward architecture

Neural network layers
with trainable parameters θ

q

p

dq
dt

dp
dt

(b) Hamiltonian Neural Network

Neural network layers
with trainable parameters θ

In-graph gradient

q

p
Hθ

∂Hθ

∂p −∂Hθ

∂q

(c) Latent Hamiltonian Neural Network

Neural network layers
with trainable parameters θ

In-graph gradient

q

p
λ

Hθ =
∑
i λi∂Hθ

∂p −∂Hθ

∂q

Figure 1: Comparison of the neural network architectures: (a) Scheme of a standard feedforward neural network; (b) Hamiltonian
Neural Network architecture with an in-graph gradient, cf. [46]; (c) Scheme of latent Hamiltonian Neural Networks, cf. [47].

The training data are generated by simulating relatively long training trajectories from a few initial210

samples. For this distribution, 40 trajectories are simulated with a trajectory length of 20 and a step211

size of 0.05. Hence, the training set includes 1.6 × 104 gradients. This modest amount of data leads to212

a sufficient coverage of the sample domain taking into account that the distribution is one-dimensional213

and has a relatively simple density function. The HNN consists of two hidden layers with ten neurons in214

each layer. This relatively simple architecture can achieve high training and test accuracy. For this one-215

dimensional problem, the accurate prediction of the HNN can be seen in Figure 2(a) by comparing the216

simulated trajectories with those using traditional gradient calculation in phase space. The Hamiltonian is217

well preserved using the HNN, as the constant energy levels are simulated accurately. Figure 2(b) shows the218

distribution estimated from 5 000 samples generated using the HNNMC matches the true probability density219

with high accuracy.220

For the second illustrative example, we apply HNNMC for a two-dimensional correlated Gaussian dis-221

tribution that has the mean µ = [1,−1]T and the covariance matrix Σ =
[

1. 0.9
0.9 1.

]
, with pdf given by:222

223

p(q) =
exp

(
−0.5 (q − µ)T Σ−1 (q − µ)

)

√
(2π)2 ∥Σ∥

. (16)
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Algorithm 2 Hamiltonian Neural Network Monte Carlo
Initial state: q, Hamiltonian: H, Leapfrog steps: L, Step size: ∆t, Hamiltonian Neural Network prediction:
HNN()̇, Neural network input: x = q ⊕ p
p0 ← N (0, 1)
q0 ← q
p 1

2
← p0 − ∆t

2 HNN(x)
for 1 ≤ n < L do

qn ← qn−1 + ∆tpn

pn+ 1
2
← pn− 1

2
−∆t HNN(x)

end for
pL ← pL−1 − ∆t

2 HNN(x)
q∗ ← qL

p∗ ← −pL

α = min [1, exp (−H(q∗, p∗) + H(q0, p0))]
if α ≥ U(0, 1) then

return (q∗, p∗)
else

return (q0, p0)
end if

(a)

−2 0 2 4 6

−2

0

2

q1 [−]

p
1

[−
]

HNN
HMC

const.
energy
levels

(b)

−2 0 2 4 60

0.1

0.2

0.3

q1 [−]

pr
ob

ab
ili

ty
de

ns
ity

[−
]

HNN-MC
true pdf

Figure 2: Application of HNNMC for a bimodal Gaussian mixture distribution. (a) Trajectories in phase space of constant
Hamiltonian. The trajectories are simulated using the gradients of the Hamiltonian (HMC) or the predicted values (HNN); (b)
The distribution of 5000 samples using the HNNMC compared with the true probability density function.

The generated samples of the correlated distribution using HNNMC are shown in Figure 3(a). To compare224

the gradient evaluations, one trajectory is simulated using the standard Hamiltonian gradients as well as the225

predicted gradients using HNNs. To show the accuracy of long-run trajectories, the length is chosen larger226

than the required trajectories during sampling. We observe that the HNN trajectory follows the original one227

and conclude that the gradient prediction for this trajectory is accurate. For both variables, q1 and q2, the228

probability density functions are shown in Figure 3(b). Both match the true probability density function of229

the Gaussian shifted to the respective mean.230
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(a)

−2 0 2 4
−4

−2

0

2

q1 [−]

q 2
[−

]

HNN samples
HNN trajectory
HMC trajectory

(b)

−4 −3 −2 −1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

q [−]
pr

ob
ab

ili
ty

de
ns

ity
[−

]

HNN q1
HNN q2
pdf q1, q2

Figure 3: Two-dimensional correlated Gaussian distribution: (a) 5000 generated samples along with a long trajectory that
moves through the distribution using traditional and HNN predicted gradients. (b) Probability density of the variables using
5000 samples compared to the true probability density function.

4. HNNMC for Subset Simulation231

In this section, we propose a methodology to integrate HNNMC into Subset Simulation. The framework232

closely follows the method proposed by Wang et al. [40] for the use of HMC in Subset Simulation, so we233

begin by discussing this approach.234

4.1. HMC for Subset Simulation235

Two primary considerations must be addressed when applying HMC for conditional sampling in Subset236

Simulation. The first is the fundamental question of sampling from the conditional distribution. To account237

for the truncation of the distribution that occurs when defining each conditional level, Wang et al. point out238

that integrating the conditional distribution into the Hamiltonian as follows:239

H(q, p) = U(q) + K(p) = − log(π(q|Fj)) + 1
2pM−1p

= − log(π(q)) + 1
2pM−1p− log(IF (q)) + const.

(17)

creates a potential barrier. That is, when IF (q) = 0, the Hamiltonian has infinite potential energy.240

To account for this energy barrier, they proposed two algorithms. The first approach effectively ignores241

the barrier and applies a post hoc acceptence-rejection step. This scheme, referred to as Rejection Sampling242

HMC, simply computes the Hamiltonian trajectory to generate the next state q∗ and then rejects this state243

if IF (q∗) = 0; that is if the new state does not lie in the current conditional level Fj .244

The second, more complicated approach uses a novel algorithm to approximate the time at which the245

trajectory crosses the limit surface (potential barrier), calculates the momentum at this “hitting time,” and246

bounces the trajectory off the potential barrier, after which the trajectory continues, and a new state q∗ is247

proposed. This state is then again rejected if IF (q∗) = 0. This method, referred to as the Barrier Bouncing248

HMC, will not be discussed in detail here. In our applications, we apply a Rejection Sampling-based approach249

9



for simplicity, although there is no reason that the barrier-bouncing approach could not be applied in our250

setting.251

The second issue in applying HMC for Subset Simulation is the appropriate selection of the trajectory252

length in the subsets. As stated previously, one could naively apply the HMC using Algorithm 3. However,253

this may result in relatively long trajectories that wander out of the conditional level, yielding a high rejection254

rate. On the other hand, selecting very short trajectories yields very high acceptance rates, causing a strong255

correlation between samples. Wang et al. propose to aim for a relatively constant acceptance rate targeted256

in the range between alow = 0.3 and ahigh = 0.5. To achieve this target acceptance rate, they proposed the257

method in Algorithm 4. The initial trajectory length is set based on Algorithm 3.258

Algorithm 3 Initialize trajectory length and set leapfrog steps
Step counter: j, Step size: ∆t, Mean period: T̄ , Factor for division: k
for i← 1, N do

(q, p)← (q(i), p(i))
j = 1
(q+, p+)← One leapfrog step(q, p)
(q−, p−)← One leapfrog step(q,−p)

while pT
+(q+ − q−) or pT

−(q− − q+) do
j+ = 1
(q+, p+)← One leapfrog step(q+, p+)
(q−, p−)← One leapfrog step(q−, p−)

end while
Ti ← 2j∆t

end for

T̄ ←
∑

Ti

N
tf ← T̄ /k

L← ⌊ tf

∆t
⌉ ▷ Set leapfrog steps to nearest integer

return [T̄ , L]

Algorithm 4 Adaptive rule for trajectory length
Subset number: j, Step size: ∆t, Mean period: T̄

if alow < a < ahigh then
return No update for leapfrog steps

else
if alow < a then

tf ←
T̄

2π
sin−1

(
sin
(

2πtf

T̄

))
exp((a− alow)/2))

else if ahigh > a then

tf ←
T̄

2π
sin−1

(
sin
(

2πtf

T̄

))
exp((a− ahigh)/2))

end if
end if
L← ⌊ tf

∆t
⌉ ▷ Set Leapfrog steps to nearest integer

10



4.2. Proposed Approach259

The proposed approach to integrate HNNMC into Subset Simulation proceeds as follows:260

1. Pretrain an HNN by running some set of Hamiltonian trajectories.261

2. Generate an initial set of samples according to the probability distribution π(x) using HNNMC.262

3. For each conditional level, draw samples using either the Rejection Sampling HMC or the Barrier263

Bouncing HMC. However, within the time integration for the Hamiltonian trajectories, compute the264

gradients of the Hamiltonian using the pre-trained HNN.265

These conceptually simple steps are implemented using the pieces described above and can be augmented266

with certain optional enhancements as described next.267

4.2.1. Online Error Monitoring268

A general limitation of neural networks is that they interpolate well but often extrapolate inaccurately [53,269

54]. Hence, circumstances arise where the HNN gradient predictions become inaccurate as a result of270

insufficient training data. This is particularly true in the tails of the distribution whose states have not271

previously been observed. For such cases, Dhulipala et al. [47] proposed an online error monitoring scheme272

based on slice sampling, which was originally proposed to monitor integration errors during the standard273

HMC. At the current state, a slice variable u is drawn from the Uniform distribution written as:274

u ∼ U(0, exp(H (q0, p0))) , (18)

where H(q0, p0) is the Hamiltonian at the current state. Defining a threshold ∆ε, if275

H (qn, pn)) + ln(u) > ∆ε , (19)

then the algorithm reverts to conventional numerical integration for the current time step. This increases276

computational cost but improves robustness, particularly for strongly non-Gaussian and high-dimensional277

distributions where exploration is difficult.278

4.2.2. Neural network updates279

Aside from the error monitoring scheme, the neural network parameters can be updated during the Subset280

Simulations. For example, whenever a new subset level is reached, a share of the new samples can be used281

to create new training data using the traditional gradient calculation. Afterward, the data can be used to282

retrain the neural network. This procedure leads to higher accuracy in the region of interest and, therefore,283

reduces the number of rejections.284

Another possible approach is to use the online error monitoring scheme and neural network updates285

together. In such cases, based on the history of online error monitoring, the scheme decides whether a neural286

network update is necessary, e.g., when an error monitoring threshold has been exceeded several times, neural287

network retraining may be triggered.288

4.3. Benefits of HNNMC for Subset Simulation289

The main benefit of using HNNMC is the computational savings compared to standard HMC. Our first290

examples will show the significant speed-up of the sampling while the limit state function of the chosen291

problems is rather cheap. In these examples, we demonstrate the performance of HNNMC on complex292

distributions and show that the HNNs are able to estimate gradients for rare events.293

In general, most computational expense comes from model evaluation, i.e., the evaluation of the limit294

state function. To this end, Wang et al. state that “in practice, the main computational effort in Subset295

Simulation is usually the evaluation of limit-state functions, and each leapfrog step (except the last step) does296

not involve limit-state function evaluation, thus the additional cost introduced by using a relatively small ∆t297

is often negligible” [40]. This is true for problems in which the probability density function is well-known a298

priori, as in the traditional Subset Simulation methods where all computations are performed using standard299
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normal random variables. However, this is not the case in the more general reliability problem in which the300

probability density is known only implicitly (i.e. through the computational model), known only up to a301

scale factor, or must be inferred from data. In such cases, for example in inference problems where the302

system parameters are unknown, the model needs to be evaluated to obtain the gradients required for HMC.303

Consequently, each leapfrog step becomes extremely expensive. HNNMC, on the other hand, is capable of304

learning the Hamiltonian gradients that involve limit state function (model) evaluation. This way, model305

evaluation is only required during HNN training and in the last (acceptance/rejection) step. This makes306

HNNMC-based Subset Simulation substantially faster computationally.307

5. Proof of concept308

In this section, we provide a rigorous proof of concept presenting several numerical examples of reliability309

problems using the proposed method. For the chosen examples, we use the reliability index β = Φ−1(PF ) and310

compare the results for accuracy with the modified Metropolis-Hastings (MMH) sampler [25] and for compu-311

tational performance with existing HMC methods [40]. Using the reliability index, instead of the probability312

of failure itself, allows us to make meaningful comparisons of the coefficient of variation, which can break down313

for PF [39]. The problems are implemented in Python using the UQPy package [55, 56]. Parts of the code for314

latent Hamiltonian Neural Networks have been adopted from the GitHub repository Bayesian inference with315

Hamiltonian Neural Networks (BIhNNs) available at (https://github.com/IdahoLabResearch/BIhNNs). The316

computational time of the examples was assessed on an Apple MacBook Pro equipped with an M1 chip and317

16 GB of memory.318

For all examples, we use 103 samples from the original distribution and 103 samples in each conditional319

level within the rejection sampling Subset Simulation as proposed by Wang et al. [40]. The conditional320

probability is fixed at 0.1. Unless otherwise specified, 4 × 105 gradient evaluations of the Hamiltonian are321

used to generate the training data set for the HNN. However, complex and high-dimensional distributions322

may require a larger training set for the HNN. The HNN is composed of three hidden layers and 100 neurons323

in each layer. In all cases, these settings give reasonable results. However, we have not performed a more324

rigorous network optimization on the HNN. Thus, performance may be improved through a better network325

design aimed at optimizing the learning rate. This problem is beyond the scope of this paper since it is326

independent of the approaches proposed here.327

5.1. Linear Limit State with Degenerate Gaussian Distributions328

The first numerical example aims to explore the performance of HNNMC-based Subset Simulation for329

problems where the distribution form is simple, but sampling is difficult due to the degeneracy of the330

distribution. That is, the distribution is defined in a space with dimension D, but its support lies primarily331

on a space with dimension d < D. For this, we consider a random vector X with multivariate normal332

distributions having mean vector and covariance matrix given by:333

µ = [0, 0, · · · , 0, 0] ; C =




1 ρ . . . ρ

ρ 1 . . . ...
... . . . 1 ρ
ρ . . . ρ 1




. (20)

where the correlation ρ is modified to control the dependence between the random variables. Importantly,334

as ρ → 1 the distribution degenerates and becomes effectively one-dimensional, sampling using standard335

MCMC methods (e.g. Metropolis-Hastings) becomes a challenge. The linear limit state function is given by336

g(x) = β
√

σmaxn −∑n
i=1 xi, where β = {3, 4, 5} is the reliability index, n is the problem dimension, and337

σmax is the largest eigenvalue of C. The reliability problem is illustrated for n = 2 in Figure 4, which shows338

the contours of the joint pdf and the limit state function for different values of β and correlation of (a) ρ = 0,339

(b) ρ = 0.75, and (c) ρ = 0.95.340
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Figure 4: Illustration of the reliability problem for a bi-variate normal distribution with linear limit state function for different
correlations: (a) ρ = 0; (b) ρ = 0.75; (c) ρ = 0.95. (d) Illustration of the samples generated from Subset Simulation using the
proposed HNNMC for a two-dimensional uncorrelated standard normal random vector having linear limit state function with
β = 5.

The generated samples for one Subset Simulation run using the proposed HNNMC with n = 2, β = 5,341

and ρ = 0 are shown in Figure 4(d). The acceptance rate of the samples within the conditional levels varies342

between 0.96 and 0.99 for the HMC acceptance criteria and between 0.16 and 0.52 for the subset rejection343

criteria. The predicted probability of failure is 3.12× 10−8 which corresponds to β = 5.41.344

This example serves as a first demonstration that the proposed HNNMC can be used to estimate small345

failure probabilities such that we can test it on more challenging cases where existing methods encounter dif-346

ficulties. Considering different correlations ρ and dimensions n, we demonstrate its performance by repeating347

each case 100 times to estimate the coefficient of variation.348

The results of the Subset Simulations using MMH and HNNMC are summarized in Fig. 5, which shows the349

mean value and coefficient of variation of beta for different values of ρ (plotted in log scale in terms of 1− ρ)350

for low (n = 2), medium (n = 10), and high-dimensional (n = 100) cases. As expected, the MMH gives good351

estimates for the failure probability for uncorrelated random variables, regardless of the dimension. However,352

as the correlation increases the MMH quickly loses accuracy, especially in high dimensions. In contrast, the353

HNNMC sampling strategy gives very good results in almost all problems and only starts to lose accuracy354

when n = 100 and β ≥ 4. For the two and ten-dimensional correlated distributions, the HNNMC sampler355

gives very accurate results such that solid lines in the upper plots of Figure 4 (mean values) are almost flat at356

the correct β value. Furthermore, the coefficients of variation of the estimators from HNNMC are relatively357

low and only increase mildly with dimension. Meanwhile, for the 100-dimensional distribution, the CoV358

from MMH drops to zero as the correlation increases meaning that the method gives the wrong answer with359

little to no variability.360

Notably, for this example, the primary objective is to demonstrate that the HNNMC can be used to361

achieve accurate reliability estimates. Computational efficiency is not the primary concern. Nonetheless,362

the computational efficiency of using the proposed HNNMC method in Subset Simulations is compared with363

standard HMC in Appendix A.364

5.2. Two-dimensional Rosenbrock distribution365

For this example, we study a problem with two random variables following a Rosenbrock distribution366

having the unscaled probability density function written as:367

p(x) ∝ k
(
x2 − x2

1
)2 + (1− x1)2

20 . (21)
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Figure 5: Results of 100 Subset Simulations using MMH and HNNMC for correlated Gaussian distributions: the mean reliability
indices are compared in the upper plots while the lower plots show the coefficient of variation for (a) β = 3, (b) β = 4, and (c)
β = 5.

The distribution has a banana or boomerang shape, and depending on the factor k, the distribution can be368

wide or very thin. We define a linear limit state function given by g(x) = 120− x2 − 3x1. For this problem,369

the MMH algorithm can give reliable failure probabilities only for k ≤ 1 [39].370

We first consider the Rosenbrock distribution with k = 1 having “true” reliability index of β = 2.706371

(PF = 3.4 × 10−3) obtained from Monte Carlo simulations. Samples from one Subset Simulation using372

HNNMC are shown in Figure 6(a) yielding very accurate results with β = 2.808 (PF = 2.48× 10−3). Using373

the same architecture for 100 Subset Simulations trials yields the mean reliability index β̄ = 2.953 and374

coefficient of variation CV (β) = 0.0932. To further test the approach, we increase k to 10, where the375

MMH algorithm fails to adequately sample from the failure region, and, therefore, the Subset Simulation376

with MMH breaks down. Figure 6(b) shows one subset using the HNNMC approach yielding β = 3.039377

(PF = 1.18 × 10−3), while the “true” value is β = 2.6755 (PF = 3.73 × 10−3). The mean reliability index378

from 100 trials is β̄ = 3.435 and the coefficient of variation is CV (β) = 0.127, which compare favorably to379

state-of-the-art methods such as the affine invariant stretch sampler, which gives β̄ = 3.466, CV (β) = 0.138380

[39]. However, using the standard HMC achieves better results for k = 10, implying the limitations of the381

HNNMC for complex distributions, e.g., for the Rosenbrock distribution with k = 100, discussed in the next382

section. Some additional remarks on computational cost for this example are provided in Appendix A.383
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Figure 6: Subset results for the Rosenbrock distribution using HNNMC: (a) Samples from each subset with k = 1; (b) Samples
from each subset with k = 10.

5.3. Limitations of the HNNMC in Subset Simulations for multi-dimensional Gauss and Rosenbrock distri-384

butions385

The proposed HNNMC algorithm reaches its limitations for strong correlation with high dimension and386

low probability of failure, e.g., the 100-dimensional problem with a correlation of ρ = 0.999 and β = 5.387

The same applies to Rosenbrock distributions with high k. While the HMC method still gives reasonable388

results, the proposed HNNMC faces higher rejection rates in the rare event space since it is particularly389

challenging to learn the steep gradients of the Hamiltonian correctly. In Section 4.2.1 and 4.2.2, we propose390

two strategies to mitigate this issue: (i) updating the neural network parameters in each subset and (ii) an391

online error monitoring scheme that deploys conventional HMC as needed. The limitations and strategies392

are demonstrated in Appendix B where both approaches are applied to the two-dimensional Rosenbrock393

distribution with k = 100.394

5.4. Additional examples for proof of concept395

Additional examples related to structural dynamics are provided in the appendix. The reliability problems396

focus on system parameters, following different distributions in Appendix C and uncertainty introduced397

within the load with high dimensional problems in Appendix D. As shown in these appendices, the proposed398

HNNMC Subset Simulation provides accurate estimations of the failure probability in both examples.399

6. Subset Simulations for systems with uncertain parameters400

The major advantage of the proposed method arises when model evaluations are necessary for Hamiltonian401

gradient evaluation. As highlighted by Wang et al. [40], this is not generally the case for reliability problems402

on deterministic systems having uncertain inputs with well-known distributions. However, when performing403

reliability analysis on a system whose parameters must be inferred from data, we cannot avoid performing404

model evaluations at each step of HMC. That is, model evaluation is necessary for gradient evaluation.405

Furthermore, we cannot use automatic differentiation tools since model evaluation is required. Therefore,406

we use a central difference scheme to calculate the numerical gradients. Hence, the evaluation requires multi-407

ple model evaluations for each gradient computation, which becomes computationally excessively expensive408

for high dimensional problems.409

To illustrate this case, we apply the proposed HNNMC-based Subset Simulation approach to assess the
reliability of a single-degree-of-freedom system having a Bouc-Wen hysteretic material model (illustrated in
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Figure 7a) whose parameters must be inferred from data. The equation of motion of the highly nonlinear
system is written as [55]:

mü(t) + cu̇(t) + kr(t) = −müg(t) , with (22)
ṙ(t) = u̇− β|u̇| |r(t)|n−1 r(t)− γu̇(t)|r(t)|n . (23)

where k is the spring stiffness and n β and γ are the hysteresis parameters of the Bouc-Wen model. Alter-410

natively, we parameterize the system equivalently by n, r0 and δ, where r0 = n

√
1

β + γ
and δ = β

β + γ
.411

(a) Single-degree-of-freedom system

k
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Figure 7: Bouc-Wen model for Bayesian Inference

The parameters of the spring and the Bouc-Wen material model are assumed to be unknown and must be412

learned from data. These data are generated by creating an artificial measurement of the system response413

to the scaled El Centro ground motion record [57] shown in Figure 7(b) with parameters k = 1 N
m , r0 =414

2.5 cm, δ = 1, , and n = 2. The original system uses small viscous damping, which introduces a small error415

since the inference model assumes no damping. The simulated noisy response measurement, including 5%416

root mean squared noise, is shown in Figure 7(c).417

Using the observed data, we first employ traditional HMC to infer the joint distribution of the material418

parameters. This HMC comes at a significant computational cost since each leapfrog step requires evaluation419

of the model. We draw a total of 5000 samples by employing 50 leapfrog steps for each proposal, gathering420

250 000 gradient evaluation in total. We then use these gradient evaluations to train the HNN – hence421

the HMC cost is not wasted. For reference, the HNNMC is tested on the Bayesian inference problem first,422

where we again generate 5000 samples from the posterior parameter distribution. These samples, which are423
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Figure 8: Subset Simulations for Bayesian inference; Bottom left: Drawn samples using HNNMC in Bayesian inference sampling;
Diagonal: Histograms of 5000 samples using HNNMC; Top right: Subset Simulations using HNNMC with 1000 samples.

generated extremely fast because they do not require model evaluation for the Hamiltonian gradients, are424

shown in the bottom left plots of Figure 8, and histograms for each variable are shown on the diagonal.425

The observed results show that the HNNMC distributions are consistent with those observed from previous426

studies [55].427

Next, we conduct reliability analysis using the inferred joint parameter distribution. The limit state428
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function corresponds to the exceedance of a displacement limit, ulim = 5, in the time range t ∈ [0, 40] sec429

under the same El Centro excitation and is expressed as:430

g(x) = ulim − max
t∈[0,40]

|u(x, t)| . (24)

where x is the vector of uncertain system parameters. We apply the HNNMC sampling strategy within431

Subset Simulation using 1000 samples per subset. Repeating the analysis for 100 trials, we observe a mean432

reliability index of β̄ = 4.35 with coefficient of variation CV (β) = 0.048. A representative sample set from433

Subset Simulation with samples colored by subset is shown in the upper off-diagonal plots in Figure 8.434

The HNNMC results are in agreement with Subset Simulations performed with HMC using the traditional435

gradient updates, which produced a mean reliability index of β̄ = 4.44 with coefficient of variation CV (β) =436

0.039 from ten independent trials. However, the cost of Subset Simulation with HNNMC is dramatically437

lower. Traditional HMC requires that the system response be evaluated at every time step of the Hamiltonian438

trajectory. Therefore, one Subset Simulation takes tHMCSS = 579 549 sec (> 6 days). As a result, we could439

only afford 10 independent trials with standard HMC. Because the trained HNN automatically computes the440

gradients, and no model evaluation is needed, The HNNMC method takes only tHMCSS = 4509 sec (≈ 1.25441

hours) per Subset Simulation – an improvement of more than 100x.442

7. Conclusion443

In this paper, we developed Hamiltonian Neural Network Markov Chain sampling for reliability analysis444

using Subset Simulations. The proposed strategy reveals high efficiency and accurate estimates for the445

probability of failure.446

Hamiltonian Neural Networks are particularly powerful for gradient predictions of long trajectories [46],447

so marriage with Hamiltonian Monte Carlo is highly beneficial. As a result of this, the acceptance rate of448

the non-random walk proposals remains high.449

The main benefit of using this approach is to decrease the computational efforts for the gradient calcula-450

tion during the sampling. For the examples in this paper, the new approach is at least 20 times faster when451

performing Subset Simulations. However, a fair metric for the speed-up of the approach also considers the452

training procedure of the Hamiltonian Neural Network, which includes the traditional gradient calculation453

during the generation of the training set. The gradient evaluations required for the Subset Simulations are –454

dependent on the settings – far more than the number of samples for the training set. Notably, the strategy455

becomes increasingly beneficial if the same distribution is used for several simulations since the training456

procedure is only required once.457

In the case of very complex and high-dimensional distributions, such as the Rosenbrock and the highly458

correlated 100-dimensional Gaussian distribution, the approach reaches its limitations in higher subset levels.459

The most reliable solution for this problem is to include an online error monitoring scheme. Although460

this extension weakens the computational efficiency of the HNNMC subset method proposed, online error461

monitoring enables comparable results to the standard HMC method, even in the most unfavorable situations,462

i.e., for very complex distributions. However, for most updates, the online error scheme is not required.463

The HNNMC proposed in this paper is particularly valuable when applied to problems where the un-464

derlying distribution is a priori unknown. For such Bayesian inference problems, the numerical gradient465

calculation becomes extremely expensive when applying the traditional HMC method since the underlying466

model has to be evaluated. These gradient evaluations are done by the Hamiltonian Neural Network in467

a fractional amount of time, enabling outstandingly fast and efficient sampling. Thus, the algorithm pro-468

posed in this paper reveals the highest speed up in the Bayesian inference framework since it decreases the469

computational effort to 1% compared to the time necessary using the traditional HMC sampler.470
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Appendix A. Computational efficiency of HNNMC compared on proof of concept examples665

Appendix A.1. Degenerate Gaussian666

The computational cost of HNNMC for Subset Simulation is compared with standard HMC based on the667

number of Hamiltonian gradient evaluations for cases with n = 100, ρ = 0, and β = 3, 5 in Table A.1. Clearly,668

both HNNMC and HMC are capable of drawing quality samples in this uncorrelated high-dimensional case.669

The HNNMC only requires traditional gradient evaluations for the training data. Here, we used 4 × 105
670

gradient evaluations. It can then be directly deployed for all problems based on this distribution without671

any additional computations. Meanwhile, the traditional gradient updates using HMC highly depend on the672

settings of the algorithm. Using as few as possible gradient evaluations, i.e., one chain with 100 burn-in steps,673

results in the number of gradient evaluations presented in Figure A.1. Hence, the proposed method only674

leads to a speed-up if the probability of failure becomes low. Of course, the HNNMC sampler is significantly675

more efficient when used for several trials since the HNN does not need to be retrained for each trial.676

Regarding computational time, the HNN prediction and the Hamiltonian gradient evaluation are com-677

pared for the uncorrelated Gaussian distribution (ρ = 0) with 100 variables. The numerical evaluation of678

103 gradients takes 2 896 ms, whereas the HNN performs this task in 16 ms which is a reduction in cost by a679

factor of more than 180. Assuming the HNN is already trained for this distribution, full Subset Simulations680

using the HNNMC run in 489 sec on average, while the traditional HMC takes 30 543 sec on average.681

23

https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3432
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3432
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3432
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.3432
https://doi.org/https://doi.org/10.1002/eqe.3432
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3432
https://www.mdpi.com/2076-3417/12/2/581
https://www.mdpi.com/2076-3417/12/2/581
https://www.mdpi.com/2076-3417/12/2/581
https://doi.org/10.3390/app12020581
https://www.mdpi.com/2076-3417/12/2/581
https://www.sciencedirect.com/science/article/pii/S1877750320305056
https://www.sciencedirect.com/science/article/pii/S1877750320305056
https://www.sciencedirect.com/science/article/pii/S1877750320305056
https://doi.org/https://doi.org/10.1016/j.jocs.2020.101204
https://www.sciencedirect.com/science/article/pii/S1877750320305056
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)
https://doi.org/10.1115/1.3119501
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/44/4/191/5435905/191_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/44/4/191/5435905/191_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/44/4/191/5435905/191_1.pdf
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3119501


Table A.1: Comparison of the required Hamiltonian gradient evaluations for Subset Simulations using HMC and HNNMC for
correlated Gaussian random variables with a linear limit state having n = 100, ρ = 0, and β = 3, 5.

Hamiltonian number average
gradient training initial subset of for one

evaluations data set subsets simulation
HNNMC 4× 105 0 0 2.8/7.5 4× 105

HMC (β = 3) 0 91 516 79 856 2.8 315 113
HMC (β = 5) 0 91 075 78 282 7.5 678 190

Appendix A.2. Rosenbrock682

The speed-up of the method for this example in terms of traditional gradient calculations depends on683

the number of samples used for the neural network training. For this distribution, using 8 · 105 gradients for684

training led to good accuracy during the supervised learning procedure. The traditional approach depends685

on the settings for the Hamiltonian Monte Carlo, especially since the initial set requires a relatively high686

burn length for this distribution to find adequate initial samples. The number of leapfrog steps is calculated687

using Algorithm 3 with a fixed step length ∆t = 0.01. Starting with 20 independent samples from the688

Gaussian distribution and using a burn length of 500 results in 881 619 traditional gradient calculations.689

The number of gradient evaluations could be further reduced if only one single chain is used, reducing the690

number of gradients required for the initial set to 120 220. However, within each subset, the chains operate691

independently, meaning that the number of required gradients is solely influenced by the trajectory and692

the step length. For the chosen example, the algorithm evaluated seven levels with the following gradient693

evaluations [205 200, 410 364, 407 220, 483 184, 471 440, 539 776, 550 668], which is 3 067 852 evaluations for all694

subset levels. Thus, the number of required conventional gradient evaluations is dependent on the number695

of chains chosen for the evaluation of the initial subset, but at least 4 times higher compared to the HNN696

approach.697

To compare the computational time of the two approaches, we used 103 samples in each subset, and698

the initial set of these examples requires the update of the 103 samples in each run. The classic gradient699

evaluation takes 226.8 ms, while the neural network requires only 10.9 ms. Thus, the neural network approach700

is approximately 20 times faster for gradient evaluations. The evaluation of a whole Subset Simulation takes701

15 872 sec on average for HMC and 735 sec on average using HNNMC. Increasing the number of samples702

for the new strategy achieves better accuracy than using the HMC. Even though sampling is still faster –703

using 10 times more samples, 104 instead of 103 takes 5 393 sec on average – the evaluation of the limit state704

function is in general the most expensive part of the simulation.705

Appendix B. Limitations for Rosenbrock distribution with k = 100706

This part of the appendix focuses on the proposed strategies to deal with the limitations of the approach707

based on the Rosenbrock distribution with k = 100. First, we observe that using the same training procedure708

as in previous cases (4× 105 initial gradient evaluations) results in very few samples in the tails of this very709

thin distribution. As a result, the HNN is likely to produce poor gradient predictions in this area – which710

is critical for reliability analysis. Hence, we use long trajectories (800 leapfrog steps with a step size of711

0.05) during the creation of training data assembled using 103 initial samples without using an acceptance-712

rejection criterion. Figure Appendix B.1(a) shows the results of one Subset Simulation using HNNMC. The713

pre-trained HNN on 8 × 105 gradient evaluations gives accurate predictions within the first three sets; the714

acceptance rate is above 90%. However, the rate drops rapidly due to the poor training in the tails (e.g.,715

the acceptance rate is 0.05 in subset 8 and does not exceed 0.25 in any subset after the third). Hence, the716

samples reach the failure region only after 15 subsets, which significantly underestimates the probability of717

failure. However, these observations represent only one trial. For further analysis, we used 10 independently718

trained architectures to create 100 Subset Simulations, i.e., ten trials with each trained architecture. The719
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results of these runs are summarized in Table B.2. The standard HNN approach gives a mean beta value of720

β̄ = 8.014, which is not accurate relative the reference value β = 2.715 [39].721
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Figure Appendix B.1: Subset results for the Rosenbrock distribution k = 100 using Hamiltonian Neural Network sampling (a)
with a Hamiltonian Neural Network, (b) with a latent Hamiltonian Neural Network, (c) with a Hamiltonian Neural Network
and retraining in each set, (d) with a Hamiltonian Neural Network and online error monitoring, (e) Hamiltonian Monte Carlo
sampling, and (f) Hamiltonian Neural Network with 10 000 samples.
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Table B.2: Subset Simulation results for different HNNMC approaches. Summary from 100 trials using ten different HNN
architectures and ten repeated trials for each approach.

Approach β̄ Var(β) CV(β)
Standard HNN 8.014 3.985 0.249
Latent HNN 6.519 0.841 0.140
HNN with retraining 5.615 1.658 0.229
HNN with online error 4.983 0.885 0.189
HMC (10 runs) 2.997 0.0932 0.032
HNN (10 runs, 104 samples/subset) 2.781 0.0313 0.064

To improve performance, we explore three strategies:722

1. Using an enhanced HNN architecture, i.e., the latent variable HNN [47].723

2. Updating the HNN parameters in each subset evaluation to achieve higher acceptance rates cf. Sec-724

tion 4.2.2.725

3. Using an online error monitoring scheme to ensure good proposals for the new states, cf. Section 4.2.1.726

All three approaches improve the estimation of the probability of failure, as shown in Figure Appendix727

B.1(b)-(d) and Table B.2.728

First, the enhancement of the architecture from HNN to latent HNN improves the prediction accuracy729

of the network [47]. Even though the latent HNN provides better gradient estimates, the results vary730

significantly with each simulation. The gradients are often overestimated in regions that are not trained731

well, as can be observed from Figure Appendix B.1(b). In the lower region around (0, 0), we observe outliers732

stuck outside the high probability area. One interesting observation is the vast area covered by the second733

subset in orange. This approach slightly improves the mean value of beta but significantly reduces the734

variance (Table B.2).735

The results can be further improved if more training data is used, particularly in the tails of the dis-736

tribution. This leads us to the second approach: retraining the HNN after each subset. The results for a737

single Subset Simulation are shown in Figure Appendix B.1(c). Although the probability of failure esti-738

mate is a little lower compared to the latent HNN prediction in this particular illustration, we observe that739

the outcome is better on average. Also, we observe higher acceptance rates within the subsets, gradually740

evolving toward the failure region. Table B.2 shows that the mean beta value decreases to β̄ = 5.615, which741

(while not particularly accurate) is comparable to estimates from other state-of-the-art samplers, such as742

the stretch sampling method [39]. However, this approach requires the evaluation of samples using the tra-743

ditional approach within each subset. Thus, the computational cost increases with the number of training744

samples chosen for each subset.745

The best results of the proposed approaches are achieved by using online error monitoring. Here, the746

trajectory is corrected using traditional gradient calculations if a threshold is exceeded. Therefore, we747

observe that no samples get stuck outside of the distribution, see Figure Appendix B.1(d). However, using748

this scheme diminishes the computational savings of the approach as it requires expensive computational749

gradient calculations when Hamiltonian conservation is violated. From Table B.2, the mean beta value is750

β̄ = 4.983, which is an improvement over other methods (except traditional HMC) for only 1000 samples751

per subset [39]. Furthermore, the variance of the approach is also reduced. This approach delivers the most752

reliable results for very complex distribution and low-probability regions. However, the threshold has to be753

chosen carefully. If chosen too large, the proposals may still be inaccurate. If chosen too small, for most of754

the samples, numerical gradient calculations will be used such that the approach ends up in the traditional755

HMC.756

Meanwhile, the traditional HMC approach produces accurate results with an average of β = 2.997 and757

a coefficient of variation of CV (β) = 0.032 for ten Subset Simulations. Therefore, while the proposed im-758

provements show better performance for this very difficult problem, they are still not capable of reproducing759

the accuracy of the full HMC approach.760
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Another possibility for increasing the accuracy of Subset Simulations is to evaluate more samples in the761

subsets. Using 104 samples in HNNMC results in a crucial improvement of the estimate. From 10 runs, the762

HNNMC results in an average estimate of β = 2.781 with a coefficient of variation of CV (β) = 0.063. The763

HNNMC with increased subset samples outperforms the traditional method regarding speed and accuracy.764

However, if the limit state functions become computationally more expensive, the sample increase will lead765

to significantly higher costs. Thus, to keep a balance between sampling efficiency and the number of samples766

required online error monitoring is likely to be preferred.767

Appendix C. Spring damper system768

In this example, the two-degree-of-freedom (dof) spring-mass-damper system shown in Figure Appendix769

C.1 is considered. The primary-secondary system is characterized by the masses mp and ms, spring stiffnesses770

kp and ks, and damping coefficients cp and cs, where the subscripts p and s refer to the primary and secondary771

oscillators, respectively. These six uncertain parameters follow independent log-normal distributions with

kp

cp

mp

ks

cs

ms

Figure Appendix C.1: A two-dof system with uncertain parameters, cf [14].
772

mean values and coefficients of variation provided in Table C.3.

Table C.3: Mean values and coefficient of variation of the parameters of the two degrees of freedom system. All random variables
of this example follow log-normal distributions.

Parameter Mean CV
mp 1.5 kg 0.1
ms 0.01 kg 0.1
kp 1. N

m 0.2
ks 0.01 N

m 0.2
ζp 0.05 0.4
ζs 0.02 0.5
Fs 15 N 0.1
S0 100 N 0.1

773

The reliability of the system is based on the spring capacity Fs of the secondary oscillator, where the774

highly nonlinear limit state function is given by [58]:775

g(x) = Fs − 3ks

√√√√ πS0
4ζsω3

s

[
ζaζs

ζpζs (4ζ2
a + θ2) + γζ2

a

(
ζpω3

p + ζsω3
s

)
ωp

4ζaω4
a

]
, (C.1)

where ωp =
√

kp/mp and ωs =
√

ks/ms denote the natural frequencies and γ = ms/mp the mass ratio.776

Furthermore, ωa = (ωp + ωs)/2 and ζa = (ζp + ζs)/2 denote the average values for the eigenfrequency777

and damping parameters, and the factor Θ is defined as Θ = ωp − ωs/ωa. The probability of failure is778

PF = 4.79× 10−3 (β = 2.59) determined from Monte Carlo simulation [14, 58].779

We performed 100 Subset Simulations using the proposed HNNMC sampling. The resulting mean relia-780

bility index is β̄ = 2.680, and the coefficient of variation is CV (β) = 0.0433, which is very close to the correct781
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value from MCS. We noticed that the acceptance rate of the subset drops below 0.3, which would lead to an782

update of the leapfrog steps. The acceptance rate of the HNN proposals remains above 0.9, indicating that783

the previously discussed online error monitoring and/or retraining are unnecessary. The traditional HMC784

sampling for ten Subset Simulations results in a similar estimate with mean reliability index β̄ = 2.663 and785

the coefficient of variation CV (β) = 0.025.786

Appendix D. White noise excitation787

This example considers a high-dimensional problem with 200 variables. A single-degree-of-freedom os-788

cillator, shown in Figure Appendix D.1(a), is excited with a seismic loading [40]. The properties of the789

oscillator are fixed with mass m = 6× 104 kg, stiffness k = 2× 107 N/m and damping c = 2mζ
√

k/m using790

a viscous damping ratio of ζ = 0.1. The equation of motion is written as:791

mü(t) + cu̇(t) + ku(t) = −müg(t) . (D.1)

Here, u(t) is the displacement of the oscillator, and u̇ and ü are the velocity and acceleration of the mass,792

respectively. The randomness of this example is introduced by the ground acceleration üg. The acceleration793

is simulated by a white noise process discretized in the frequency domain as [59]:794

üg = A

n/2∑

j=1

(
xj cos ωjt + xj+n/2 sin ωjt

)
, (D.2)

where A =
√

2S∆ω to account for the intensity of the white noise, chosen as S = 0.01m2/s3. Figure Ap-795

pendix D.1(b) shows one white noise sample.796

The random vector q consists of n = 200 independent standard Gaussian random variables. The fre-797

quency points are given by ωj = j∆ω using n/2 = 100 points with a cut-off frequency of ωcut = 15π, which798

leads to ∆ω = 0.15π.799

We use the same first-passage probability problems in the following, as demonstrated for the standard800

Hamiltonian Monte Carlo Subset Simulation [40]. The limit state function of the problem is written as:801

g(x) = ulim − max
t∈[0,10]

u(x, t) . (D.3)

The results of 100 Subset Simulations for ulim = 0.02 m, ulim = 0.025 m and ulim = 0.03 m in terms of802

the reliability index β are shown in Table D.4. In the last column, the results from the original proposal of803

Hamiltonian Monte Carlo for Subset Simulations are shown to compare the new method.804

Table D.4: Subset Simulation results of 100 runs of the Hamiltonian Neural Network approach for the white noise excitation
subjected to a single-degree-of-freedom system.

Threshold β̄ Var(β) CV(β) HMC [40]
0.020m 2.355 0.0074 0.0365 2.471
0.025m 3.802 0.0661 0.0676 3.786
0.030m 5.165 0.0775 0.0539 4.997
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(a) Single-degree-of-freedom system
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Figure Appendix D.1: White noise excitation problem; (a) single-degree-of-freedom oscillator; (b) exemplary created white
noise; (c) examplary response of the oscillator.
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