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INTRODUCTION

Yttrium hydride (YHx) is one of the most promising ma-
terials for moderating nuclear microreactors. This is due to
its high hydrogen concentration at high operating conditions,
large thermal conductivity, and chemical stability. However,
when subject to thermal and concentration spatial gradients,
the hydrogen tends to migrate within the yttrium matrix, po-
tentially leading to power swings and reactivity changes. This
paper aims to present preliminary results concerning the sen-
sitivity of the thermal and hydrogen redistribution response
for a prototypical heat-pipe-cooled yttrium-hydride moderated
microreactor to thermal properties uncertainty and selected
design characteristics. To the best knowledge of the authors,
this is the first study examining the impact of uncertainties
on microreactor hydrogen redistribution response. To achieve
this goal, Bison [1] was used in conjunction with Dakota [2] to
create a framework able to perform Uncertainty Quantification
(UQ) for the Simplified Microreactor Benchmark Assessment
(SiMBA) problem [3].

UQ METHODOLOGY

To obtain information on the impact of uncertain inputs
on the temperature and H/Y ratio distribution, we rely on the
two-step approach corresponding to the first two steps of the
method discussed in Ref. [4]. The approach workflow is sum-
marized in Fig. 1. After identification and characterization of
input uncertainties, a global sensitivity analysis, using Morris
screening, is performed to reduce the uncertain input space [5].
Such method relies on a small number of code evaluations,
hence providing qualitative results while allowing to identify
uncertain inputs with large impact on the output of interest.

The second step leverages the separation of epistemic
and aleatoric uncertainties discussed in [6] (evidences of the
importance of such input uncertainties treatment can be found
in [4]). Epistemic uncertainties originate from a lack of knowl-
edge (of the true value), while the aleatory uncertainties are
from inherent stochastic processes. A range of values is used
for the former, encompassing the true unknown value of the
input, while evidence based statistical behavior is used for the
latter. Therefore, an UQ based on a nested loop allows a con-
sistent and accurate treatment of the input uncertainty’s nature.
The epistemic uncertainties are propagated on the outer loop
using a full factorial grid (in our case, the extreme value of the
epistemic uncertainty ranges), while the aleatoric uncertain-
ties, using stochastic samplings (in our case, Latin hypercube
sampling), are propagated in the inner loop. The use of the
same stochastic samples at each epistemic grid points ensures
meaningful comparison across all points. At each epistemic

Fig. 1: Two-step approach flow diagram

grid point, an aleatoric cumulative density function (CDF) is
generated.

COMPUTATIONAL PROBLEM

The SiMBA problem is a 2-MW heat-pipe cooled, YH-
moderated microreactor. The reactor is composed of 18 hexag-
onal assemblies arranged into two rings. The tops and bottoms
of these 160-cm-high assemblies are surrounded by 20-cm-
high axial beryllium reflectors. Each assembly contains 96
fuel pins that are 1 cm in radius, 60 YHx pins that are 0.975
cm in radius, and 61 1-cm-radius sodium HPs drilled into a
graphite monolith. The HPs penetrate only into the top axial
reflector, making the reactor axially asymmetric. The central
shutdown rod slot is empty. The core is surrounded by 12
control drums, with boron carbide employed as the absorbing
material. For a simplified mesh, the beryllium radial reflec-
tor is hexagonal. The geometries and material specifications
of the SiMBA reactor assembly components are reported in
Ref. [3].

The space-time evolution of the hydrogen stoichiometric
ratio is computed in Bison [1] by solving the following system
of coupled partial differential equations [3]:

∂c
∂t
= ∇ · D

[
∇c +

Qc
RT 2∇T

]
, (1)



TABLE I: Uncertain inputs (and abbreviation) with their natures and statistical laws. The parameters distribution are the standard
deviation for normal distributions and lower and upper bound for intervals

Input Nature Distribution Distribution Parameters

Heat of transport (Q) Epistemic Interval [1766, 15900] (J/mol)
Thermal conductivity fuel (tcf) Aleatoric Normal 10%

Thermal conductivity hydride (tch) Aleatoric Normal see [7]
Thermal conductivity monolith (tcm) Aleatoric Normal 3.2%

Thermal conductivity Be reflector (tcb) Aleatoric Normal 5%
Effective heat transfer coefficient (h) Epistemic Interval [366, 378] W/m2K

Emissivity gap (eg) Aleatoric Normal 0.0333
Gap conductivity (gc) Aleatoric Normal 10%

ρcp
∂T
∂t
= ∇ · λ∇T + Pd, (2)

with D being the hydrogen diffusion coefficient in the metallic
matrix, c the hydrogen/yttrium stoichiometric ratio, Q the heat
of transport, R the universal gas constant, ρ the density, cp
the specific heat capacity, λ the thermal conductivity, and Pd
the power density distribution (determined using the model in
Ref. [3], approximately 2.3 MW/m3). The heat transfer to the
heat pipe is modeled using the following boundary condition:

Jq · nhp = h(T − Tsink), (3)

where Jq is the heat flux at the boundary of the heat pipe,
nhp the unit normal vector to the boundary surface between
heat pipes and gap, h the heat transfer coefficient, and Tsink the
sink temperature of the heat pipe. In addition, the Bison gap
heat transfer model is used to model the heat transfer between
YHx and cladding [1]. For the hydrogen redistribution, since
we are interested in the asymptotic solution, we are assuming
a zero net flux at the YHx-gap interface, (i.e., no hydrogen net
desorption/adsorption). This can be translated mathematically
into a zero Neumann boundary condition.

Jc · nm = 0. (4)

In Eq.( 4), Jc is the hydrogen current, while nm is the
normal unit vector associated to the moderator gap surface. In
this work, Bison is used to solve Eqs.( 1)-(3) using the Pre-
conditioned Jacobian-free Newton-Krylov method. The Bison
asymptotic solution was verified against analytical solution in
past work [3].

RESULTS

Step 1: Morris screening

Table I reports the list of uncertain inputs used in this
study and their corresponding statistical distributions. As
shown in [3], material densities, heat capacities, and the diffu-
sion coefficient play no role in the asymptotic solution, there-
fore, their uncertainties are not considered. Uncertainties
on the geometry (manufacturing uncertainties) are generally
extremely small based on [8], and are believed to have insignif-
icant impact for this study due to solving for the temperature

and hydrogen concentration only. In future work, these man-
ufacturing uncertainties will be considered if the mechanical
responses are implemented. The heat of transport, Q, is consid-
ered epistemic given that its value is not known. The range of
variability was chosen large to ensure to bound its true value.
The range for the effective heat transfer coefficient between
monolith external surface and secondary fluid has been ob-
tained from the Sockeye model used in Ref. [3]. The effective
heat transfer coefficient is in general a function of the heat
pipe geometry and material composition, therefore making
the variation range reported in Table 1 likely underestimated.
Future work will be devoted to perform UQ on the coupled
heat conduction and fluid models, therefore explicitly account-
ing for the aleatoric uncertainties determining the variability
range for h. Concerning the aleatoric uncertainties, they have
been obtained from [8] [9] [7] [10]. The uncertainties on the
hybrid thermal conductivity is varied between two standard
deviations of the formula provided in [7], to encompass all
the measurements from [11], especially for YH1.72 to YH1.86.
The gap emissivity, gap conductance, and reflector thermal
conductivity have fixed typical values in the BISON and their
uncertainties correspond to potential variations of them. In ad-
dition to the epistemic and aleatoric uncertainties, the study is
performed for two different heat sink temperatures to capture
different operational scenarios: 800 K and 970 K.

The uncertainty quantification was performed on three
outputs: maximum fuel temperature and maximum and mini-
mum H/Y ratio in the moderator. Minimum fuel temperature,
together with maximum and minimum temperatures for mod-
erator, monolith, and reflector temperatures are also studied
but not presented in this paper. In Fig. 2, the normalized results
for the Morris screening of the maximum fuel temperature are
shown for a sink temperature of 800 K. The normalization in
Fig. 2 is performed using the maximum of the pseudo means
(µ∗) and standard deviations (σ). The cutoff limit is generally
empirical and was selected to be at 20% of the maximum to
select only the most influential inputs [12]. It can be observed
that only three uncertain inputs have influence and seem to
have mainly a linear effect on the maximum fuel temperature,
as expected. A global analysis of the results leads to the con-
clusion that only the gap emissivity is not influential for any
output of interest. The gap conductivity is also deemed to
be not influential when the sink temperature is 970 K, due to



Fig. 2: Morris screening results for the maximum fuel temper-
ature for a sink temperature of 800 K. The red dashed lines
show the cutoff limit. For readability reasons, the legend is
only shown for influential inputs.

being slightly below the cut off limit (for a sink temperature
of 800 K, it is slightly above the cut off limit). The H/Y ratio
is only influenced by the heat of transport. It is observed in
all the results obtained, all the uncertain inputs have linear (
standard deviation (σ) = 0, pseudo mean (µ∗)>0) or almost
linear (σ > 0 but small, µ∗>0) impacts, for example as seen in
Fig. 2 for conductivities and heat transfer coefficient [5].

Step 2: Nested UQ

The uncertainty quantification was performed using the
nested approach explained in the UQ Methodology section.
The heat transfer coefficient and heat of transport, the two
epistemic uncertainties, are discretized to take only their re-
spective extreme values. Based on Morris screening results,
both uncertainties have linear effects on the output of inter-
est, therefore any results obtained for values in between their
bounds should lead to results in between to the ones obtained.
Concerning the aleatoric uncertainties, the Latin hypercube
sampling was used for each epistemic uncertain grid points
with 120 samples and 150 samples for a heat pipe sink tem-
perature of 800 K and 970 K, respectively. The number of
samples are chosen to correspond to the number of uncertain
inputs times 30. Figure 3 shows the maximum fuel tempera-
ture CDF for a heat pipe sink temperature of 800 K. The heat
of transport, Q, having no impact on the temperature distribu-
tion (this statement would not hold true if the neutronics model
were to be used, due to the feedback of the H/Y on the power),
the results are presented only for variation of the heat transfer
coefficient h. It can be observed that the maximum fuel tem-
perature can vary by about five Kelvin total, which is relatively
small. Concerning the heat pipe sink temperature of 970 K,
the results are very similar but at higher temperature (average
maximum temperature around 1050 K). The variations due to
input uncertainties observed for the other material tempera-
tures are below five Kelvin. Such small variations would not
have major impact on the neutronics response of the reactor.
However, a more complex and higher fidelity model than the
one used for this study, might yield different results as more
physics model would be implemented (i.e. fuel gas release,
mechanical response, burnup, etc). Even though the variations
ranges are similar in both sink temperature cases, the total
ranges of temperature in the materials are different: for the
same aleatoric and epistemic combinations, the fuel tempera-

Fig. 3: Fuel maximum temperature CDF for a sink temperature
of 800 K.

ture varies by 56 K compared to 46 K for a sink temperature
of 970 K and 800 K, respectively.
(a)

(b)

(c)

Fig. 4: H/Y ratio CDF for a sink temperature of (a) 800 K and
(b) 970 K (h: heat transfer coefficient, Q: heat of transport).
(c) axial view (z axis scale by 0.4) of the SiMBA problem for
the a sink temperature of 800 K.

Fig. 4 presents the minimum and maximum H/Y ratio
CDFs obtained for a sink temperature of 800 K and 970 K, as



well as the H/Y ratio distribution corresponding to the max-
imum value of Q. As visible from Fig. 4.a, the H/Y ratio
CDFs are almost vertical. This is because the heat of transport,
an epistemic uncertainty, has the most influence on the H/Y
ratio, therefore shadowing the impact of the aleatoric uncer-
tainties. In addition, it is observed that the H/Y ratio can vary
significantly (i.e., between 1.74 to 1.92), even compared to the
results reported in Ref. [3]. This large variation is explained
by the large value chosen for the upper bound of the heat of
transport. For Tsink = 970K, the variation of the H/Y ratio for
different values of the heat of transport is smaller (maximum
H/Y ratio between 1.81 to 1.89), which can be explained by a
smaller the gradient of temperature. In fact, for Tsink = 800K,
the moderator temperature variation is 45 K for an average
temperature 851 K, while for Tsink = 970 K, the moderator
temperature variation and average temperature are 54 K and
1020 K, respectively. Therefore, in Eq.( 1), the 1

T 2∇T term is
higher for Tsink = 800 K compared to Tsink = 970K, leading
to slightly larger variation of H/Y ratio for the lower heat pipe
sink temperature case. Contrary to the temperatures, which
seem to be varying over small ranges due to the uncertain-
ties (aleatoric and epistemic), the variation of the H/Y ratio is
expected to have a more significant impact on the neutronics
response of the reactor. It is also noticeable from Fig. 4 that for
Q = 1766J/mol the curves computed at h = 366W/m2/K and
h = 378W/m2/K, respectively, overlap. This further confirm
that the aleatoric uncertainties are negligible with respect to
the epistemic uncertainties caused by the lack of knowledge of
the heat of transport. The reason behind this is the proportion-
ality of the Soret term in Eq. (1) to the heat of transport. Since
the magnitude of Q is relatively small, the influence of the
temperature gradient diminishes. Consequently, even when
varying the aleatoric uncertainties, which impact temperatures
within few degrees, their effect on the cumulative distribution
functions (CDFs) presented in Fig. 4 remains negligible.

CONCLUSION AND FUTURE WORK

An uncertainty quantification study was performed on
a Bison model of the SiMBA microreactor including heat
transfer and hydrogen redistribution. The goal of this study
was to quantify the effects of the physical uncertainties on the
temperature and H/Y ratio distributions, which are feedback
mechanisms for the neutronics modeling of the reactor. The
analysis is performed for two different sink temperature and is
limited to the asymptotic solution. In this model, uncertainties
in thermal conductivities, heat transfer coefficients, and heat
of transport are considered and categorized as epistemic or
aleatoric. A nested approach for the uncertainty quantification,
with epistemic uncertainties on the outer loop and aleatoric
uncertainties in the inner loop is used. It is here shown that
the uncertainties have minimal impacts on the temperature
distribution (total variation around five K), but the heat of
transport can strongly influence the H/Y distribution, which
would have an impact of the neutronics response. It was noted
that for the heat pipe sink temperature of 800 K, H/Y ratio
spans on a slightly wider range compared to a sink tempera-
ture of 970 K. This is due to the gradient term in the hydrogen
current equation that is larger in the first case. In conclusion,

this investigation underscores the significance of acquiring a
dependable experimental value for the heat of transport to pre-
cisely assess the influence of hydrogen redistribution in YHx
on neutronics. Furthermore, the study reveals a substantial ef-
fect of the sink temperature, along with a significant impact of
the heat transfer coefficient, even within a small range of vari-
ation, likely influenced by the sink temperature. As a result, a
more comprehensive examination of heat pipe uncertainties is
warranted, which will be conducted in the future by coupling
BISON and SOCKEYE.
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