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Abstract 
Reliability data employed in plant reliability models neglect the present status of asset health (available, for 
example, from online monitoring data and diagnostic assessments) as well as any forecasted health 
projections (when available from prognostic models). Ideally, in a predictive maintenance context, system 
reliability models should support decision making by propagating actual health information from the asset 
to the system level in order to provide a quantitative snapshot of system health and to identify the most 
critical assets. Asset health should be informed solely by that specific asset’s current and historical 
performance data and should not be an approximated integral representation of past industry-wide 
operational experience (as currently performed by system reliability models through Bayesian updating 
processes). This paper proposes a reliability modeling approach that relies on asset diagnostic and 
prognostic assessments, along with monitoring data to measure asset health. We show how state-of-the-art 
condition-based, diagnostic, prognostic, and anomaly detection models can be linked to system reliability 
models—not in probability terms, but in terms of margin (with margin being defined as the “distance” 
between the present status and an undesired event [e.g., failure or unacceptable performance]). We then 
show how margin data are propagated from the asset to the system level via classical reliability models 
such as fault trees (FTs) or reliability block diagrams. The described method can in fact propagate 
heterogenous health data from the asset to the system level in order to analytically assess system health. 
 
Keywords: reliability, diagnostic, prognostic, condition-based, predictive maintenance 
 
1. Introduction 
 
Health management of complex systems such as nuclear power plants is essential for guaranteeing system 
reliability. This task can be greatly enhanced by constantly monitoring asset status/performance, then 
processing the resulting data (via anomaly detection and diagnostic/prognostic computational algorithms) 
to identify asset degradation trends and faulty states. While such data are typically available for many assets, 
they are not effectively propagated from the asset to the system level in order to identify the most critical 
assets and prioritize maintenance and surveillance activities. This is primarily because current reliability 
modeling techniques are inadequate for processing such information/data, as these techniques are based on 
the concept of failure probability and do not align with an operational context in which quantitative asset 
health information is available. Simply stated, current reliability techniques [Lee, 2011] serve a run-to-
failure operational setting, not a predictive maintenance one in which the goal is to perform maintenance 
and surveillance activities only when deemed necessary due to asset health. Our work focuses on 
developing a different type of reliability modeling technique—one designed to support a predictive 
operational setting. This technique entails moving away from a failure probability mindset and toward a 
margin-based one [Mandelli, 2023]. In this context, “margin” is an analytical metric for quantifying asset 
health based solely on current and past operational experience pertaining to the asset being considered. 
Margin-based reliability techniques can propagate asset health information to the system level, as well as 
apply analytical importance measures to each asset. This paper presents several approaches usable to assess 
asset margin when provided condition-based, diagnostic, prognostic, or anomaly detection data. 

mailto:Diego.Mandelli@inl.gov
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2. Margin-based Reliability Modeling 
 
[Mandelli 2023] expanded the meaning of the word “reliability” to better reflect the needs of system health 
and asset management decision-making processes. Rather than focusing on the likelihood of a given event 
(in probabilistic terms), we think in terms of how far off the event is from occurring. This new interpretation 
of reliability shifts the focus away from probability of occurrence and toward assessments of how near 
assets are to failure or at least reaching an unacceptable level of performance (see Figure 1). Note that two 
data elements are required for this assessment: the estimated actual health condition of the asset, which can 
be acquired by the asset-monitoring system or through diagnostic methods, and the limiting conditions that 
must be avoided, which can be acquired from past operational experience (e.g., monitoring data generated 
by similar assets under failure conditions). 
 
An asset’s margin value 𝑀𝑀 (see Figure 1) is defined over the [0,1] interval, where 𝑀𝑀 = 1 corresponds to a 
perfectly healthy asset (requiring minimal to no maintenance attention) and 𝑀𝑀 = 0 corresponds to a faulty 
asset (requiring maintenance attention). Note that margin quantification is impacted by the availability of 
monitoring data and can be defined over heterogenous variables such as pressure, vibration spectra, and 
time. For example, when dealing with condition-based monitoring data (both current and archived), margin 
𝑀𝑀 is here defined as the distance between actual and past conditions (e.g., oil temperature and vibration 
spectrum) that lead to failure (see Figure 1). Hence, margin-based reliability modeling provides a unified 
approach to dealing with heterogeneous monitoring data elements. 
 

 
Figure 1. Graphical representation of margin, based on actual asset-monitoring data. 

 
An asset’s margin value is not static, but changes with time—depending on asset conditions. For example, 
if degradation due to usage is observed from the monitoring data, the corresponding asset margin value 
decreases. Conversely, if a maintenance operation is performed on that same asset (e.g., restoration of 
centrifugal pump bearings), the asset margin value increases. This mindset shift regarding the concept of 
reliability (i.e., margin based instead of probability based) offers the advantage of directly linking the asset 
health evaluation process to standard plant processes for managing plant performance (e.g., plant 
maintenance operations and budgeting processes). The transformation also supports decision making in a 
form that is more familiar and readily understandable to plant system engineers and decision makers. 
 
Thus far, margin has been defined for one single asset. The next step is to quantify the system’s margin 
value after obtaining the margin values of its assets. Margin values are not propagated from the asset level 
to the system level via set theory-based operations, but by employing classical reliability models such as 
fault trees (FTs) or reliability block diagrams [Lee, 2011], which are solved using different rule sets 
[Mandelli, 2023]. 
 
In this respect, margin-based operators for assets in both series (OR operator) and parallel (AND operator) 
configurations must be defined. As an example, consider two assets (𝐴𝐴 and 𝐵𝐵). The margin 𝑀𝑀 of both assets 
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can be visualized in a 2D space, as shown in Figure 2. Starting with brand-new assets (i.e., 𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵 = 1), 
the aging and degradation that affects both is represented by the blue line in the figure, which parametrically 
signifies the combination of both margins 𝑀𝑀𝐴𝐴(𝑡𝑡) and 𝑀𝑀𝐵𝐵(𝑡𝑡) at a specific point in time t. Note that if no 
maintenance (preventive or corrective) was ever performed on either asset, this path would move from 
coordinates (1,1) to coordinates (0,0), at which point both assets would be considered failed. Hence, the 
coordinates (0,0) in Figure 2 represent the event 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵. Similarly, when the blue line reaches the x- or 
y-axis of Figure 2 (characterized by 𝑀𝑀𝐵𝐵 = 0 and 𝑀𝑀𝐴𝐴 = 0, respectively), either asset A or B has failed. 
Hence, the points in Figure 2 characterized by either 𝑀𝑀𝐵𝐵 = 0 or 𝑀𝑀𝐴𝐴 = 0 represent the event 𝐴𝐴 𝑂𝑂𝑂𝑂 𝐵𝐵. 
 
We can now calculate the margin 𝑀𝑀 for the AND and OR events described above. This is accomplished by 
following the definition of margin: by measuring the distance between the actual condition of assets 𝐴𝐴 and 
𝐵𝐵 and the conditions identified by the event under consideration (i.e., the occurrence of both or either 
event[s]). The margin for 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 can be calculated as the distance between the current point (𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵) 
and point (0,0), whereas the margin for 𝐴𝐴 𝑂𝑂𝑂𝑂 𝐵𝐵 is the minimum distance from the current point (𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵) 
to the x- or y-axis of Figure 2 (where 𝑀𝑀𝐵𝐵 = 0 and 𝑀𝑀𝐴𝐴 = 0, respectively): 
 
 𝑀𝑀(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡[(𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵), (0,0)] (1) 
 𝑀𝑀(𝐴𝐴 𝑂𝑂𝑂𝑂 𝐵𝐵) = 𝑚𝑚𝑑𝑑𝑚𝑚(𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵) (2) 
 
where the function 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡[. , . ] indicates the metric designed for calculating the distance between two points 
in a Euclidean space (e.g., if Euclidean distance is employed, 𝑀𝑀(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵) = �𝑀𝑀𝐴𝐴

2 + 𝑀𝑀𝐵𝐵
2). Mandelli 

(2022) provided a set of considerations regarding the appropriate distance metric 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡[. , . ] to be employed. 
In summary, Euclidean and Manhattan distance metrics represent the lower and upper bounds for 
𝑀𝑀(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵) (i.e., �𝑀𝑀𝐴𝐴

2 + 𝑀𝑀𝐵𝐵
2 ≤ 𝑀𝑀(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵) ≤ 𝑀𝑀𝐴𝐴 + 𝑀𝑀𝐵𝐵). If the temporal evolution of 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 is 

available, a more precise estimate of 𝑀𝑀(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵) can be obtained. Equations (1) and (2) allow us to 
propagate margin values via classical reliability models (e.g., FTs or reliability block diagrams) in order to 
quantify the system margin 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠. 
 
The definition of margin given thus far is abstract; application within a more practical setting depends on 
the phenomena of interest—and especially the monitoring data available. The following sections provide 
more quantitative details on how margin can be quantified based on the available equipment reliability (ER) 
data. 
 

  
Figure 2: Graphical representation of event occurrences, based on a margin framework. 
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Reliability models (e.g., FTs and reliability block diagrams [Lee, 2011]) can be solved symbolically by 
generating the minimal cut sets (MCSs) of the considered system and then applying Equations (1) and (2) 
to numerically determine the margin of each MCS, as well as that of the union of all the MCSs. In the 
context of margin-based reliability modeling, rather than considering the system MCSs, it is more suitable 
to rely on the concept of minimal path sets (MPSs) [Youngblood, 2001]. From a reliability standpoint, these 
two concepts are strongly related: MCSs represent conditions under which the system can fail (failure 
paths), while MPSs represent conditions under which the system can effectively operate (i.e., success 
paths). More precisely, a MCS represents a subset of assets that, once all failed, cause the system to fail. 
Conversely, a MPS represents a subset of assets that, when all functioning, guarantee the system to be 
functional. As the concept of margin is intended for measuring asset health, it focuses on asset operability. 
When focusing on continuously operating systems (e.g., the secondary side of nuclear power plants), it is 
relevant—from a decision-making point of view—to identify ways of guaranteeing successful system 
operation. Hence, MPSs coupled with margin-based calculations are more suitable in a predictive 
maintenance context. 
 
3. Technical Specifications Data 
 
In many practical settings, the limiting conditions shown in Figure 1 can be represented by the technical 
specifications of the considered asset, which are normally provided by the manufacturer. For example, to 
ensure proper function of the induction motors, the oil viscosity, which can significantly change as a 
function of motor rotation speed, must be below the specified limiting condition. 
 
As indicated in Section 2, margin can be calculated as the distance between the actual and the limiting 
conditions. In this context, the asset margin can be calculated as the difference between the currently 
measured oil viscosity and the limiting condition listed in the technical specifications. Given an upper 
limiting condition 𝑥𝑥𝐿𝐿𝐿𝐿 for a monitored variable 𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠, a margin 𝑀𝑀 can be defined as: 
 

 𝑀𝑀(𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠) = 𝑥𝑥𝐿𝐿𝐿𝐿−𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
𝑥𝑥𝐿𝐿𝐿𝐿−min(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) (3) 

 
where min(𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠) indicates the minimum allowable value for 𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠. 
 
For example, induction motors are designed to operate within specified differential temperature limits. 
These limits indicate the maximum permissible difference between the motor temperature and the 
environmental temperatures that various classes of insulation materials are able to withstand (this 
temperature limit can range from 80°C to 120°C, depending on the insulation material). In this scenario, 
𝑥𝑥𝐿𝐿𝐿𝐿 is represented by the specified temperature limit and 𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠 is the difference between the actual motor 
temperature and the environmental temperature. 
 
4. Anomaly Detection Data 
 
Here, we consider a case in which the available monitoring data for the asset being considered were 
collected exclusively when the asset was healthy Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠, meaning that data pertaining to asset 
degradation or failure are unavailable. Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 represents a collection of past observation data 
elements 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠. The following notation is used throughout this paper: a single observation data element 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 
can be composed of 𝐿𝐿 observed variables, 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 = [𝑥𝑥1, . . , 𝑥𝑥𝐿𝐿], and the observed variables 𝑥𝑥𝑒𝑒  (𝑙𝑙 = 1, … , 𝐿𝐿) 
can be heterogenous in nature (e.g., temperature, pressure). 
 
In this kind of situation, an asset’s health status can be established by measuring how actual monitoring 
data differ (distance-wise) from healthy data. In this respect, anomaly detection tools [Nassif, 2021] can be 
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used to quantify the residual between the actual observed data 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 and the predicted data 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 (as computed 
from 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠). Such tools can be based on a kernel density estimation (e.g., the auto-
associative kernel regression method [Baraldi, 2015]) or on deep-learning-based methods (see [Zhang, 
2019], among others). Under normal conditions, 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 is very similar to 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 (i.e., 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 ≅ 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟), meaning 
that 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 ≠ 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 indicates anomalous behavior (e.g., asset degradation). 
 
In this context, a margin value can then be defined as the distance between 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠: 
 

 𝑀𝑀(𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠) = 𝑒𝑒
−�

�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜−𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟�
ℎ �

2

 (4) 
 
where �𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 − 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟� indicates the residual between the observed and the predicted data, and ℎ represents 
the comparison parameter between 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 (expressed in terms of standard deviation). When the asset 
is experiencing normal conditions (i.e., 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 ≅ 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟), 𝑀𝑀 = 1. If the asset is experiencing abnormal 
conditions, the norm of the difference between 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 increases, causing 𝑀𝑀 to drop to 0. 
 
Note that Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 is here assumed to cover all possible healthy asset conditions. If this is not actually 
the case, when 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 enters an unforeseen healthy condition, the obtained margin value will show the asset 
to be unhealthy. However, once the newly observed healthy conditions are recorded, they can be added to 
the original dataset Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠. 
 
Figure 3 reflects a set Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 of observed data elements 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 = [𝑥𝑥1,𝑥𝑥2] being collected (the green 
dots in the left-hand image). Actual observed data 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 are constantly recorded, while 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 are determined 
based on 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 (see the black and red lines in the left-hand image), using the auto-
associative kernel regression method [Baraldi, 2015]. Applying Equation (6) to this test case enables a 
temporal profile to be generated for the corresponding margin (see the right-hand image). 
 
Note that the definition of margin presented in Equation (6) can be adapted and/or redefined depending on 
the machine learning (ML) model [Mohri, 2012] (e.g., KNN, SVM, ANN, CNN) employed by the anomaly 
detection method (either supervised or unsupervised). In most situations, the output of a generic anomaly 
detection method can be written in the form of the Boolean variable 𝑜𝑜𝑜𝑜𝑡𝑡 (indicating whether 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 was 
observed under normal or abnormal conditions), and a variable 𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠 (indicating the degree of confidence 
in the prediction). In such cases, given an anomaly detection method, a generic formulation of the margin 
associated with an observation 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 can be expressed as follows: 
 

 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� = �
0.5− 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

2
    𝑑𝑑𝑖𝑖 𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑚𝑚𝑎𝑎𝑙𝑙

0.5 + 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

2
𝑑𝑑𝑖𝑖 𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑚𝑚𝑜𝑜𝑎𝑎𝑚𝑚𝑎𝑎𝑙𝑙

 (5) 
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Figure 3. (Left) Representation of Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 (green population), 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 (black line), and 𝜉𝜉𝑟𝑟𝑒𝑒𝑟𝑟 (red line) 

in the 𝑥𝑥1,𝑥𝑥2 space. (Right) Temporal profile of the corresponding margin. 
 
5. Condition-based Data 
 
In this scenario, by following the definition of margin given in Section 2—and by being provided actual 
observed data (containing both historic healthy Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 data and faulty data Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠)—a margin 
value can be determined by comparing the mutual distance of 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 from the two populations: Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 
and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 (see Figure 4). Note that this case extends the one described in Section 4 (in which only 
data generated under healthy conditions Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 were available) by incorporating data generated under 
faulty conditions, indicated here as Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠. It is assumed that, in the presence of an asset fault, the 
actual observed data 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 can be seen transitioning from Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 to Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠. 
 
Without loss of generality and assuming both Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 to be well-structured datasets, 
a margin can be written as: 
 

 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� = 𝐷𝐷�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜;Ξ𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
𝐷𝐷�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜;Ξ𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�+𝐷𝐷�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜;Ξ𝑜𝑜𝑜𝑜𝑜𝑜−ℎ𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑓𝑓�

 (6) 

 
where the operator 𝐴𝐴(. ; . ) represents the distance between one single data element (i.e., 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠) and a 
population of data elements (either Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 or Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠). The choice of operator 𝐴𝐴(. ; . ) may 
depend on several factors, as dictated by the distribution of the Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 populations 
in the data space. Note that the model presented in Equation (6) is basically distance based, and does not 
directly employ any type of ML model. Note also that a distance-based approach for 𝐴𝐴�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠;Ξ� is only 
effective when the healthy and faulty data are well separated from each other in the [𝑥𝑥1, . . , 𝑥𝑥𝐿𝐿] space. 
 

 
Figure 4. Margin calculation, given the current status of the monitored asset 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 when both healthy 

Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and faulty Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 data are available in the [𝑥𝑥1, . . , 𝑥𝑥𝐿𝐿] data space. 
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In practical scenarios, however, these two populations of data elements may overlap. In such cases, margin 
can be quantified using density-based methods [Hastie, Tibshirani, and Friedman, 2001], which are 
designed to translate (e.g., via kernel density estimation methods) the Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 
datasets into probability distribution functions (PDFs) 𝑝𝑝𝑑𝑑𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and 𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠. Then, given a current 
observed measurement 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠, margin can be quantified by evaluating these two PDFs at the coordinate 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠: 
 

 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� = 𝑝𝑝𝑝𝑝𝑓𝑓ℎ𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑓𝑓�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜�
𝑝𝑝𝑝𝑝𝑓𝑓ℎ𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑓𝑓�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜�+𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜�

 (7) 

 
This equation weighs the PDF values at coordinate 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 under both healthy and faulty conditions. When 
𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 is located in a region of the [𝑥𝑥1, . . , 𝑥𝑥𝐿𝐿] space dominated by healthy data, 𝑝𝑝𝑑𝑑𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� ≫
𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� and 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� ≅ 1.0. Conversely, when 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 is located in a region of the [𝑥𝑥1, . . , 𝑥𝑥𝐿𝐿] space 
dominated by faulty data, 𝑝𝑝𝑑𝑑𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� ≪ 𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� and 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� ≅ 0.0. 
 
In the example given in Figure 5, Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 are shown in the left-hand plot, 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 is 
represented as the black line moving from left to right, and the corresponding margin is shown in the right-
hand plot. Here, 𝑝𝑝𝑑𝑑𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� and 𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� were generated using kernel density estimation 
methods (Hastie, Tibshirani, and Friedman, 2001). 
 
An alternative formulation to Equation (7) can be derived when ML methods are employed. In this setting, 
a supervised ML model (i.e., a classifier) is trained using both the faulty and healthy datasets (Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠, 
Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠) and is then employed to predict, given 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠, the class 𝑜𝑜𝑜𝑜𝑡𝑡 (either faulty or healthy) to which 
𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 belongs. Such a prediction can be augmented by also determining the probability estimate 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 
associated with the predicted 𝑜𝑜𝑜𝑜𝑡𝑡. If the [0,1] margin interval is divided into two equally long segments, 
we can assign the “healthy” class to the [.5,1] interval and the “faulty” class to the [0, .5] interval. Hence, 
the predicted class 𝑜𝑜𝑜𝑜𝑡𝑡 generated by the ML model determines the margin variability interval (either [0, .5] 
or [.5,1]). The variable 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 (see Figure 6) is essentially a measure of the prediction accuracy. More 
precisely, a high value of 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 implies a high degree of accuracy in the prediction; conversely, a very 
low value implies low accuracy. In this context, 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 is used to determine the precise margin location 
in the [0, .5] or [.5,1] intervals. A high value of 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 would drive the margin toward the extremes of 
the intervals (either 0 or 1), whereas a low value would drive it toward the common point of the intervals 
(i.e., 0.5). 
 

  
Figure 5. (Left) Representation of Ξ𝑜𝑜𝑜𝑜𝑠𝑠−ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 (green population), Ξ𝑜𝑜𝑜𝑜𝑠𝑠−𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 (red population), and 

𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 (black line) in the 𝑥𝑥1,𝑥𝑥2 space. (Right) Temporal profile of the corresponding margin. 
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Figure 6. Graphical representation of margin, based on the 𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 values predicted by a ML 

model. 
 
Provided 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 and a ML model that can generate both 𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟, a margin value can thus be 
defined as: 
 

 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� = �
0.5 − 𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑑𝑑𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟

2
𝑑𝑑𝑖𝑖 𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑖𝑖𝑎𝑎𝑜𝑜𝑙𝑙𝑡𝑡𝑓𝑓

0.5 + 𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑑𝑑𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟

2
𝑑𝑑𝑖𝑖 𝑜𝑜𝑜𝑜𝑡𝑡 = ℎ𝑒𝑒𝑎𝑎𝑙𝑙𝑡𝑡ℎ𝑓𝑓

 (8) 

 
Deep-neural-network-based models [Hastie, Tibshirani, and Friedman, 2001] are an ML model class widely 
employed for diagnostic applications. Given 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠, this class of classifier models generates the class 𝑜𝑜𝑜𝑜𝑡𝑡 
(either faulty or healthy) to which 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 belongs, along with a probability value associated with each class: 
𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 (rather than the single probability value 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟). Note that, if two classes 
are considered (faulty and healthy), 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 + 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠 = 1. The variable 𝑜𝑜𝑜𝑜𝑡𝑡 is calculated per: 
 

 𝑜𝑜𝑜𝑜𝑡𝑡 = �
ℎ𝑒𝑒𝑎𝑎𝑙𝑙𝑡𝑡ℎ𝑓𝑓 𝑑𝑑𝑖𝑖 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 > 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠

𝑖𝑖𝑎𝑎𝑜𝑜𝑙𝑙𝑡𝑡𝑓𝑓 𝑑𝑑𝑖𝑖 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 < 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠
 (9) 

 
In this context, margin quantification directly employs the two generated probability values 
(i.e., 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 and 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠), per: 
 
 𝑀𝑀�𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠� = 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 1 − 𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠  (10) 
 
6. Prognostic Data 
 
Estimating an asset’s remaining useful life (RUL) provides valuable information on when exactly that asset 
can be expected to experience loss of function. Given the stochastic nature of the failure phenomena, RUL 
is typically expressed in terms of a probabilistic distribution along the temporal axis. Many methods have 
been developed in the literature to predict RUL for specific assets, and [Ferreira and Gonçalves 2022] 
summarize the most widely used methods. To integrate the RUL PDF (indicated here as 𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐿𝐿) into a 
margin-based reliability model, we apply reasoning similar to that presented in Section 2. Here, a margin 
is the distance between the actual time and the predicted RUL. The main differences are that the RUL is 
estimated once a degradation mechanism has been identified (e.g., using an anomaly detection method) and 
is an actual distribution function rather than a point value. 
 
Once the RUL PDF is predicted, the corresponding margin value can be estimated via two approaches. The 
first defines the margin as: 
 
 𝑀𝑀(𝑡𝑡) = 1 − 𝐶𝐶𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐿𝐿(𝑡𝑡) (11) 
 
where 𝐶𝐶𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐿𝐿 indicates the cumulative distribution function corresponding to 𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐿𝐿. The second 
approach estimates margin as the distance between the actual asset life and a point estimate of the RUL 
distribution: 
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 𝑀𝑀(𝑡𝑡) = 𝑝𝑝5%
𝑅𝑅𝑅𝑅𝐿𝐿−𝑒𝑒
𝑝𝑝5%
𝑅𝑅𝑅𝑅𝐿𝐿  (12) 

 
where 𝑝𝑝5%𝑅𝑅𝑅𝑅𝐿𝐿 indicates the 5th percentile of the RUL distribution 𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐿𝐿. 
 
Figure 7 shows a graphical representation of the margins for both approaches in regard to an estimated RUL 
(in red) that is normally distributed. Note that the proposed approach updates the margin value when the 
asset health is measured, and consequently a better RUL estimation (i.e., one featuring less uncertainty 
associated with the RUL) is calculated by the corresponding prognostic model. 
 

 
Figure 7. Margin values obtained via the two proposed approaches (green and blue lines), given an 

estimate of the asset’s RUL (red line). 
 
Before initial degradation is detected (meaning the RUL cannot yet be estimated), the asset margin is set to 
1.0 (asset healthy). Once asset degradation is observed and RUL PDF estimation becomes available, the 
corresponding margin value is updated using the same estimators indicated in Equations (11) and (12). 
 
7. Example of Margin-based Reliability Analysis 
 
Here, we present an example of margin-based reliability calculation for the system shown in Figure 8 
[Youngblood, 2001], which is comprised of seven assets, A–G. The top plot in Figure 9 shows an estimation 
of each asset’s RUL. Here, RUL estimations are represented probabilistically, meaning that RUL is 
represented by a PDF designed to reflect the uncertainty associated with RUL estimates (in terms of RUL 
mean and variance). In this scenario, we represent system reliability in terms of MPSs rather than MCSs. 
The system margin is calculated considering the MPSs of the system shown in Figure 8, and by applying 
the margin rules indicated in Section 2 (i.e., the margin of each asset is calculated from its RUL by applying 
Equation (11). 
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Figure 8. Example of the system architecture as represented in terms of block diagrams [Youngblood, 

2001]. 
 

 
Figure 9. Example of margin-based calculations based on prognostic data for the system indicated in 

Figure 8, with the top plot showing the estimated RUL for each of the seven assets (A–G) and the bottom 
plot indicating the corresponding quantification of system margin. 

 
The obtained temporal profile of system margin is shown in the bottom plot of Figure 9. Note that: 
 

• Even though the asset margin is defined in the [0,1] interval, the system margin can exceed 1 
(though it still cannot be negative). A system margin of greater than 1 indicates redundancies that 
compensate for asset failures. In other words, when there are multiple MPSs, the system margin 
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will exceed 1. At time 𝑡𝑡 = 0, there are four MPSs and the margin for each asset is set to 1. Hence 
the system margin can be calculated as √1 + 1 + 1 + 1 = 2.0. 

 
• When assets approach the end of their RUL, their margins decrease to 0, at which point they are 

considered failed. Hence, the number of available MPSs decreases, as do the system margins until 
reaching a value equal to square root of the number of available MPSs. 

 
• At time 𝑡𝑡 = 8 𝑚𝑚𝑜𝑜𝑚𝑚𝑡𝑡ℎ𝑑𝑑, asset E fails. And even though assets B and G are working properly, the 

fact there are no available MPSs causes the system margin value to drop to 0. 
 
8. Conclusions 
 
This paper briefly presented a margin-based reliability approach designed to integrate condition-based, 
diagnostic, prognostic, and anomaly detection models. We began by presenting a margin-based approach 
for assessing asset health, based solely on actual and historic monitoring data (e.g., condition-based, 
anomaly detection, diagnostic, and prognostic data). We explained how heterogenous equipment reliability 
data elements and ML models can be employed to assess asset status via a margin value that serves as an 
analytical measure of asset health. We then showed how, depending on the operational context of the asset 
(e.g., type of failure modes) and the available health data pertaining to it, a margin value can be quantified 
using well-known statistical and ML algorithms. System health assessments are performed by propagating, 
via classical reliability models (e.g., FTs or reliability block diagrams), the margin values of those assets 
that support the system function(s). Such propagation is not performed via set theory-based rules, but rather 
through distance-based operations. The resulting information can then be used to assess the reliability 
importance of each asset in order to identify which are the most critical. A margin-based approach directly 
addresses the limitations of classical reliability modeling approaches and provides a snapshot of system 
health (given the availability of monitoring data). A margin-based interpretation of reliability shifts the 
focus of the concept away from probability of occurrence and toward assessing how far away (or close) an 
asset is to reaching an unacceptable level of performance or undergoing failure. This shift in focus provides 
a direct link between the asset/system health evaluation process and standard plant processes for managing 
plant performance (e.g., plant maintenance and budgeting processes). 
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