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Introduction

The Department of Energy (DOE) National Nuclear Security Administration's (NNSA) Office of Material Management and
Minimization (M3) mission is to convert, remove, and dispose of vulnerable nuclear material located at civilian sites
worldwide.

* Research reactors and isotope production facilities are being converted to non-weapon usable nuclear material

* Need to develop and qualify new low enriched uranium (LEU) fuels for use in the research reactors currently using
highly enriched uranium (HEU)

* Selected a monolithic U-Mo fuel plate design consisting of uranium-10 wt% molybdenum alloy (U-10Mo) foils clad in
aluminum alloy 6061.

* Analysis, testing, and demonstration of the new fuel is required to ensure that it meets the operational safety,
dimensional stability, thermal stability, performance, and other requirements for the reactors

References [2] and [3]



Introduction

Reactor physics safety evaluations for the ATR and ATRC currently use Monte Carlo

for the 215t Century (MC21)
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* \Validation Objectives:

* Provide rigorous basis for use of the ATR and ATRC models, approximations,
and nuclear cross sections safety analyses for use with LOWE

* Quantify uncertainties to inform margin

This work evaluates inputs to and proposes the Power Impact Validation Experiment to
validate the MC21 models for predicting power and few-group neutron spectrum in
the ATR with LOWE fuel elements.

References [2] and [3]



Background

Power Measurements

HEU fission wires are placed on a polyethylene flux wand

17 wands are inserted into different channels between fuel
element plates in an element (half the core is instrumented)

The fission wires are irradiated during a flux run, during
which the reactor is brough to a critical state for 20 minutes

Once the cycle is done, the fission wires are taken to the INL
Radiological Measurements Laboratory (RML) where the
saturation fission rate for each wire is determined using beta
counting

The beta counts are correlated to powers using HELIOS and
MC21, in parallel. Lobe power is calculated from multiple
fission wire power measurements.

e Correlations were developed specifically for HEU fission
wires being irradiated in an HEU environment

Reference [4]
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Y(FRyirei X Energy/Fission X Wy, ;) X Mya3sg
E = N x F

Py = Fuel element power, where:

N = Normalization factor
F = Peaking factor at midplane

FR\,ire; = Fission rate in wire i
Energy
Fission
Wy, ;i = Weighting factor for wire i

Myq3sp = Fuel element U235 mass

= Assumed energy per fission
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Figure 1. Flux Wand Set Locations [3]
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Approach
* Objective
1. Evaluate modeling accuracy for relative changes in power from the LOWE fuel element using experimental data

2. Correlate LEU-impacted fission rates to absolute power

Relative changes:
1. Validate the MC21 predicted fission rate values against experimental data from a flux run in the ATRC

2. Evaluate the relative impact of the LOWE element on the adjacent HEU elements

Meeting these Objectives Gives Confidence that MC21
Captures the Flux Perturbations from the LOWE Element
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Experiment Design

* Experiment control

* Core loading

- Standard Core Loading
(Mark IV and V)

@ LowE
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Experiment Design

* Experiment control
* Core loading

e Amount of instrumentation

Axial Instrumentation

Azimuthal Instrumentation
() Un-Instrumented (] Un-Instrumented
() Instrumented ) Instrumented
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Agenda

* Experiment Design
* Define the experiment control
* Flux runs are expensive and take time to prepare for and run
* Define the core loading

* The ATR and ATRC use different fuel. Procuring ATR fuel for use in the ATRC would be expensive. Switching
out the core loading would add multiple days to the experiment

* Define the level of instrumentation required

* How much instrumentation is needed for the experiment, and what impact will the instrumentation have on
our results?
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Design Considerations

* Two flux runs may be necessary for evaluating relative differences in fission rates
* Option 1: Lobe in the same flux run as the experiment flux run [Red Circles in middle Core Loading]

e Option 2: Separate flux run with only HEU elements [Left Core Loading]

- Standard Core Loading
(Mark I'V and V)

) LOWE

o0
@ O
R

Experiment Flux Run
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Design Considerations

* Two flux runs are necessary to evaluate the impact of the LOWE element on power

*  Minimize outside effects

10
e Minimize time and cost 30 -
20 1 5 8
Absolute Value of % Difference in Fission Wire I
Fission Rate 10 §
Average (% Maximum (% 0 o £
Lobe ge (%) (%) g
+ 0.4 % Uncertainty *+ 4.0 % Uncertainty 104 ~10 o
=
Northwest 2.2 8.8 20 -
_20 - =]
Northeast 4.8 38.6
—30
Center 1.6 5.6 =301
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Southeast 2.2 5.8 % Difference between Flux Run A and

Flux Run B
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- Standard Core Loading

Design Considerations (Mot IV and V)
B Mak vl
Standard ATRC core loading would significantly reduce cost and schedule Bl LovE

e ATRC standard loading consists of Mark IV and V elements

e ATR standard loading consists of all Mark VIl elements

0001000
o O ONNO © ©
0001000

Run A: Standard ATRC Loading
(Mark IV and V Elements)
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09001000

Run B: Standard ATR Loading in LOWE Lobe
(Mark VII, IV and V Elements)
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Des I g n CO n S I d e rat I O n S Total worth is calculated as shown in Equation 8.
ks — k1)
. _ Nk xky Equation 8
 Standard core loading should be used Precdback =g
Where:
» Difference of approximately 0.003 AS / A° Preevack ~ Reactivity worth (8)
ki, Ky Final k-effective for Run 1 and Run 2, respectively

e Standard loading is advised =

Be fr The delayed neutron fraction (assumed to be 0.007 per Reference 2)

Table D-5.  Sensitivity to Driver Element Loading

Core Loading Worth per Degree Change in OSCC Position, W /AP in ($/°)
v_V 0.132 = 0.001
IV _V_LOWE 0133 +0.001
Vil 0.130 = 0.001
VII_LOWE 0.131 £ 0.001




Design Considerations

Standard core loading should be used
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Figure D-5.

Difference of approximately 0.003 $/° at most

LOWE element worth is appx. $0.13 (position dependent)
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Design Considerations

Fission Wire Bias Evaluation

 Evaluating the impact of fission wires on fission rate Core Loading Max % Difference
All HEU <0.3%
e Quantify the effects of observation 39 HEU, 1 LOWE <0.3%

* Negligible differences were observed
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Summary

* Experiment Design
* Two flux runs are necessary for evaluating relative differences in fission rates
e Standard core loading should be used

e There is negligible impact from the fission wires on fission rate

- Standard Core Loading

@B ov: '@y0" { T
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Preliminary Findings
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