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An efficient instance segmentation 
approach for studying fission gas 
bubbles in irradiated metallic 
nuclear fuel
Shoukun Sun 1,3, Fei Xu 2,3, Lu Cai 2, Daniele Salvato 2, Fidelma Dilemma 2, Luca Capriotti 2, 
Min Xian 1* & Tiankai Yao 2*

Gaseous fission products from nuclear fission reactions tend to form fission gas bubbles of various 
shapes and sizes inside nuclear fuel. The behavior of fission gas bubbles dictates nuclear fuel 
performances, such as fission gas release, grain growth, swelling, and fuel cladding mechanical 
interaction. Although mechanical understanding of the overall evolution behavior of fission gas 
bubbles is well known, lacking the quantitative data and high-level correlation between burnup/
temperature and microstructure evolution blocks the development of predictive models and reduces 
the possibility of accelerating the qualification for new fuel forms. Historical characterization of fission 
gas bubbles in irradiated nuclear fuel relied on a simple threshold method working on low-resolution 
optical microscopy images. Advanced characterization of fission gas bubbles using scanning electron 
microscopic images reveals unprecedented details and extensive morphological data, which strains 
the effectiveness of conventional methods. This paper proposes a hybrid framework, based on digital 
image processing and deep learning models, to efficiently detect and classify fission gas bubbles 
from scanning electron microscopic images. The developed bubble annotation tool used a multitask 
deep learning network that integrates U-Net and ResNet to accomplish instance-level bubble 
segmentation. With limited annotated data, the model achieves a recall ratio of more than 90%, 
a leap forward compared to the threshold method. The model has the capability to identify fission 
gas bubbles with and without lanthanides to better understand the movement of lanthanide fission 
products and fuel cladding chemical interaction. Lastly, the deep learning model is versatile and 
applicable to the micro-structure segmentation of similar materials.

Next-generation advanced nuclear reactors with improved safety and economics are the future of nuclear energy 
for the United States and worldwide1. The proposed fuel forms to be utilized in advanced reactors include U 
metal-based alloys, Tri-structural isotropic (TRISO) particles, Uranium dioxide fuel (UO2), MOX fuel, and 
molten salts2–5. Although fundamental understandings of most fuel forms are well known, developing predictive 
models and accelerating the qualification of new fuel forms are still challenging due to the lack of quantitative 
data and correlation between high-level burnup/temperature and microstructure evolution6–9. Especially, U 
metal-based alloys, as complex systems, may undergo microstructure transformation, phase redistribution, and 
thermal property degradation in the fuel phase, and embrittlement, hardening, and corrosion of the cladding and 
encapsulating materials during irradiation9–11. The abovementioned phenomena, including microstructure trans-
formation, phase redistribution, and thermal property changing, are strongly interconnected and form a complex 
multi-factor problem. This problem, in turn, makes it difficult for conventional-empirical/physical-based fuel 
performance models to predict fuel behavior from estimated burnup and cladding temperature accurately12, 13.

U-10Zr-based metallic fuel is pursued as one of the leading candidate fuel forms for next-generation sodium-
cooled fast reactors for the low fabrication cost and capability to achieve a higher burnup14, 16. Although thou-
sands of U-10Zr fuel rods were irritated in test reactors, such as Experimental Breeder Reactor II (EBR-II) 
and Fast Flux Test Facility (FFTF) from the 1960s to the 1990s9, 14, a lack of fundamental understanding of the 
nuclear fuel microstructure properties and their evolution inside a reactor decelerate the qualification for com-
mercial use of U-10Zr fuel. One of the critical factors affecting fuel performance is the Fuel Cladding Chemical 
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Interaction (FCCI). The majority of FCCI in the cladding, i.e., wastage, is made up of lanthanides; therefore, it is 
important to understand how the lanthanides migrate and what compounds form the movement of lanthanides 
under a temperature gradient from the hot fuel center to the cool cladding surface. The lanthanide migration 
and its chemical interaction with cladding are critical aspects that may result in deterioration of the cladding 
mechanical properties, which could threaten fuel safety17. Moreover, PIE on advanced irradiated U-10Zr fuels in 
the Advanced Test Reactor (ATR) of Idaho National Laboratory (INL) discovered that the lanthanide particles/
nodules located around the periphery of the pores18–22. Understanding the distribution changes of the pores in 
the cross-section of the advanced U-10Zr fuel will provide first-of-its-kind knowledge on the lanthanide trans-
formation, which assists in revealing the mechanism of fuel cladding chemical interactions.

Accurate fission gas pore detection could provide trustable morphological distribution changes of pores along 
thermal gradient from hot fuel region to cold cladding rim and achieve a better understanding of the lanthanide 
movements. Cai et al. proposed a new framework to segment and classify fission gas pores in the (U, Zr) matrix 
regions of a U-10Zr annular fuel16. The authors applied image thresholding to segment fission gas bubbles and 
obtained good detection performance on a dataset of ~ 800 bubbles. As shown in Fig. 1, the bubble boundaries 
were manually labeled Fig. 1a by a material scientist, and the final annotated images were generated by filling 
the bubbles’ contours (white image regions in Fig. 1c). A decision tree model was trained to classify the bub-
bles into different categories. Although the method achieved good bubble detection performance, the method 
cannot separate pores well, as shown in Fig. 1b, which causes incorrect calculation of the physical properties of 
pores, such as size, shape, and orientation. Although the performance of machine learning (ML) models largely 
depends on the quality of the training data, and their interpretability may be insufficient, they typically outper-
form traditional approaches in terms of reliability and accuracy. Many ML approaches can be found in literature, 
exploring complex and large datasets to gain insights and accelerate scientific discoveries, such as accelerating 
testing to develop new materials35, automating defect detection in electron microscopy23–25, and so on. Existing 
ML-based segmentation models achieved acceptable performance on natural images26, 27, biomedical images28, 
and material images29, but detecting fission gas bubbles on fuel cross-sections is more challenging since the 
bubbles’ appearances, including gray level, size, and shape, vary greatly. Existing image processing techniques 
and pre-trained ML models cannot achieve good performance. Most ML models’ performance heavily depends 
on the amount of annotated data used at the training stage. Advanced experimental characterization tools and 
modern imaging routinely provide high/ultrahigh-resolution images at an ever-increasing rate and volume. 
However, advanced experimental characterization tools lack sufficient and high-quality annotated training data.

In this paper, a hybrid framework is proposed for more accurate and efficient fission gas bubble segmentation, 
and the contributions are summarized below.

1)	 The proposed hybrid segmentation only requires a small training set, and greatly reduces the time-consuming 
and expensive human efforts to manually annotate bubbles.

2)	 The proposed multitask instance segmentation network has a region segmentation branch and a boundary 
segmentation branch. It extracts and separates medium- and large-size bubbles accurately.

3)	 The proposed edge-based bubble segmentation approach generates accurate boundaries for small fission gas 
bubbles.

Proposed Method
Three significant challenges exist when extracting bubbles from PIE images using deep learning-based 
approaches. First, it requires enormous time and effort to manually label, namely marking the precise boundary 
for each bubble, a large dataset. In our PIE images, a significant number of bubbles are unlabeled. Second, many 
tiny bubbles widely exist in PIE images, and annotating the regions/boundaries of these bubbles is difficult. Third, 
existing instance segmentation approaches could be applied to extract and separate different bubbles. However, 
these segmentation approaches, e.g., Mask-RCNN30, are inefficient and inaccurate in segmenting many closely 
clustered objects. To address these challenges, the bubble segmentation tasks are decomposed into two inde-
pendent processing steps. In the first step, we propose a multitask instance segmentation network that is trained 
using a small, annotated dataset to segment medium- and large-size bubbles. The second step is unsupervised 
and applies an edge detection approach to extract small bubbles.

Materials and data preparation
In recent years, INL has been the leading national laboratory for research and development (R&D) on metallic 
fuel. Thanks to the development of advanced characterization capabilities at the Material Fuel Complex (MFC), 

(a) Image patch from an annular U-10Zr     (b) Segmentation results from [16]            (c) Manually annotated image

Figure 1.   Sample results of fission gas bubble segmentation16.
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it is now possible to revisit the vast available PIE data accumulated in the past and the newly established PIE 
data ranging from sub-nanometer to micrometer to obtain new findings. In a recent study, Cai et al. proposed a 
segmentation framework on ~ 800 partially annotated bubbles on only three 500x-magnification image patches 
of a U-10Zr annular fuel named AF16. In this study, we collected 585 scanning electron microscope (SEM) image 
patches under 1000x-magnification of a partial cross-section of another advanced U-10Zr fuel named AF231. 
The patches were collected from the hot center to the cladding. To design a DL-based model, sufficient training 
data with image annotations and original images were needed. Moreover, the data of the two fuels under dif-
ferent magnifications will reveal the features of bubbles differently, for example, size, contour, and texture, even 
for the same bubble as shown in Fig. 3. Under this circumstance, we developed an interactive annotation tool 
to label the fission gas bubbles.

Figure 2.   The proposed efficient instance segmentation framework.

       (a) AF1 with 500x magnification             (b) An image patch from AF1      (c) Manual annotations of (b)

        (d) AF2 with 2500x magnification             (e) 1000x magnification               (f) 2500x magnification

Figure 3.   Image samples from two annular fuels under different magnifications.
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Multitask instance segmentation network (MTIS‑Net) for extracting medium‑ and large‑size 
bubbles
A novel instance segmentation network is proposed to extract and separate medium- and large-size bubbles 
from SEM images. It treats each bubble as an instance. As shown in Fig. 2, the proposed network consists of one 
encoder and two decoder subnetworks. The encoder uses convolutional and pooling layers to extract meaningful 
features from input images at different scales. A ResNet-50 network32 is applied as the backbone network in the 
encoder. The first decoder is developed to segment bubble regions, and the second is to detect bubble boundaries. 
The results from the two decoders are combined to achieve an instance segmentation. The two decoders share 
the same feature input from the encoder. For preserving details, the intermedium feature maps of the encoder 
are passed to the corresponding layers in both decoders by skipping connections. These two decoders use the 
standard U-Net33 decoder architecture.

The Dice loss function34 is used in the bubble region segmentation branch. The Dice loss measures the quan-
titative difference between the region segmentation results ( ̂p1 ) and the ground truth ( y1 ), and it is defined by

where y1 is a 2D matrix that contains binary values in which value 1 denotes a bubble pixel, and value 0 repre-
sents a non-bubble pixel; and values in p̂1 are the actual predictions produced by the bubble region segmentation 
network. The numerator and denominator are added to 1 as the smooth term to avoid division by zero.

The weighted binary cross-entropy loss function is used in the boundary detection branch, and it is given by.

where y2 is a binary map that uses 1 s to denote bubble boundary pixels; p̂2 is the prediction of bubble boundaries; 
and w0 and w1 are the weights of boundary and non-boundary terms, respectively. In experiments, w0 is set to 
0.1, and w1 is set to 0.9.

The segmentation results are produced by subtracting bubble boundaries from bubble regions. The boundaries 
can disconnect touching bubble regions. During the post-processing, the final bubble instances are generated by 
connecting bubble pixels using the 8-adjacency system35; and the morphological dilation operation is applied to 
compensate for the shrinking of bubble areas.

Small bubble segmentation using edge detection
As shown in Figs. 3f and 4b, small bubbles are usually presented as black or grey dots in SEM images. These 
dots have homogeneous interior intensities. The grey bubbles have similar intensities to the background areas; 
therefore, it is difficult to differentiate grey bubbles from the background by using intensity thresholds. However, 
the grey bubbles have dark boundaries that separate bubble regions and backgrounds, and it is more appropriate 
to use edge detection approaches to detect small bubbles.

In this work, we use the Canny edge detection36 approach which includes five steps, (1) applying a 5× 5 
Gaussian low-pass filter ( σ = 1 ) to remove the image noise; (2) calculating the intensity gradient of the image to 
identify pixels with sharp intensity changes (potential edge points); (3) applying non-maximum suppression to 
eliminate noise; (4) applying double thresholding to determine potential edges; and (5) suppressing weak edges. 
The Canny edge detection approach can capture high-quality edges and mitigate the impact of image noises.

The Canny edge detection is applied to extract small bubbles. Most medium- and large-size bubbles have 
long, irregular-shaped, and fuzzy boundaries; and edge detection approaches can only produce small, discon-
nected boundary pieces, but closed boundaries could be generated for small bubbles because they have more 
homogeneous boundary pixels. The final bubble regions are generated by applying the flood fill algorithm37 to 
fill the closed edges. Non-closed edges are removed from the final results. Figure 4 shows sample results of small 
bubble segmentation.

(1)LDice
(
y1, p̂1

)
= 1−

∑
2y1p̂1 + 1∑

(y1 + p̂1)+ 1

(2)LWBCE

(
y2, p̂2

)
= −

[
w0

(
1− y2

)
log

(
1− p̂2

)
+ w1y2log

(
p̂2
)]

(a) Image patch    (b) Small bubbles       (c) Edge detection     (d) Detected bubbles 

Figure 4.   Sample results of small bubble segmentation.
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Experimental Results
Setup
Dataset
The images are cropped into 515 × 512 non-overlapped patches. The training set contains 18 image patches and 
827 annotated bubbles. It only has precise contours labeled by experts, noted as ground truths, for medium- and 
large-size bubbles. Due to the significant resources required, the number of medium- and large-size bubbles in 
the training images is small. The test set contains 24 image patches and 685 bubbles.

Training
We adopted a ResNet-50 backbone as the encoder because it has been demonstrated strong performance on a 
variety of tasks in previous studies and strikes a balance between computational efficiency and accuracy. The 
used backbone was pretrained using ImageNet. In training, we use an Adam38 optimizer with a 0.001 learning 
rate and train the network for 100 epochs. An exponential learning rate scheduler with γ = 0.97 is used to decay 
the learning rate after every epoch. Training images are randomly augmented in every epoch with Gaussian blur, 
Gauss noise, brightness, horizontally/vertically flipping, contrast, scaling, and rotating. The batch size is set to 8.

Evaluation metrics
Intersection over union (IoU) is a popular metric for measuring overlap between multiple objects, especially for 
segmentation tasks. The higher value of IoU indicates the prediction/segmentation results align well with the 
actual results. In this study, both pixel-level and instance-level performances were investigated. The pixel-level 
evaluation assigned each pixel as pore or non-pore. Instance-level differentiates between individual pores with 
the pixel-level results. As the test image is partially labeled, both the instance-level recall ratio RI

iou and the pixel-
level ratio RP

iou are used to evaluate the performance. The recall ratio is defined by Eq. (3).

where |TP| denotes the number of accurately segmented bubbles ( RI
iou ) or pixels ( RP

iou ) and |P| represents the 
number of total bubbles or pixels in ground truths. For the instance-level recall ratio RI

iou , the total number of all 
labeled bubbles is treated as the |P| . Each ground truth bubble is paired with a predicted bubble with the largest 
IoU among all predictions. The |TP| counts all paired predictions that have IoU values with a ground truth greater 
than a threshold. A set of values ( [0.5, 0.6, 0.7, 0.8, 0.9] ) are used as thresholds in experiments. The pixel-level 
recall, RP

iou , simply calculates the number of true bubble pixels over all labeled bubble pixels.

MTIS‑Net
Figure 5 shows an example of the outputs of the proposed MTIS-Net. The bubble region segmentation branch 
generates binary segmentation results for medium- and large-size bubbles. As shown in Fig. 5b, most bubbles are 
well-segmented, but some bubbles are connected. Figure 5c shows the segmentation results of bubble bounda-
ries generated by the boundary segmentation branch of MTIS-Net. The final segmentation results are shown in 
Fig. 5d, and different bubbles are illustrated using different colors.

Small bubble segmentation
Small bubbles are segmented using the Canny edge detection approach. As shown in Fig. 6, Fig. 6a is an original 
image patch from the studied fuel; Fig. 6b is the manually partial annotated ground truth (GT) image of Fig. 6a,c 
illustrates the bubble segmentation result from the multitask model discussed in Sect. "mtis-net"; Fig. 6d shows 
the results of the proposed small bubble segmentation approach; and illustrates that most small bubbles have 
regular shapes. The merged results of the MTIS-Net and edge-based approach are shown in Fig. 6e. Figure 6f uses 
blue contours to show medium- and large-size bubbles identified by MTIS-Net, and red contours to demonstrate 
small bubbles detected by the edge-based approach.

(3)Riou =
|TP|

|P|

 (a) Input image patch        (b) Bubble region detection (c) Bubble boundary detection         (d) Combined result 

Figure 5.   Sample results of the MTIS-Net.
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Overall performance
Table 1 demonstrates the instance-level recall ratios under different IoU thresholds (0.5, 0.6, 0.7, 0.8, and 0.9). 
In the "Bubble Numbers" table section, columns named " ≥ IoU threshold" show the number of bubbles that are 
successfully segmented based on specific IoU thresholds; and the "GT" column shows each image’s total num-
ber of labeled objects. The "Instance-level Recall" section shows the corresponding recall values using different 
thresholds. In classic object localization and instant segmentation tasks, an IoU threshold of 0.5 is described as 
a loose criterion of the correct detection39, 40; and the value 0.75 is considered a “strict criterion”.

Our method presents a recall ratio of 0.92 with IoU ≥ 0.5, and a recall ratio of 0.6 with IoU ≥ 0.9. With the 
increasing IoU thresholds, the instance level recall ratios drop slowly, which shows the precision and stability 
of the proposed method.

Even though GTs of bubble boundaries were created by experts, in specific situations, it is still challenging 
to appropriately define if a bubble should be separated into two. As shown in Fig. 7, the bubble inside the red 
box can be considered as one large bubble or two smaller bubbles. The expert labeled it a single bubble, but the 
model considered it two separate bubbles. Such a problem creates uncertainty in the instance-level evaluation. 
Hence, we also report the pixel-level recall ratio to provide a more comprehensive evaluation.

Table 2 shows the pixel-level recall ratios for each image and the entire test set. The “True Positive” col-
umn is the number of bubble pixels that are correctly classified. The "Total Positive" column represents each 
image’s labeled bubble pixels. The average recall ratio is 0.93. The highest and lowest recall ratio is 0.96 and 0.84, 
respectively.

Comparison with existing work
In the previous study by Cai et al., the bubbles were segmented with a pure image processing process that utilized 
the thresholding method35. In this section, we compare the thresholding method and the proposed method on 
our dataset. As shown in Fig. 8, the thresholding method tends to over-segment the bubbles, and the proposed 
method can generate more accurate results. Table 3 shows the instance-level recall ratios of the thresholding 
method and proposed method. The recall ratio of the thresholding method reaches 0.54 with the loose criterion 
0.5. Meanwhile, its recall ration is only 0.03 with the 0.9 IoU threshold, and the thresholding method has poor 
performance in segmenting objects precisely. Compared with the instance-level recalls in Table 1, the recall ratio 
of the proposed method is 0.92 at IoU ≥ 0.5. The improvement of the proposed method is over 70%.

                (a) Image patch                                (b) Partial GT            (c) MTIS-Net result 

        (d) Small bubble segmentation            (e) Merged result                                   (f) Predicted bubble contours 

Figure 6.   Merged Results. (a) Original image; (b) partial annotated ground truth (GT); (c) the result of MTIS-
Net; (d) the result of small bubble segmentation; (e) the result by merging (c) and (d); (f) The blue contours are 
predicted by multi-task U-Net, and red are from small detection.
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Discussions
The expensive cost of preparing ground truths is one of the major challenges in ML-based fission gas bubble 
segmentation, especially labeling tiny bubbles. The training images are not fully labeled. Part of medium-sized, 
large-sized, and all small bubble areas are marked as background during training. This circumstance hinders the 
model from fully learning the concept of the targeted object.

Due to the incomplete ground truth, the model’s performance is evaluated by recall ratio. We cannot conduct 
a comprehensive evaluation using more conventional instances or semantic segmentation metrics, such as mean 
average precision (mAP) and IoU. The drawback of recall is that it only counts on provided ground truths but 
cannot fully reveal the performance with the occurrence of over-segmentation.

The completely labeled ground truth with any sized bubbles is a solution to overcome the existing defects 
of training and evaluation. However, creating a large number of precise labels for training and evaluation is 

Table 1.   Instance-level evaluation. Columns of ≥ 0.5 through to ≥ 0.9 represent the count of detected bubbles 
that match ground truths with an IoU equal to or larger than the threshold.

Image ID Bubble numbers Instance-level recall

 ≥ 0.5  ≥ 0.6  ≥ 0.7  ≥ 0.8  ≥ 0.9 GT RI
0.5 RI

0.6 RI
0.7 RI

0.8 RI
0.9

1 18 18 17 15 13 19 0.95 0.95 0.89 0.79 0.68

2 21 21 21 20 13 22 0.95 0.95 0.95 0.91 0.59

3 36 36 33 32 29 38 0.95 0.95 0.87 0.84 0.76

4 14 13 13 11 8 18 0.78 0.72 0.72 0.61 0.44

5 30 30 30 27 18 35 0.86 0.86 0.86 0.77 0.51

6 33 32 31 30 22 33 1.00 0.97 0.94 0.91 0.67

7 33 32 31 29 17 36 0.92 0.89 0.86 0.81 0.47

8 42 42 41 39 30 46 0.91 0.91 0.89 0.85 0.65

9 38 38 38 36 30 42 0.90 0.90 0.90 0.86 0.71

10 14 14 14 14 8 14 1.00 1.00 1.00 1.00 0.57

11 20 20 20 19 10 23 0.87 0.87 0.87 0.83 0.43

12 24 24 24 22 14 27 0.89 0.89 0.89 0.81 0.52

13 39 39 38 38 34 41 0.95 0.95 0.93 0.93 0.83

14 44 44 44 44 37 45 0.98 0.98 0.98 0.98 0.82

15 26 26 25 23 18 29 0.90 0.90 0.86 0.79 0.62

16 29 29 27 24 18 34 0.85 0.85 0.79 0.71 0.53

17 32 31 29 28 21 34 0.94 0.91 0.85 0.82 0.62

18 28 27 25 23 17 28 1.00 0.96 0.89 0.82 0.61

19 13 13 13 11 8 15 0.87 0.87 0.87 0.73 0.53

20 22 22 21 17 12 23 0.96 0.96 0.91 0.74 0.52

21 20 20 19 16 10 21 0.95 0.95 0.90 0.76 0.48

22 11 10 8 7 4 14 0.79 0.71 0.57 0.50 0.29

23 21 19 17 11 9 23 0.91 0.83 0.74 0.48 0.39

24 23 20 20 16 11 25 0.92 0.80 0.80 0.64 0.44

Total 631 620 599 552 411 685 0.92 0.91 0.87 0.81 0.60

                 (a) Image patch                          (b) Predicted two separate bubbles                     (c) Only one bubble in GT 

Figure 7.   Difficulties in separating bubbles.
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Table 2.   Pixel-level recall ratio.

Image ID True positive Total positive Pixel-level recall

1 88,344 91,895 0.96

2 65,683 68,930 0.95

3 81,535 86,300 0.94

4 83,962 99,834 0.84

5 77,886 81,619 0.95

6 73,899 78,904 0.94

7 75,386 81,259 0.93

8 76,543 82,354 0.93

9 78,035 82,587 0.94

10 21,374 23,124 0.92

11 26,084 28,529 0.91

12 47,586 52,288 0.91

13 72,939 76,139 0.96

14 80,045 83,605 0.96

15 55,762 59,812 0.93

16 88,650 95,122 0.93

17 88,710 93,337 0.95

18 69,115 73,014 0.95

19 41,549 44,581 0.93

20 58,103 64,246 0.90

21 62,136 68,164 0.91

22 46,198 51,897 0.89

23 65,970 74,803 0.88

24 89,642 97,004 0.92

Total 1,615,136 1,739,347 0.93

                      (a) Image patch                                (b) Thresholding method [16]                    (c) Proposed method 

Figure 8.   Comparison of the thresholding and proposed methods.

Table 3.   Instance-level evaluation of the thresholding method 16 and the proposed method.

Methods

Bubble numbers Instance-level recall

 ≥ 0.5  ≥ 0.6  ≥ 0.7  ≥ 0.8  ≥ 0.9 GT RI
0.5 RI

0.6 RI
0.7 RI

0.8 RI
0.9

Thresholding 371 283 184 98 19 685 0.54 0.41 0.27 0.14 0.03

Proposed 631 620 599 552 411 685 0.92 0.91 0.87 0.81 0.60
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challenging. A more feasible way is to develop a semi-supervised model that can learn from incompletely labeled 
images. Therefore, we could train a model on a partially labeled set and evaluate it on a smaller, fully labeled set.

Conclusion
In this study, we propose an instance-level PIE bubble segmentation approach. The proposed approach consists 
of a novel multitask instance segmentation network (MTIS-Net) and an image processing step for dealing with 
bubbles of different sizes. The proposed method obtains excellent performance with a small training set. Our 
model shows outstanding improvement by comparing the previously proposed thresholding method. The better 
performance provides more accurate quantitative results of fission gas bubbles, e.g., the distributions of different 
fission gas bubble classes, especially those with lanthanides. The model will be unitized on the other U-10Zr 
annular fuels and will contribute to building the relationship between thermal gradients and lanthanide move-
ments. Moreover, the proposed method is promising to be applied to segmentation tasks of many materials.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the laboratory 
policy but should be available 3–5 years after the article is released. Currently, partial data is available from the 
corresponding author on reasonable request.
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