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Why hydropower degradation modeling?

• Federal Energy Regulatory 
Commission (FERC) relicensing
− Most of hydropower plants 

overestimate their power 
potential

• Flexibility operation accelerate 
degradation

• High Operation and Maintenance 
(O&M) cost 



Why prognostic?

• Conventional health monitoring are 
deterministic

• Forms of prognostic
− Parametric: distribution functions
− Non-parametric: Intervals, percentiles

• To date, diagnostic are used in hydro 
power systems predominantly

• Prognostics are gaining tractions in hydro 
power systems
− Situational awareness
− Stochastic Scheduling and 

operations
− Remain useful life (RUL) estimation

RUL through diagnostic

RUL through prognostic



Mechanical Components

• The main mechanical component of 
interest are the large hydrodynamic 
bearings that support the unit’s drive 
shaft.
− These include both radial and thrust 

bearings.
− Pressurized oil system provides 

lubrication and cooling.
− Sensors monitor bearing temp., oil 

pressure, oil height, oil temp, and 
vibration magnitude.

Fig. 1: Vertical Francis hydrogenator unit with bearing locations highlighted.
Image Source: Wasilczuk et al., “Large Hydrodynamic Thrust Bearings 
and Their Application in Hydrogenerators”, 2013.



Electrical Components

• Power Transformer
• Instrumentation 

Transformer
• Relay, and Protection 

Devices 
• Generator Stator 
• Generator Rotor 
• Generator Exciter 
• Automatic Voltage 

Regulator, Power 
System Stabilizer Image Source: WPTO



Two studies

I. Modeling hydropower degradation through vibration signal
II. Physic-informed degradation and prognostic
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Figurative Overview of Measurements in Hydro Power Generation

• Governor-Distance-Vertical
• Generator-Real-Power
• Generator-Vibration-Horizontal
• Generator-Vibration-Vertical
• Hydraulic-Turbine-Flow
• Hydraulic-Turbine-Vibration-Horizontal
• Hydraulic-Turbine-Vibration-Vertical
• Transformer-Temperature
• Metering-and-Control-Current
• Metering-and-Control-Real-Power



Initial Analysis Summary of Studied Units and Time 
Periods

Site/Unit Snapshots of 
Interest

Site 36922 
Unit LO-39 

March (No Outage)
April (Outage)
August (Outage)

Site 36922 
Unit LO-71 

January (No Outage)
July (No Outage)
September (Outage)

Site 36922 
Unit LO-93 

January (No outage)
July (No outage)
September (Outage)

baseline
probable vibration manifested issue
probable periodic maintenance
baseline
baseline
probable vibration manifested issue
baseline
baseline
probable cavitation manifested issue

Main limitation: Lack of access to maintenance records!
Initial approach: Considering long periods of halted production as potential maintenance outages 



Site 36922/Unit LO-39 – Representative data
Hydraulic Turbine-Vibration-Horizontal Hydraulic Turbine-Vibration-Vertical Hydraulic Turbine-Vibration-Vertical

Metering and Control Current Metering and Control Current Metering and Control Current

MARCH

APRIL

AUGUST

MARCH

APRIL

AUGUST

time within month time within monthtime within month



Site 36922/Unit LO-39 – SNAPSHOT ANALYSIS

H
ydraulic Turbine Vibration  

Vertical
H

ydraulic Turbine Vibration  
H

orizontal

Data suggest that the most likely scenario is that the August outage is periodic, whereas April may be corrective/preemptive.
April has significant change in the functional form of vibration, as apparent in spectral domain analysis as well.  

Time-Domain Spectral-Domain

time within month frequency

MARCH

APRIL
– Right before Outage

AUGUST
– Right before Outage

MARCH

APRIL
– Right before Outage

AUGUST
– Right before Outage



Site 36922/Unit LO-71 – snapshot Analysis

Gradual rise in the number of 
nonconforming points (dips)

Gradual rise in the average 
vibration levels

Sensor Readings During January

Sensor Readings During July

Sensor Readings During September– Right before Outage

time within month

Hydraulic Turbine-Vibration-Horizontal



Site 36922/Unit LO-71 – Long-Term Trends

Time of Outage
Jan, 2019 Sep, 2019May, 2019

Evolution of Hydraulic Turbine-Vibration-Horizontal (smoothed)

• Gradual accumulation of damage: degradation process.
• Sensor driven estimate on the state of health: degradation signals.



Guide Bearing Degradation  
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Exponential 
Degradation Path

Linear
Degradation Path

Two models are considered for comparison



Degradation Modeling Summary
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1. Linear Degradation Model: 𝑆𝑆 𝑡𝑡 = 𝜃𝜃 + 𝛽𝛽 × 𝑡𝑡 + 𝜖𝜖 𝑡𝑡

2. Exponential Degradation Model: 𝑆𝑆 𝑡𝑡 = exp 𝜃𝜃 + 𝛽𝛽 × 𝑡𝑡 + 𝜖𝜖 𝑡𝑡

Salient features of these models: 
• 𝜃𝜃,𝛽𝛽 are random variables which evolve incrementally with data 
• 𝜖𝜖 𝑡𝑡  are Brownian motion error 
• Bearing’s failure happen when 𝑆𝑆 𝑡𝑡  reaches a threshold 𝐷𝐷
− Threshold determined by subject matter experts (SME) 
− Threshold can also be determined by ISO standard for bearing vibrations 

Reference 1: NAGI Z. GEBRAEEL, MARK A. LAWLEY, RONG LI & JENNIFER K. RYAN (2005) Residual-life distributions from component degradation 
signals: A Bayesian approach, IIE Transactions, 37:6, 543-557, DOI: 10.1080/07408170590929018

Reference 2: ISO 20816-5:2018Mechanical vibration — Measurement and evaluation of machine vibration — Part 5: Machine sets in hydraulic power 
generating and pump-storage plants

https://doi.org/10.1080/07408170590929018


Data-driven Prognostics Framework
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Updating 𝜃𝜃,𝛽𝛽 

Recent vibration data

Bearing’s 
lifetime

Prior 
for 𝜃𝜃,𝛽𝛽 

Test bearing: 𝒊𝒊

Predicting the 
future vibration

Acceptable 
vibration threshold

Training bearings: (𝟏𝟏,𝟐𝟐, … , 𝒊𝒊 − 𝟏𝟏 )

Historical vibration dataset

Estimation 
of 𝜃𝜃,𝛽𝛽 

Bayesian updating of 
degradation model 

parameters 𝜃𝜃,𝛽𝛽 



Predictive Modeling Results

18Lifetime distribution for sample bearing using linear model

Key Inference: 
As observed data increase, the 
prediction accuracy increases



Predictive Modeling Results
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Key Inference: Linear model has better predictive performance in 
terms of mean and uncertainty around predictions



Two studies

I. Modeling hydropower degradation through vibration signal
II. Physic-informed degradation and prognostic



Physics-informed modeling

• Physics-informed model: 
Use of “operating conditions” in the degradation modeling 
− Computing power generation from rotor current & voltage data
− Making data-driven prognostics model a function of site/powerhouse 

• Validating prognostics model with the events data
− Predicted failure time should be closer to a bearing vibration event

• If no maintenance: Verifying if the bearing continued to degrade vs nominal operations

21



Pre-event

Post-event

During-event

Normal operation

Normal operation 
scenario has different 
correlation coefficient for 
stator and rotor 
measurements than the 
other scenarios.

1-19: Cooling system air temperature
20-22: Guide Bearing/Drive End Guide/Oil Cooler
23-28: Guide Bearing/Drive End Guide/shaft
29-31: Guide Bearing/Non-Drive End Guide/Oil 
Cooler
32-33: Rotor field current
34-41: Stator airgap vibration
42-47: Stator core temperature
48-56: Stator winding temperature measurements 



Perform a t-test for correlationPre-event During-event

Post-event Normal operation

 Green means statistically 
important
 Red means not 
statistically important 
 Most of correlation 
coefficients are statistically 
significant during pre-/ 
during-/ post-event scenario
 A lot of correlation 
coefficients are not 
significant during normal 
operation



Standard bearing life formula in terms of incremental damage in the form of an 
ordinary differential equation [1]
𝑑𝑑𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵
𝑑𝑑𝑡𝑡

=
1

𝑐𝑐1𝑐𝑐2 𝑡𝑡
𝑃𝑃 𝑡𝑡
𝐶𝐶

10
3

[1] A hybrid physics-informed neural network for main bearing fatigue
prognosis under grease quality variation

𝑐𝑐2(𝑡𝑡) = 𝑔𝑔(𝛼𝛼𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡)

𝛼𝛼𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡 = 𝑓𝑓(𝛼𝛼𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡−1, 𝑥𝑥𝑡𝑡)

adjustment factor 𝑐𝑐2 based on linear/exponential degradation 𝛼𝛼𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡

recurrent neural network for degradation

𝑃𝑃 𝑡𝑡  is dynamic bearing load (power generation from rotor current & voltage data) 

𝑐𝑐1= 1.0 reliability level factor

𝐶𝐶 design load rating

Physics-informed modeling



Expand the Euler integration cell to implement numerical integration of bearing life 
equation

Physics-informed modeling

𝑎𝑎𝑡𝑡 = 𝑓𝑓 𝑥𝑥𝑡𝑡, 𝑎𝑎𝑡𝑡−1
𝑎𝑎𝑡𝑡 = [𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡, 𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡]



Vibration                     
increment

Physics-informed Neural Network

Degradation curves

Bearing loads

Bearing design
Data and curves

Bearing 
damage 

increment                       

𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡−1

𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡−1

Current, voltage, and 
bearing temperature 
at time 𝑡𝑡

Δ𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡

Δ𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡

𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺,𝑡𝑡

𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡



The cumulative damage model training process with mapping to different 
quantiles

𝐿𝐿50,𝐵𝐵𝐵𝐵𝐺𝐺 𝑡𝑡 = 𝑓𝑓 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡

Δ𝑎𝑎50,𝐵𝐵𝐵𝐵𝐺𝐺 𝑡𝑡 =
1

𝐿𝐿50,𝐵𝐵𝐵𝐵𝐺𝐺 𝑡𝑡

2

𝛼𝛼50,𝐵𝐵𝐵𝐵𝐺𝐺 𝑡𝑡 = �
𝑡𝑡=0

𝑇𝑇

Δ𝑎𝑎50,𝐵𝐵𝐵𝐵𝐺𝐺 𝑡𝑡

𝑎𝑎𝑘𝑘,𝐵𝐵𝐵𝐵𝐺𝐺 𝑇𝑇 = 𝐶𝐶𝑘𝑘 ∑𝑡𝑡=0𝑇𝑇 1
𝐿𝐿50,𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡

2
= 𝐶𝐶𝑘𝑘𝑎𝑎50,𝐵𝐵𝐵𝐵𝐺𝐺(𝑇𝑇) mapping the damage we want at a specific quantile

Model training

min
𝐶𝐶𝑘𝑘

1
𝑁𝑁𝑜𝑜
∑𝑖𝑖=1
𝑁𝑁𝑜𝑜 𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺𝑖𝑖 − 𝐶𝐶𝑘𝑘 × �𝑎𝑎𝐵𝐵𝐵𝐵𝐺𝐺𝑖𝑖

2, 𝑠𝑠. 𝑡𝑡.𝐶𝐶𝑘𝑘 > 0 Minimize quantile based loss function



Example Results

Empirical cumulative distribution of the quantile ratios 
predicted with models trained with different turbine 



Questions
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