
 

INL/RPT-23-75114 
Revision 000 

Protecting and Defending against 
Autonomous Control Systems and 
Digital Twin Cyber Attacks 
Response Strategy for Hyperparameter attacks of 
Digital Twin Machine Learning Models in Nuclear 
Power Plants 

 
September 2023 

M3CT-23IN1105035 

Idaho National Laboratory 
Chris Spirito 
 
Georgia Institute of Technology 
Dr. Fan Zhang 
Dr. Md. Musabbir Hossain 
 
 

 
 



 

 

 

 
 

DISCLAIMER 
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof. 



 

 

INL/ 
Revision 000  

Protecting and Defending against Autonomous 
Control Systems and Digital Twin Cyber Attacks 

M3CT-23IN1105035 

Idaho National Laboratory 
Chris Spirito 

 
Georgia Institute of Technology 

Dr. Fan Zhang 
Dr. Md. Musabbir Hossain 

 

September 2023 

Idaho National Laboratory 
Idaho Falls, Idaho 83415  

 
 

http://www.inl.gov 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Prepared for the 
U.S. Department of Energy 

Office of Nuclear Engineering 
Under DOE Idaho Operations Office 

Contract DE-AC07-05ID14517 
  



 

 

 

 

Page intentionally left blank



 

iv 

 
 

Page intentionally left blank. 



 

v 

CONTENTS 

ACRONYMS ................................................................................................................................................. viii 
1. Response Strategy for Hyperparameter attacks  of Digital Twin ML Models in NPPs ........................ 1 
1.1. Introduction ......................................................................................................................................... 1 
1.2. Modeling of hyperparameter attack ................................................................................................... 2 

1.1 Digital twin system modeling with hyperparameter attack ........................................ 5 
2. Response strategy design .................................................................................................................... 7 

2.1 Digital twin system modeling ...................................................................................... 7 
2.2 Sliding Window with Time-Varying Model ................................................................ 10 
2.3 Event-triggered Control with Uncertainty Compensation ........................................ 11 
2.4 Control Action with Hyperparameter Attacks ........................................................... 11 
2.5 Control Gain Design ................................................................................................... 15 

3. Implementation ................................................................................................................................. 16 
3.1 Dataset preparation and reprocessing ...................................................................... 16 
3.2 Testbed development ................................................................................................ 16 
3.3 Simulation .................................................................................................................. 17 

4. Offensive Use Case (Operation FrostFire) ......................................................................................... 21 
4.1 Scenario ..................................................................................................................... 21 
4.1.1 Autonomous Control System ..................................................................................... 22 
4.1.2 Sensors ....................................................................................................................... 22 
4.1.3 Machine Learning Model ........................................................................................... 23 
4.1.4 Hyperparameter Attack ............................................................................................. 23 
4.2 Simulation .................................................................................................................. 25 

5. Defensive Use Case (Operation MirrorShield) ................................................................................... 27 
5.1 Scenario ..................................................................................................................... 27 
5.2 System modeling for defense strategy ...................................................................... 28 
5.3 Defense for decision matrix of hyperparameter attack ............................................ 28 
5.4 Data-Driven Iterative Learning Predictive Control (DDILPC) ..................................... 29 
5.5 Simulation .................................................................................................................. 34 
5.5.1 ControlSystem Class Overview: ................................................................................. 34 
5.5.2 Predictive Control Function ....................................................................................... 35 
5.5.3 Update Model Function ............................................................................................. 35 
5.5.4 Before and After Defense Sensor Measurements ..................................................... 36 

6. Conclusions and Open Issues ............................................................................................................. 37 
 

  



 

vi 

FIGURES 

Figure 1: Hyperparameter attack on forecasting model of digital twin in nuclear power 
plant: (a) Digital twin; (b) coordinated hyperparameter attack on machine 
learning forecasting model .................................................................................................................. 2 

Figure 2: Response strategy design: (a) Adaptive predictive control flow with event-
triggered control (ETC); ........................................................................................................................ 7 

Figure 3: A concept of relation between control input u, state-space model forecasting 
model of digital twin and predictive control attack .................................................................... 8 

Figure 4: A concept of adaptive sliding window in predictive control: (a) Record and 
forecasting; (b) Calculate window size and correct hyperparameters ................................ 10 

Figure 5: Testbed setup to implement proposed adaptive predictive event-triggered 
control for hyperparameter attacks on digital twin machine learning model .................. 17 

Figure 6: Hyperparameter attacks on learning rate and dropout rate with control vs 
without control ..................................................................................................................................... 18 

Figure 7: Hyperparameter attacks on training loss and validation accuracy with control 
vs. without control ............................................................................................................................... 18 

Figure 8: Hyperparameter attacks on training loss and validation accuracy with control 
vs without control ................................................................................................................................ 19 

Figure 9: Decision matrix for intelligent hyperparameter attack ............................................................ 20 

Figure 10: A Digital Twin-Assisted Hyperparameter Attack on Autonomous Control 
Systems .................................................................................................................................................... 21 

Figure 11: Hyperparameter attack (compromised activation functions) ............................................. 25 

Figure 12: Decision update in hyperparameter attacks ............................................................................. 25 

Figure 13: Decision matrix heatmap for intelligent hyperparameter attack ....................................... 26 

Figure 14: Data-Driven Iterative Learning Predictive Control (DDILPC) strategy.  
Integrates ILC and Predictive Control concepts, employing a 
FeedForwardNetwork,  Decision Matrix, and Trust Bank Control System 
ensuring optimal performance while countering threats. ...................................................... 30 

Figure 15: Before Defense: A Digital Twin-Assisted Hyperparameter Attack on 
Autonomous Control System ............................................................................................................ 36 

Figure 16: After Defense: Predictive Control for Model with Hyperparameter Adjustment  
and Defense Mechanism against Hyperparameter Attacks ................................................... 36 

  



 

vii 

 

 

Page intentionally left blank. 



 

viii 

ACRONYMS 
 

API Application Programming Interface 

BERT Bidirectional Encoder Representations from Transformers 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CVXPY Convex Optimization 

GPU Graphics Processing Unit 

GPT Generative Pre-trained Transformer 

LQR Linear Quadratic Regulator 

ML Machine Learning 

NLP Natural Language Processing 

NPP Nuclear Power Plant 

NMT Neural Machine Translation 

PLC Programmable Logic Controller 

Q State Cost 

R Control Effort Cost 

SciPy Scientific Python 

TPU  Tensor Processing Unit  



 

ix 

 

 

Page intentionally left blank. 
 



 
 

1 
 

1. Response Strategy for Hyperparameter attacks  
of Digital Twin ML Models in NPPs 

Navigating through the complex tapestry of technological advancements, "Response Strategy for 
Hyperparameter attacks of Digital Twin Machine Learning Model in Nuclear Power Plants" stands at the 
intersection of cybersecurity and nuclear power plant operations, embarking on a journey through the 
intricacies of securing digital twins against malicious cyber activities. As nuclear power plants 
progressively integrate digital twin technology and machine learning models to optimize operations and 
ensure system reliability, they inadvertently expose themselves to a new spectrum of vulnerabilities, 
notably in the realm of hyperparameter attacks. Hyperparameters, integral in machine learning model 
tuning and optimal performance of digital twins, have emerged as a target for adversaries aiming to 
destabilize the predictive capabilities and therefore, the operational accuracy of these digital entities 
within critical infrastructures like nuclear plants. This paper, therefore, meticulously threads the needle 
through the development of a robust response strategy, poised to shield these digital reflections against 
calculated hyperparameter manipulations, ensuring that the digital twin can effectively and securely 
function as a reliable proxy for its physical counterpart. The ensuing sections delve into the orchestrated 
maelstrom of multi-rate time-changing intelligent coordinated hyperparameter attacks and the 
implementation of event-triggered predictive control, laying down a structured, predictive, and 
responsive framework that safeguards the nexus where the digital and physical realms of nuclear power 
plants coalesce. 

The operational integrity of digital twins in nuclear power plants depends critically on the security of 
machine learning hyperparameters. This study makes two different contributions. First, a decision-based 
idea known as a multi-rate time changing intelligent coordinated hyperparameter attack is put forth. In 
this attack, many hyperparameters are repeatedly changed using both random and intelligent optimal 
techniques by the attacker. These assaults introduce varied rates at different attack steps, compromise 
various amounts of hyperparameters, and improve stealth and flexibility. Second, a technique is 
developed for event triggered predictive control to rapidly respond to potential hyperparameter attacks. 
This control integrates a sliding window framework, retaining a history of previous data points and 
employing linear regression to predict the next data point from the current dataset. The control gain K is 
determined using the Lyapunov-Krasovskii method, and subsequently, an action is developed. Finally, the 
outcome of the simulation demonstrates the viability of the proposed method for defending nuclear 
power plant digital twins from hyperparameter attacks. 

1.1. Introduction 
A hyperparameter attack on digital twin machine learning models refers to malicious attempts to 

manipulate the hyperparameters of the model in a way that affects its performance, prediction, or 
decision-making process. The digital twin concept, in the context of machine learning, denotes a digital 
replica of a physical asset, system, or process that is used to understand, predict, and optimize 
performance. By compromising the hyperparameters, adversaries can manipulate the digital twin model’s 
learning process, potentially leading to severe consequences, especially when these models are employed 
in critical real-world systems.  
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While cyber-attacks on critical infrastructure have been a topic of concern for many years, the advent 
of sophisticated machine learning applications in such systems, like those in nuclear power plants, 
presents a new set of challenges. Over the last decade, with the increase in digitization and adoption of 
machine learning in nuclear reactors’ management and safety systems, there’s been a growing concern 
about hyperparameter attacks. Adversaries, realizing the potential fallout of manipulating these models, 
view it as an avenue to cause significant disruption, potentially leading to incorrect safety protocols, 
system malfunctions, or even catastrophic events. Instances in the past, albeit limited, have shown that 
when these hyperparameters are maliciously tweaked, the digital twin models can produce erroneous 
outputs that could compromise the safety of the entire facility.  

To counter the threats posed by hyperparameter attacks, researchers and engineers are leaning 
towards robust and adaptive control strategies. One such approach is adaptive predictive control, which 
constantly adjusts and updates the system’s behavior based on real-time inputs and forecasts. By doing 
so, it can potentially identify anomalies in the model’s predictions or outputs that may result from 
hyperparameter tampering. Furthermore, the integration of event-triggered control can be pivotal. Unlike 
traditional control mechanisms that operate on a set schedule, event-triggered control operates when 
specific conditions or ’events’ are met. This means the system remains dormant until an anomaly, like a 
hyperparameter attack, is detected, upon which corrective actions are immediately taken. Together, 
these strategies offer a resilient and responsive defense mechanism against hyperparameter attacks, 
ensuring the integrity and safety of systems like nuclear power plants. 

1.2. Modeling of hyperparameter attack 
A digital twin is established in local server, which is connected with GPWR laptop. The GPWR is a WSC 

full-scope high-fidelity Generic Nuclear Power Plant Simulators for a Pressurized Water Reactor (GPWR). 
In this research, the following five hyperparameters of machine learning model are attacked as follows: 

 
 
 
 
 
 
 
 
 
 

Dropout rate: The dropout rate ρ is a regularization technique employed in ANNs to prevent 
overfitting. This technique makes a portion of the incoming neurons non-functional (essentially, 
they’re assigned a value of zero) for every update cycle while the network learns. It’s expressed as 

 

Figure 1: Hyperparameter attack on forecasting model of digital twin in nuclear power plant: (a) Digital 
twin; (b) coordinated hyperparameter attack on machine learning forecasting model 



 
 

3 
 

where 𝑦! represents the k-th entry, 𝑦	′! is the subsequent k-th output, 𝑣	! is a random value ranging 
from 0 to 1, and F is a representation function. If a malicious actor cleverly adjusts ρ, it can push the 
model towards excessive or insufficient learning, affecting its applicability and effectiveness. 
 
Layer size: In a layer size attack, an adversary strategically modifies the size of the hidden layers in an 
ANN, represented as  

 
where ℎ" is the size of the i-th hidden layer. The adjustment can be mathematically represented as 

  
where ℎ′"	represents the manipulated size of i-th layer. This deliberate distortion can undermine the 
ANN’s ability to accurately predict outcomes by altering the model’s architectural consistency.  

 
Learning Rate: An adversary may manipulate the learning rate, denoted by η, to extremities (too high 
or too low) to impede the ANN’s convergence. This modification is encapsulated by the equation. 

 
where ∆𝑤#$(t) is the weight change at time t, 𝛿$  is the error term for neuron j, and 𝑥#  is the input. This 
malicious act can disrupt the model’s gradient descent optimization process, leading to unstable 
weight updates, slower convergence, or even a complete failure to converge. 

 
Number of Training Epochs: In a number of training epochs attack, the adversary manipulates the 
total number of epochs (iterations), denoted by E, during the model’s training phase. If we denote the 
set of weight vectors at epoch i as Wi , then the learning algorithm tries to iteratively update Wi over 
E epochs to minimize a loss function L, according to 

 
The aim is either to prematurely truncate the training process (E is set too low, i.e., Eʹ < E), resulting 
in underfit models or excessively prolong it (E is set too high, i.e., Eʹ > E), leading to overfit models. By 
adjusting the number of epochs, the attacker can impact the model’s capacity to generalize, causing 
the model to be overly simplistic or overly complex. This misguidance in the learning process could 
lead to poor model performance and inaccurate predictions on unseen data, thus compromising the 
integrity of the forecasting model. 

 
Activation Function: In an activation function attack, an adversary strategically modifies the activation 
function or its parameters. Mathematically, the adversary alters f(z), where z is the input to the 
activation function, to a manipulated function f ʹ (z). Activation functions introduce non-linear 
properties to the model, enabling the learning of complex patterns. The manipulation could be 
changing a sigmoid function from 
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to a hyperbolic tangent function 

 
Moreover, manipulation could be modifying parameters of a parametric ReLU (Rectified Linear Unit) 
function. This intentional alteration can introduce undesirable properties such as vanishing or 
exploding gradients that can critically impair the learning process, thereby limiting the model’s ability 
to capture and learn complex data relationships. Consequently, the ANN’s predictive accuracy and 
overall performance may be reduced, substantially undermining the model’s forecasting capability. 

 
In the following, attack model is advanced by encompassing two types of coordinated 

hyperparameter attacks based on intelligence: less intelligent and high intelligent. In a less intelligent 
coordinated hyperparameter attack, adversaries aim to cause significant disruptions to machine learning 
models, without specifically targeting the most vulnerable areas. Less advanced techniques are used to 
plan such attacks, typically by assigning arbitrary values to different hyperparameters. Referring to 
pseudo-algorithm 1, the attacker initially penetrates multiple hyperparameters, denoted as η, ρ, H, E, f(·) 
and then randomly assigns them inappropriate values, denoted as η ʹ , ρʹ , Hʹ , Eʹ , fʹ (·). If the model’s 
accuracy diminishes, the attack is deemed successful, and the process ends with potentially leaving an 
opening for further exploitation. Although these random attacks lack precision, they can significantly 
cause considerable complications for machine learning models, disrupting their operation, and possibly 
leading to untrustworthy predictions. The downside of less intelligent attacks is that they can be easily 
detected and mitigated. For instance, one could deploy an ML-based detection system to monitor 
fluctuations in hyperparameters and the model’s overall performance. If the detector identifies severe 
changes in model performance, it can infer an ongoing attack. Defenders can then deploy 
countermeasures, such as re-adjusting or tuning hyperparameters to their initial values or alerting system 
administrators. However, a less intelligent attack could unintentionally reveal the weaknesses of some 
hyperparameters, giving defenders important information about the model’s vulnerabilities. 

In contrast, a high intelligent attack is carefully designed, where the attacker conducts an complete 
analysis of the hyperparameters, identifying and categorizing the critical ones. Misleading values are then 
assigned within a certain threshold to hyperparameters η, ρ, H, E, f(·), ensuring the attack is subtle and 
challenging to detect. Once these changes are implemented, the attacker assesses if the model’s 
performance has marginally declined, indicating a successful but imperceptible attack. This sophisticated 
attack form is designed to break past critical defenses by gradually changing the model’s behavior without 
causing noticeable modifications that would trigger detectors to turn on. Thus, the following Algorithm 1 
is constructed based on assumption 1 and assumption 2 to degrade the digital twin’s ML model 
performance. 

Assumption 1: The attacker has access to the training dataset 𝐷%&'#( = (𝑥# , 𝑦#)#)"*  utilized to train the 
machine learning model. This accessibility is pivotal for both low intelligent and high intelligent attacks, 
as it enables the attacker to comprehend the data distribution, make deliberate alterations to the 
hyperparameters η, ρ, H, E, f(·), and evaluate the model’s performance against known data points. In a 
high intelligent attack, the attacker not only adjusts hyperparameters to η ʹ , ρʹ , Hʹ , Eʹ , fʹ (·) but discerns 
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and categorizes the critical ones, indicating an understanding of how diverse hyperparameters influence 
the performance measure P of the model. 

Assumption: Degradation of the model’s performance, as measured by performance metrics P, 
resulting from manipulations in hyperparameters can be discrete and gradual. That is to say, the attacker 
can subtly decrease the model’s performance in an unnoticeable manner by judiciously selecting 
misleading hyperparameter values within certain thresholds. This gradual performance degradation, P ʹ , 
can be mathematically represented as P ʹ = P − ∆P, where ∆P is a small but statistically significant decrease 
in performance caused by the adjustments in the hyperparameters. 

Remark 1: The decision matrix 𝐷#,$  in algorithm 1 was used to represent whether to attack the i-th 
hyperparameter at time j. The attack rate r(t) is updated at each time step according to a predefined rule. 
This provides the ability to adjust the intensity of the attack over time. The matrix 𝐷#,$ 	stores the decision 
whether to attack each hyperparameter at each time step, providing a detailed record of the attack 
process. The functions g(t, r(t)) and h(t, r(t)) adjust the assignment of inappropriate or misleading values 
based on both the current time and the current attack rate. 

1.1 Digital twin system modeling with hyperparameter attack 
In the realm of nuclear power plants, precise prediction of temperature variations within the reactor 

is of paramount importance. Accurate temperature predictions not only ensure the efficient operation of 
the plant but also play a pivotal role in guaranteeing safety. Over the years, there have been numerous 
methods employed to forecast these temperature dynamics, but the integration of machine learning (i.e., 
ANN), particularly using models like the Convolutional Neural Network (CNN), has emerged as a cutting-
edge approach.  

CNNs, traditionally employed in image and video recognition tasks, have demonstrated their 
versatility by being adaptable to sequence prediction tasks, such as temperature forecasting in nuclear 
reactors. The strength of CNNs lies in their convolutional layers, which are intrinsically designed to 
automatically and adaptively learn spatial hierarchies from data. When applied to sequential data from 
nuclear reactors, these convolutional layers effectively extract temporal features, thereby enabling the 
model to discern patterns and trends in temperature data over time. This innovation allows for more 
accurate, real-time predictions, outstripping many traditional predictive models in both efficiency and 
accuracy.  

The digital twin, a digital representation of a physical entity or system, in this context, represents the 
pressurized water reactor of a nuclear power plant. By integrating the CNN-based temperature prediction 
model into this digital twin, reactor operators and management have access to real-time predictive 
insights. This integration offers a dual advantage: firstly, it allows for more proactive adjustments in the 
reactor’s operations, ensuring optimal performance; and secondly, it serves as an early warning system, 
identifying potential temperature anomalies that might compromise safety. In essence, the fusion of CNNs 
with the digital twin technology marks a significant stride towards the modernization of nuclear reactor 
management, emphasizing both efficiency and safety.  
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Algorithm 1: Multi-Rate Time-Varying Coordinated Hyperparameter Attacks on Machine Learning Model 

The forecasting model used in digital twin is represented as 

 
where T(t) - Target function at time t, 𝐿, - Layer size, which determines the depth of the network, 

𝑊-,$	- Weight matrix for the convolution layer, 𝑓'  - Activation function, D(𝐷&) - Dropout function with rate 
𝐷&, 𝐾$  - Convolutional kernel for 𝑗%/ layer,	𝑏-,$	- Bias for the convolution layer.  

In equation Error! Reference source not found. convolution represents the convolution operation 
between the input sequence x(t) and the filter 𝐾$  MaxPooling denotes the max-pooling operation applied 
to the convolutional output. Final Prediction gives the final temperature prediction, aggregating the 
convolution outputs. Given that five hyperparameters are attacked in the forecasting CNN model, their 
perturbations due to the attack can be represented as: δ(, δ0, δ1, δ2, δ3	(·). Then, the modified equation 
is: 
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where T(t) is the target function at time t, H and 𝛿! is the original number of filters and its perturbation, 
𝑊",$ , δη, and δρ are Weights and perturbations due to learning rate and momentum attacks, respectively. 
f(·) and 𝛿% (·) are activation functions. D(Dr) and 𝛿&  are dropout function and epochs perturbation, 
respectively. 𝐾$ and 𝛿! are convolutional kernel and its perturbation, respectively. 𝑏-,$  and 𝛿4 are bias 
and perturbation from momentum attack, respectively. 

2. Response strategy design 
An adaptive predictive control framework is developed by utilizing event-triggered control law as 

shown in Figure 2. 

 
 

 
In order to develop response strategy, following control elements, such as digital twin system 

modeling, sliding window design, even-triggered control formulation, control action establishment, and 
control gain are designed. 

2.1 Digital twin system modeling 
An attacker may exploit the sensitive dependence of the performance of learning algorithms on 

hyperparameters to cause the model to malfunction or produce suboptimal results. In the context of 
machine learning and control theory, this could mean that some of the state variables, system matrices, 
or controls are under the influence of hyperparameter attacks. For an adaptive control system associated 
with an ML model M, let’s introduce adversarial disturbances caused due to hyperparameter attacks. Let’s 
denote this hyperparameter attacks as 𝛿% which can result in two potential mappings both less intelligent 
and high intelligent attack: 

Figure 2: Response strategy design: (a) Adaptive predictive control flow 
with event-triggered control (ETC); 
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where s(t) is a time-varying function that returns either ʹ or ʹʹ (prime or double prime) depending on 

the attack rate and coordination at time t. η [s(t)] is a concise way of showing that η is modified to either 
η ʹ or η ʹʹ based on the value of s(t). Equation (1) provides a compact way to represent how the attack 
modifies the hyperparameters over time, contingent on the value of s(t). 

 
 

 
This attack influences the system dynamics and the control law. Let’s define the system dynamics by 

introducing the hyperparameter attack: 

 
where x(t) is the state of the system, u(t) is the control input, d(t) is additive disturbances of 

uncertainties in the digital twin system dynamics. ∆(t) is the multiplicative uncertainties. The adversarial 
disturbance δ(t) could be a function of the state, control action, or some exogenous signals. Also, in 
adaptive control, we usually don’t know the system matrices A(t) and B(t). So, we estimate them: 

 
The cost function, in this case, aims to minimize not only state and control efforts but also to minimize 

the effect of uncertainties. Hence, the control action becomes: 

Figure 3: A concept of relation between control input u, state-space model forecasting model of digital 
twin and predictive control attack 
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where K is the control gain matrix to be determined. The control gain usually changes over time in 

adaptive control systems to compensate for system uncertainties and adversarial disturbances. R(t) is the 
is a positive definite weighting matrix at time t associated with the control effort in a quadratic cost 
function. It quantifies the “cost” or” penalty” of using a particular control effort. Taking its inverse 
−𝑅(𝑡5")	allows for scaling the control input. P(t) is the solution to the matrix from the Lyapunov function 
at time t, 𝐵;(𝑡) ʹT is the transpose of the estimated system input matrix of 𝐵;(𝑡). The transpose operation 
allows for matrix multiplication with the state x(t) and P(t).  
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2.2 Sliding Window with Time-Varying Model 
 

The sliding window retains a history of previous data points, utilizing linear regression to anticipate 
the subsequent data point based on the present set of data. Its size is adaptively altered in relation to the 
prediction error.  

 
For a given data set was shown in Figure 4, the ensuing data point 𝑝6#(-76 is derived from: Here, 

𝑓8&9-#:%	(𝑤) is the regression prediction function applied to the data set w. Considering hyperparameter 
attacks, the window size should be adjustably changed to cater to shifting multi-rate attributes. 
Consequently, a time dependent variable window size, w(t), becomes necessary. 
 

 
 

 
 

To introduce a concept of “flexible power,” we can implement a function p(t) symbolizing this power. 
This function has the capability to adjust the significance or weighting of each term in the accumulation. 
For added intricacy, the coefficients of the auto-regressive model can be set to evolve with time: 

 

Figure 4: A concept of adaptive sliding window in predictive control: (a) Record and forecasting; 
(b) Calculate window size and correct hyperparameters 
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The summation’s index i now spans from t−w(t)+ 1 to t, generating a dynamic window encompassing 
the concluding w(t) components up to the present moment t. 𝑃&(𝑡) signifies the flexible power at the 
instance t, and w(t) indicates the changing window size function. This sum considers all the weighted 
elements 𝑎#  f(𝑥#) within the present window.  

2.3 Event-triggered Control with Uncertainty Compensation 
The event triggered control function interacts with the state-space model, data driven model, and 

machine learning forecasting model. A control action is only computed when the norm of the difference 
between the current state and the predicted state surpasses a specified threshold. Given a system state 
x and an event threshold ε, the control action u can also take into account the effects of uncertainties d(t) 
and ∆(t), aiming to offset them. 

Let x symbolize the present system state, 𝑥8&9-  represent the foreseen system state, and ε stand for 
the event threshold. Moreover, let θ(t) be a parameter that varies with time, influencing the control 
action. The control action, expressed as u(t), can be described as: 

 
with 𝑓:7(%&7;(x, t) = −K · g(x)−L· d(t)−M · ∆(t), 𝑓:7(%&7;(x) is the control function, computed as −K · x with 

K being the control gain. 𝑥8&9-  is the predicted system state. 𝑥;',% is the last observed system state. θ(t) 
introduces a flexibility range around the event threshold ε, allowing for a smoother transition between 
the control modes.  

Note that the third condition u(t − 1) indicates a hold condition, in which the control action persists 
identical to the control action at the preceding time step. This condition can be advantageous for ensuring 
stability or to deter abrupt alterations in the control action when the state approaches the event 
threshold.  

Conversely, when the control action isn’t activated (i.e., when |	 𝑥 − 𝑥8&9-| lies within the event 
threshold with the flexibility θ(t)), the control function is set to zero. This guarantees that the control 
action remains dormant when unnecessary, facilitating a seamless transition amongst control modes.  

By integrating four conditions into the control action Error! Reference source not found. inclusive of 
the hold condition, we attain greater command over the system’s behavior in diverse zones surrounding 
the event-triggering threshold. This results in enhanced efficiency and agility, especially in situations with 
uncertainties. 

2.4 Control Action with Hyperparameter Attacks 
In the training process of a neural network, a hyperparameter attack detector class is used which acts 

as a callback function if the validation loss exceeds a threshold, indicating a potential hyperparameter 
attack. It then computes a control action to correct the model’s hyperparameters and applies it to the 
model. Given a validation loss v and a trigger threshold τ, a control action u is computed and applied to 
the model M as:  
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where state(v) transforms the validation loss v into a system state, 𝑓:7(%&7;	(𝑥) is the control function, 

𝑓:7&&9:% (M, u) applies the control action u to the model M.  
Combining Eq. (2-8) into a single function representing the whole system, we have: 

 
The control action u is updated as 

 
Let’s consider 𝐸9<8 as an expectation of a function f(x) over all states, where the states follow a 

probability distribution given by a function 𝑎#(t) which is assumed to be normalized. Moreover, the 
function f(x) is controlled by the control variable 𝑢#  (t), which is governed by control rules. The correction 
term 𝑐#(t) is introduced for advanced control based on the cost function J(𝑀#). Subsequently, we compute: 

 
In this case, 𝐸9<8 is computed as an integral, which is equivalent to a sum in continuous space. This 

can be thought of as the expectation of f(x) with respect to the probability distribution a(x, t) over all 
states x. Here a(x, t) depends on time and the state x, which is influenced by the control action ui(t) and 
the correction term 𝑐#(t). 

When v > τ , the system evolves as follows: 

 
Finally, the system outputs M. In Error! Reference source not found., x = state(v), seems to be a state 

update equation. Here, the state x of the system is given by a function named state, which depends on 
the variable v. The precise meaning of this will depend on your specific system, but generally, this is 
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updating the state of the system based on the current variable v. Control action: The second part, u = −K 
· g(x, 0, 0), represents the control action. The control action u is computed by the negative of a gain K 
times a function g of the state x. The function g also takes two additional arguments that are set to zero 
in this case. This control law is a type of state feedback where the control action is calculated directly 
based on the current state x. Parameter correction: The equation Error! Reference source not found., M 
= M − γ · ∇J(M), represents an adjustment to the parameter(s) M. Here, M is updated by subtracting a 
quantity proportional to the gradient of a cost function J evaluated at M. The proportionality factor is γ, 
which could be seen as a learning rate. This is a standard way to perform a gradient descent update in an 
optimization routine, which aims to find the minimum of the cost function J with respect to the 
parameter(s) M. 

In Algorithm 2, the two functions CalculateWindowSizePredictionHorizon() and 
CorrectHyperparameters() play critical roles in the overall predictive control and hyperparameter 
correction mechanism. They ensure the model fits the data in an optimal way while maintaining system 
stability, respectively. 

 
Remark 2 A digital twin system intricately bridges the physical entity with its digital representation. 

This close symbiosis, while enabling real-time monitoring and control, also introduces inherent latencies. 
These latencies emanate primarily from data transmission, processing, and computational delays, 
especially when machine learning models with varying hyperparameters are employed. Specifically, as 
machine learning models adapt over time—whether by hyperparameter tuning or training—the dynamics 
of the digital twin system can experience fluctuations. This not only challenges the determination of an 
optimal control gain K but also leads to treating the digital twin system as a delayed entity. To address 
these concerns, the Lyapunov-Krasovskii functional offers a robust mathematical framework, allowing us 
to analyze these delays and derive control strategies that ensure stability and resilience against dynamic 
disturbances in the digital twin system. 
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Algorithm 2: Improved Predictive Control with Event-Triggered Adaptation 

 



 
 

15 
 

2.5 Control Gain Design 
To determine the gain K using the Lyapunov-Krasovskii method, we use the Lyapunov-Krasovskii 

functional (LKF) for time-delayed systems and cast the problem in a Linear Matrix Inequality (LMI) 

 
where P, Q > 0 are positive definite matrices, r is the maximum delay. For stability, one aims to satisfy: 

 
Now, the following LMI (25) ensuring stability in the presence of hyperparameter attacks, based on 

the Lyapunov-Krasovskii functional, would be: 

 
where A is the state matrix for the non-delayed part of the system. 𝐴&  is the state matrix for the 

delayed part of the system. B represents control inputs. R is a weighting on the control effort. ⪯ 0 indicates 
that the matrix is negative definite. P˙(t) arises from the fact that P(t) is time-varying in this setup. It 
ensures that for the given adaptive control action, the overall system remains stable. The negative 
definiteness of the combined matrix implies a decrease in the Lyapunov-Krasovskii functional over time. 

Remark 3 Σ(t) represents the influence of the adversarial disturbance δ(t) on the system. It models how 
sensitive the system is to hyperparameter attacks, with its structure and form depending on how δ(t) is 
incorporated into the system. To robustly counteract hyperparameter attacks, we consider incorporating 
robust control techniques, which might involve restructuring the control law or the system matrices. 

The resulting LMI for determining K can be represented as: 

 
with 

 
where Σ(t) is a matrix that represents the adversarial disturbance effect, and P(t) is a positive definite 

matrix used in the Lyapunov-Krasovskii functional. R(t) is also a positive definite matrix, representing the 
control weighting. By solving this LMI, we can obtain the suitable P(t), R(t), and K(t), which ensures stability 
for the given system, even under adversarial disturbances. This LMI can be solved using specialized 
numerical tools, such as python, LMI solvers in MATLAB or YALMIP, to find the matrices that satisfy the 
inequality. 
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3. Implementation 
Embarking on a quest to reinforce and protect digital twin models from adversarial interference in 

nuclear power plants, Section 3 meticulously weaves through pivotal steps and strategic methodologies, 
ensuring these digital entities sustain operational integrity even amidst hyperparameter attacks. Diving 
into the granular depths of dataset preparation and reprocessing, it underscores the imperativeness of 
precision and reliability in handling data that forms the bedrock upon which robust machine learning 
models are built. With a meticulous lens focused on managing the cascade of data from sensor-derived 
temperature readings within the pressurized water reactor, the initial segments prioritize establishing a 
clean, normalized, and adeptly preprocessed dataset, inherently recognizing its cardinal role in shaping a 
digital twin that mirrors the authenticity and accuracy of its physical counterpart. As the narrative 
transitions through testbed development, simulation setups, and exploring various nuances of 
hyperparameter attacks, it integrates a plethora of strategies, from minimizing control gain matrix norms 
to predictive control, all enveloped in a cohesive framework designed to fortify the digital twin against 
perturbations in its operational trajectory. The successive subsections unravel these methodologies, 
illustrating not only their conceptual foundations but also their practical implications and execution within 
a nuclear power plant scenario. 

3.1 Dataset preparation and reprocessing   
In the development of a digital twin forecasting model for a pressurized water reactor, the initial step 

revolves around dataset preparation. Leveraging historical data from sensors positioned throughout the 
reactor, a comprehensive dataset capturing temperature fluctuations can be compiled. Given the 
sensitivity and consistency required for nuclear operations, the dataset needs rigorous preprocessing to 
ensure accuracy. This involves the removal of outliers, normalization to bring all measurements to a 
common scale, and possibly smoothing to iron out minor fluctuations that don’t represent genuine 
changes in reactor conditions. Once cleaned, this data is then shaped into appropriate input matrices 
suitable for a CNN, often using sliding window techniques to create sequences of temperature readings 
for regression forecasting. 

3.2 Testbed development 
A simulation setup is developed as shown in Figure 5 where CVXPYa (minimizes a convex objective 

function) is utilized to minimize Frobenius norm of the control gain matrix K, multiplied by R, a measure 
of control cost) subject to a linear matrix equation constraint. This linear equation constraint ensures that 

 
 
a CVXPY is a Python library that helps people solve optimization problems, where you're trying to find the best solution out of 

many possible options, considering certain rules and limitations. 
 Imagine you have a piggy bank, and you want to save as much money as possible in a month. But you also must follow 

some rules: you can’t spend more than a certain amount each day, and you need to buy both food and school supplies within 
the month. Trying to find the best way to save the most money, while following these rules, is like an optimization problem. 

 In the world of mathematics and programming, CVXPY is like a helpful tool for these kinds of problems. It allows 
programmers to define their problem in a very straightforward and clear manner and then solves it to find the best possible 
solution (like saving the most money) while still following all the rules (like daily spending limits). Specifically, it is often 
used for problems involving minimizing or maximizing a particular value, such as minimizing costs or maximizing profit, 
under certain constraints. 

 In a more technical sense, CVXPY is used for "convex optimization" problems.  
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the optimal solution aligns with the Riccati equation which arises from the Linear Quadratic Regulator 
(LQR) problem, a common method for finding optimal control in linear systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R is the cost associated with the control effort. It’s used to formulate an objective function to be 

minimized in the controller design. A common aim is to minimize the control effort (the changes in control 
actions), and this is expressed as the minimization of R ∗ u, where u is the control input. This minimization 
needs to be balanced against the aim of keeping the system state close to a desired value, hence the use 
of the state cost Q.  

Also, a library ’NumPy’ is used for numerical computations and handling arrays and matrices A and B. 
In the following, function ’scipy.linalg’ from SciPy is used to calculate the symmetric positive-definite 
solution P in the proposed secure controller. A class ’sklearn.linear model(LinearRegression)’ is used to 
performs ordinary least squares Linear Regression from the scikit-learn library. This is used in the 
SlidingWindow class for predictive purposes. 

3.3 Simulation 
Diving into the intricate universe of machine learning models, one encounters the potential threats 

and disturbances instigated by hyperparameter attacks, a scenario where malicious adversaries 
intentionally tamper with the hyperparameters of the learning model to disrupt its predictive accuracy 
and reliability. Figure 6 and subsequent visuals unpack the significance and the ensuing consequences of 
such attacks on various aspects like learning rate and dropout rate, ultimately trickling down to affect 
model performance. Through a meticulous exploration of control mechanisms in the following sections, 
we'll explore how the deft application of control, a metaphorical steady hand on the wheel, can help 
navigate through the tumultuous waters of hyperparameter disturbances, ensuring model stability and 
integrity. Moreover, through carefully crafted visuals and analyses, we shall delve into the varying 
strategies employed by attackers, unearthing the impact of each on the learning model. This sets the stage 
not only for understanding the potential vulnerabilities and challenges posed by hyperparameter attacks 
but also for developing robust strategies to safeguard the model against such potential threats. Thus, we 

Figure 5: Testbed setup to implement proposed adaptive predictive event-triggered 
control for hyperparameter attacks on digital twin machine learning model 
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embark on a journey of unraveling, understanding, and ultimately devising shields against the perils of 
hyperparameter manipulations in machine learning models. 

Figure 6 (a) shows the change in learning rate under hyperparameter attacks, both with and without 
control. The learning rate is an essential parameter as it determines how much we adjust the weights of 
our network with respect to the loss gradient. When the control is applied, we observe a significant 
stabilization in the learning rate, despite the attack. Without control, the learning rate experiences more 
fluctuations, which can negatively impact the model’s performance by causing the model to converge too 
quickly to a suboptimal solution, or by making the learning process too slow due to a very low learning 
rate.  

Figure 6 (b) shows the impact of control on the dropout rate under hyperparameter attacks. Dropout 
is a technique used in neural networks to prevent overfitting. The dropout rate determines the probability 
at which output of a neuron is set to zero during training. From the graph, we can clearly see that applying 
control helps maintain the dropout rate at a more constant level. Without control, the dropout rate may 
become too high, leading to underfitting, or too low, leading to overfitting. 

Figure 6: Hyperparameter attacks on learning rate and dropout rate with control vs without control 

Figure 7: Hyperparameter attacks on training loss and validation accuracy with control vs. without control 
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Error! Reference source not found.(a) represents the training loss with and without control under 
hyperparameter attacks. Training 16 loss is an indication of how well the model is learning from the 
training data. From the plot, it’s evident that the training loss is lower and more consistent when control 
is applied. Without control, the training loss shows significant fluctuations, which is undesirable as it might 
indicate the model isn’t learning well from the training data.  

Error! Reference source not found.(b) demonstrates the change in validation accuracy under attacks. 
Validation accuracy gives a measure of the model’s performance on the validation set. The plot shows 
that applying control significantly improves and stabilizes the validation accuracy, despite the attacks. 
Without control, the validation accuracy can be significantly lower, showing the negative effect of 
hyperparameter attacks on the model’s performance. 

Error! Reference source not found. (a) displays the validation loss under attacks. Validation loss is the 
value of cost function for our cross-validation data and is a measure of how well the model is doing outside 
the training set. When the control is applied, the validation loss is reduced and is more stable compared 
to the scenario without control. This indicates that the control mechanism is effectively combating the 
hyperparameter attacks and maintaining the generalization ability of the model. Error! Reference source 
not found. (b) shows different attack rates over a span of 200 epochs for machine learning forecasting 
model. Various attack profiles were implemented to analyze their effect on the forecasting model. The 
attack rates are manifested in five different forms: 

 
• Dropout rate: This is represented by a sinusoidal attack rate, reflecting periodic alterations in the rate.  
• Layer size: The layer size is modeled by a square wave attack rate, highlighting the abrupt changes 

between two levels.  
• Activation function: It follows a sawtooth pattern for attack rate, which illustrates a linearly increasing 

rate followed by a sudden drop. 
• Training epochs: The attack rate here follows a triangular pattern, a combination of linearly increasing 

and decreasing rates.  

Figure 8: Hyperparameter attacks on training loss and validation accuracy with control vs without control 
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• Learning rate: This is maintained at a constant attack rate, serving as a baseline for comparisons. 
All these rates were plotted against the attack steps, offering an insight into how different machine 

learning parameters can be perturbed under adversarial scenarios. The visual representation can provide 
a clearer understanding of the temporal dynamics of each attack type. 

 
 
As shown in Figure 9, a NxN matrix is randomly generated, representing various attack types across 

different epochs. The matrix entries range from -2 to 2, corresponding to varying levels of attack 
intelligence, from very less intelligent to very high intelligent attacks. This matrix is then displayed as a 
heatmap, with epochs and attack types labelled along the x and y-axes, respectively.  

A colorbar is added to indicate the corresponding attack intelligence levels. Gridlines are added to 
enhance visibility. This visualization provides an intuitive way to understand and analyze the distribution 
and intensity of different attacks across epochs, aiding in further mitigation strategies. 

  

Figure 9: Decision matrix for intelligent hyperparameter attack 
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4. Offensive Use Case (Operation FrostFire) 
This is a Digital Twin-Assisted Hyperparameter Attack on Autonomous Control Systems 

4.1 Scenario 
Thermotech Inc., an advanced thermal energy solutions company located in the bustling city of 

Neuropolis, has a physical security system for its main research facility. This system, as depicted in Figure 
10, employs an innovative autonomous control system to monitor temperature and motion sensors 
throughout the facility. It alerts the security staff if any unauthorized activity is detected. Additionally, the 
system uses a Programmable Logic Controller (PLC) to perform control-loop actions based on sensor data. 

 
Figure 10: A Digital Twin-Assisted Hyperparameter Attack on Autonomous Control Systems 

A black-hat hacker known as Phantom has targeted Thermotech Inc. with plans to breach its 
autonomous control system. The facility’s security system heavily relies on a Machine Learning (ML) 
model that uses temperature and motion sensor data to predict security breaches. Under normal 
circumstances, human intrusion causes a sudden rise in temperature and sensor movement, thereby 
triggering an alert. However, the Phantom, known for exploiting ML models, has discovered this security 
protocol and plans to launch a hyper-parameter attack to manipulate these sensor readings. To do this, 
The Phantom first infiltrates Thermotech’s IT infrastructure to access the data used in the ML model, thus 
gaining a comprehensive understanding of the regular temperature and movement data across the 
facility, which is crucial for the planned attack.  

Parallelly, the Phantom creates two digital twins to stealthily infiltrate Thermotech Inc., a high-
security research facility. One twin mirrors the facility’s temperature sensors, while the other simulates 
the Programmable Logic Controller (PLC) responsible for control-loop actions. The hacker’s plan involves 
subtly manipulating the temperature sensor readings over time to mimic the facility’s machinery thermal 
signature, creating a new ’normal’ for the ML model.  
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Also, the Phantom employs Shade for the physical intrusion. Meanwhile, the hacker tweaks the 
temperature readings in the digital twin environment and tests the changes in the PLC replica to avoid 
triggering alarms. After several weeks of gradual manipulation, the ML model perceives the infiltrator’s 
heat sig- nature as normal, allowing Shade to access the facility undetected. This incident highlights the 
risks of over-reliance on ML models and digital twins without robust security measures, demonstrating 
that these technologies, while promising improved efficiency and capabilities, can also enable 
sophisticated attacks.  

4.1.1 Autonomous Control System 
The autonomous control system (ACS) is represented as a non-linear differential equation (1) 

incorporating state (x), temperature (T), motion (M), delay (τ), input (u), noise (w), and a non-linear 
function f (). 

 
where x(t) is the state of the system at time t, representing all the variables necessary to describe the 

system at a given time. x(t − τ ) represents the state of the system at a delayed time. T(t) and M(t) are the 
time- varying temperature and motion inputs, respectively. u(t) is the input control signal. w(t) is the 
system noise, representing unmodelled dynamics and external disturbances. The integral term helps 
reduce the steady-state error by continuously correcting the deviation of x(t) from the desired state xref(t). 
f() is a nonlinear function representing the system dynamics.  

y(t) is the output of the ACS at time t. It represents the state of alarms and sensor readings.  
g(x(t), u(t)) is a function mapping the state x(t) and input u(t) to the output y(t). The exact form of this 
function would depend on the specific characteristics of the ACS. v(t) is measurement noise at time t. 
Real-world measurements often have some degree of uncertainty or noise. This term represents that 
uncertainty. 

4.1.2 Sensors 
We consider two sensors each for temperature and motion. The temperature and motion inputs are 

incorporated into the sensor equations, which now also include a sum over N different types of noise 
(indexed by n=1,...,N): 

 
where SoTi(t) and SoMj(t) represent the temperature and motion sensor outputs, respectively. Tai(t) 

and Maj (t) represent the actual temperature and motion readings from each sensor, which are influenced 
by the time-varying inputs T(t) and M(t). ni

n(t) and mj
n(t) represent the different types of noise for each 

sensor.  
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4.1.3 Machine Learning Model 
The machine learning (ML) model includes summations over K, L, M dimensions, representing the 

dimensions of the input layer, hidden layers, and output layer, respectively:  

 
where H1k(t) and H2l(t) represent the outputs of the first and second hidden layers of the ML model, 

respectively. Dm(t) is the output of the decision layer of the ML model. X(tʹ), H1l(tʹ), and H2m(tʹ) are the 
inputs to the different layers at various time points tʹ. W1k, W2l, and W3m are the weights of the different 
layers. b1k, b2l, and b3m are the biases of the different layers. f(), g(), and softmax() are non-linear activation 
functions.  

4.1.4 Hyperparameter Attack 
To incorporate the effect of temperature sensors and motion sensors and their correlation with 

hyperparameters, we can consider that the hyperparameters (non-linear activation functions f(·), g(·), and 
softmax(·)) are influenced to the sensor outputs SoTiʹ(t), and SoMjʹ(t). 

First, we have the manipulated sensor outputs that are affected hyperparameter attacks over time:  

 
where SoTiʹ(t) and SoMjʹ(t) are the manipulated sensor outputs, and δi(tʹ) and εj(tʹ) represent the 

attacker’s hyperparameter manipulations at various time points tʹ.  
Now, let’s assume that these manipulated sensor outputs are directly influenced by the rate of change 

of the manipulated hyperparameters. Therefore, the rate of change of the hyperparameters can be 
modified as follows:  

 
where fʹ(·), gʹ(·) and (softmax)ʹ(·) are manipulated non-linear activation function. Attack rate r(t) at 

time t changes over time according to a predefined rule. Ω(., r(t)) is a function that defines the multi- rate 
attack pattern based on the manipulated hyperparameter and the current attack rate. After that, these 
hyperparameters will then be used in the computation of the manipulated decision of the model, Dmʹ:  
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where Hʹ1k(t), Hʹ2l(t), and Dmʹ (t) represent the outputs of the manipulated ML model. The 

correlation between the hyperparameters and the sensor readings is modeled by the function Ω, which 
depends on the current hyperparameters, the current sensor readings, and the attack rate. This approach 
provides a mathematical way to capture the relationship between the sensors, hyperparameters, and the 
attack’s evolution.  

Let the sensor readings SoTi(t), SoMj(t) are inputs to the system that influence decision matrix Di,j, 
which determine the label of attack intelligence. The manipulated sensor readings, SoTiʹ(t), and SoMjʹ(t) 
are derived from Di,j and have an effect on D’m(t). We also assume that the hyperparameters are 
manipulated based on Di,j and have an influence on D’m(t). Let H(Di,j , SoTi(t), SoMj(t)) be a transformation 
function that takes the decisions tracked by Di,j and the sensor readings SoTi(t), and SoMj(t) as inputs and 
produces the manipulated sensor readings and hyperparameters as outputs. This transformation can be 
represented as:  

 
The manipulated decision D’m(t) can be derived from these manipulated sensor readings and 

hyperparameters. This relationship can be written as: 

 
Where G(·) is a function that takes the manipulated sensor readings and hyperparameters as input 

and computes the manipulated decision D’m(t).  
Please note that H(·) and G(·) are complex functions that model the process of the phantom attack 

and the manipulated decision making. They should be defined based on the specific dynamics of the 
system. Also, the indexes i and j in Di,j, SoTiʹ(t), and SoMjʹ(t) need to be handled properly to reflect the 
temporal and spatial changes of the system.  

The decision matrix Di,j can be mathematically described as follows. Let ∆P be the difference in 
performance defined as ∆P = P − Pʹ, where P is the performance of the model at current time and Pʹ is the 
performance of the model at the previous timestep. Also, let’s assume δP is a performance threshold 
defined in the model. Now, we can define Di,j as:  

 
where Di,j = 2: represents very high intelligent attack. Di,j = 1: represents high intelligent attack. Di,j = 

0: represents no significant attack. Di,j = −1: represents less intelligent attack. Di,j = −2: represents very less 
intelligent attack. T1 and T2 are the defined thresholds, with T1 = 0.1 and T2 = 0.2. Here i and j in Di,j 
represent the corresponding time step and the particular agent respectively.  



 
 

25 
 

In what follows, to incorporate the use of temperature and motion sensors into the attack algorithm 
(see 4.2 Simulation), new variables Sti and Smj are included to represent the current state of the 
temperature and motion sensors respectively. A predefined function CheckForStealth (t, Sti, Smj) is 
considered that analyzes the current sensor readings and determines whether the conditions are suitable 
for a stealthy attack. This function returns true if the conditions are met and false otherwise.  

4.2 Simulation 
In this experiment, the function apply control in Figure 11 takes an input vector u that dictates how 

each hyperparameter can be compromised. The method modifies the activation function of each layer. 
This function ensures that the new hyperparameters are within reasonable bounds. The manipulation of 
these hyperparameters signifies an attack on the machine learning model by maliciously altering its 
learning and prediction patterns.  

 
Figure 11: Hyperparameter attack (compromised activation functions) 

The decision matrix serves as a blueprint for the attacks as shown in Figure 12, assigning different 
attack levels based on the differential performance of a model. The function update decision matrix is 
designed to classify attacks based on their intelligence level according to their effect on the model’s 
performance. The intelligence of the attack is gauged using performance metrics, with the assumption 
that an attack is more intelligent if it can cause a more significant drop in the performance of the model. 
The update decision matrix function updates the decision matrix based on the performance difference of 
the model. The intelligence of the attack is ranked from -2 (very less intelligent) to 2 (very high intelligent), 
depending on the severity of the performance drop. The function takes as input the index (i), the prime 
performance of the model performance prime, and the model itself. 

 
Figure 12: Decision update in hyperparameter attacks 
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The thresholds for determining the level of intelligence are set as [0.2, 0.1]. If the performance drop 
is below the negative of the model’s δP, it is considered a very high intelligent attack and assigned a rank 
of 2 in the decision matrix. If it is below -0.2, it is a high intelligent attack. 

 
To instantiate a decision matrix, we can create an empty matrix of the same size as the maximum 

number of iterations or time points you expect in your program. For example, if we want a m by n matrix, 
we can initialize it like this: 

 
In this way, a m by n decision matrix is created with all entries initially set to zero. As shown in Error! 

Reference source not found., a m × n matrix is randomly generated, representing various attack types 
across different epochs. The matrix entries range from -2 to 2, corresponding to varying levels of attack 
intelligence, from very less intelligent to very 
high intelligent attacks. This matrix is then 
displayed as a heatmap, with epochs and attack 
types labelled along the x and y-axes, 
respectively. 

A colorbar is added to indicate the 
corresponding attack intelligence levels. 
Gridlines are added to enhance visibility. This 
visualization provides an intuitive way to 
understand and analyze the distribution and 
intensity of different attacks across epochs, 
aiding in further mitigation strategies. 

Figure 13: Decision matrix heatmap for intelligent 
hyperparameter attack 
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5. Defensive Use Case (Operation MirrorShield) 
This is a Proactive Defense against Hyperparameter Attack using Digital Twins 

5.1 Scenario 
In the city of Cyberscape, nestled among its skyscrapers, sits a prominent financial institution, 

TrustBank. This entity deals with highly confidential data and vast sums of money, making its security a 
matter of paramount importance. TrustBank employs a state-of-the-art security system using an 
autonomous control system to regulate and monitor access to its data centers, incorporating advanced 
temperature and motion sensors.  

In the shadowy realms of the cyber underworld, an entity known as The Riddler plans to break into 
TrustBank’s data centers. The Riddler is known for their proficiency in exploiting Machine Learning (ML) 
models and is aware of the autonomous control system that TrustBank uses. However, TrustBank’s cyber- 
security team, led by the formidable Falcon, is always one step ahead.  

Falcon and her team use an ML model to predict potential security breaches using temperature and 
motion sensor data. Aware of the vulnerabilities, Falcon’s team uses a combination of live data and Digital 
Twins to constantly monitor for anomalies.  

They have a digital replica of both the temperature sensor and the PLC running the control loops, mir- 
roring the actual operations in real-time. This parallel system acts as a playground to simulate attacks and 
understand the behavior of the ML model under various threat scenarios without exposing the actual 
control system to risks.  

One day, the system flags a slight discrepancy between the behavior of the ML model in the actual 
system and its Digital Twin. The model in the real world has started accepting a slightly higher temperature 
as normal compared to its twin. Falcon instantly recognizes this as a potential hyperparameter attack.  

The Riddler, who had managed to infiltrate the TrustBank’s IT infrastructure, had started subtly 
manipulating the temperature sensor data in an attempt to deceive the ML model. He intended to trick 
the model into accepting higher temperatures, paired with no motion, as normal, paving the way for a 
physical intruder to bypass the heat sensor.  

However, Falcon’s team was prepared. Noticing the deviation in the behavior of the real model and 
its digital twin, they initiated an investigation. They employed differential analysis, comparing the 
hyperparameters and the learning patterns of both the twins. The discrepancies confirmed Falcon’s 
suspicion of a hyperparameter attack.  

Falcon acted swiftly, cutting off the access to the intruder, resetting the model to a safe checkpoint 
before the attack, and retraining it with verified data. Simultaneously, TrustBank increased its physical 
security measures, making sure any physical intrusion attempts would be thwarted.  

The Riddler’s attempts were stymied, his plans foiled. TrustBank remained secure, thanks to Falcon’s 
innovative defensive strategy of using Digital Twins as a constant audit mechanism for their ML model.  

This event underscores the importance of proactive measures and continuous monitoring in cyber de- 
fense, illuminating how Digital Twins can serve as a powerful tool to detect and counter sophisticated 
attacks on ML models.  

  



 
 

28 
 

5.2 System modeling for defense strategy 
System modeling with predictive control approach considers the autonomous control system, 

sensors, ma- chine learning model, and hyperparameter attack. These components interact in complex 
ways, and their relationships must be captured in the predictive model. Given that, the linear regression 
model to predict the possibility of a hyperparameter attack in the next step can be enhanced by 
considering these components. 

Incorporating Autonomous Control System (ACS) State: The state of the ACS, x(t), can have an 
influence on the likelihood of an attack. 

Incorporating Sensor Data: The outputs of the temperature and motion sensors, SoTi(t) and SoMj(t), 
give us direct readings of the environment, which might be relevant. 

Incorporating ML Model Decision Layer Output: The output of the decision layer of the ML model, 
Dm(t), can provide insights into the current decision-making process of the model. 

Now we can predict the possibility of a hyperparameter attack as follows: 

 
where yˆi	represents the predicted possibility of a hyperparameter attack for the ith	step. βj	are the 

coefficients for each past state j. γ1, γ2, γ3, and γ4	are coefficients for the ACS state, temperature sensor 
outputs, motion sensor outputs, and ML model’s decision layer output, respectively. εi	is the error term.  

5.3 Defense for decision matrix of hyperparameter attack  
To deal with the decision matrix of hyperparameter attacks, we can integrate a predictive control 

approach to take corrective action based on predicted future behavior of the system. The decision matrix 
for hyperparameter attack detection would be a binary matrix D	of size n	×	m, where n	is the number of 
hyperparameters, and m	is the number of previous system states observed. Each element Di,j	in the matrix 

would represent whether a hyperparameter attack was detected (1) or not (0) for the ith	hyperparameter 
at the jth	previous state.  

 
Remark 1 In the Data-Driven Iterative Learning Predictive Control (DDILPC) approach, the predictive 

control system could then take action based on these predictions: If the predicted probability of a 
hyperparameter attack for a given parameter exceeds a threshold θ, the system could initiate the 
defensive strategy. The system could also take preventive measures, such as changing the learning rate or 
other hyperparameters, to make it harder for the attack to succeed. The system could log the attack for 
future reference and analysis. This predictive control approach gives the DDILPC system the ability to 
anticipate and respond to potential hyperparameter attacks before they occur. The decision matrix serves 
as the historical data to train the predictive model and make informed decisions on future actions.  

 
Integrating a predictive control approach to handle the decision matrix for hyperparameter attack 

detection, the mathematical formulation can be presented as follows:  
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We start by defining the decision matrix D	∈	Rn×m, where n	is the number of hyperparameters, and 
m	 is the number of observed past states of the system. Each entry aij	indicates whether an attack has 

been detected (1) or not (0) for the ith	hyperparameter at the jth	previous state.  
In the DDILPC approach, we then take appropriate action based on these predictions. This can be 

mathematically described as a decision function f	:  
Given the decision matrix Di,j	that characterizes the changes in the prediction ∆P, we can revise the 

function f(yˆi,θ)	to take into account these specific conditions on ∆P.  

 
The function f	now integrates the decision matrix Di,j	with the hyperparameter attack predictions yˆi, 

making it more sophisticated and fine-grained in terms of initiating defense strategies and updating 
learning rates.  

Specifically, the system initiates a high-level defense strategy when a high probability of attack (yˆi	>	
θ) coincides with a significant decrease in prediction (Di,j	=	2). On the other hand, the learning rate update 
is made more flexible, with larger updates (Di,j	=	 −2) when the probability of attack is low but the 
prediction has significantly increased. In this equation, if the predicted probability of a hyperparameter 
attack yˆi	 for a given hyperparameter exceeds a certain threshold θ, the system initiates a defense 
strategy. Otherwise, the system could take preventive measures by adjusting the learning rate or other 
hyperparameters, making it harder for the attack to succeed.  

Therefore, the DDILPC system is equipped with the ability to anticipate and respond to potential 
hyper- parameter attacks based on predictions from historical data. This results in an intelligent and 
robust control system that can handle potential adversarial attacks effectively.  

5.4 Data-Driven Iterative Learning Predictive Control (DDILPC)  
Iterative Learning Control (ILC) is a control method that uses historical data from the previous iteration 

to improve control performance for the next iteration. On the other hand, Predictive Control uses the 
model of the system to predict future outputs and adjust the control variables accordingly.  

When we combine the two into a DDILPC approach, we get a control method that uses the historical 
data to improve prediction accuracy and control performance over iterations. It makes a trade-off 
between data-driven learning and model-based prediction.  

 
1. FeedForwardNetwork Initialization: 

Initialize FeedForwardNetwork object with random weights W1, b1, W2, b2, W3, b3. 
 

W1 ∈R5×5,  b1 ∈R5 
W2 ∈R5×2,  b2 ∈R2 
W3 ∈R2×1,  b3 ∈R1 
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2. Decision Matrix Initialization: 
Initialize the Decision Matrix object to capture historical model decisions and provide a 
reference framework to identify anomalies or potential attacks.  

 
Represent DecisionMatrix by M with dimensions M ∈ Rt×d, where t captures historical data and d 
logs various decision parameters. 
 

3. Trust Bank Control System Initialization: 
Incorporate FeedForwardNetwork into the TrustBankControlSystem as a digital twin, enabling

 real-time validation against the primary model.  
 
If the primary model is denoted F(θ), the digital twin is represented as Fʹ(θʹ).  
Synchronize θʹ with θ at regular intervals.  
 

4. Control System and Predictive Steps:  
Set up the ControlSystem to oversee the predictive steps and manage hyperparameter 
adjustments in the FeedForwardNetwork dynamically. 
 
Let N be the count of predictive steps, and define C as the  
controls at each interval: C = {c1, c2, ..., cN }.  
 

 
Figure 14: Data-Driven Iterative Learning Predictive Control (DDILPC) strategy.  

Integrates ILC and Predictive Control concepts, employing a FeedForwardNetwork,  
Decision Matrix, and Trust Bank Control System ensuring optimal performance while countering threats. 



 
 

31 
 

5. Attack Counter and Defense Strategy Framework: 
We're setting up a protective system against potential tampering with machine learning model 
settings, known as hyperparameter attacks. We begin by introducing a counter, Cattack, which acts 
as a vigilant sentinel, constantly monitoring for suspicious activities. A threshold, θ, acts as our 
alarm level—if the counter crosses this threshold, it's a sign that something's off. If this alarm 
sounds, we spring into action: we return our model settings to safe values, notify our tech team 
of the potential threat, and might even temporarily stop our model from further training to ensure 
it's not unknowingly learning from harmful data. Lastly, just as tech keeps evolving, so does our 
protective system. We continuously revise our defense measures to remain ahead of new threats 
and challenges. 
 
Hyperparameter Attack Counter Initialization: Introduce a counter Cattack to quantitatively 
monitor anomalies that suggest possible hyperparameter attacks. This counter is integral to the 
defense strategy, serving as an early warning system. Mathematically, initialize:  

Cattack	:=	0 

Threshold Determination: Define a threshold θ based on domain expertise, historical data, or 
heuristics. When Cattack exceeds θ, it indicates a probable attack or an abnormal behavior in the 
system, triggering the defense mechanism:  

Trigger	Defense	⇐⇒	Cattack	>	θ 

Formulating the Defense Strategy: The defense mechanism is multifaceted, and its actions 
depend on the severity and nature of the detected anomaly. Potential actions include:  

(a) Hyperparameter Restoration: Reset hyperparameters to their last known secure settings or 
to pre-defined safe values. If θh represents a set of trusted hyperparameters, then upon 
detection of an anomaly: 

θcurrent ← θh 

(b) Alert System Administrators: Inform system administrators or relevant stakeholders about 
the potential threat. This could be done through various channels, be it email, system logs, 
or real-time notifications. 

(c) Model Training Pause: Temporarily halt model training to prevent potential propagation of 
erroneous updates or malicious modifications. Formally, if T represents the training process: 

T	(θcurrent,	data)	→	Pause	if	Cattack	>	θ 

Continuous Monitoring and Adjustment: Regularly review and adjust the threshold θ and 
defense strategies based on new insights, evolving threat models, and system requirements to 
ensure robust protection.  
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6. Model Training: 
In this section, we dive into the continual training of a model while keeping a keen eye on 
safeguarding it. Initially, we set up an input matrix and calculate intermediate layers using specific 
mathematical functions. Then, we determine the output and subsequent predictions with some 
additional calculations, involving a method known as 'softmax'. As we step through the predictive 
process, we vigilantly check any changes in the learning rate against a specific criterion and modify 
it by referring to a DecisionMatrix, current predictions, and previous controls. DecisionMatrix is 
then updated with new data about the learning rate and predictions. However, it's not just about 
training — we're on guard for any unusual behaviors or sudden drops in performance. If such 
discrepancies are noted, our counter, Cattack, is incremented. And if Cattack crosses a certain 
changing threshold, θ(t), our defense mechanisms are activated, ensuring our model remains 
secure and trustworthy amidst its learning journey. 

 
Process includes: 

a. Creating an input matrix X ∈ Rn×d. 
b. Calculating intermediate layers H1 and H2:  

H1 = tanh(XW1 + b1)  

H2 = tanh(H1W2 + b2) 

c. Deriving the softmax output D and resultant predictions: 
𝐷 = exp	(𝐻=𝑊> + 𝑏>) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 	
𝐷
∑𝐷

 

d. For each predictive step: 
i. Validate any learning rate alterations against a pre-defined criterion.  
ii. Modify the learning rate Œ∑ based on DecisionMatrix, current model prediction, and past 

controls.  
iii. Refresh DecisionMatrix with updated learning rate and prediction data.  
iv. Monitor model performance. On detecting significant performance drops or irregular  

learning rate fluctuations, increase Cattack.  
v. Activate the defense strategy if Cattack surpasses a dynamic threshold	θ(t). 

 
7. Model Update and Activation Function Mapping: 

Mapping Strategy: Establish a function M that maps from a set of defined activation functions A 
to a set of hyperparameters H. This function assists in dynamically choosing the optimal activation 
function and corresponding hyperparameters based on the model’s requirements.  

M:A→H	a	7→	h 

θcurrent	←	θh 

where a is an activation function from A and h is the corresponding hyperparameters in H.  
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Activation Functions: Consider a suite of activation functions such as Sigmoid σ(x), Tanh tanh(x), 
and ReLU max(0, x) as members of A.  

Dynamic Model Update: When a model update is needed, use the mapping function M to 
determine the most suitable activation function and corresponding hyperparameters. Update the 
model’s architecture and parameters accordingly. Let F(X;θ,a) denote the model with parameters 
θ and activation function a. On update,  

F	(X;	θ,	aold)	→	F	(X;	θ′,	M(anew))	

where	θ′	are	the	updated	parameters	and	anew	is	the	newly	selected	activation	function.	

Learning Rate Adjustment: During this model update process, the learning rate η might also 
need adjustments. If ∆η represents the change in learning rate due to the new activation 
function and other factors, the updated learning rate becomes:  

ηupdated	=	η	+	∆η 
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5.5 Simulation 
Section 5.5 delineates a thorough simulation of defensive capabilities within machine learning model 

control systems, utilizing the “ControlSystem” class and subsequent functions, designed to safeguard 
model functionality and preserve data integrity against hyperparameter attacks. Commencing with a 
baseline scenario, sensor data - characterized by “Real” and “Twin” sensors - undergoes an examination, 
with both demonstrating nominal, synchronized readings. Subsequently, a hyperparameter attack is 
introduced, inducing substantial, erratic fluctuations in the “Real” sensor, leading to a divergent data 
trajectory when juxtaposed with the “Twin” sensor. Following this aberration, the implementation of a 
defensive mechanism is examined, applying a dampening strategy, specifically a simple moving average, 
to the perturbed “Real” sensor data. The resultant effect of this strategy is explored through graphical 
analysis, revealing a subsequent convergence of the “Real” and “Twin” sensor data post-attack. 
Additionally, an anomaly detection methodology is deployed, identifying and annotating data 
discrepancies between the “Real” and “Twin” sensors that exceed a predefined threshold. This section 
provides an in-depth exploration of the defensive mechanism’s functionality and efficacy in mitigating 
hyperparameter attack effects and identifying potential anomalies within the simulation timeframe. 

5.5.1 ControlSystem Class Overview: 
The ControlSystem class is designed to initialize with a machine learning model, a specified number 

of predictive steps (defaulting to 5) and maintains a control history as a list of control actions. It 
encompasses methods to update the learning rate, η, ensuring it does not fall below 0.001 while also 
providing functionality to adjust activation functions for dense layers within the model, facilitating 
systematic modifications in response to dynamic operational conditions. 

 
Initialization ( init ): Takes in:  

§ model: The machine learning model. 
§ predictive steps (default = 5): Number of prediction steps. 
§ control history: Maintains a list of control actions.  

Update learning rate: Adjusts the learning rate, η, using: 
ηnew = max(0.001, ηcurrent + δη ) 

Update activation functions: Updates activation functions for dense layers using a mapping.  
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5.5.2 Predictive Control Function 
Performs predictive control utilizing model predictions over specified timesteps. 

 
Parameters: 

§ X: Input array. 
Procedure: 

(1) Acquire predictions using model.predict(X) 
(2) Iterate over the range provided by predictive steps. For each step: 

a. Update learning rate based on historical data if certain conditions are met. 
b. Append prediction to control history. 

(3) Limit control history to a size of 1000. 
 

5.5.3 Update Model Function 
Updates the learning rate and activation functions of the model. 

 
Parameters: 

§ u: Input list where the first element is used to update the learning rate.  
Procedure: 

(1) Call update_learning_rate with the first element of u as argument. 
(2) Define an activation mapping: 

 
(3) Call update_activation_functions using the defined mapping. 
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Before Defense: The simulation initially represents the behavior of two sensors, termed as ”Real” and 
”Twin”, over a predefined time. As the simulation progresses, it’s evident that both sensors exhibit minor 
fluctuations, making them almost identical in their readings. However, during a certain time frame, the 
real sensor is subjected to a hyperparameter attack. This induces pronounced and erratic fluctuations in 
the readings of the real sensors for both temperature (T) and motion (M), thus deviating significantly from 
the corresponding twin sensor readings. The effect of this attack is immediately apparent in the plotted 
graphs as the real sensor’s waveform diverges from the twin sensors.  

After Defense: Post the hyperparameter attack, a defense mechanism is applied to the real sensor 
readings. This defense, in the form of a dampening strategy, applies a simple moving average on the real 
sensor data. The aim is to smoothen the abrupt changes brought about by the attack and bring the 
waveform back in alignment with the twin sensor. As a result of this strategy, the plotted graphs show a 
convergence of the real and twin sensor readings post-attack. Furthermore, an anomaly detection method 
is deployed which marks the discrepancies between the real and twin sensor data that surpass a 
threshold. The defense not only helps in mitigating the effects of the attack but also aids in the 
identification of potential anomalies during the entire simulation duration.  

 

5.5.4 Before and After Defense Sensor Measurements 
 

 
Figure 15: Before Defense: A Digital Twin-Assisted Hyperparameter Attack on Autonomous Control System 

 
Figure 16: After Defense: Predictive Control for Model with Hyperparameter Adjustment  

and Defense Mechanism against Hyperparameter Attacks 
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6. Conclusions and Open Issues 
This research delves into hyperparameter attacks on machine learning models tailored for digital 

twins of nuclear power plants. To counteract the challenges posed by these attacks, an adaptive predictive 
control strategy anchored on an event-triggering law has been introduced. This predictive control utilizes 
a sliding window approach, archiving past data and forecasting future outcomes, making it adept at 
handling the complexities of time-varying multi-rate hyperparameter attacks on machine learning 
forecasting models. Rigorous simulation studies showcase the effectiveness and robustness of the 
proposed method, offering valuable insights for enhancing security and resilience in digital twin 
implementations within critical infrastructures. Open issues include: 
 

Identification and Response to Multiple Hyperparameter Attacks 
Addressing the existence of multiple hyperparameter attacks within a machine learning model in the 

nuclear sector requires stringent methods for identification and tailored response strategies. For Nuclear 
Regulators, establishing policies that mandate the reporting of identified hyperparameter attacks and the 
implementation of standardized defense mechanisms becomes imperative. Power Plant Operators must 
prioritize investing in research and development to devise methods for detecting subtle, specific, or 
coordinated hyperparameter attacks and implement secure coding practices to mitigate their impacts. 
Cyber Defense Teams should focus on developing and regularly updating robust defense strategies, 
ensuring they are apt for addressing the wide array of potential hyperparameter attacks and facilitating 
continuous monitoring to promptly spot and handle any anomalies. 

 
Enhancing Hyperparameter Attack Models with Decision Matrix Integration 
Integrating dynamic decision matrices and time-varying multi-rate functions to address various attack 

vectors, especially in critical infrastructures like nuclear power plants, is vital. Nuclear Regulators should 
necessitate the integration of advanced mathematical and computational models, such as decision 
matrices, into system monitoring to enhance the detection of hyperparameter attacks. Power Plant 
Operators are recommended to incorporate time-variant multi-rate functions in system modeling, 
ensuring adaptability to fluctuations and providing a buffer against sudden architectural alterations 
induced by attacks. Simultaneously, Cyber Defense Teams must continuously work on formulating 
adaptive algorithms that automatically update the decision matrix in response to evolving attack vectors, 
thereby safeguarding the models against subtle and drastic adversarial interventions. 

 
Implementing Advanced Control Inputs for Anomaly Mitigation 
The strategic deployment of advanced control inputs to proactively identify and counteract anomalies 

originating from hyperparameter attacks is pivotal in safeguarding nuclear facilities. Nuclear Regulators 
should establish guidelines for regular audits of control systems, ensuring their capability to detect and 
respond to anomalies linked to hyperparameter manipulations. Power Plant Operators need to 
implement advanced control strategies that leverage both robust control theory and machine learning, 
thereby pre-emptively identifying and neutralizing potential attacks before they inflict system-wide 
damage. Furthermore, Cyber Defense Teams must commit to exploring and adopting the latest 
technologies and methodologies in control inputs, ensuring a proactive stance in safeguarding critical 
infrastructures against emerging threats. 
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Proactive Threat Mitigation through Predictive Control and Machine Learning 
Implementing predictive control strategies, which utilize machine learning to forecast system states, 

is imperative to pre-emptively mitigate the impacts of hyperparameter attacks in nuclear settings. Nuclear 
Regulators should enforce regulatory frameworks that mandate the implementation of predictive control 
and machine learning in cybersecurity strategies, thus ensuring that threats are addressed even before 
they materialize. Power Plant Operators must adopt predictive control systems that utilize machine 
learning models to forecast future states, thereby ensuring that potential disruptions are identified and 
mitigated before they evolve into tangible threats. Moreover, Cyber Defense Teams should constantly 
enhance predictive algorithms, ensuring they remain abreast of evolving threat parameters and are 
calibrated to predict and counteract them accurately and promptly. 
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