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Abstract

This report summarizes the lower length scale modeling work performed in fiscal year 2023 under the Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program to capture the microstrutural evolution and associated pulver-
ization criteria in the high burnup regions of UO2 nuclear fuel. This year, the resolution mechanisms within the cluster
dynamics code has been updated and its influence on the bubble growth in HBS regions at the mesoscale is studied. To
improve the accuracy of phase-field models of fission gas bubble growth, a new Helmholtz free energy for high-density
Xe gas is derived from a virial equation of state. Two previously used strategies for representing net vacancy production
in phase-field models of fission gas bubble growth are compared with each other and with analytical models of bubble
growth. The vacancy source only model is found to be more convenient to parameterize realistically compared with
the vacancy source+sink model. Furthermore, the phase-field-fracture simulation have been performed using MD-
informed failure stress values and realistic HBS structure obtained from the phase-field simulations. We also present
the uncertainty bands on prediction of the critical stress to account for the effect of the lower length scale variabilities
on the failure criteria at the mesoscale. It is observed that pulverization may occur in partially restructured regions with
restructuring fraction as low as 17%. In light of this, an update to the BISON’s pulverization criteria is recommended.
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1. INTRODUCTION

To improve the economics of commercial nuclear reactors, U.S. nuclear industries are seeking approval for the increased
burnup usage of the existing nuclear fleet past the current regulatory limit of 62 MWd/kgU up to 75 MWd/kgU. How-
ever, at higher burnups, nuclear fuels undergo significant restructuring which poses the risks of potential fuel fragmen-
tation, relocation, and dispersal (FFRD) during a loss-of-coolant accident (LOCA). Specifically, the regions exposed
to high burnup and low temperatures exhibit a fine-grained microstructure with large bubbles known as a high-burnup
structure (HBS) [1], which has been correlated to the diminished performance of the fuel, leading to an accelerated
fission gas release, as well as fuel fragmentation and pulverization during transient and accidental conditions. There-
fore, it is paramount to understand the mechanisms for HBS formation along with its impact on the properties and
performance of nuclear fuels.

HBS has been observed in various types of nuclear fuels, including ceramics and metals [2, 3, 4]. The key char-
acteristics of the HBS region include the (1) accumulation of dislocations, creating of large dislocation networks, (2)
formation of new defect-free subgrains, (3) depletion of intra-granular fission gas concentration, and (4) development
of large spherical inter-granular bubbles. There is a lack of consensus among researchers regarding the mechanisms
that lead to the restructuring observed in HBS. Grain subdivision due to polygonization versus recrystallization, con-
tinuous versus discrete recrystallization occurring in tandem or conjunction, etc., have been proposed and debated. In
general, it is hypothesized that defect accumulation and dislocation interaction within the grains cause the realignment
of dislocations into grain boundaries (GBs), leading to the new subgrain formation, which over time transforms into
new grains. Experimentally, advanced characterization techniques have been used on irradiated samples to study the
grain structure in the partially and fully restructured HBS regions. In HBS fuels, both low-angle grain boundaries
(LAGB) and high-angle grain boundaries (HAGB) were observed in different fractions at different fission densities.
The low-angle character of boundaries between the subdivided grains disappeared in the fully developed HBS. Exper-
imentally, pulverization has been observed in both fully-formed and partially restructured HBS regions. Hence, we
study the onset of the fracture behavior as the HBS structure forms.

This report provides the details of the lower length scale modeling work that has been performed in fiscal year
2023 under NEAMS to capture the microstrutural evolution in the HBS regions and associated pulverization. This
year, we updated the resolution mechanisms within the cluster dynamics code and evaluated how it influences the
bubble growth in HBS regions at the mesoscale. To further improve the accuracy of phase-field models of fission
gas bubble growth, a new Helmholtz free energy for high-density Xe gas is derived from a virial equation of state.
Two previously used strategies for representing net vacancy production in phase-field models of fission gas bubble
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growth are compared with each other and with analytical models of bubble growth. Finally, we present the phase-field-
fracture simulation performed using MD-informed failure stress values and realistic HBS structure obtained from the
phase-field simulations.
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2. HBS FORMATION AND BUBBLE GROWTH

2.1 Bubble evolution in the fully formed HBS region

In previous years, a multiscale model coupling the phase-field model with a cluster-dynamics simulations has been
developed to simulate the HBS formation and associated bubble growth. It was demonstrated that the coupled model
can realistically capture the convex bubble shapes typically observed in the HBS regions. However, the growth rate
of these bubbles was slower than experiments. In fiscal year 23, the cluster dynamics code Xolotl implemented a new
re-solution model that switches from partial to full re-solution within the grain. As a result, more Xe atoms are released
from the intragranular Xe clusters and accumulated within the intergranular bubbles. In light of this, we reevaluate the
bubble growth in the HBS region with the changes to the re-solution model. In this section, we briefly describe the
coupled approach and present the results for the bubble evolution in fully formed HBS.

2.1.1 Description of the coupled cluster-dynamics and phase-field model

The HBS bubble growth model presented in this section was formulated by following the grand-potential-based multi-
order parameter, multi-component phase-field model. This model can concurrently capture the evolution of multiple
phases, grains, and chemical species. Here, the microstructure consists of two primary crystallographic features: the
solid matrix and the bubble phases. Within the matrix, multiple grains are represented with different order parameters,
𝜂𝑚0, 𝜂𝑚1, . . . 𝜂𝑚𝑖, . . . 𝜂𝑚𝑛, while the bubbles are represented by a single order parameter, 𝜂𝑏. Additionally, local con-
centrations of various defect species such as vacancies and fission gases are represented as chemical components, the
number densities of which are represented by 𝜌𝑣 and 𝜌𝑔 , respectively.

The evolution of the order parameters is captured using the Allen-Cahn equations derived from the grand potential
functional, such that:

𝜕𝜂𝑚𝑖
𝜕𝑡

= −𝐿𝑚
𝛿Ω
𝛿𝜂𝑚𝑖

𝜕𝜂𝑏
𝜕𝑡

= −𝐿𝑏
𝛿Ω
𝛿𝜂𝑏

,
(2.1)

where 𝐿𝑚 and 𝐿𝑏 are the kinetic mobility of the order parameters, and 𝛿Ω
𝛿𝜂𝑚𝑖

and 𝛿Ω
𝛿𝜂𝑏

are the variational derivatives of
the grand potential Ω with respect to the order parameters 𝜂𝑚𝑖 and 𝜂𝑏, respectively. The total grand potential of the
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system, Ω, is derived from the local grand-potential density as:

Ω = ∫𝑉

(

𝜔𝑏𝑢𝑙𝑘 + 𝜔𝑔𝑟𝑎𝑑 + 𝜔𝑐ℎ𝑒𝑚 + 𝜔𝑑
)

d𝑉 , (2.2)

where 𝜔𝑏𝑢𝑙𝑘 accounts for the bulk free energy density term, 𝜔𝑔𝑟𝑎𝑑 adds the gradient energy contribution, and 𝜔𝑐ℎ𝑒𝑚
incorporates the appropriate grand-potential densities for each phase, and 𝜔𝑑 is the deformation energy generated due
to dislocations. Each of these components is defined as follows:

𝜔𝑏𝑢𝑙𝑘 = 𝛼

[(

𝜂4𝑏
4

−
𝜂2𝑏
2

)

+
𝑛𝑚
∑

𝑖=1

(

𝜂4𝑚𝑖
4

−
𝜂2𝑚𝑖
2

)

+

(

𝛾𝑏𝑚𝜂
2
𝑏

∑

𝑖
𝜂2𝑚𝑖 +

𝑛𝑚
∑

𝑖

𝑛𝑚
∑

𝑗≠𝑖

𝛾𝑚𝑚
2
𝜂2𝑚𝑖𝜂

2
𝑚𝑗

)

+ 1
4

]

, (2.3)

𝜔𝑔𝑟𝑎𝑑 = 𝜅
2

(

|𝜂𝑏|
2 +

𝑛𝑚
∑

𝑖=1
|∇𝜂𝑚𝑖|2

)

, (2.4)

and
𝜔𝑐ℎ𝑒𝑚 = ℎ𝑏𝜔𝑏 + ℎ𝑚𝜔𝑚 , (2.5)

where 𝑚 and 𝑏 represent the matrix and bubble phases, 𝑖 and 𝑗 are indices for the grains, 𝑛𝑚 is the total number of
grains, and 𝛼 is a constant free energy barrier coefficient. 𝛾𝑚𝑏 and 𝛾𝑚𝑚 are constant parameters that allow adjustment
of interfacial energies between phases and grains. 𝜔𝑚 and 𝜔𝑏 represent the local grand-potential density of the matrix
and bubble phases, respectively, and ℎ𝑚 and ℎ𝑏 are the switching functions used for interpolating the grand-potential
density between the phases. For the matrix and bubble phases, the switching functions are:

ℎ𝑚 =
∑𝑛𝑚
𝑖=1 𝜂

2
𝑚𝑖

𝜂2𝑏 +
∑𝑛𝑚
𝑖=1 𝜂

2
𝑚𝑖

(2.6)

and

ℎ𝑏 =
𝜂2𝑏

𝜂2𝑏 +
∑𝑛𝑚
𝑖=1 𝜂

2
𝑚𝑖

, (2.7)

respectively. Additionally, the dislocation energy density is added to capture the its contribution on the recrystallization
behavior such that

𝜔𝑑 = 1
2
𝐺 𝑏2𝑔 𝑑𝑒𝑓𝑓 , (2.8)

where 𝐺 is the shear modulus of the material, 𝑏𝑔 is the Burgers vector, and 𝑑𝑒𝑓𝑓 is the effective dislocation density [5].

The evolution of the vacancies and gas atoms is expressed in terms of the chemical potentials 𝜇𝑣 and 𝜇𝑔 , such that:

𝜕𝜇𝑔
𝜕𝑡

= 1
𝜒𝑔

[

∇ ⋅
(

𝐷𝑔𝜒𝑔∇𝜇𝑔
)

+ 𝑠𝑔 −
𝜕𝜌𝑔
𝜕𝜂𝑏

𝜕𝜂𝑏
𝜕𝑡

−
𝑛𝑚
∑

𝑖=1

𝜕𝜌𝑔
𝜕𝜂𝑚𝑖

𝜕𝜂𝑚𝑖
𝜕𝑡

]

(2.9)
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and
𝜕𝜇𝑣
𝜕𝑡

= 1
𝜒𝑣

[

∇ ⋅
(

𝐷𝑣𝜒𝑣∇𝜇𝑣
)

+ 𝑠𝑣 −
𝜕𝜌𝑣
𝜕𝜂𝑏

𝜕𝜂𝑏
𝜕𝑡

−
∑

𝛼

𝑝𝛼
∑

𝑖=1

𝜕𝜌𝑣
𝜕𝜂𝛼𝑖

𝜕𝜂𝛼𝑖
𝜕𝑡

]

, (2.10)

where 𝐷𝑔 and 𝐷𝑣 are the diffusion coefficients, and 𝑠𝑔 and 𝑠𝑣 are the source terms for the production of Xe atoms and
U site vacancies, respectively. 𝜒𝑔 and 𝜒𝑣 are the susceptibilities defined as:

𝜒𝑔 = ℎ𝑚
1

𝑉 2
𝑎 𝑘𝑚𝑔

+ ℎ𝑏
1

𝑉 2
𝑎 𝑘𝑏𝑔

(2.11)

and
𝜒𝑣 = ℎ𝑚

1
𝑉 2
𝑎 𝑘𝑚𝑣

+ ℎ𝑏
1

𝑉 2
𝑎 𝑘𝑏𝑣

, (2.12)

respectively. The grand-potential density for each phase is given by:

𝜔𝑚 = 𝑓𝑚 − 𝜇𝑔𝜌𝑔 − 𝜇𝑣𝜌𝑣 (2.13)

and
𝜔𝑏 = 𝑓𝑏 − 𝜇𝑔𝜌𝑔 − 𝜇𝑣𝜌𝑣 , (2.14)

where 𝑓𝑚 and 𝑓𝑏 are the Helmholtz free energies of each phase and 𝜇𝑔 and 𝜇𝑣 are the chemical potentials of the gas
atoms and vacancies. The free energy of both phases are approximated as parabolic functions of vacancy and gas
concentration, such that:

𝑓𝑚 = 1
2
𝑘𝑚𝑣 (𝑐𝑣 − 𝑐

𝑚,𝑒𝑞
𝑣 )2 + 1

2
𝑘𝑚𝑔 (𝑐𝑔 − 𝑐

𝑚,𝑒𝑞
𝑔 )2 (2.15)

and
𝑓𝑏 =

1
2
𝑘𝑏𝑣(𝑐𝑣 − 𝑐

𝑏,𝑒𝑞
𝑣 )2 + 1

2
𝑘𝑏𝑔(𝑐𝑔 − 𝑐

𝑏,𝑒𝑞
𝑔 )2, (2.16)

where 𝑘𝑚𝑣 and 𝑘𝑚𝑔 are the curvatures of the parabolas and 𝑐𝑚,𝑒𝑞𝑣 and 𝑐𝑚,𝑒𝑞𝑔 represent the equilibrium concentration of
vacancies and gas atoms in the UO2 matrix, respectively. The curvatures of these parabolic functions were derived
from the equivalency of the ideal energy form for the respective phases. Details on this approach including the details
of the recrystallization model are provided in [6].

The cluster-dynamics code Xolotl captures the evolution of the intra-granular fission gases [11]. It considers Xe as
the primary fission gas present in the system and does not explicitly model vacancy evolution. The evolution of the Xe
cluster is represented by:

𝜕𝐶𝑛
𝜕𝑡

= 𝐹̇ 𝑦𝑛 +𝐷𝑛∇2𝐶𝑛 −𝑄(𝐶𝑛) , (2.17)

where 𝐶𝑛 is the concentration of the cluster containing 𝑛 Xe atoms, 𝐹̇ is the fission rate, 𝑦𝑛 is the fission yield of the Xe
atoms, and𝐷𝑛 is the diffusion coefficient of a given cluster. The time evolution of the clusters consists of the production
of new Xe, the diffusion of a single Xe atom, the clustering of Xe to form intra-granular bubbles, and the re-solution of
Xe monomers. In this model, only single Xe atoms (i.e., Xe monomers) are considered mobile. The general reaction
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Parameter Formulation Value Source
𝑇 1200 K
𝑉𝑎 0.04092 nm3 [7]
𝐸𝑣𝑓 3 eV [8]
𝐸𝑔𝑓 3 eV [8]

𝑐𝑚,𝑒𝑞𝑣∕𝑔 exp
(

− 𝐸𝑓𝑣
𝑘𝐵𝑇

)

2.515 ×10−13 [6]

𝑘𝑚𝑣 7335 eV∕nm3 − 0.9682 𝑇 eV∕nm3∕K 6173.17 eV/nm3 [6]
𝑘𝑚𝑔 3667.5 eV∕nm3 − 0.41 𝑇 eV∕nm3∕K 3175.5 eV/nm3 [6]
𝑐𝑏,𝑒𝑞𝑣 0.562 [6]
𝑐𝑏,𝑒𝑞𝑔 0.438 [6]
𝑘𝑏𝑣∕𝑔 0.2328 𝑇 eV∕nm3∕K − 30.723 eV∕nm3 245 eV/nm3 [6]
𝑙𝑖𝑛𝑡 10 nm
𝜎𝑚𝑚 1.5 J/m2 or 9.363 eV/nm2

𝜅 3
4𝜎𝑚𝑚𝑙𝑖𝑛𝑡 1.125 ×10−8 J/m or 70.2 eV/nm [6]

𝛼 6𝜎𝑚𝑚
𝑙𝑖𝑛𝑡

9 ×108 J/m3 or 5.62 eV/nm3 [6]
𝐺 64.1 GPa [9]
𝑀𝐺𝐵 9.21 × 10−9 exp

(

− 3.01
𝑘𝐵𝑇

)

m4/Js 3.43 × 10−4 nm4/eV/s [6]

𝐿𝐺𝐵
4𝑀𝐺𝐵
3𝑙𝑖𝑛𝑡

4.58 × 10−5 nm3/eV/s [6]
𝐿𝑏 10𝐿 4.58 × 10−4 nm3/eV/s [10]
𝑆𝑣 1.2𝑆𝑔 [10]
𝐷𝑚
𝑔 0.0175 nm2/s [10]

𝐷𝑏
𝑔 10000 𝐷𝑚

𝑔 175 nm2/s [10]
𝐷𝑠
𝑔 1000 𝐷𝑚

𝑔 17.5 nm2/s [10]
𝐷𝐺𝐵
𝑔 10000 𝐷𝑚

𝑔 175 nm2/s [10]
𝐷𝑚
𝑣 𝐷𝑣𝑈 = 2 × 10−3 exp (−2.4∕𝑘𝐵𝑇 ) cm2/s 16.65 nm2/s [10]

𝐷𝑏
𝑣 100 𝐷𝑚

𝑔 1665.27 nm2/s [10]
𝐷𝑠
𝑣 10 𝐷𝑚

𝑔 166.527 nm2/s [10]
𝐷𝐺𝐵
𝑣 100 𝐷𝑚

𝑔 1665.27 nm2/s [10]

Table 2.1. Parameters used for phase-field simulations of bubble evolution in HBS.
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term for a cluster of size 𝑛 ≥ 2 is:

𝑄(𝐶𝑛) = 𝑘𝑛𝐶𝑛𝐶1 − 𝑘𝑘−1𝐶𝑛−1𝐶1 + 𝑘𝑒𝑚𝑖𝑡𝑛 𝐶𝑛 − 𝑘𝑒𝑚𝑖𝑡𝑛+1𝐶𝑛+1 + 𝑘
𝑟𝑒𝑠𝑜
𝑛 𝐶𝑛 − 𝑘𝑟𝑒𝑠𝑜𝑛+1𝐶𝑛+1, (2.18)

with the following reaction rates:

𝑘𝑛 = 4𝜋𝐷1(𝑟1 + 𝑟𝑛), (2.19)

𝑘𝑒𝑚𝑖𝑡𝑛+1 =
𝑘𝑛
𝑉𝑎

exp
(

−𝐸𝑏
𝑘𝐵𝑇

)

, (2.20)

𝑘𝑟𝑒𝑠𝑜𝑛 =

(

𝑎1 exp
(

−𝑏1𝑟𝑛
)

+
𝑦(0) − 𝑎1
1 + 𝑐𝑟2𝑛

exp
(

−𝑏2𝑟2𝑛
)

)

104𝐹̇ . (2.21)

Here, 𝐷1 is the single Xe diffusion coefficient, 𝑟𝑛 is the reaction radius for a bubble consisting of 𝑛 Xe atoms, 𝑉𝑎 is the
atomic volume, 𝐸𝑏 is the binding energy of Xe𝑛+1, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. For the
full resolution model, the resolution rate is defined as,

𝑘𝑟𝑒𝑠𝑜𝑛 = 2𝜋𝜇𝑓
(

𝑅 + 𝑅𝑓
)

𝐹 . (2.22)

where, 𝜇𝑓 and 𝑅𝑓 are the average length and radius of the fission spike, respectively. The reaction term for a single Xe
atom sums the contributions from each reaction, such that:

𝑄(𝐶1) =
∑

𝑛≥2

[

𝑘𝑛𝐶𝑛𝐶1 − 𝑘𝑒𝑚𝑖𝑡𝑛+1𝐶𝑛+1
]

+ 2𝑘1𝐶2
1 − 𝑘𝑒𝑚𝑖𝑡2 𝐶2 − 2𝑘𝑟𝑒𝑠𝑜2 𝐶2. (2.23)

A schematic of the coupling approach is presented in Figure 2.1.
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(a)

(b)

Figure 2.1. Schematic of the coupled approach: (a) transfer of physical quantities, and (b) strategy for transferring data
between the applications [11].

2.2 Bubble evolution in HBS

Bubble evolution for different initial bubbles and temperatures are presented here. Three initial conditions considered
for the simulations are presented in Figure 2.2.

(a) (b) (c)

Figure 2.2. Sample initial HBS structure created via a Voronoi tessellation with (a) 100, (b) 150, and (c) 200 nm
bubbles.
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To benchmark, first we compare the bubble evolution within a fully formed HBS without any initial Xe supersatu-
ration of the matrix. Figure 2.3 shows the time evolution of the 100 nm bubble. It is observed that the bubble growth
rate is higher than what was oberved previously. Due to switching to the full resolution model, the intragranular Xolotl
clusters release more Xe monomers that make their way to the GBs and eventually to the intergranular bubbles.

(a) (b)

Figure 2.3. Evolution of a 100 nm bubble in HBS at time approximately a) 2.34×105 b) 2.74 ×106 without initial Xe
supersaturation in the matrix.

For the next case, we generate the initial Xe supersaturation in the matrix using 1D cluster dynamics calculations.
The 1D model also considers the clustering and full-resolution. Figure 2.4 presents the time evolution of the 100
nm bubble with initial Xe supersaturation in the matrix. The existing bubbles grow faster than the previous case.
Additionally, due to accumulation of Xe monomers and vacancies, more new bubbles are formed at various triple
junctions. This is consistent with the porous structure typically observed around the rim region of the UO2 fuel within
LWRs. The model captures certain grain growth, towards later stage. This is because no new grains are introduced in
the simulations and it is considered that the HBS region is exposed to steady 1200K temperature for the duration of the
simulation.
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(a) (b)

Figure 2.4. Evolution of an initial 100 nm bubble in HBS at time a) 6.0×105 b) 4.5 ×106 with initial Xe supersaturation
in the matrix.

Figure 2.5a captures the porosity evolution over time for different initial bubble sizes with initial supersaturation
generated for 1200K. In all the cases, growth of existing bubbles and formation of new triple-junction bubbles are
observed. Additionally, the growth rate of the bubbles decreases with increase in the initial bubble sizes.
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(a) (b)

(c)

Figure 2.5. Evolution of the bubbles observed with initial bubbles sizes of a) 100 nm at 2.6×106 sec, b) 150 nm at
5.8×105 sec, c) 200 nm at 9.4 ×105 sec.
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2.3 HBS formation model

In this section we present the HBS formation model that captures the formation of new grains from the initial damaged
grains. Figure 2.6 depicts the different stages of HBS formation at 1100 K temperature. Determining the volume
fraction of the restructured HBS fuel is important for evaluating the performance of the fuel after restructuring (i.e.,
the fission gas release behavior and pulverization criteria of the restructured fuel).

(a) (b)

Figure 2.6. Different stages of HBS formation at 1100 K temperature.

Figure 2.7 compares the intermediate stages of HBS formation at 1100 K and 1200 K temperature. The HBS
formation happens in stages, where formation of the new grains is followed by a coarsening stage.
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Figure 2.7. Restructuring leading to HBS formation at 1100 K (left) and 1200 K (right) temperatures.

As observed here, the rate of restructuring and average grain size vary with the temperature [12]. In general, the
HBS volume fraction can be calculated using the Kolmogorov-Johnson-Mehl-Avrami (KJMA) correlation for phase
transformations such that [13]:

𝛼 = 1 − exp
(

−𝑘 𝑏𝑢𝑛𝑒𝑓𝑓
)

(2.24)

where 𝛼 is the volume fraction of the new grains, 𝑘 is the transformation rate constant, 𝑏𝑢𝑒𝑓𝑓 is the effective burnup,
and 𝑛 is the Avrami constant.

Figure 2.8 compares the mesoscale data with the existing BISON model. The mesoscale data follows the KJMA
correlation. However, the slope of the curve is different from what the current BISON model uses. Moreover, the
mesoscale simulations shows that the slope of the curve and the time to achieve a complete restructuring varies with
temperature, as well as nucleation rate. Thus, the slope of the model (k) should be a function of temperature. The
mesoscale observations do not support the assumption of the current BISON model that the slope of the curve remains
constant below a threshold temperature which determines whether restructuring has occurred or not. Therefore, the
BISON model needs to be updated based on the mesoscale data for a more accurate prediction of the HBS volume
fraction in the fuel. Further investigation of the HBS formation model will be done in the following year. It is also worth
mentioning that the current grain nucleation model at the mesoscale has some numerical limitation which prevents us
from evaluating HBS formation at even lower temperatures. This will be investigated in the following year.
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Figure 2.8. Variation of the volume fraction of the restructured HBS region with the effective burnup.
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3. HELMHOLTZ FREE ENERGY OF VIRIAL EQUA-
TION OF STATE FOR XENON GAS BUBBLES
IN URANIUM DIOXIDE

An important parameter needed for phase-field modeling of fission gas bubbles in UO2 nuclear fuel is the chemical free
energy of the bubble phase. In past work, the bubble phase has been treated as a mixture of U-site vacancies and Xe
atoms, and the chemical free energy was given by the Helmholtz free energy of Xe using the van der Waals equation of
state [14]. Alternatively, a parabolic approximation to the Helmholtz free energy has been used in phase-field modeling
to improve numerical performance [8]. In the van der Waals equation of state (EOS), it is assumed that the gas atoms
have a hard-sphere volume 𝑏𝑋𝑒 which is incompressible. In this EOS, the relationship between gas pressure 𝑃𝑔 and Xe
gas atom density 𝜌𝑔 (number of gas atoms per unit volume) is given by

𝑃𝑔 =
𝑘𝑇

1
𝜌𝑔

− 𝑏𝑋𝑒
(3.1)

where 𝑘 is the Boltzmann constant and 𝑇 is the temperature.
Recently, molecular dynamics simulations have been used to determine a more accurate equation of state for Xe

atoms at high pressures [15] where the hard-sphere assumption of the van der Waals equation of state is not valid. The
pressure-volume relationship was found to be described well by the virial EOS:

𝑃𝑔 = 𝜌𝑔𝑘𝑇

[

1 + 𝐵
𝜌𝑔
𝜌𝑐

+ 𝐶
(𝜌𝑔
𝜌𝑐

)2
+ 𝐸

(𝜌𝑔
𝜌𝑐

)4
]

(3.2)

where𝐵, 𝐶 , and𝐸 are temperature-dependent coefficients and 𝜌𝑐 = 5.06 nm−3 is the density of Xe atoms at the critical
point.

The Xe gas pressure for these EOSs is plotted in Figure 3.1 as a function of the Xe gas atom dimensionless con-
centration 𝑐𝑔 , which is related to the number density 𝜌𝑔 and U-site density 𝜌𝑈 using 𝑐𝑔 = 𝜌𝑔

𝜌𝑈
. Significant deviation

between the van der Waals and virial EOS begins for 𝑐𝑔 > 0.2, where pressures are of the order of a few hundred MPa.
Because of the breakdown of the van der Waals EOS at these pressures, it is expected that the Helmholtz free energy

derived from the van der Waals EOS will also be inaccurate at such pressures, which could result in errors in phase-field
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Figure 3.1. Comparison of pressure-concentration relationship for the virial EOS [15] with the van der Waals EOS.

simulations that use this Helmholtz free energy. Therefore, in this section, we determine the Helmholtz free energy
from the virial EOS by performing thermodynamic integration of the EOS. We also develop a parabolic approximation
to the Helmholtz free energy for use in phase-field models that require it, or where it is desired for improved numerical
performance.

For 𝑁𝑔 moles of Xe gas atoms, the bulk Helmholtz free energy density 𝑓𝑔 (J/m3) is given in terms of the molar
density of gas atoms 𝑁𝑔 (mol/volume) as

𝑓𝑔 = 𝑁𝑔𝐹
◦
𝑔 +𝑁𝑔Δ𝐹𝐸𝑂𝑆𝑔 (3.3)

where 𝐹 ◦
𝑔 is the reference Helmholtz free energy of Xe per mole at reference molar volume 𝑣◦𝑔 , and Δ𝐹𝐸𝑂𝑆𝑔 is the

change in the Helmholtz free energy per mole due to change in gas molar volume. Equation 3.3 can be expressed in
terms of 𝑐𝑔 using 𝑁𝑔 =

𝑐𝑔
𝑣𝑚

, where 𝑣𝑚 = 2.53 × 10−5 m3/mol is the molar volume of U sites in the solid:

𝑓𝑔 = 𝑐𝑔
𝐹 ◦
𝑔

𝑣𝑚
+ 𝑐𝑔

Δ𝐹𝐸𝑂𝑆𝑔

𝑣𝑚
(3.4)

𝐹 ◦
𝑔 can be determined from the thermodynamic relation 𝐹 ◦

𝑔 = (𝐺◦
𝑔−𝐻

◦
298)−𝑃

◦
𝑔 𝑣

◦
𝑔 [16]. The quantity (𝐺◦

𝑔−𝐻
◦
298) is

available at a range of temperatures from thermodynamic tables in the form −(𝐺◦
𝑔 −𝐻

◦
298)∕𝑇 [17]. The reference state

pressure 𝑃 ◦
𝑔 = 105 Pa. The reference state molar volume at this pressure is given by the ideal gas law as 𝑣◦𝑔 = 𝑅𝑇 ∕𝑃 .

Δ𝐹𝐸𝑂𝑆𝑔 can be determined by integrating the EOS with respect to the gas molar volume 𝑣𝑔 starting from the
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reference molar volume 𝑣◦𝑔:

Δ𝐹𝐸𝑂𝑆𝑔 = −∫

𝑣𝑔

𝑣◦𝑔
𝑃𝑔𝑑𝑣𝑔 (3.5)

To perform thermodynamic integration of the virial EOS, it is convenient to first express it in terms of the molar volume
of the Xe gas, 𝑣𝑔 , using 𝑣𝑔 =

𝑁𝑎
𝜌𝑔

, where 𝑁𝑎 is Avogadro’s number:

𝑃𝑔 =
𝑅𝑇
𝑣𝑔

[

1 + 𝐵
𝜌𝑐

𝑁𝑎
𝑣𝑔

+ 𝐶
𝜌2𝑐

(

𝑁𝑎
𝑣𝑔

)2
+ 𝐸
𝜌4𝑐

(

𝑁𝑎
𝑣𝑔

)4
]

(3.6)

where 𝑅 = 𝑁𝑎𝑘. Substituting Equation 3.6 into 3.5 and integrating analytically, we obtain

Δ𝐹𝐸𝑂𝑆𝑔 = 𝑅𝑇

[

ln

(

𝑐𝑔
𝑐◦𝑔

)

+ 𝐵
𝑣𝑚

𝑁𝑎
𝜌𝑐

(𝑐𝑔 − 𝑐◦𝑔 ) +
𝐶
2𝑣2𝑚

(

𝑁𝑎
𝜌𝑐

)2
(𝑐2𝑔 − 𝑐

◦
𝑔
2) + 𝐸

4𝑣4𝑚

(

𝑁𝑎
𝜌𝑐

)4
(𝑐4𝑔 − 𝑐

◦
𝑔
4)

]

(3.7)

where 𝑐◦𝑔 = 𝑣𝑚∕𝑣𝑔 . Substituting Equation 3.7 in to 3.4,

𝑓𝑔 = 𝑐𝑔𝑓
◦
𝑔 + 𝑐𝑔

𝑘𝑇
𝑉𝑎

[

ln

(

𝑐𝑔
𝑐◦𝑔

)

+ 𝐵
𝑣𝑚

𝑁𝑎
𝜌𝑐

(𝑐𝑔 − 𝑐◦𝑔 ) +
𝐶
2𝑣2𝑚

(

𝑁𝑎
𝜌𝑐

)2
(𝑐2𝑔 − 𝑐

◦
𝑔
2) + 𝐸

4𝑣4𝑚

(

𝑁𝑎
𝜌𝑐

)4
(𝑐4𝑔 − 𝑐

◦
𝑔
4)

]

(3.8)

where 𝑓 ◦
𝑔 = 𝐹 ◦

𝑔 ∕𝑣𝑚. The Helmholtz free energy density for Xe using the virial equation of state in plotted in Figure 3.2
at 𝑇 = 700 K, along with the same quantity using the van der Waals equation of state. For convenience in phase-field
modeling, a parabolic approximation to the virial EOS was fit at 700 K:

𝑓 𝑝𝑔 = 1
2
𝑘𝑣𝑖𝑟𝑖𝑎𝑙(𝑐 − 𝑐𝑚𝑖𝑛𝑣𝑖𝑟𝑖𝑎𝑙)

2 + 𝑓0 (3.9)

From the fit, 𝑘𝑣𝑖𝑟𝑖𝑎𝑙 = 4.96 × 109 J/m3, 𝑐𝑚𝑖𝑛𝑣𝑖𝑟𝑖𝑎𝑙 = 0.967, and 𝑓0 = −2.23 × 109 J/m3. The parabolic expression with
these parameters is also shown in Figure 3.2.

17 of 52



0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3
10

9

Figure 3.2. Helmholtz free energy density as a function of gas concentration 𝑐𝑔 for the virial equation of state of Xe in
UO2 [15] at 𝑇 = 700 K. A parabolic fit to the Helmholtz free energy from the virial EOS at this temperature is also
shown, along with the Helmholtz free energy of a van der Waals gas at 700 K for comparison.
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4. COMPARISON OF NET VACANCY PRODUCTION
APPROXIMATIONS

In this chapter, we compare two different approaches to approximate the net production of vacancies in phase-field
modeling of fission gas bubbles in nuclear fuel. During reactor operation, energetic fission fragments are ejected
from nuclei undergoing fission, leading to collision cascades that produces pairs of interstitials and vacancies (Frenkel
pairs). Although many Frenkel pairs rapidly recombine in the aftermath of collision cascades, some remain as free
species that can diffuse to sinks such as voids and dislocations. Because interstitials are preferentially absorbed at
dislocation sinks, a net excess of vacancies remains that can contribute to fission gas bubble or void growth. Although
it would be preferable to track both vacancies and interstitial species in phase-field models, including their production,
recombination, and absorption at sinks, interstitials usually diffuse much more rapidly than vacancies. This makes it
computationally challenging to simulate experimentally relevant times, because the simulation time step is limited to
be small enough to resolve the transport of the faster-diffusing interstitial species.

Due to this challenge, many phase-field models of nuclear fuel have not included interstitials, and have approximated
the net production of vacancies by various methods. One of the most common approaches has been the use of a source
term for vacancy production, similar to the source term required to simulate the production of insoluble fission gas atoms
[8, 18]. For convenience, this approach will be referred to as source-only (SO). One disadvantage of this approach is
that it is not known what the appropriate value of the source term should be to correctly represent the net vacancy
production rate. The rate of Frenkel pair production during fission is several orders of magnitude greater than the
fission rate [19], but rapid recombination in the aftermath of collision cascades should reduce the net production rate
significantly. Thus, net vacancy production rates of 5–20 times the Xe production rates have been used, and the effect
of this range was studied parameterically [8]. Another approach was to introduce both a vacancy source term and a sink
term proportional to the vacancy concentration [14]. This approach will be referred to as source+sink (SS). The SS
approach results in a vacancy concentration that is in steady-state and constant in the bulk of the fuel far from bubbles,
as is expected from rate theory models. The value of the effective sink term was calculated [14] so that steady-state
vacancy concentration, 𝑐𝑠𝑠𝑣 , matched the value predicted from cluster dynamics simulations [20]. Capturing the steady-
state vacancy concentration correctly improves the SS model’s fidelity to one aspect of the full vacancy-interstitial
model, but it has not been determined how growth rate of the SO or SS models compare to the full vacancy-interstitial
model.

Although computational models using techniques such as the phase-field method can simulate a far wider variety
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of microstructures than is possible with an analytical model, there are advantages of analytical models in gaining
qualitative and even quantitative understanding. Therefore, in this chapter, we compare the growth rates and vacancy
concentrations of the SO and SS models to analytical models to gain understanding of what factors control growth
rates in the SO and SS models, and how they compare to an analytical model of growth rates derived for the full
interstitial-vacancy picture. To simplify the comparison as much as possible, we consider vacancies only, and do not
include any fission gas species. This can be considered as representative of ion irradiation, with parameters chosen to
match fission-driven defect production. In Section 4.1, we review existing models of growth for the SO model and an
analytical model of the growth rate for the full vacancy-interstitial picture, and derive a new analytical model for the
growth rate for the SS model. In Section 4.2, we describe a phase-field model used to simulate bubble growth in these
conditions. In Section 4.3, we simulate growth using the phase-field model and compare the results to the analytical
models.

4.1 Analytical models for growth

4.1.1 Source-only model

In the source-only model, the growth of a bubble of instantaneous radius 𝑅 is considered. Radial coordinates with
spherical symmetry are used, in a simulation domain of radius . The variable 𝑟 describes the distance from the center
of the domain. The bubble phase is within the region 0 < 𝑟 ≤ 𝑅, and the solid UO2 matrix phase is within the region
𝑅 < 𝑟 ≤ . The diffusion equation describing the non-dimensional concentration (mole fraction) of vacancies, 𝑐𝑣,
within the solid in spherical coordinates is

𝜕𝑐𝑣
𝜕𝑡

=
𝐷𝑣

𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑣
𝜕𝑟

)

+ 𝑆𝑣 (4.1)

Although an analytical solution to the time-dependent Equation 4.1 is not available, if the rate of change in the bubble
size is slow relative to the relaxation time of the diffusion field, the concentration profile of 𝑐𝑣 will be near a steady
state at a particular time 𝑡. This is known as the quasi-steady state approximation, and the diffusion equation in this
case is

𝜕𝑐𝑣
𝜕𝑡

≈ 0 ≈
𝐷𝑣

𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑣
𝜕𝑟

)

+ 𝑆𝑣 (4.2)

The quasi-steady state diffusion Equation 4.2 can be solved given appropriate boundary conditions. As described
previously, it is expected that far from the bubble, a steady-state vacancy concentration is reached; therefore, 𝑐𝑣 should
be constant with respect to changes in 𝑟 at the simulation domain boundary, leading to the boundary condition 𝜕𝑐𝑣

𝜕𝑟
|

|

|𝑟=
=

0. The vacancy concentration in the matrix at the bubble-matrix interface, 𝑐𝑅 = 𝑐𝑣(𝑟 = 𝑅), can be calculated using the
Gibbs-Thomson equation and represents the other necessary boundary condition:

𝑐𝑅 = 𝑐𝑚,0 +
2𝜎𝑖𝑛𝑡

𝑅𝑘𝑣(𝑐𝑣,0 − 𝑐𝑚,0)
(4.3)
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where 𝑐𝑚,0 is the equilibrium concentration of vacancies in the bulk solid far from a curved interface (assumed to
be 0 here), 𝜎𝑖𝑛𝑡 is the interfacial energy of the bubble-solid interface, 𝑘𝑚 is the curvature of the free energy versus
composition in the matrix phase, and 𝑐𝑣,0 = 1 is the equilibrium concentration of vacancies in the void.

Subject to these boundary conditions, the solution to Equation 4.2 in the solid is given by [19]

𝑐𝑣(𝑟) = 𝑐𝑅 +
𝑆𝑣
6𝐷𝑣

[

23(𝑟 − 𝑅)
𝑟𝑅

− (𝑟2 − 𝑅2)
]

(4.4)

If ≫ 𝑅, Equation 4.4 can be approximated as [19]

𝑐𝑣(𝑟) ≈ 𝑐𝑅 +
𝑆𝑣3

3𝐷𝑣𝑅

(

1 − 𝑅
𝑟

)

(4.5)

The growth rate of the bubble using the source-only model can be derived by equating the time rate of change of the
bubble volume 𝑉 to the flux of vacancies 𝐽 across the boundary at 𝑅, which has area 4𝜋𝑅2:

𝑑𝑉
𝜕𝑡

= 4𝜋Ω𝑅2𝐽 (4.6)

where Ω is the atomic volume. Since 𝑉 = 4
3𝜋𝑅

3, 𝑑𝑉𝑑𝑡 = 4𝜋𝑅2 𝑑𝑅
𝑑𝑡 . Substituting in to Equation 4.6,

𝑑𝑅
𝑑𝑡

= Ω𝐽 (4.7)

Flux 𝐽 at the bubble-matrix interface is given by

𝐽 (𝑅) = −𝐷𝑣

(

𝜕(𝑐𝑣∕Ω)
𝜕𝑟

)

|

|

|

|

|𝑟=𝑅
= −

𝐷𝑣
Ω

(

𝜕𝑐𝑣
𝜕𝑟

)

|

|

|

|

|𝑟=𝑅
(4.8)

Thus,
𝑑𝑅
𝑑𝑡

= −𝐷𝑣

(

𝜕𝑐𝑣
𝜕𝑟

)

|

|

|

|

|𝑟=𝑅
(4.9)

Substituting Equation 4.5 and taking the derivative,

𝑑𝑅
𝑑𝑡

=
𝑆𝑣3

3𝑅2
(4.10)

4.1.2 Source+sink model

In this section, we derive a quasi-steady state solution for the SS model. The quasi-steady state diffusion equation for
this case is

𝜕𝑐𝑣
𝜕𝑡

≈ 0 ≈
𝐷𝑣

𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑣
𝜕𝑟

)

+ 𝑆𝑣 −𝐾𝑣𝑐𝑣 (4.11)
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This can be rewritten by dividing through by 𝐷𝑣 and taking all 𝑐𝑣 dependent terms to one side:

1
𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑣
𝜕𝑟

)

−
𝐾𝑣
𝐷𝑣

𝑐𝑣 = −
𝑆𝑣
𝐷𝑣

(4.12)

Following the theory of differential equations, the equation can be split into homogeneous and particular solutions, 𝑐ℎ
and 𝑐𝑝, such that 𝑐𝑣 = 𝑐ℎ + 𝑐𝑝. The solution to the homogeneous part can be found by solving

1
𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐ℎ
𝜕𝑟

)

−
𝐾𝑣
𝐷𝑣

𝑐ℎ = 0 (4.13)

Expanding the first term and multiplying through by 𝑟2,

𝑟2
𝜕2𝑐ℎ
𝜕𝑟2

+ 2𝑟
𝜕𝑐ℎ
𝜕𝑟

−
𝐾𝑣
𝐷𝑣

𝑐ℎ𝑟
2 = 0 (4.14)

This is the modified spherical Bessel differential equation with 𝑛 = 0 [21]. Solutions are of the form

𝑐ℎ = 𝑐1𝑖0 + 𝑐2𝑘0 (4.15)

where 𝑐1 and 𝑐2 are constants to be determined, and 𝑖0 and 𝑘0 are the modified spherical Bessel functions of the first
and second kind, respectively, for 𝑛 = 0:

𝑖0 =
sinh

(√

𝐾𝑣
𝐷𝑣
𝑟
)

√

𝐾𝑣
𝐷𝑣
𝑟

(4.16)

𝑘0 =
exp

(

−
√

𝐾𝑣
𝐷𝑣
𝑟
)

√

𝐾𝑣
𝐷𝑣
𝑟

(4.17)

To find the particular solution, based on the fact that the particular term of the differential equation, 𝑆𝑣∕𝐷𝑣, is a
constant, we try 𝑐𝑝 = 𝐴, where 𝐴 a constant. Substituting to the particular form of the differential equation.

1
𝑟2
𝜕
𝜕𝑟

(

𝑟2 𝜕𝐴
𝜕𝑟

)

+
𝑆𝑣
𝐷𝑣

−
𝐾𝑣
𝐷𝑣

𝐴 = 0 (4.18)

Which results in
𝐴 =

𝑆𝑣
𝐾𝑣

= 𝑐𝑝 (4.19)

Combining Equation 4.15 and 4.19, we obtain

𝑐𝑣 = 𝑐ℎ + 𝑐𝑝 = 𝑐1𝑖0 + 𝑐2𝑘0 +
𝑆𝑣
𝐾𝑣

(4.20)

22 of 52



Now the boundary conditions must be used to determine 𝑐1 and 𝑐2. Because 𝑖0 → ∞ as 𝑟 → ∞, but 𝑐𝑣 → 𝑐𝑠𝑠𝑣 as
𝑟→ ∞, this requires that 𝑐1 = 0. We can determine 𝑐2 from the fact that at 𝑟 = 𝑅, 𝑐𝑣(𝑅) = 𝑐𝑅, as determined from the
Gibbs-Thomson condition of Equation 4.3. Defining 𝜆 =

√

𝑆𝑣∕𝐾𝑣 for convenience,

𝑐𝑣 = 𝑐2𝑘0 +
𝑆𝑣
𝐾𝑣

= 𝑐2
𝑒−𝜆𝑟

𝜆𝑟
+
𝑆𝑣
𝐾𝑣

(4.21)

Evaluating at 𝑟 = 𝑅,

𝑐𝑣(𝑟 = 𝑅) = 𝑐𝑅 = 𝑐2
𝑒−𝜆𝑅

𝜆𝑅
+
𝑆𝑣
𝐾𝑣

(4.22)

This allows us to solve for 𝑐2:

𝑐2 =
𝜆𝑅
𝑒−𝜆𝑅

(

𝑐𝑅 −
𝑆𝑣
𝐾𝑣

)

(4.23)

Substituting Equation 4.23 into 4.21, we obtain the vacancy concentration as a function of position in the solid for the
SS model:

𝑐𝑣 =
(

𝑐𝑅 −
𝑆𝑣
𝐾𝑣

)

𝜆𝑅
𝑒−𝜆𝑅

𝑒−𝜆𝑟

𝜆𝑟
+
𝑆𝑣
𝐾𝑣

(4.24)

The growth rate can be obtained by using Equation 4.24 in 4.9:

𝑑𝑅
𝑑𝑡

= 𝐷𝑣

(

𝑆𝑣
𝐾𝑣

− 𝑐𝑅

)

(
√

𝐾𝑣
𝐷𝑣

+ 1
𝑅

)

(4.25)

4.1.3 Chemical stress model

Accounting for the presence of both vacancies and interstitials, an approximation for the growth rate of bubbles due to
the supersaturation of irradiation-produced defects can be obtained [22]:

𝑑𝑅
𝑑𝑡

=
𝐷𝑣
𝑅

(

𝑐𝑠𝑠𝑣 − 𝑐𝑅
)

(

1 −
𝑍𝑣
𝑍𝑖

)

(4.26)

where 𝑍𝑣 and 𝑍𝑖 are capture rates of the point defects by sinks such as dislocations [22]. The growth rate resulting
from the supersaturation of defects has been referred to as a “chemical stress” because it produces bubble growth like
a mechanical force.

4.2 Phase-field model formulation

The model for UO2 bubbles uses the approach developed by Kim et al. [23], typically referred to as the “KKS” for-
mulation. For the SO and SS models, the formulation tracks the normalized concentration (site fraction) of uranium
site vacancies, 𝑐𝑣. The bubble or void phase is represented as composed entirely of vacancies, 𝑐𝑣 = 1. The model also
indicates the difference between matrix (solid) and bubble phases with a non-conserved order parameter, 𝜂, that varies
continuously from 0 in the matrix phase to 1 in the void/bubble phase. (Since there are no fission gas atoms in the
current phase-field model, it may be more typical to refer to the bubble regions as voids. However, to avoid potential
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confusion with the subscript 𝑣 used for vacancies, we maintain the use of the term bubbles and the subscript 𝑏 to refer
to regions composed entirely of vacancies throughout.)

The total free energy 𝐹 of the system is given by

𝐹 = ∫𝑉

[

𝑓𝑐ℎ𝑒𝑚 +𝑊 𝑔(𝜂) + 𝜅
2
|∇𝜂|2

]

d𝑉 , (4.27)

where 𝑓𝑐ℎ𝑒𝑚 is the chemical contribution to the free energy density, 𝑔(𝜂) = 𝜂2(1 − 𝜂)2 is a double-well function, 𝑊 is
the height of the double well, and 𝜅 is the gradient energy coefficient.

4.2.1 Chemical free energy density

The chemical free energy density is interpolated from the chemical free energy densities of the matrix and bubble
phases:

𝑓𝑐ℎ𝑒𝑚 = [1 − ℎ(𝜂)]𝑓𝑚𝑐ℎ𝑒𝑚(𝑐
𝑚
𝑣 ) + ℎ(𝜂)𝑓

𝑏
𝑐ℎ𝑒𝑚(𝑐

𝑏
𝑣) (4.28)

where 𝑓𝑚𝑐ℎ𝑒𝑚 is the chemical free energy density of the matrix phase; 𝑓 𝑏𝑐ℎ𝑒𝑚 is the chemical free energy density of the
bubble phase; 𝑐𝑚𝑣 is the concentration of vacancies in the matrix phase; and 𝑐𝑏𝑣 is the concentrations of vacancies in the
bubble phase. ℎ(𝜂) = 𝜂3(6𝜂2 − 15𝜂 + 10) is an interpolation function that varies smoothly from ℎ(0) = 0 to ℎ(1) = 1.
Parabolic approximations are used for the dependence of chemical free energies on defect concentrations:

𝑓𝑚𝑐ℎ𝑒𝑚 =
𝑘𝑣
2
(𝑐𝑚𝑣 − 𝑐𝑚,𝑚𝑖𝑛𝑣 )2 (4.29)

𝑓 𝑏𝑐ℎ𝑒𝑚 =
𝑘𝑣
2
(𝑐𝑏𝑣 − 𝑐

𝑏,𝑚𝑖𝑛
𝑣 )2 (4.30)

where 𝑘𝑣 = 6.4 × 1011 J/m3 (the same order of magnitude as used in previous phase-field simulations of fission gas
bubble growth [8]), 𝑐𝑚,𝑚𝑖𝑛𝑣 = 0, and 𝑐𝑏,𝑚𝑖𝑛𝑣 = 1.

4.2.2 KKS system constraints

The physical concentrations are defined in terms of the phase concentrations as [23]

𝑐𝑣 = [1 − ℎ(𝜂)]𝑐𝑚𝑣 + ℎ(𝜂)𝑐𝑏𝑣 (4.31)

In addition, the KKS model requires that the local chemical potentials of a component be equal to each other in each
phase [23]:

𝜇𝑣 =
𝑑𝑓 𝑏𝑐ℎ𝑒𝑚
𝑑𝑐𝑏𝑣

=
𝑑𝑓𝑚𝑐ℎ𝑒𝑚
𝑑𝑐𝑚𝑣

(4.32)

where 𝜇𝑣 is the chemical potential of vacancies.
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4.2.3 Interfacial parameters parameterization

The interfacial energy 𝛾 of the matrix-bubble interface is estimated to be 1.17 J/m2 [14]. In the KKS model, the
interfacial energy and interface thickness 2𝑙 are related to the gradient energy coefficient and double-well potential
height via the following analytical expressions:

𝛾 =

√

𝜅𝑊

3
√

2
(4.33)

2𝑙 = 2.2
√

2
√

𝜅
𝑊

(4.34)

where the interface thickness 2𝑙 is defined as the distance between 𝜂 = 0.1 and 𝜂 = 0.9. 2𝑙was chosen to be 10 nm, such
that bubbles with radii from tens to hundreds can be adequately resolved. With 𝛾 and 2𝑙 specified, Equations (4.33)
and (4.34) can be rearranged to obtain the required values of 𝜅 = 1.60 × 10−8 J/m and 𝑊 = 1.54 × 109 J/m3.

4.2.4 Evolution equations

The order parameter 𝜂 evolves by the Allen-Cahn equation as

𝜕𝜂
𝜕𝑡

= −𝐿
(

𝛿𝐹
𝛿𝜂

)

(4.35)

where 𝐿 is the order parameter mobility for 𝜂. Using Equations (27) and (28) of Reference [23], this can be written as

𝜕𝜂
𝜕𝑡

= 𝐿
[

𝑑ℎ
𝑑𝜂

[

(𝑓𝑚𝑐ℎ𝑒𝑚 − 𝑓 𝑏𝑐ℎ𝑒𝑚) − 𝜇𝑣(𝑐
𝑚
𝑣 − 𝑐𝑏𝑣)

]

−𝑊
𝑑𝑔
𝑑𝜂

+ 𝜅∇2𝜂
]

(4.36)

In the SO model, the evolution equation for vacancies is

𝜕𝑐𝑣
𝜕𝑡

= ∇ ⋅𝑀𝑣∇𝜇𝑣 + 𝑆𝑣[1 − ℎ(𝜂)] (4.37)

while in the SS model, the vacancy evolution equation is

𝜕𝑐𝑣
𝜕𝑡

= ∇ ⋅𝑀𝑣∇𝜇𝑣 + 𝑆𝑣[1 − ℎ(𝜂)] −𝐾𝑣𝑐𝑚𝑣 (4.38)

where 𝑀𝑣 is the vacancy mobility, and the function [1 − ℎ(𝜂)] limits defect production to the matrix phase only. The
values of 𝑆𝑣 and𝐾𝑣 are varied parameterically in both models to determine their effect on growth rate. The purpose of
the effective sink term −𝐾𝑣𝑐𝑚𝑣 is to maintain the vacancy concentration in the matrix at steady-state conditions far from
any large bubbles at 𝑐𝑠𝑠𝑣 ≈ 8 × 10−3 based on cluster dynamics simulations for UO2 under irradiation at temperatures
less than 1300 K [24]. At steady-state in the bulk solid far from any bubbles, the vacancy concentration is constant
both time and position, so 𝜕𝑐𝑣

𝜕𝑡 = 0 and ∇𝜇𝑣 = 0. Under these conditions, from Equation (4.38),

𝐾𝑣 =
𝑆𝑣
𝑐𝑠𝑠𝑣

(4.39)

25 of 52



Parameter Value Source
𝑐𝑚,𝑚𝑖𝑛𝑣 0 Section 4.2.1
𝑐𝑏,𝑚𝑖𝑛𝑣 1 Section 4.2.1
𝑘𝑣 6.4 × 1011 J/m3 Section 4.2.1
𝜅 1.60 × 10−8 J/m Section 4.2.3
𝑊 1.54 × 109 J/m3 Section 4.2.3
𝐷𝑚
𝑣 0.96 nm2/s [14]

𝐿 1.56 × 10−10 m3/J/s Section 4.2.4

Table 4.1. Parameters used for phase-field simulations of bubble growth.

The defect mobility was calculated from the diffusion coefficients and second derivatives of free energies for each
phase as in Equation (18) of Reference [23]:

𝑀𝑣 =
𝐷𝑔(𝜙)
𝑓𝑐𝑣𝑐𝑣

=
ℎ𝐷𝑏

𝑣 + (1 − ℎ)𝐷𝑚
𝑣

𝑓𝑐𝑣𝑐𝑣
(4.40)

where 𝑓𝑐𝑣𝑐𝑣 is as defined in Equation (29) of Reference [23]:

𝑓𝑐𝑣𝑐𝑣 =

𝑑2𝑓𝑚𝑐ℎ𝑒𝑚
𝑑𝑐2𝑣

𝑑2𝑓 𝑏𝑐ℎ𝑒𝑚
𝑑𝑐2𝑣

[1 − ℎ(𝜂)]
𝑑2𝑓 𝑏𝑐ℎ𝑒𝑚
𝑑𝑐2𝑣

+ ℎ(𝜂)
𝑑2𝑓𝑚𝑐ℎ𝑒𝑚
𝑑𝑐2𝑣

= 𝑘𝑣 (4.41)

The vacancy diffusion coefficient in the matrix 𝐷𝑚
𝑣 = 0.96 nm2/s [14], and 𝐷𝑏

𝑣 was set to 103𝐷𝑚
𝑣 . The Allen-

Cahn mobility 𝐿 was set sufficiently high that interface motion was controlled by defect diffusion, resulting in 𝐿 =
1.56 × 10−10 m3/J/s.

The evolution equations were non-dimensionalized using the characteristic energy scale 𝐸∗ = 64 × 109 J/m3,
length scale 𝑙∗ = 1 nm, and time scale 𝜏∗ = 1 s, and discretized using the finite element method as implemented
in the MOOSE framework [25]. Since the simulations have spherical symmetry, the problem is solved in spherical
coordinates, with symmetry allowing the problem to be solved in 1D as a function of the radial coordinate 𝑟 only. The
simulation domain size  = 500 nm in each case, and 1D elements are used with linear Lagrange shape functions,
with a mesh size Δ𝑟 = 1 nm.

Natural boundary conditions are used, resulting in no-flux boundary conditions for chemical species and a zero-
gradient condition for 𝜂. Time integration uses the second-order backward differentiation formula. The evolution
equations are solved at each time step using the preconditioned Jacobian-Free Newton-Krylov method. Adaptive time
stepping is used with the IterationAdaptiveDT algorithm as implemented in the MOOSE framework [26].
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4.3 Simulations of bubble growth and comparison to analytical models

4.3.1 Source-only model simulations

The growth of a bubble with initial radius of 30 nm was simulated with the source-only model (Equation 4.37). The
initial concentration of vacancies in the void and matrix phases was adjusted 1.0001214 and 1.214×10−4, respectively,
to account for the Gibbs-Thomson shift in composition as per Equation 4.3. The source term was set to 𝑆𝑣 = 4.092 ×
10−10 s−1. This is approximately 5 times larger than the Xe source term for typical light-water reactor conditions [14],
which is within the range considered in past parametric studies of source term strength [8]. The bubble radius as a
function of time (as determined by the position where 𝜂 = 0.5 by interpolation of the finite element shape functions
at each time step) is shown in Figure 4.1a, showing that the bubble grows to a radius of approximately 100 nm at the
end of the simulation time of 2 × 107 s. The rate of change in bubble size 𝑑𝑅

𝑑𝑡 was calculated using backward finite
differences of the interface position at each time step (the relatively fine mesh size of Δ𝑟 = 1 relative to 2𝑙 = 10 nm was
used to reduce noise in the calculation of 𝑑𝑅∕𝑑𝑡). 𝑑𝑅

𝑑𝑡 from the simulation is plotted as a function of 𝑅 in Figure 4.1b,
along with the predicted value of 𝑑𝑅

𝑑𝑡 from the quasi-steady state model from Equation 4.10. The simulated 𝑑𝑅
𝑑𝑡 starts

at 0 and begins to increase as vacancies build up as they are created by the source term. The growth rate predicted
by the quasi-steady state approximation starts much higher because it assumes the vacancy concentration profile is
already in steady-state and thus does not account for the time required for vacancies to build up to the steady-state
profile. At 𝑅 ≈ 40 nm, the simulated growth rate reaches a maximum and then becomes to decrease as the vacancy
concentration approaches its steady-state profile. At this point the simulated rate approaches the quasi-steady state
approximation. The simulated growth rate closely matches the quasi-steady state approximation for 𝑅 > 65 nm. The
vacancy concentration profile as a function of 𝑟 at time 𝑡 = 1.4×107 s is shown in Figure 4.1c for both the simulation and
quasi-steady state approximation. Although the simulated 𝑐𝑣 profile is slightly lower in magnitude than the analytical
expression, the slope is approximately the same near the bubble-matrix interface, meaning that the flux and therefore
𝑑𝑅
𝑑𝑡 is very nearly the same by this time.

The effect of significantly increasing the vacancy source term is shown in Figure 4.2. The value of 𝑆𝑣 was increased
by a factor of 102 to𝑆𝑣 = 4.092×10−8 s−1. As expected, the bubble size grew much faster, reaching a radius of over 160
nm after a much shorter simulation time of 1 × 106 s compared with Figure 4.1. The simulated 𝑑𝑅

𝑑𝑡 is shown in Figure
4.2b and compared to the analytical steady-state approximation. The bubble size increases much more significantly
before there is good agreement between the simulation results and the analytical solution. This is because the bubble
growth rate is significantly higher, meaning that the quasi-steady state approximation breaks down. Only toward the
later times in the simulation, when 𝑑𝑅

𝑑𝑡 has decreased significantly, does the simulation come into reasonable agreement
with the analytical solution. The vacancy concentration profile 𝑐𝑣 versus 𝑟 is shown in Figure 4.2c at 𝑡 = 5 × 105 s,
where 𝑅 = 110 nm. The slope of the simulated 𝑐𝑣 profile is steeper than the analytical solution, meaning that the
growth rate is slightly larger in simulation at this time, as seen in Figure 4.2b.

The effect of changes in the diffusion coefficient 𝐷𝑣 are shown in Figure 4.3, where growth of the 30 nm bubble
was simulated with 𝑆𝑣 = 4.092 × 10−8 s−1, 𝐷𝑣 = 0.48 nm2/s. The quasi-steady state analytical solution of Equation
4.10 predicts that 𝑑𝑅

𝑑𝑡 is independent of 𝐷𝑣. However, Figure 4.3a shows that the total growth is somewhat less than
the case with 𝐷𝑣 = 0.96 nm2/s that was shown in Figure 4.2a. This is because there is greater difference between the

27 of 52



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t (s) ×107

30

40

50

60

70

80

90

100

R
(n

m
)

(a)

30 40 50 60 70 80 90 100

R (nm)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

d
R
/d
t

(n
m

/s
)

×10−5

Simulation

Quasi-steady

(b)

0 100 200 300 400 500

r (nm)

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

c v

Simulation

Quasi-steady

(c)

Figure 4.1. Simulations with vacancy source only (SO) and comparison to quasi-steady state approximation. 𝑆𝑣 =
4.092 × 10−10 s−1, 𝐷𝑣 = 0.96 nm2/s. (a) Void radius 𝑅, (b) void growth rate 𝑑𝑅∕𝑑𝑡, (c) vacancy concentration as a
function of radius at 𝑡 = 1.4 × 107 s.
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Figure 4.2. Simulations with vacancy source only (SO) and comparison to quasi-steady state approximation for in-
creased vacancy source term. 𝑆𝑣 = 4.092 × 10−8 s−1, 𝐷𝑣 = 0.96 nm2/s. (a) Void radius 𝑅, (b) void growth rate
𝑑𝑅∕𝑑𝑡, (c) vacancy concentration as a function of radius at 𝑡 = 5 × 105 s.
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simulated 𝑑𝑅
𝑑𝑡 and the quasi-steady state analytical solution. This means that there is some dependence of the growth

rate in the source-only model 𝐷𝑣 at high source strength, although the dependence is relatively weak. The vacancy
concentration profile 𝑐𝑣 versus 𝑟 is shown in Figure 4.3c. The slope is larger than the higher-diffusivity case that was
shown in Figure 4.3c, but the lower value of 𝐷𝑣 means the growth rate 𝑑𝑅

𝑑𝑡 does not change significantly.

4.3.2 Source+sink model simulations

Growth of a 30 nm bubble was simulated using the SS model using Equation 4.38. The vacancy source term was set
to 104 times greater than the fission rate in typical light water reactor conditions [19], resulting in 𝑆𝑣 = 4.092 × 10−6

s−1 [14]. The sink term was set to maintain 𝑐𝑠𝑠𝑣 = 0.008, resulting in 𝐾𝑖𝑣 = 5.114 × 10−4 s−1. Simulation results are
shown in Figure 4.4. The growth rate of the bubble is greater than the high 𝑆𝑣 cases considered for the SO model,
reaching a final radius of 319 nm at the end of the simulation time of 106 s (Figure 4.4a). The growth rate in the
simulation is compared to the quasi-steady state analytical model of Equation 4.25 in Figure 4.4b. The general trends
of the simulation and analytical model are consistent. During the initial stages of growth, the 1∕𝑅 term in Equation
4.25 is comparable to the

√

𝐾𝑣∕𝐷𝑣 term, and as 𝑅 increases, the growth rate goes down. As 𝑅 increases past 150
nm, the 1∕𝑅 term becomes small compared to the

√

𝐾𝑣∕𝐷𝑣 term and the growth rate approaches a constant value.
Although the analytical model captures the trend well, the simulated growth rate is somewhat larger, indicating that
the growth rate is high enough that analytical model has begun to break down. Nonetheless, the analytical model
provides useful qualitative understanding of the reasons for the trend in growth rate with changing radius. The vacancy
concentration profile versus radius from simulation is shown in Figure 4.4c at time 𝑡 = 2 × 105 s and compared to
the analytical expression of Equation 4.24. Agreement between simulation and the analytical model is good and the
vacancy concentration reaches the expected value of 𝑐𝑠𝑠𝑣 = 0.008 far from the bubble.

The effect of changing the source and effective sink terms is studied next. Qualitatively, it might be expected that
the growth rate should remain constant as long as 𝑐𝑠𝑠𝑣 in the matrix far from the bubbles is maintained at the same value.
The growth rate predicted by the chemical stress model, Equation 4.26, is consistent with this intuition. To test whether
the SS model shows this behavior, the vacancy source and effective sink were doubled from the values considered in
Figure 4.4, resulting in 𝑆𝑣 = 8.184 × 10−6 s−1 and 𝐾𝑣 = 1.0228 × 10−3 s−1, which maintains 𝑐𝑠𝑠𝑣 = 0.008. Figure 4.5a
shows that the growth rate increases significantly compared to Figure 4.4a, even though 𝑐𝑠𝑠𝑣 is the same between the
two models. This counter-intuitive result can fairly be called a disadvantage of the SS model. The growth rate from
the simulation is compared to the quasi-steady state analytical model in Figure 4.5b. The analytical model correctly
predicts the trend of increased growth rate relative to the previous case of 𝑆𝑣 = 4.092 × 10−6 s−1, 𝐾𝑣 = 5.114 × 10−4

s−1. From Equation 4.25, the
√

𝐾𝑣∕𝐷𝑣 term is larger than considered in Figure 4.4b, resulting in the larger growth
rate. The vacancy concentration profile versus radius for this case is shown in Figure 4.5c at 𝑡 = 2 × 105 s, showing
good agreement between the simulation results and the analytical model.

The effect of vacancy diffusivity is next considered in the SS model. To clarify its expected impact, Equation 4.25
can be rewritten as

𝑑𝑅
𝑑𝑡

=
(

𝑆𝑣
𝐾𝑣

− 𝑐𝑅

)(

√

𝐾𝑣𝐷𝑣 +
𝐷𝑣
𝑅

)

(4.42)

Thus, a decrease in 𝐷𝑣 is expected to decrease the growth rate at all times. Figures 4.6a and 4.6b show that this is
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Figure 4.3. Simulations with vacancy source only (SO) and comparison to quasi-steady state approximation for in-
creased vacancy source term and lower diffusivity. 𝑆𝑣 = 4.092 × 10−8 s−1, 𝐷𝑣 = 0.48 nm2/s. (a) Void radius 𝑅, (b)
void growth rate 𝑑𝑅∕𝑑𝑡, (c) vacancy concentration as a function of radius at 𝑡 = 7 × 105 s.
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Figure 4.4. Simulations with vacancy source and effective sink (SS) and comparison to quasi-steady state approxima-
tion. 𝑆𝑣 = 4.092×10−6 s−1,𝐾𝑣 = 5.114×10−4 s−1,𝐷𝑣 = 0.96 nm2/s. (a) Void radius𝑅, (b) void growth rate 𝑑𝑅∕𝑑𝑡,
(c) vacancy concentration as a function of radius at 𝑡 = 2 × 105 s.
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Figure 4.5. Simulations with vacancy source and effective sink (SS) and comparison to quasi-steady state approx-
imation for increased 𝑆𝑣 and 𝐾𝑣, maintaining the same vacancy concentration far from the bubble in the matrix,
𝑐𝑠𝑠𝑣 = 0.008. 𝑆𝑣 = 8.184 × 10−6 s−1, 𝐾𝑣 = 1.0228 × 10−3 s−1, 𝐷𝑣 = 0.96 nm2/s. (a) Void radius 𝑅, (b) void
growth rate 𝑑𝑅∕𝑑𝑡, (c) vacancy concentration as a function of radius at 𝑡 = 2 × 105 s.
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indeed the case. Agreement between the simulated vacancy concentration profile and the quasi-steady state analytical
model is again relatively good, as shown in Figure 4.6c at 𝑡 = 2 × 105 s.

4.3.3 Comparison to chemical stress model

In this section, simulations are compared to the chemical stress model of growth rate (Equation 4.26). The chemical
stress model includes the effect of interstitial and vacancy production, recombination, and sink absorption, and thus
provides a more complete physical picture of bubble growth for this simplified geometry, although several approxima-
tions are needed to reach the analytical expression of Equation 4.26. Thus, one potential strategy for parameterizing
vacancy-only phase-field models is to set the phase-field model parameters so that they best match the growth rates of
the chemical stress model.

The SO phase-field model can be parameterized to match the chemical stress model using Equation 4.10 and 4.26,
resulting in

𝑆𝑣 =
3𝐷𝑣𝑅
3

(

1 −
𝑍𝑣
𝑍𝑖

)

(

𝑐𝑠𝑠𝑣 − 𝑐𝑅
)

(4.43)

This is only valid at one particular value of 𝑅. The SS phase-field model, while appealing in that it allows the physical
value of 𝑐𝑠𝑠𝑣 to be maintained in the bulk of the matrix, is more difficult to parameterize to match the chemical stress
model. By Equation 4.25, in addition to 𝑆𝑣, 𝐷𝑣 and 𝐾𝑣 also impact the growth rate. Although 𝑆𝑣 and 𝐾𝑣 may
be considered as effective parameters whose values do not necessarily need to match physical constants, 𝐷𝑣 is an
important physical parameter whose value controls the rates of other processes such as coarsening, and adjusting it to
an arbitrary value could unphysically affect the rates of these other processes. Thus, when trying to match a growth
rate from a more physical model, the SO approach is more suitable.

The SO phase field model was parameterized using Equation 4.43. Since the exact values of 𝑍𝑣 are 𝑍𝑖 are not
important here, only their ratio, and 𝑍𝑖 is typically greater than 𝑍𝑣 by a few percent [19], we choose 𝑍𝑣 = 1 and
𝑍𝑖 = 1.1, resulting in 𝑆𝑣 = 5.03 × 10−10 s−1 for the initial bubble radius of 𝑅 = 30 nm. This is 5.23 times greater
than the Xe production rate in typical light water reactor operation [14], and thus within the range of effective vacancy
production rates considered in previous parametric study [8]. In Figure 4.7, the simulated bubble growth rate using the
SO model with 𝑆𝑣 = 5.03 × 10−10 s−1 is compared to the quasi-steady state analytical growth rate for the SO model
and the chemical stress model. The analytical model matches the chemical stress model at 𝑅 = 30, but decreases
more rapidly with increasing 𝑅 than the chemical stress model. This is because the SO case analytical model depends
on 1∕𝑅2, while the chemical stress model depends on 1∕𝑅. The growth rate in simulation is significantly below both
analytical models during the initial stages of growth, due to the time required for the vacancies to build up to the steady-
state vacancy concentration profile. The simulated growth rate eventually matches the quasi-steady analytical model
well, but remains lower than in the chemical stress model.

4.4 Discussion

The quasi-steady state analytical models described in this chapter provide useful insight into how phase-field models
that do not include interstitials can more effectively capture the behavior of the full picture of vacancy-interstitial

34 of 52



0.0 0.2 0.4 0.6 0.8 1.0

t (s) ×106

50

100

150

200

250

R
(n

m
)

(a)

50 100 150 200 250 300

R (nm)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

d
R
/d
t

(n
m

/s
)

Simulation

Quasi-steady

(b)

0 100 200 300 400 500

r (nm)

0.000

0.002

0.004

0.006

0.008

0.010

c v

Simulation

Quasi-steady

(c)

Figure 4.6. Simulations with vacancy source and effective sink (SS) and comparison to quasi-steady state approxima-
tion for decreased 𝐷𝑣. 𝑆𝑣 = 4.092 × 10−6 s−1, 𝐾𝑣 = 5.114 × 10−4 s−1, 𝐷𝑣 = 0.48 nm2/s. (a) Void radius 𝑅, (b) void
growth rate 𝑑𝑅∕𝑑𝑡, (c) vacancy concentration as a function of radius at 𝑡 = 2 × 105 s.
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Figure 4.7. Comparison of growth rates using vacancy source only (SO), with 𝑆𝑣 = 5.03 × 10−10 s−1 to match initial
growth rate of chemical stress growth model from Equation 4.26, along with growth rate from chemical stress model.

production, recombination, and sink absorption. The analytical models were shown to describe the behavior of phase-
field models well, especially when the bubble growth rate is small. The growth rate in the SO phase-field model has
only a very weak dependence on diffusivity, consistent with the analytical model, which predicts no dependence on
diffusivity. The initial growth rate of the SO model is significantly lower than that predicted by the analytical model,
due to the fact that some time is required for the vacancy concentration to build up to its quasi-steady state value. In
future work, this discrepancy could be alleviated by initializing the vacancy concentration field in the phase-field model
based on the analytical solution (if appropriate for the physical problem being simulated).

The SS model produces growth rates much larger than the chemical stress model using physically motivated param-
eters for diffusivity, vacancy source, and effective sink terms. Surprisingly, the growth rate of bubbles was different for
different choices of source and effective sink terms, even though these choices maintained the same value of steady-state
vacancy concentration. Compared with the SO model, the growth rate of the SS model is a much more complicated
function of model parameters, making it more difficult to parameterize to match predictions of the chemical stress
model.

Bubble growth rate with the SO model was compared to the chemical stress model. Although the growth rate
can be matched between the two models for a given bubble radius, the growth rate in the SO model decreases more
rapidly with radius than the chemical stress model, making it impossible to match the growth rate at all times. In future
work, rather than setting the vacancy source strength by matching the growth rates at one particular bubble radius 𝑅,
the source strength could be determined by fitting such that the difference between growth rates between the SO and
chemical stress models is minimized for some chosen range of bubble sizes.

36 of 52



5. MULTISCALE MODELING OF UO2 HBS PUL-
VERIZATION

5.1 Phase-field fracture model

The phase-field fracture model is formulated based on the mechanics minimization problem that is regularized and
approximated using the phase-field variable 𝑐, as per:

{𝒖, 𝑐} = argmin
𝒖,𝑐

Ψ(𝒖,𝛁𝒖, 𝑐,𝛁𝑐), (5.1a)

subject to 𝒖 = 𝒈, ∀𝒙 ∈ 𝜕Ω𝐷, (5.1b)

𝑐̇ ⩾ 0, ∀𝒙 ∈ Ω, (5.1c)

where 𝑢 is the displacement vector. Eq. (5.1c) represents the irreversibility condition equivalent to the “no healing”
condition on the permanent crack set. The objective function Ψ(𝒖,𝛁𝒖, 𝑐,𝛁𝑐) is defined as:

Ψ(𝒖,𝛁𝒖, 𝑐,𝛁𝑐) =Ψelastic(𝛁𝒖, 𝑔(𝑐)) + Ψ𝑙
fracture(𝑐,𝛁𝑐) − Ψdissipation(𝑐)

− Ψtraction
external(𝒖) − Ψ̃pressure

external (𝒖, 𝑐,𝛁𝑐),
(5.2a)

Ψelastic(𝛁𝒖, 𝑔(𝑐)) = ∫
Ω

𝑔(𝑐)𝜓 ⟨A⟩

elastic(𝛁𝒖) d𝑉 + ∫
Ω

𝜓 ⟨I⟩
elastic(𝛁𝒖) d𝑉 , (5.2b)

Ψ𝑙
fracture(𝑐,𝛁𝑐) = ∫

Ω

𝑐𝛾𝑙(𝑐,𝛁𝑐) d𝑉 , (5.2c)

Ψ̇dissipation(𝑐̇) = ∫
Ω

1
2
𝜂𝑐̇2 d𝑉 , (5.2d)

Ψtraction
external(𝒖) = ∫

𝜕Ω𝑁

𝝉 ⋅ 𝒖 d𝐴, (5.2e)

Ψ̃pressure
external (𝒖, 𝑐,𝛁𝑐) = −∫

Ω

𝑝𝛁𝑐 ⋅ 𝒖𝐼 ′(𝑐) d𝑉 . (5.2f)
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It considers the energy contribution due to deformation (Ψelastic), fracture (Ψ𝑙
fracture, internal dissipation (Ψdissipation),

and external pressure (Ψtraction
external, Ψ̃

pressure
external ). Let us define the trial spaces:

 =
{

𝒖|𝒖 ∈ 1(Ω)𝑑 , 𝒖 = 𝒈,∀𝒙 ∈ 𝜕Ω
}

,  =
{

𝑐|𝑐 ∈ 1(Ω), 𝑐̇ ⩾ 0,∀𝒙 ∈ Ω
}

, (5.3)

along with their corresponding weighting spaces:

 =
{

𝛿𝒖|𝛿𝒖 ∈ 1(Ω)𝑑 , 𝒖 = 𝟎,∀𝒙 ∈ 𝜕Ω
}

,  =
{

𝛿𝑐|𝛿𝑐 ∈ 1(Ω), 𝛿𝑐 ⩾ 0,∀𝒙 ∈ Ω
}

. (5.4)

The optimality conditions for 𝒖 follow from the functional derivative of the objective function Ψ, as per:

∫
Ω

𝛁 ⋅
𝜕𝜓elastic(𝛁𝒖, 𝑔(𝑐))

𝜕𝛁𝒖
d𝑉 − ∫

𝜕Ω𝑁

𝜕𝜓elastic(𝛁𝒖, 𝑔(𝑐))
𝜕𝛁𝒖

𝒏 d𝐴

+ ∫
𝜕Ω𝑁

𝜕𝜓 traction
external(𝒖)
𝜕𝒖

d𝐴 + ∫
Ω

𝜕𝜓̃pressure
external (𝒖, 𝑐,𝛁𝑐)

𝜕𝒖
d𝑉 = 0, ∀Ω′ ⊆ Ω,∀𝜕Ω′

𝑁 ⊆ 𝜕Ω𝑁 .
(5.5)

Substituting (5.2) yields:

𝛁 ⋅ 𝝈 − 𝑝𝐼 ′(𝑐)𝛁𝑐 = 𝟎, ∀𝒙 ∈ Ω, (5.6a)

𝝈𝒏 = 𝝉 , ∀𝒙 ∈ Ω𝑁 , (5.6b)

where 𝝈 =
𝜕𝜓elastic
𝜕𝛁𝒖

is the stress-strain constitutive relation. The optimality conditions for 𝑐 that are subject to the
irreversibility constraint (5.1c) also follow from the functional derivative (with respect to the rate of the objective
function) and recover the Karush–Kuhn–Tucker conditions, such that:

∫
Ω

𝜕𝜓elastic(𝛁𝒖, 𝑔(𝑐))
𝜕𝑐

𝑐̇ d𝑉 − ∫
Ω

𝛁 ⋅
𝜕𝜓 𝑙fracture(𝑐,𝛁𝑐)

𝜕𝛁𝑐
𝑐̇ d𝑉 + ∫

𝜕Ω

𝜕𝜓 𝑙fracture(𝑐,𝛁𝑐)
𝜕𝛁𝑐

⋅ 𝒏𝑐̇ d𝐴

+ ∫
Ω

𝜕𝜓 𝑙fracture(𝑐,𝛁𝑐)
𝜕𝑐

𝑐̇ d𝑉 + ∫
Ω

𝛁 ⋅
𝜕𝜓̃pressure

external (𝑐,𝛁𝑐)
𝜕𝛁𝑐

𝑐̇ d𝑉 − ∫
𝜕Ω

𝜕𝜓̃pressure
external (𝑐,𝛁𝑐)
𝜕𝛁𝑐

⋅ 𝒏𝑐̇ d𝐴

+ ∫
Ω

𝜕𝜓̃pressure
external (𝑐,𝛁𝑐)

𝜕𝑐
𝑐̇ d𝑉 + ∫

Ω

𝜕𝜓̇dissipation(𝑐̇)
𝜕𝑐̇

𝑐̇ d𝑉 = 0, ∀Ω′ ⊆ Ω,∀𝜕Ω′
𝑁 ⊆ 𝜕Ω𝑁 .

(5.7)

Again, substituting (5.2) yields:

𝜙𝑓 ⩾ 0, 𝑐̇ ⩾ 0, 𝜙𝑓 𝑐̇ = 0,

with 𝜙𝑓 =

⎧

⎪

⎨

⎪

⎩

𝜂𝑐̇ − 𝛁 ⋅ 𝝃 +
𝑐
𝑐0𝑙
𝛼′(𝑐) − 𝑌 , ∀𝒙 ∈ Ω,

𝝃 ⋅ 𝒏 + 𝑝𝐼 ′(𝑐)𝒖 ⋅ 𝒏, ∀𝒙 ∈ 𝜕Ω
,

(5.8)
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where 𝝃 =
𝜕𝜓 𝑙fracture
𝜕𝛁𝑐

=
2𝑐𝑙
𝑐0

𝛁𝑐 is the thermodynamic conjugate to 𝛁𝑐, and 𝑌 is the generalized fracture driving force

consisting of contributions from the active elastic energy density as well as work done by pressure:

𝑌 = −𝑔′(𝑐)𝜓 ⟨A⟩

elastic + 𝑝𝐼
′(𝑐)𝛁 ⋅ 𝒖. (5.9)

With a view toward the solution strategy, using a variational inequality solver (e.g., a primal-dual active set algo-
rithm) to enforce the irreversibility constraint requires discretization of the fracture envelope 𝜙𝑓 only on the inactive
sets 𝑐̇ > 0 and 𝜙𝑓 = 0. Hence, only the weak form in the case of 𝜙𝑓 = 0 is outlined below:

Given 𝒈, 𝝉 , and 𝑐0, find 𝒖 ∈  and 𝑐 ∈ , such that ∀𝛿𝒖 ∈  and ∀𝛿𝑐 ∈ :

∫
Ω

𝝈 ∶ 𝛁𝛿𝒖 d𝑉 + ∫
Ω

𝑝𝐼 ′(𝑐)𝛁𝑐 ⋅ 𝛿𝒖 d𝑉 − ∫
𝜕Ω𝑁

𝝉 ⋅ 𝛿𝒖 d𝐴 = 0, (5.10a)

∫
Ω

𝜂𝑐̇𝛿𝑐 d𝑉 + ∫
Ω

𝝃 ⋅ 𝛁𝛿𝑐 d𝑉 + ∫
Ω

𝑐
𝑐0𝑙
𝛼′(𝑐)𝛿𝑐 d𝑉 − ∫

Ω

𝑌 𝛿𝑐 d𝑉 + ∫
𝜕Ω

𝑝𝐼 ′(𝑐)𝒖 ⋅ 𝒏𝛿𝑐 d𝐴 = 0. (5.10b)

Furthermore, the macro-scale pulverization behavior is approximated by using periodic boundary conditions (PBCs).
PBCs are useful for avoiding the boundary effects caused by finite size, and for making the system deform like an
infinite one. In MOOSE, the global strain system was implemented to enforce the PBC [27]. The global strain system
can capture the deformation with applied loads while still maintaining the periodic strains.

5.2 MD simulations of grain boundary fracture with nm-sized bubbles

In a NEAMS milestone investigating fracture criteria of HBS using atomistic and meso-scale simulations by Galvin
et al. [28], molecular dynamics (MD) simulations were conducted to predict the amount of stress needed to cause GB
failure in UO2 containing a Xe bubble. This was investigated as a function of temperature, bubble pressure (given by
the Xe:Schottky Defect (SD) ratio for a given temperature) and at different bubble separations. Σ5 tilt GB structures
in a slab geometry were used, containing a bubble of different sizes of either a cylindrical (representing a sphere) or a
lenticular shape (see figure 5.1).

The GB bubble structures were run for different temperature ramps and then stress-strain MD simulations were
carried out using the bubble structures from the temperature ramps where the GB did not fail, to predict failure stresses
at the grain boundary. For this the structure was elongated in the direction normal to the grain boundary (x-direction)
until a strain of 5% was achieved. During this procedure the stress increases until a maximum stress (failure stress)
is reached, after which the stress decreases. The predicted failure stresses of the GB as a function of temperature are
presented in Figure 5.2.

It is observed that for an increase in temperature there is a decrease in the failure stress. This is due to the thermal
expansion of the bubble which assists in driving fracture. Moreover, an increase in the Xe:SD ratio (increase in bubble
density) also causes a lower failure stress, as does a decrease in the bubble separation. It is also seen in figure 5.2 that
the bubble shape does not greatly influence the failure stress. For both the cylindrical and lenticular cases at a similar
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Figure 5.1. A 5 nm cylindrical Xe bubble shown by green spheres in a Σ5 tilt GB of UO2 where the U atoms are shown
by blue spheres and the O atoms by red spheres.

Figure 5.2. Failure stresses for a grain boundary containing a bubble at different temperatures, different pressures
(Xe:SD) and for different bubble separations.
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Table 5.1. Fitting parameters for the different cases considered in the MD simulations

Shape Separation (Å) Xe:SD m C
Lenticular 85 1:1 -2.21x10-3 4.13
Lenticular 155 1:1 -1.88x10-3 4.61
Cylindrical 157 1:1 -1.97x10-3 4.78
Lenticular 189 1:1 -1.82x10-3 4.89
Lenticular 85 1.2:1 -2.58x10-3 2.92
Lenticular 155 1.2:1 -2.60x10-3 4.04
Cylindrical 157 1.2:1 -3.18x10-3 4.47
Lenticular 189 1.2:1 -2.52x10-3 4.39
Lenticular 155 1.4:1 -2.47x10-3 2.58
Cylindrical 157 1.4:1 -4.62x10-3 3.70
Lenticular 189 1.4:1 -2.91x10-3 3.67

bubble separation (155 Å for the lenticular bubble and 157 Å for the cylindrical) the failure stresses are almost identical
across the temperature range and for the different Xe:SD cases. The fits describing the failure stresses (𝜎𝑐) in figure
5.2 are described by the linear equation:

𝜎𝑐 = 𝑚𝑇 + 𝐶 (5.11)

where 𝑚 and 𝐶 are fitting coefficients given in Table 5.1.
In addition to the cases presented in Table 5.1, a Xe:SD ratio 2.0 case has been considered where the fracture

pressure changes as a function of temperature such that,

𝜎𝑐 = 9.056 × 10−4𝑇 2 + 3.346𝑇 + 3075, (5.12)

where, 𝜎𝑐 is the fracture stress in MPa and T is the temperature in K. It is noteworthy that fracture stress decreases with
increase in Xe:SD ratios and temperature.

5.3 Multiscale Model Description

This year, the phase-field fracture approach is extended to utilize a multiscale approach to have better prediction of
the pulverization criteria. In this section we present several adjustments that were made to the phase-field fracture
simulations to update the pulverization criteria. First of all, the fracture simulation utilize the realistic HBS structure and
bubble geometry generated from the phase-field-based simulations presented in Chapter 2. This is done to realistically
capture the impact of the large convex bubbles on the pulverization criteria. Furthermore, the temperature effect is
included in the simulations. A typical LOCA test usually ramps the temperature at a rate of 5 K/sec. In this case to
reduce the computational cost, we use a temperature ramp of 10 K/sec rate. This speeds up the simulations without
affecting the critical stress at which the fracture occurs. The effect of thermal strain is added to the model using the
eigenstrain approach such that the strain value is updated:

𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀 − 𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (5.13)

41 of 52



The bubble pressure is ramped in accordance with the temperature ramping using a linear relationship starting from an
initial pressure close to 100 MPa. An evolution of bubbles pressure as a function of temperature can be obtained from
the phase-field simulation to make the model prediction more accurate. Furthermore, for the multiscale simulations,
the critical stress values for the mesoscale simulations are obtained from the MD calculations described in Section 5.2.

5.4 Pulverization in partially restructured regions

Figure 5.3 shows the crack propagation captured using the phase-field fracture simulations performed on 30% and 60%
restructured HBS regions with single 100 nm bubble. Similar crack growth pattern is observed in both the structures.
Moreover, the critical bubble pressure and temperature at which pulverization occurs are also similar for both the cases.
For the 30% restructured region, failure occurs at 201 MPa pressure and 1228 K temperature. For the 60% case, critical
pressure and temperature for failure are 202 MPa and 1235 K, respectively. This indicates that the pulverization is
primarily governed by the operating conditions and bubble pressure, rather than restructuring fraction. Formation of
new GBs due to grain subdivision weakens the material and creates a GB network which facilitates crack propagation
leading to pulverization. Figure 5.4 shows the degradation of failure stress and increase in bubble pressure as a function
of temperature during LOCA conditions. It is noteworthy that the rate of temperature and pressure ramping does not
seem to influence the critical bubble pressure at which pulverization occurs.

(a) (b)

Figure 5.3. Fracture behavior in partially restructured HBS with a) 30%, and b) 60% restructuring with single 100 nm
bubble.
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Figure 5.4. Ramping of the bubble pressure with temperature during LOCA until failure occurs

Next we consider another HBS region with two bubbles to investigate the effect of bubble density on the pulveriza-
tion. Three partially restructured regions with a fraction of 17%, 30%, and 45% has been considered in this case. It is
observed that the pulverization can occur at a restructuring fraction as low as 17%. It is also noticeable that for all the
cases, the fracture occurs at similar bubble pressure and temperatures. Hence, crack initiation is primarily governed by
the bubble pressure, while the propagation is dictated by the weakened grain boundaries. The critical pressure at which
the crack initiates is 208 MPa for the 17% and 30% restructuring case. The temperature at failure is 1272 K for both the
cases. For the 45% restructured region, the critical pressure is 205 MPa, and failure occurs at 1252.5 K temperature.
Currently, BISON assumes that pulverization only occurs after 50% restructuring. However, the mesoscale analysis
presented here indicates that the value is conservative and pulverization may occur at even lower restructuring fraction.
This supports the experimental observation where pulverization has been noticed in partially restructured regions.
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(a) (b) (c)

Figure 5.5. Fracture behavior in partially restructured HBS with a) 17%, and b) 30%, c) 45% restructuring with two
bubbles.

5.5 Uncertainty quantification of the model predictions

In this section we present the fracture analysis within fully formed HBS structures. The initial HBS structures are ob-
tained from the phase-field simulations presented in Section 2. Three geometries with varying bubble sizes considered
for this study are shown in figure 5.6. Additionally, another HBS structure with two bubbles has also been studied to
observe the effect of structural variations and bubble interactions on the pulverization criteria. These simulations take
into account a realistic bubble shape compared to previous years when only spherical bubbles were considered. Fig-
ure 5.7 shows the crack propagation path and corresponding maximum principal stress. In this case, the pulverization
occurs at critical bubble pressure of 202 MPa and at 1234 K temperature.
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(a) (b) (c)

Figure 5.6. Initial HBS structures used in the multiscale fracture simulations.

(a) (b)

Figure 5.7. Crack propagation in fully restructured HBS. Pulverization occurs at critical bubble pressure of 202 MPa
and at 1234 K temperature.

A statistical analysis is done for quantifying the uncertainties in the model prediction based on variation in bubble
number densities and material properties. In computational models uncertainties may originate from several sources
including, but not limited to, input parameters, material properties, etc.. Additionally, numerical aspects of a model
can also introduce uncertainty in its predictions. Here, we assume that the variation in Xe:SD ratio, bubble spacing,
and bubble geometry in MD simulations are the uncertainty parameters for the mesoscale simulations. They introduce
the uncertainty in the prediction of critical bubble pressure at which pulverization occurs. For each of the initial
conditions presented in Figure 5.6, the fracture stress is varied following the data presented in Section 5.2. The critical
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bubble pressure for pulverization obtained for different applied stresses corresponding to a single MD case and the
mean across different cases are presented in Figure 5.8. It is observed that the critical pressure for failure decreases
with increase in porosity. In addition, the critical pressure increases with increase in applied external pressure. This
is consistent with what has been observed during experiments [29]. It is noticeable that the effect of porosity and
external loading is slightly less pronounced on the mean values than the individual case. This is because the effect
of bubble geometry and corresponding failure stress is not explicitly captured when the critical pressure values are
averaged across different scenarios. Figure 5.9 shows the prediction uncertainties for the three cases with different
external pressures. Uncertainty bands are presented in the form of 1 standard deviation values. In all the cases, the
standard deviation is less than 10%.

(a) (b)

Figure 5.8. Variation of critical pressure for pulverization under the influence of different external pressures corre-
sponding to a) a single MD case, b) mean value across different cases.
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(a) (b)

(c)

Figure 5.9. Uncertainty quantification of the critical bubble pressure for failure corresponding to the values for applied
stress a) 0 MPa, b) 30 MPa, and c) 60 MPa. Uncertainty bands represent 1 standard deviation.
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6. OVERALL CONCLUSIONS AND FUTURE WORK

In conclusion, this report summarizes the advancements made to the existing phase-field-based multiscale model to
improve the prediction of bubble growth in the HBS regions. In Chapter 2 we present the effect of the intragranular
fission gas evolution mechanisms on the growth of the intergranular bubbles. Compared to previous years, this model
represents more realistic bubble growth rate. We also utilize the coupled model to capture the HBS formation using
grain nucleation type algorithm. The evolution of the restructuring fraction is compared against the analytical HBS
formation model available in BISON. It is demonstrated that the current BISON model does not include the effect
of temperature on the restructuring. Hence, a mesoscale-informed mechanistic model for restructuring needs to be
implemented in BISON to improve its robustness. This will be pursued in the following year.

The Helmholtz free energy of high-density Xe gas in UO2 was developed from thermodynamic integration of a
recently developed virial equation of state. The equation of state and Helmholtz free energy differ significantly from
the commonly used van der Waals equation of state at high Xe densities. The newly developed free energy is most
relevant for nano-sized gas bubbles such as found in the intragranular regions of UO2, where pressures are very high.
A parabolic approximation to the Helmholtz free energy was determined for convenience in future phase-field modeling.
This improved free energy will significantly improve the accuracy of phase-field models when simulating nano-sized
fission gas bubbles.

Two different approaches to incorporating net vacancy production in phase-field models were compared: the source-
only (SO) approach and source+sink (SS) approach. An analytical model for the SS approach was derived, and the SO
approach was compared to an existing analytical model. Good agreement was found between the analytical models and
phase-field simulations, especially for lower bubble growth rates. The SO approach can more easily be parameterized
to match growth rates of the chemical stress model that considers a more physically realistic picture of interstitials and
vacancies. However, the growth rate in the SO model cannot match the chemical stress model for all simulation times.
In future work, the effective vacancy source term in the SO can be more accurately determined by fitting the growth
rate of the SO model to the chemical stress model for a range of bubble sizes. This will have broad applicability to
make phase-field simulations of bubble growth more accurate.

Finally, the pulverization criteria in HBS region has been evaluated using a multiscale modeling approach. The
phase-field fracture model, in this case, incorporates the fracture properties obtained from MD calculations and HBS
structure generated from phase-field simulations presented in Chapter 2. The onset of pulverization in partially restruc-
tured regions has also been evaluated. It is observed that pulverization may occur at a lower restructured fraction that
what is currently used by BISON. Findings from the mesoscale simulation indicates that pulverization can occur at a
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restructuring fraction as low as 17%. This is consistent with the experimental observation of fragmentation in partially
formed HBS structures. In light of this, it is recommended that BISON’s restructuring criteria for fission gas release
and FFRD be updated.

In the following years, the phase-field-based restructuring model will be extended to include the role of dislocation
interaction and grain orientation to distinguish between different types of grain boundaries to better understand the
restructuring that occurs both within the rim region and at the dark region closer to the fuel center. The BISON
restructuring fraction model will be updated based on the mesoscale observations. Such updates are necessary to
evaluate the fuel performance as a function of radial location.
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