
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/MIS-23-75442-Revision-0

Scientific Machine Learning
using MOOSE

July 2023

Peter German

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/MIS-23-75442-Revision-0

Scientific Machine Learning using MOOSE

Peter German

July 2023

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Advances in Scientific Machine Learning
in MOOSE

July 27, 2023

Peter German,

Dewen Yushu,

Vasileios Kyriakopoulos,

Mauricio Tano

Multiphysics Object-Oriented Simulation Environment (MOOSE)

• MOOSE [1] has a modular structure:

− Framework

− Physics modules: Fluid dynamics, elasticity, heat conduction

− Applications: Nuclear fuel performance (BISON), reactor physics (Griffin)

• LGPL 2.1 license (very permissive)

• https://github.com/idaholab/moose

How can we harvest machine learning in MOOSE?

• High-fidelity simulations can be accelerated or
(partially) replaced by machine learning models

• Creation of machine-learning-based (ML) controllers
for complex multiphysics systems—which is extremely
challenging using traditional model-based control—
relies on the control system and all existing physics
modules in MOOSE

• Could be used to train fast surrogates on the fly to act
as predictors in transient problems

• Could be used to train fast surrogates to accelerate
sensitivity analysis and uncertainty quantification on
complex multiphysics problems

Linking with Libtorch

(C++ front end of Pytorch [2])

New capabilities

• Framework:

− General Neural Net (NN) interfaces

− Enables using networks trained using the
python API by reading TorchScript files

− Implements basic neural net-based
controllers

• Stochastic Tools Module

− Uses NNs for surrogate generation (for
sensitivity and uncertainty studies)

− Enables the use of Proximal Policy
Optimization-based Deep Reinforcement
Learning [3]

Surrogate generation for flow in nuclear fuel assemblies

• Experimental Breeder Reactor II (EBR-II) [4]
assembly flow simulations

• Quantities of interest:

− Minimum and maximum temperatures

• Simulation tool: Pronghorn-Subchannel [5]

• Depend on many input parameters:

− Power tilt factor

− Power magnitude

− Inlet mass flow rate

− Turbulent mixing factor

• Goal: Carry out global sensitivity analysis for
the quantities of interest (compute Sobol
indices)

• Assumes that the input parameters can change
in a +/-15% interval around the expected value

The structure of the reactor core (right) and a

fuel assembly (left) of EBR-II [4]

Surrogate generation for flow in nuclear fuel assemblies

• Issues:

− For acceptable statistics, one would require a
large number of samples

− One run is relatively expensive (~106 degrees of
freedom)

• Solution:

− Build NN-based surrogate → carry out sensitivity
study with surrogates

• Using the Stochastic Tools Module

− 2,000 samples for training, data normalization

− Train neural networks with different architectures

− Use three-fold cross-validation for approximating
test accuracy (minimize approximation and
overfitting errors)

Surrogate generation for flow in nuclear fuel assemblies

• Root Mean Squared Error (RMSE) for different architectures (based on 10 repeated
three-fold tests):

• Simple solution surface, 16 x 8 neural network generalizes well with good accuracy

• Beyond 16 x 8 some overfitting is visible

• Total Sobol indices generated using 106 samples

• Maximum and minimum temperatures are most sensitive to the inlet mass flow rate
and the power

Surrogate generation for flow in nuclear fuel assemblies

• Streamlined input file (plug and play with MOOSE-based models)

Surrogate generation for flow in nuclear fuel assemblies

[Distributions]
 [alpha]
 type = Uniform
 lower_bound = '${fparse 1.8012*0.85}’
 upper_bound = '${fparse 1.8012*1.15}’
 []
 [beta]
 type = Uniform
 lower_bound = '${fparse 0.006*0.85}’
 upper_bound = '${fparse 0.006*1.15}’
 []
 [mass_in]
 type = Uniform
 lower_bound = '${fparse 2.45*0.85}’
 upper_bound = '${fparse 2.45*1.15}’
 []
 [power]
 type = Uniform
 lower_bound = '${fparse 486200*0.85}’
 upper_bound = '${fparse 486200*1.15}’
 []
[]

[Samplers]
 [sample]
 type = MonteCarlo
 distributions = 'mass_in power alpha beta’
 num_rows = 200000000
 seed = 0
 []
[]

[Trainers]
 [nn_max]
 type = LibtorchANNTrainer
 sampler = sample
 response = "results_train/T_max_out:value"
 num_neurons_per_layer = '16 8’
 activation_function = 'relu relu’
 nn_filename = 'weights_max.pt’
 read_from_file = false
 num_epochs = 15000
 num_batches = 20
 learning_rate = 5e-5
 print_epoch_loss = 10
 []
[]

[Surrogates]
 [nn_max]
 type = LibtorchANNSurrogate
 filename = "train_nn_trainer_nn_max.rd"
 []
[]

Process control with Deep Reinforcement Learning

• Proximal Policy Optimization [3]:

− Agent uses 2 neural networks:

• Actor (controller)

• Critic (value-estimator)

• Try to maximize the reward

• Probabilistic action (policy), help with exploration
and the reduction of overfitting

• Exercise the environment and see if the actions
resulted in higher rewards (if we have an
advantage)

• Use the advantage and the probability of the
actions to update the controller

• Use clipping for the update to be conservative

Agent

Environment

S
ta

te
s
,

re
w

a
rd

s

A
c
tio

n
s

Process control with Deep Reinforcement Learning

• Simple heat conduction problem

− Try to keep the temperature at the sensor constant

− Using the heat flux on the top boundary

− Side boundaries follow the environmental
temperature

Process control with Deep Reinforcement Learning
[Trainers]
 [nn_trainer]
 type = LibtorchDRLControlTrainer
 response = 'results/center_temp results/env_temp’
 control = 'results/top_flux’
 log_probability = 'results/log_prob_top_flux’
 reward = 'results/reward’

 num_epochs = 1000
 update_frequency = 10
 decay_factor = 0.0

 loss_print_frequency = 10

 critic_learning_rate = 0.0001
 num_critic_neurons_per_layer = '64 27’

 control_learning_rate = 0.0005
 num_control_neurons_per_layer = '16 6’

 # keep consistent with LibtorchNeuralNetControl
 input_timesteps = 2
 response_scaling_factors = '0.03 0.03’
 response_shift_factors = '290 290’
 action_standard_deviations = '0.02’

 standardize_advantage = true

 read_from_file = false
 []
[]

[Controls]
 [src_control]
 type = LibtorchDRLControl
 parameters = "BCs/top_flux/value"
 responses = 'center_temp_tend env_temp’

 # keep consistent with LibtorchDRLControlTrainer
 input_timesteps = 2
 response_scaling_factors = '0.03 0.03’
 response_shift_factors = '290 290’
 action_standard_deviations = '0.02’
 action_scaling_factors = 200

 execute_on = 'TIMESTEP_BEGIN’
 []
[]

Flow control with Deep Reinforcement Learning

• Benchmark case from [6], uncontrolled case validated
using data from [7]

• Fluid dynamics solver: MOOSE Navier Stokes Module

• Mesh: GMSH (~9,300 elements)

• Goal: Minimize the drag without considerable increase in
the lift using the small jets on the surface of the body

• Sensors: Five sensors recording pressure and velocity

No-slip walls

p
 =

 0

u
(y

)

Control value:

volumetric flow rate (Q)

Sensor locations

Flow control with Deep Reinforcement Learning

• Reward function: 𝑟 = − 𝐶𝐷 𝑇 − 0.2 𝐶𝐿 𝑇 (average quantities over one period)

• Tricks (adapted from [6]):

− Relax the change in the control value in the 𝑄 by 𝑄𝑛 = 𝑄𝑛−1 + 0.2(𝑎 − 𝑄𝑛−1),
where 𝑎 is the action determined by the controller

− Action 𝑎 changes every 25 time steps (no quick changes in 𝑎)

− Limit the maximum control value to 0.06 𝑄∗, where 𝑄∗ is the volumetric flow
rate intercepting the cylinder

Summary

• New Libtorch interface is readily available in MOOSE and any
MOOSE-based application

• Can be used for:

−Surrogate generation for Uncertainty Quantification and
Sensitivity Analysis

• Example provided for EBR-II fuel assembly computations

−Reinforcement learning for physics controllers

• Example provided for control aimed at reducing drag

• Future (ongoing) work:

−Reinforcement learning for additive manufacturing

−Advanced material models for plasticity

References
[1] Lindsay, A. D., et al. 2020. “2.0-MOOSE: Enabling massively parallel multiphysics simulation.”
SoftwareX 20: 101202. https://doi.org/10.1016/j.softx.2022.101202.

[2] Paszke, A., et al. 2019. “Pytorch: An imperative style, high-performance deep learning library.”
Advances in Neural Information Processing Systems 32.
https://doi.org/10.48550/arXiv.1912.01703

[3] Schulman, J., et al. 2017. “Proximal Policy Optimization Algorithms.”
https://doi.org/10.48550/arXiv.1707.06347.

[4] Lentz, G. L., H. W. Buschman, and R. N. Smith. 1985. “EBR-II: twenty years of operating experience.”
CONF-850722-1, Argonne National Laboratory. https://www.osti.gov/servlets/purl/5434129.

[5] Kyriakopoulos, V., M. E. Tano, and J. C. Ragusa. 2022. “Development of a Single-Phase, Transient,
Subchannel Code, within the MOOSE Multi-Physics Computational Framework.” Energies 15(11): 3948.
https://doi.org/10.3390/en15113948.

[6] Rabault, J., et al. 2019. "Artificial neural networks trained through deep reinforcement learning
discover control strategies for active flow control." Journal of Fluid Mechanics 865: 281–302.
https://doi.org/10.1017/jfm.2019.62.

[7] Schäfer, M., S. Turek, F. Durst, E. Krause, and R. Rannacher. 1996. “Benchmark computations of
laminar flow around a cylinder.” In Hirschel, E.H. (eds) Flow Simulation with High-Performance
Computers II. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_39.

https://doi.org/10.48550/arXiv.1912.01703

Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy.

INL is the nation’s center for nuclear energy research and development, and also performs research

in each of DOE’s strategic goal areas: energy, national security, science and the environment.

• Sobol expansion:

Y = f X1, X2, … , Xk = f0 +෍

i

k

fi(Xi) +෍

i

෍

j<i

fij(Xi, Xj) + ⋯+ f12…k(X1, X2, … , Xk)

• If each term has a zero mean

− The functions are pair-wise orthogonal

− The terms can be determined using conditional expectations from low to high orders

− The total variance can be expressed as:

Var(f) =෍

i

k

Var fi +෍

i

෍

j<i

Var(fij) + ⋯+ Var(f12…k)

• Sobol indices:

− First order: Si =
Var fi

Var(f)

− Total: ST,i = Si + σj
k Sij +⋯+ Sij…k

• Compute these using Saltelli’s Monte Carlo methods

Saltelli, Andrea, et al. Sensitivity analysis in practice: a guide to assessing scientific models.
Vol. 1. New York: Wiley, 2004.

Surrogate generation for flow in nuclear fuel assemblies

