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Multiphysics Object-Oriented Simulation Environment (MOOSE)

• MOOSE [1] has a modular structure:

− Framework

− Physics modules: Fluid dynamics, elasticity, heat conduction

− Applications: Nuclear fuel performance (BISON), reactor physics (Griffin)

• LGPL 2.1 license (very permissive)

• https://github.com/idaholab/moose 



How can we harvest machine learning in MOOSE?

• High-fidelity simulations can be accelerated or 
(partially) replaced by machine learning models

• Creation of machine-learning-based (ML) controllers 
for complex multiphysics systems—which is extremely 
challenging using traditional model-based control—
relies on the control system and all existing physics 
modules in MOOSE

• Could be used to train fast surrogates on the fly to act 
as predictors in transient problems

• Could be used to train fast surrogates to accelerate 
sensitivity analysis and uncertainty quantification on 
complex multiphysics problems

Linking with Libtorch 

(C++ front end of Pytorch [2])



New capabilities

• Framework:

− General Neural Net (NN) interfaces

− Enables using networks trained using the 
python API by reading TorchScript files

− Implements basic neural net-based 
controllers

• Stochastic Tools Module

− Uses NNs for surrogate generation (for 
sensitivity and uncertainty studies)

− Enables the use of Proximal Policy 
Optimization-based Deep Reinforcement 
Learning [3]



Surrogate generation for flow in nuclear fuel assemblies

• Experimental Breeder Reactor II (EBR-II) [4] 
assembly flow simulations

• Quantities of interest:

− Minimum and maximum temperatures

• Simulation tool: Pronghorn-Subchannel [5]

• Depend on many input parameters:

− Power tilt factor

− Power magnitude

− Inlet mass flow rate

− Turbulent mixing factor

• Goal: Carry out global sensitivity analysis for 
the quantities of interest (compute Sobol
indices)

• Assumes that the input parameters can change 
in a +/-15% interval around the expected value

The structure of the reactor core (right) and a 

fuel assembly (left) of EBR-II [4]



Surrogate generation for flow in nuclear fuel assemblies

• Issues: 

− For acceptable statistics, one would require a 
large number of samples

− One run is relatively expensive (~106 degrees of 
freedom) 

• Solution: 

− Build NN-based surrogate → carry out sensitivity 
study with surrogates

• Using the Stochastic Tools Module

− 2,000 samples for training, data normalization

− Train neural networks with different architectures

− Use three-fold cross-validation for approximating 
test accuracy (minimize approximation and 
overfitting errors) 



Surrogate generation for flow in nuclear fuel assemblies

• Root Mean Squared Error (RMSE) for different architectures (based on 10 repeated 
three-fold tests):

• Simple solution surface, 16 x 8 neural network generalizes well with good accuracy

• Beyond 16 x 8 some overfitting is visible



• Total Sobol indices generated using 106 samples

• Maximum and minimum temperatures are most sensitive to the inlet mass flow rate 
and the power

Surrogate generation for flow in nuclear fuel assemblies



• Streamlined input file (plug and play with MOOSE-based models)

Surrogate generation for flow in nuclear fuel assemblies

[Distributions]
  [alpha]
    type = Uniform
    lower_bound = '${fparse 1.8012*0.85}’
    upper_bound = '${fparse 1.8012*1.15}’
  []
  [beta]
    type = Uniform
    lower_bound = '${fparse 0.006*0.85}’
    upper_bound = '${fparse 0.006*1.15}’
  []
  [mass_in]
    type = Uniform
    lower_bound = '${fparse 2.45*0.85}’
    upper_bound = '${fparse 2.45*1.15}’
  []
  [power] 
    type = Uniform
    lower_bound = '${fparse 486200*0.85}’
    upper_bound = '${fparse 486200*1.15}’
  []
[]

[Samplers]
  [sample]
    type = MonteCarlo
    distributions = 'mass_in power alpha beta’
    num_rows = 200000000
    seed = 0
  []
[]

[Trainers]
  [nn_max]
    type = LibtorchANNTrainer
    sampler = sample
    response = "results_train/T_max_out:value"
    num_neurons_per_layer = '16 8’
    activation_function = 'relu relu’
    nn_filename = 'weights_max.pt’
    read_from_file = false
    num_epochs = 15000
    num_batches = 20
    learning_rate = 5e-5
    print_epoch_loss = 10
  []
[]

[Surrogates]
  [nn_max]
    type = LibtorchANNSurrogate
    filename = "train_nn_trainer_nn_max.rd"
  []
[]



Process control with Deep Reinforcement Learning

• Proximal Policy Optimization [3]:

− Agent uses 2 neural networks:

• Actor (controller)

• Critic (value-estimator)

• Try to maximize the reward

• Probabilistic action (policy), help with exploration 
and the reduction of overfitting

• Exercise the environment and see if the actions 
resulted in higher rewards (if we have an 
advantage)

• Use the advantage and the probability of the 
actions to update the controller 

• Use clipping for the update to be conservative

Agent

Environment

S
ta

te
s
, 

re
w

a
rd

s

A
c
tio

n
s



Process control with Deep Reinforcement Learning

• Simple heat conduction problem

− Try to keep the temperature at the sensor constant

− Using the heat flux on the top boundary

− Side boundaries follow the environmental 
temperature



Process control with Deep Reinforcement Learning
[Trainers]
  [nn_trainer]
    type = LibtorchDRLControlTrainer
    response = 'results/center_temp results/env_temp’
    control = 'results/top_flux’
    log_probability = 'results/log_prob_top_flux’
    reward = 'results/reward’

    num_epochs = 1000
    update_frequency = 10
    decay_factor = 0.0

    loss_print_frequency = 10

    critic_learning_rate = 0.0001
    num_critic_neurons_per_layer = '64 27’

    control_learning_rate = 0.0005
    num_control_neurons_per_layer = '16 6’

    # keep consistent with LibtorchNeuralNetControl
    input_timesteps = 2
    response_scaling_factors = '0.03 0.03’
    response_shift_factors = '290 290’
    action_standard_deviations = '0.02’

    standardize_advantage = true

    read_from_file = false
  []
[]

[Controls]
  [src_control]
    type = LibtorchDRLControl
    parameters = "BCs/top_flux/value"
    responses = 'center_temp_tend env_temp’

    # keep consistent with LibtorchDRLControlTrainer
    input_timesteps = 2
    response_scaling_factors = '0.03 0.03’
    response_shift_factors = '290 290’
    action_standard_deviations = '0.02’
    action_scaling_factors = 200

    execute_on = 'TIMESTEP_BEGIN’
  []
[]



Flow control with Deep Reinforcement Learning

• Benchmark case from [6], uncontrolled case validated 
using data from [7]

• Fluid dynamics solver: MOOSE Navier Stokes Module

• Mesh: GMSH (~9,300 elements)

• Goal: Minimize the drag without considerable increase in 
the lift using the small jets on the surface of the body

• Sensors: Five sensors recording pressure and velocity

No-slip walls
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Flow control with Deep Reinforcement Learning

• Reward function: 𝑟 = − 𝐶𝐷 𝑇 − 0.2 𝐶𝐿 𝑇 (average quantities over one period)

• Tricks (adapted from [6]):

− Relax the change in the control value in the 𝑄 by 𝑄𝑛 = 𝑄𝑛−1 + 0.2(𝑎 − 𝑄𝑛−1), 
where 𝑎 is the action determined by the controller

− Action 𝑎 changes every 25 time steps (no quick changes in 𝑎)

− Limit the maximum control value to 0.06 𝑄∗, where 𝑄∗ is the volumetric flow 
rate intercepting the cylinder



Summary

• New Libtorch interface is readily available in MOOSE and any 
MOOSE-based application

• Can be used for:

−Surrogate generation for Uncertainty Quantification and 
Sensitivity Analysis

• Example provided for EBR-II fuel assembly computations

−Reinforcement learning for physics controllers

• Example provided for control aimed at reducing drag

• Future (ongoing) work: 

−Reinforcement learning for additive manufacturing

−Advanced material models for plasticity
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• Sobol expansion:
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• If each term has a zero mean

− The functions are pair-wise orthogonal

− The terms can be determined using conditional expectations from low to high orders

− The total variance can be expressed as:
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• Sobol indices:

− First order: Si =
Var fi

Var(f)

− Total: ST,i = Si + σj
k Sij +⋯+ Sij…k

• Compute these using Saltelli’s Monte Carlo methods

Saltelli, Andrea, et al. Sensitivity analysis in practice: a guide to assessing scientific models. 
Vol. 1. New York: Wiley, 2004.

Surrogate generation for flow in nuclear fuel assemblies


