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Overview

• Idaho National Laboratory

• EFAS tooling scale-up complications

• Carbon fiber reinforced carbon (C-C) for use as EFAS tooling

• 3D printed C-C anisotropic material properties
− Engineering for greater efficiency
− Experimental comparison to G535 graphite tooling.

• Modeling of energy usage and heat profiles
− Tailoring fiber orientation for advanced thermal control

2



About Idaho National Laboratory
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• INL is one of the U.S. Department of Energy’s (DOE’s)
national laboratories. The laboratory performs work in
each of DOE’s strategic goal areas: energy, national
security, science and environment.

• INL’s Advanced Manufacturing efforts touch on every
aspect of INL’s mission.

• Home of the worlds largest experimentally available
format of Electric Field Assisted Sintering instrument:
− 800 tons uniaxial force
− 150,000 Amps.



Electric Field Assisted Sintering (EFAS)

• EFAS, (or SPS) is a highly energy efficient
sintering process. 
− Typically enables about 90% energy savings

compared to hot pressing.
(Musa et al. 2009, J. Clean. Prod)
• Faster:

− Increased ramp rates
− Less time at temperature

• More efficient heat localization:
− Tooling is the heating element.

Schematics of a) Hot pressing, b) EFAS. c) EFAS tooling during
heating

(c)
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Large Scale Graphite Tooling

• However, scaling up to industrially relevant sizes brings
challenges. 

• Large graphite tooling:
− CTE mismatch
− Thermal gradients
− Graphite availability/quality differs at largest sizes
− LONG procurement lead times
− Expensive.
− Fails catastrophically (brittle fracture).
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Thermal gradient example

• Poor heat distribution can cause thermal
expansion and contraction mismatches which
lead to stresses in ceramic parts
− Has been observed in ceramic and metal

parts from 3-12” in diameter
• Can be solved with graphite tooling,

but special processing and tooling
configurations must be used. 

12”

Intact 12” diameter ceramics

3”12”
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CTE mismatch example

• SiC sintered in 12” G535 tooling:
− G535 Graphite CTE: 5.5 ppm/°C
− Silicon Carbide CTE: 3-4 ppm/°C
− SiC final diameter ~12.25”
− Graphite die split during extraction.
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CTE mismatch example 2

• For materials with lower CTE than graphite,
(such as SiC):
− Difficult extraction and excessive tooling

wear 

• Carbon fibers have extremely low coefficient
of thermal expansion (CTE) 
− Toray T1000 CTE: -0.6 ppm/°C
This can be very beneficial for a sintering
mold, as most materials have higher CTE
than C-C.
− The samples contract more than the die

during cooling, and the parts are easily
extracted   
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Carbon-Carbon (C-C) for EFAS Tooling

• C-C tooling can be designed for strength and thermal properties:
− Fiber directionality determines mechanical, thermal, and electrical properties
− Spirally wound (SW) fiber orientation for high hoop strength (dies)
− Quasi-Isotropic (QI) fiber layering for high compressive strength (punches)

QI

SW

QI
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Carbon Fiber Reinforced Carbon (C-C)

• C-C was produced from continuous fiber 3D printed preforms
− Continuous Composites, Coeur D'Alene, ID.

• Anisotropic material properties with fiber axis.

• Resistivity (ρ): [G535 Graphite: 17 µΩ*m] 
− 16.5 µΩm in X/Y (along fiber axes) 
− 121.2 µΩm in Z (across fiber diameters) 

• Thermal Diffusivity (α): [G535 Graphite: 63 mm2/s]
− 75 mm2/s in X/Y 
− 5 mm2/s in Z

• Mechanical properties greater
than or equal to G535 Graphite
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Engineering High Efficiency C-C Tooling for EFAS

• Joule heating equation: (H=heat, I=current, R=resistance)

− Higher resistance = lower current required for a given heat.

• Resistance: (ρ=resistivity, L=length, A=cross-sectional area)

• Higher resistivity more efficiently converts current to heat.

• Graphite
• Uniform properties
• X=Y=Z: Low resistivity

• Quasi-Isotropic Die
• X=Y: Low resistivity
• Z: High

resistivity

• Spirally Wound Die
• Θ: Low resistivity
• Z=r: High resistivity

Graphite QI

Graphite QI

QI

SW
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Engineering High Efficiency C-C Tooling for EFAS

• The high resistivity Z-direction of the C-C, when aligned with the axis of current
flow, more effectively generates heat.  

• Low thermal diffusivity of the Z-direction traps heat where it is generated

20 mm QI
C-C EFAS tooling:

32 mm SW
C-C EFAS Die:
(punches remain QI type)
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Engineering High Efficiency C-C Tooling for EFAS

• High thermal diffusivity in the X/Y plane ensures temperature uniformity
across the tooling
− Copper microstructure and average grain sizes from center to edge
− Top row: C-C tooling. Bottom row: G535 tooling.
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Carbon-Carbon Composite vs. Standard Graphite Tooling

20 and 32mm diameter tooling 

Average 48.3% less energy. Ram temperatures stay 37.3% colder.   
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Carbon-Carbon Composite vs. Standard Graphite Tooling

• 75 mm QI die made with same dimensions as graphite tooling.

• 75 mm SW die made with slimmer walls further reduces energy consumption:
− QI compared to graphite reduces energy by 48.3%, Ram temp by 36.1%
− Slim SW compared to graphite reduces energy usage by 65.5%, Rams by 51.0%
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Carbon-Carbon Composite vs. Standard Graphite Tooling

1290 A 550 A 1500 A 783 A

Graphite vs C-C, with conductive and insulating sample types
Arrows indicate current density and pathway in parts
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Cu
Sample region

@ 900 °C

Al2O3

Sample region
@ 1300 °C



Advanced Possibilities – thermal management

• Leverage 3D printing
capabilities:
• Control current

pathways
• Further isolates the

heated zone

• COMSOL modeling of 
• 32 mm simple tailored

C-C EFAS punches in
a QI Die 
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Advanced Possibilities – tailored gradients

Bodis et al. 2022, Materials.

Tailored Anisotropy
Thermal Gradient Die

Low resistivity
region (cold zone)

Transition

High resistivity
region (hot zone)

Creating a thermal gradient
in standard tooling:

Functionally graded Al2O3 / CTZ  (CeO2 stabilized ZrO2)  
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 Summary

• Using C-C synthesized from
continuous fiber 3D printed preforms,
tooling was fabricated, tested, and
compared to graphite.

• Leveraged the anisotropic properties
to make stronger and more energy
efficient tooling. 

• Future work
−Tailoring the fiber orientations to

create targeted heating zones,
thermal gradients. 

−Run and evaluate 150 mm SW
tooling
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150mm C-C tooling
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32 mm Spiral Die Heating; Cu Sintering
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Mechanical Properties

• Compression test (Z-axis) #1
− Timed out but greater than 100 MPa  

• Compression test (Z-axis) #2
− Sample tilt error. >155 MPa

• Compression tests (X/Y)
− Delamination failure at 48 MPa.

• Tension tests slipped in the
gripping fixtures. >80 MPa
− Carbon fibers have tensile strengths

from 3.5 to 6 GPa.
− 25% of the fibers in the tensile sample

are aligned to the tension axis.
− Reasonable to assume tensile strength

is much higher than 80 MPa.

Timed
out

Sample tilted (not placed properly)

Failed at 48 MPa: delaminated, layers
spring back after anvil removed.

X/Y Compression

Z Compression

Tensil
e
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