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ABSTRACT

In magnetic confinement nuclear fusion reactors, the interaction between the plasma edge and
plasma facing components is extremely important. At the plasma edge, a kinetic representation such
as particle-in-cell (rather than a fluid representation) is required to accurately capture the plasma
behavior. General purpose particle-in-cell plasma simulation capabilities have been developed
in the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework. This new
capability is a part of the development of a new MOOSE-based framework for modeling plasma
facing components, the Fusion ENergy Integrated multiphys-X (FENIX) framework. In this work,
the verification of foundational particle-in-cell capabilities in FENIX is presented. This new plasma
simulation capability has three main components: moving particles in discrete steps on the finite
element mesh, mapping charge density from the particle’s location to the finite element mesh, and
solving for the electrostatic potential based on the charge density mapped from particles to the
mesh. In this paper, simple verification problems demonstrating each of these new capabilities are
presented, and future work includes electromagnetic capabilities and Monte Carlo collisions with
neutral gas particles.
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1. INTRODUCTION

As fusion energy technology has developed in recent years, more attention must be given to the engineering
challenges of a realistic power plant [1]. Plasma facing components (PFCs) in fusion devices require
significant development before the technology can provide energy to the grid. The prohibitive resource
requirements for fusion experiments to generate data on the conditions that PFCs experience are scarce
and difficult to obtain. Thus, there is a need for a multiphysics framework that can capture the behavior
of PFCs in these conditions. The Fusion Energy Sciences Advisory Committee has identified a need for
computational tools to study these systems [1]. To meet this need, the Fusion ENergy Integrated multiphys-
X (FENIX) framework [2] is being built on the Multiphysics Object-Oriented Simulation Environment
(MOOSE) framework [3]. While other tools have been developed to model important aspects of PFCs
[4, 5, 6] FENIX will take advantage of the modularity of MOOSE’s native multiphysics coupling and will
be the first fully open source tool capable of accurately modeling PFCs. FENIX aims to combine existing
MOOSE modules, such as heat conduction, thermomechanics, and thermal hydraulics, and couple them
with the MOOSE-based applications Cardinal [7, 8] and the Tritium Migration Analysis Program, version

∗gsgall@ncsu.edu



8 (TMAP8) [9, 10] to accurately model PFCs [2]. A key part of developing this framework is kinetic
plasma simulation capability using a particle-in-cell (PIC) scheme, which we discuss in this paper. Three
key capabilities that have been verified are movement of the particles in discrete steps over time, the ability
to map charge from particles in space to the finite element mesh, and using the charge mapped from the
particles to finite element mesh as input required to solve Poisson’s equation for the electrostatic potential.
The particle motion leverages MOOSE’s ray-tracing module [11], and the mapping of charge from particles
to the finite element mesh utilizes functionality available through libMesh. In Section 2, the particle pushing
scheme used for electromagnetic PIC simulations is discussed in detail, and several verification cases are
presented. Charge mapping from the particles to the finite element mesh is discussed in Section 3, and two
examples of this functionality are presented. Additionally, an example of solving Poisson’s equation based
on a charge density mapped from particles to the finite element mesh is presented. Ongoing development
efforts and future plans for this new capability are presented in Section 4.

2. PARTICLE PUSH

In PIC simulations, the standard approach for moving charged particles through electromagnetic forces is to
use a leap frog method. A leap frog method in this context is one in which the velocity of the particle and
position of the particle are updated at different times, offset by one-half time step. In FENIX, the position of
the particle, ®𝑟, is always advanced using a full-time step. The particle velocity, ®𝑣, however, is updated using
a half time step on the first time step, and on subsequent steps, the velocity is advanced using a full time
step. This results in the particle velocity being calculated with a one-half time step offset from the position
of the particle. This scheme is visualized in Figure 1.

Figure 1. Visualization of the update scheme used in a leap frog method. The particle position, ®𝑟, is
updated at whole time steps, and the particle velocity, ®𝑣, is updated with a one-half time step offset.

In magnetized (or electromagnetic) PIC simulations, the de facto standard particle stepping algorithm is
commonly known as the Boris algorithm [12, 13, 14]. This algorithm is similar to a leap frog method and
has second order accuracy in time when solving the equations of motion for a charged particle, given by

𝑑 ®𝑟
𝑑𝑡

= ®𝑣 (1)

and
𝑑 ®𝑣
𝑑𝑡

=
𝑞

𝑚

[
®𝐸 + ®𝑣 × ®𝐵

]
(2)



where 𝑞 is the particle’s charge, 𝑚 is the particle’s mass, and ®𝐸 and ®𝐵 are the electric and magnetic fields
that the particle is subject to, respectively.

In the Boris algorithm, Equations (1) and (2) are discretized with a central difference scheme and the
acceleration due to the electric field and magnetic field are separated. First, half of the impulse due to the
electric field is applied to the particle, as

®𝑣 − = ®𝑣𝑛 +
𝑞

𝑚
®𝐸𝑛

Δ𝑡

2
(3)

where ®𝑣 − is an intermediate particle velocity, ®𝑣𝑛 is the particle velocity at step 𝑛, and ®𝐸𝑛 is the electric field
at step 𝑛. The velocity of the particle after rotation due to the magnetic field is derived as

®𝑣 + = ®𝑣 − + ®𝑣 ′ × ®𝑠, (4)

with
®𝑣 ′

= ®𝑣 − + ®𝑣 − × ®𝑙 (5)

where
®𝑙 = 𝑞

𝑚
®𝐵𝑛Δ𝑡, (6)

which accounts for the effect of ®𝐵𝑛, the magnetic field at step 𝑛. ®𝑠 is defined as

®𝑠 = 2®𝑙
1 + ®𝑙 · ®𝑙

. (7)

Finally, the rotation due to the presence of the magnetic field is then applied with

®𝑣 + − ®𝑣 −

Δ𝑡
=

𝑞

𝑚

(
®𝑣 + + ®𝑣 − ) × ®𝐵𝑛, (8)

and the final impulse due to the electric field is then applied to the particle using

®𝑣𝑛+1 = ®𝑣 + + 𝑞

𝑚
®𝐸𝑛

Δ𝑡

2
. (9)

The implementation of the Boris algorithm was verified using several single particle motion tests: constant
electric field, cyclotron motion, and ®𝐸 × ®𝐵 drift motion.

2.1. Constant Electric Field

When subject to a constant electric field, and in the absence of a magnetic field, the Boris algorithm can
replicate the analytic solution for single particle motion exactly, up to machine precision [15]. In order
to verify that the implementation in FENIX can replicate this result, a single particle was subject to a
constant electric field that replicates projectile motion. A single particle of mass, 𝑚 = 1 [kg], with charge,
𝑞 = 1 [C], was subjected to an electric field given by

®𝐸 = −9.81�̂�
[

V
m

]
(10)

with initial velocity conditions given by

𝑣𝑥 (0) = 𝑣𝑦 (0) = 10
[m

s

]
(11)



(a) (b)

Figure 2. Verification of FENIX’s predictions for the path of a single particle in a constant electric
field. (a) shows the comparison between the FENIX solution for the path of a single particle and the
analytic solution for the single particle motion. (b) shows the error in the FENIX solution.

where 𝑣𝑥 (0) and 𝑣𝑦 (0) are the x and y velocities of the particle at time 𝑡 = 0, respectively.

The path of the single particle as computed with FENIX is compared with the path from the analytic solution
in Figure 2a. The error in FENIX’s solution was then calculated by simply taking the difference between
the analytic solution and the FENIX solution for the particle’s path, this error is visualized in Figure 2b.
The greatest error in the FENIX solution for the particle’s path is on the order of machine precision. This
precision is expected and provides evidence that the Boris algorithm has been properly implemented.

2.2. Cyclotron Motion

In the presence of a constant magnetic field, a single charged particle will orbit in a circle in a plane normal
to the magnetic field. The constant magnetic field used for this test is given by

®𝐵 = 1 𝑧 [T] . (12)

The path of a particle in the presence of a constant magnetic field is given by

𝑥(𝑡) = 𝑟𝐿 sin (𝜔𝑐𝑡) (13)

and
𝑦(𝑡) = 𝑟𝐿 cos (𝜔𝑐𝑡) (14)

where
𝑟𝐿 =

𝑣⊥
𝜔𝑐

(15)

and

𝜔𝑐 =
𝑞 ®𝐵
𝑚

(16)

and 𝑣⊥ is the magnitude of the particle velocity in the plane normal to the magnetic field. 𝑣⊥ is given by

𝑣⊥ = 1
[m

s

]
. (17)



In this test a particle of mass mass 𝑚 = 1 [kg], and charge 𝑞 = 1 [C] is subjected to the magnetic field
given by Equation (12) .

(a) (b) (c)

Figure 3. Verification of FENIX’s predictions for the path of a single particle in a constant magnetic
field. (a) shows the comparison between the FENIX solution for the path of a single particle computed
with two different time steps and the analytic solution for the single particle motion. (b) shows the 𝐿∞
norm of the error in the FENIX solution as time step decreases. Modeling results converge toward
the analytic solution as the time step decreases.

A comparison between the exact analytic solution for cyclotron motion and the FENIX solution was
performed and is presented in Figure 3a. Two time steps are used for this comparison 0.1 [s] and 1 [s].
Additionally, the FENIX solution using a time step of 1 [s] demonstrates an important feature of the Boris
algorithm. This feature is that the Boris algorithm provides a global bound on energy error resulting in a
path that while inaccurate is not completely unrealistic. The two different time steps shown in Figure 3a
were selected to demonstrate the convergence of the solution to the analytic solution. The particle’s path
calculated with smaller times steps is not shown in Figure 3a, because including them would obscure the
visibility of the analytic solution. However, the relative 𝐿2 norm of the error and the 𝐿∞ norm of the error
for all time steps are visualized in figures 3b and 3c respectively. A line was fit to the logarithm of the error
in order to determine the order of convergence. The slope of lines in figures 3b and 3c represent the order
of convergence in time. As expected, the Boris algorithm demonstrates second order convergence in time.

2.3. ®E × ®B Drift

A more complex particle motion is that of the so-called ®𝐸 × ®𝐵 drift. When subject to perpendicular electric
and magnetic fields, the path a charged particle takes will have a characteristic rotation similar to that of
cyclotron motion discussed in Section 2.2 with an additional guiding center drift. In the result presented in
Figure 4, a single particle of charge 𝑞 = 1 [C] and mass 𝑚 = 1 [kg] is subject to a constant electric field
given by

®𝐸 = 0.05 𝑥

[
V
m

]
(18)

and a perpendicular constant magnetic field given by

®𝐵 = 1 𝑧 [T] . (19)

An exact analytic solution for the particle path in this configuration is not available. Instead, an approximate



solution for the path of a single charged particle subject to a perpendicular electric and magnetic field is
given by

𝑥(𝑡) ≈ 𝑟𝐿 sin (𝜔𝑐𝑡) (20)

and
𝑦(𝑡) ≈ 𝑟𝐿 cos (𝜔𝑐𝑡) −

𝐸𝑥

𝐵𝑧

𝑡. (21)

More detail on the derivation of this approximate solution is available in [16, 17].

Figure 4. Comparison between the FENIX solution and the approximate theoretical solution for the
®𝐸 × ®𝐵 drift of a single charged particle. Where the black dot represents the initial particle position
and the arrow represents the direction in which the particles are traveling

The FENIX solution shown in Figure 4 agrees well with the approximate theoretical solution in that it
demonstrates the processing cyclotron and drifting motion that should be expected for this field configura-
tion.

3. CHARGE MAPPING

In FENIX, like in other finite element PIC codes [15, 18], the charge density is defined at the nodes of the
finite element mesh. The finite element basis functions are used to map charge from particles to the finite
element mesh. If each computational particle is treated as a point particle in space, then the charge density
can be approximated as

𝜌 (®𝑟 ) ≈
𝑁∑︁
𝑗=1

𝑞 𝑗𝛿
(
®𝑟 − ®𝑟 𝑗

)
(22)

where 𝑞 𝑗 is the charge of the 𝑗 th particle, ®𝑟 𝑗 is the position of the 𝑗 th particle, and 𝑁 is the total number of
particles in the system. In the finite element representation of Poisson’s equation, knowledge of the charge
density alone is not required. Instead, knowledge of the inner product of the charge density and the 𝑖th basis
function, 𝜙𝑖, is required. This quantity is given by

⟨ 𝜌(𝑥), 𝜙𝑖 (𝑥)⟩ =
𝑁𝑖∑︁
𝑗=1

𝑞 𝑗𝜙
(
®𝑟 − ®𝑟 𝑗

)
(23)



where 𝑁𝑖 is the number of particles in the region where the 𝑖th basis function is non-zero [18].

It is important to note that this does not give direct knowledge of the charge density at each node. However,
this representation yields an efficient method for solving Poisson’s equation with charge mapping that is
similar to the cloud-in-cell representation presented by Birdsall and Langdon [13]. Two simple verification
tests of this new capability were completed. The first was a one-dimensional charge mapping from a single
computational particle located at the point 𝑥 = 0.5 [m], with a charge of 𝑞 = 1 [C], to a finite element
mesh with four nodes. The expected charge mapping from this setup is that each of the closest two nodes to
the computational particle should have a charge of 𝑞𝑖 = 0.5 [C] each. This result can be seen in Figure 5a.
To ensure that this capability generalizes to higher dimensions correctly, a two-dimensional version of the
test was performed. In this scenario, the charge of the particle is the same, but now it is located at the point
®𝑟 = (0.5, 0.5) [m]. The mesh was constructed to have 16 evenly spaces nodes on the domain 𝑥 ∈ [0, 1] and
𝑦 ∈ [0, 1]. In this scenario, the expected result is that each of the four closest nodes to the particle should
have a charge of 𝑞𝑖 = 0.25 [C]. This result can be seen in Figure 5b.

(a)
(b)

Figure 5. Charge mapping demonstrations in (a) 1D and in (b) 2D. Black dots in (a) and white dots in
(b) represent the nodes of the finite element mesh. The X marks the position of the particle.

3.1. Electrostatic Potential Solve

Poisson’s equation can be used to solve for the electric field given a charge density and is given by

−∇2𝜙 =
𝜌

𝜀0
. (24)

The electric field is not directly calculated; rather, the electrostatic potential is determined based on the
charge density and can be used to calculate the electric field. In order to verify the implementation of charge
mapping and subsequently solving for the electrostatic potential, a simple test was performed in FENIX. A
simple potential was selected and is given by

𝜙 = 𝑥(1 − 𝑥) [V] . (25)



Based on the potential, the corresponding charge density was calculated to be

𝜌

𝜀0
= 2

[
v

m2

]
. (26)

A one-dimensional mesh with five nodes on the domain 𝑥 ∈ [0, 1] was used, and two macro particles of
charge 𝑞 = 1 [C] were placed at each node giving the required uniform charge density, Equation (26). The
potential was then solved using existing MOOSE kernels. Dirichlet boundary conditions,

𝜙(0) = 𝜙(1) = 0, (27)

were also used during the finite element solve.

Figure 6. Comparison between the analytic solution for the electrostatic potential and the resulting
FENIX solution using the charge density mapped from particles. Dots in the electrostatic potential
are the location of the nodes of the finite element mesh.

The agreement between the analytic solution and the FENIX solution at the nodes, seen in Figure 6, of the
finite element mesh demonstrates that charge mapping and the subsequent potential solve capabilities have
been implemented correctly.

4. FUTURE WORK

The next steps for verification will be to demonstrate that FENIX can reproduce two well-known kinetic
plasma effects: Landau damping and the two-stream instability [16, 17]. Additionally, recent work has
provided an analytic solution for a collisionless single species plasma, which will be replicated using FENIX
[19]. We plan to replicate the result presented in [19] before moving onto adding support for Monte Carlo
collisions. After these verification tests are performed, the MOOSE electromagnetics module [20] will be
coupled to FENIX, and Monte Carlo collision capabilities will be developed.

5. CONCLUSIONS

Verification for the foundational capabilities required for kinetic plasma simulations has been completed for
the MOOSE application FENIX. Several cases of single particle motion have shown that the Boris algorithm



for particle stepping has been implemented correctly and has second order accuracy in time. The charge
mapping examples demonstrate that first order charge mapping from particles to the finite element mesh has
been implemented correctly. Finally, a charge density was supplied by mapping charge from particles to
the finite element mesh, and Poisson’s equation was solved using existing MOOSE infrastructure. The sum
of this work demonstrates that the foundational infrastructure required for collisionless electrostatic kinetic
plasma simulation has been implemented correctly. The new capabilities presented in this work give the
developers confidence that the new capabilities are implemented correctly and that the capability required
for modeling PFCs simulations will be built on a solid foundation.
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