

Criticality Analysis of Fort St. Vrain Spent Nuclear Fuel in the DOE Standard Canister

March 2024

hanging the World's Energy Future

Benjamin Luis Estrada, Evans Damenortey Kitcher, Daniel Albert Thomas, Kristy Diane Yancey Spencer

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Criticality Analysis of Fort St. Vrain Spent Nuclear Fuel in the DOE Standard Canister

Benjamin Luis Estrada, Evans Damenortey Kitcher, Daniel Albert Thomas, Kristy Diane Yancey Spencer

March 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

March 12, 2024

Benjamin Estrada

Criticality Analysis of Fort St. Vrain Spent Nuclear Fuel in the DOE Standard Canister

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

DOE manages a broad array of SNF

- Over 300+ types of DOE-managed SNF across the DOE complex
 - Fuels (oxides, metals, carbides, etc.)
 - Different enrichments, geometries, and sizes

ATR Fuel Element

Fuels from Research Reactors

Shippingport Fuel Element

DOE-managed SNF can be packaged in standardized canisters

- The National Spent Nuclear Fuel Program designed the DOE Standard Canister in the 1990s.
 - Minimizes dependence on fuel type and characterization
 - Based on the reliability of systems, structures, and components
 - Can be used to transport and store SNF

DOE is funding a packaging demonstration at INL

• The goal is to load 4 or 5 FSV fuel elements into the DOE Standard Canister.

FSV Fuel Element

Cross-Sectional 3-D Model of the DOE Standard Canister

Criticality Analysis

- The neutron multiplication factor (k_{eff}) is found via Monte Carlo N-Particle Transport (MCNP) 6.2.
- Upper subcritical limits (USLs) are calculated using Whisper 1.1.
- One, seven, or nine canisters are loaded into a concrete overpack.
- The cases are derived from credible abnormal conditions.
 - Moderator ingress
 - Geometry changes
 - Concentration
 - Reflection

 $k_{calc} + 2\sigma < \mathsf{USL}$

USL = 1

- + (Bias)
- (Bias Uncertainty)
- (Margin of Subcriticality)

Normal Conditions

- Dry fuel, canister, and overpack
- The fuel is assumed fresh and intact
- Full water reflection

Single-, Seven-, and Nine-Canister Arrangements

Four vs. Five FSV Fuel Assemblies Loaded

Transport Scenarios

- USL of 0.92171 for transport
- Scenario 1: degraded fuel collects at the bottom of a canister

Two Different Orientations

Configuration		$k_{eff} + 2\sigma$			
		1 SC	7 SCs	9 SCs	
4 FSV	Dry overpack	0.12827	0.38794	0.31711	
assemblies	Flooded overpack	0.18078	0.38071	0.24284	
5 FSV	Dry overpack	0.12852	0.36116	0.29969	
assemblies	Flooded overpack	0.18046	0.35565	0.22289	

Transport Scenarios

• Scenario 2: nine-canister drop event

Configurat	$k_{eff} + 2\sigma$	
4 FSV assemblies	Dry overpack	0.3252
	Wet overpack	0.26418
5 ECV as a subling	Dry overpack	0.3296
5 FSV assemblies	Wet overpack	0.26438

Storage Scenarios

- USL of 0.95171 for storage
- Moderator ingress through fuel saturation, canister flooding, and overpack flooding

	$k_{eff} + 2\sigma$		
		Unsaturated	Saturated
	Dry canister in a dry overpack	0.34092	0.93005
4 FSV	Dry canister in a fully flooded overpack	0.33145	0.80986
assemblies	Fully flooded canister in a dry overpack	0.83726	0.94594
	Fully flooded canister in a fully flooded overpack	0.78439	0.91848
	Dry canister in a dry overpack	0.34233	0.93036
5 FSV	Dry canister in a fully flooded overpack	0.33244	0.8108
assemblies	Fully flooded canister in a dry overpack	0.83726	0.94626
	Fully flooded canister in a fully flooded overpack	0.7845	0.91794

Seven-Canister Overpack

Storage Scenarios

Nine-Canister Overpack

	$k_{eff} + 2\sigma$		
		Unsaturated	Saturated
4 FSV assemblies	Dry canister in a dry overpack	0.27689	0.88459
	Dry canister in a fully flooded overpack	0.20416	0.68488
	Fully flooded canister in a dry overpack	0.82348	0.93884
	Fully flooded canister in a fully flooded overpack	0.72593	0.88651
5 FSV assemblies	Dry canister in a dry overpack	0.28441	0.88774
	Dry canister in a fully flooded overpack	0.20445	0.68504
	Fully flooded canister in a dry overpack	0.82387	0.93907
	Fully flooded canister in a fully flooded overpack	0.72591	0.8866

Disposal Scenarios

- USL of 0.95171 for disposal
- Formation of a water-uranium slurry

Configuration		$k_{eff} + 2\sigma$			
		1 SC	7 SCs	9 SCs	
	Fully flooded canister in a dry	0.90397	0.94989	0.94281	
4 FSV	overpack				
assemblies	Fully flooded canister in a fully	0 80331	0 02315	0 8021	
	flooded overpack	0.07551	0.72313	0.0921	
	Fully flooded canister in a dry	0 00/02 0 0/088 0 0/		0 04280	
5 FSV	overpack	0.90403	0.94900	0.94209	
assemblies	Fully flooded canister in a fully	0 80224 0 022 0 8		0 80202	
	flooded overpack	0.09524	07524 0.725	0.09202	

Disposal Scenarios

• Degradation of stainless steel into hematite or goethite

	Configuration		$k_{eff} + 2\sigma$			
			1 SC	7 SCs	9 SCs	
Degradation into hematite	4 FSV assemblies	Fully flooded canister in a dry overpack	0.89984	0.95033	0.94249	
		Fully flooded canister in a fully flooded overpack	0.89016	0.92212	0.88926	
	5 FSV assemblies	Fully flooded canister in a dry overpack	0.90009	0.95026	0.94233	
		Fully flooded canister in a fully flooded overpack	0.88965	0.92268	0.8898	
		Configuration		$k_{eff} + 2\sigma$		
			1 SC	7 SCs	9 SCs	
Degradation into goothite	4 FSV assemblies	Fully flooded canister in a dry overpack	0.88937	0.93593	0.92923	
Degradation into goethite		Fully flooded canister in a fully flooded overpack	0.88414	0.91419	0.88655	
	5 FSV assemblies	Fully flooded canister in a dry overpack	0.88894	0.93682	0.92905	
		Fully flooded canister in a fully flooded overpack	0.88504	0.91464	0.88651	

Summary of Results

- No scenario exceeded the application-specific USL (i.e., 0.92171 for transport; 0.95171 for storage/disposal).
- The highest k_{eff} (i.e., 0.95033) stemmed from stainless steel degradation into hematite.
- Saturated fuel, flooded canister, and dry overpack were the most reactive conditions.
- k_{eff} showed minimal variation when comparing four vs five fuel elements.

Questions?

Idaho National Laboratory

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.

WWW.INL.GOV