INL/CON-24-76596-Revision-0

Reactor 90 percent Final Design & FY2024 Progress (presentation)

March 2024

MW (Mike) Patterson

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Reactor 90 percent Final Design & FY2024 Progress (presentation)

MW (Mike) Patterson

March 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

(Microreactor Applications Research, Validation & EvaLuation),

Reactor 90% Final Design & FY2024 Progress

March 7, 2024

M.W. Patterson

MARVEL Sr. Project/Program Manager

Idaho National Laboratory, USA

MARVEL Summary at 90% Final Design

Office of NUCLEAR ENERGY

	₿	CIA Actuator Assembly			
		CNS Actuator Assembly	Project Goal: Build a Test Microreactor ASAP		
			Key Design Featu	res	
Stirling Engine and Supports		—— Upper Shield	Reactor Type	Liquid Metal Thermal Reactor	
		— CIAS Rod Assembly	Thermal Power	85 kW-th	
Secondary Coolant Cover ——— Gas System		Primary Coolant System	Electrical Power	~20 kW-e	
Secondary Coolant			Coolant Drive	Natural Circulation	
Subsystem		—— Guard Vessel	System Life	2 years	
Guard Vessel Insulation —			Fuel	TRIGA Fuel	
Control Drum Neutronics			Weight	7.5 metric ton	
System		Outer Shield Assembly	height	<15 feet	
Reactor Support Structure					
	🚳 WALSH	Creative Engineers, Inc.	National Laboratory	MRP Microreactor Program	

Reliable Remote Powe

Scope of 90% Final Design

- <u>**Guidance:**</u> MARVEL project's 90% Final Design, as required by U.S. Department of Energy (DOE) Standard-1189, "Integration of Safety into the Design Process
- <u>Goal</u>: 90% Final Design documentation focuses on design completion at a level capable of supporting procurement, construction, testing, and operation
- <u>Scope</u>: 90% final design includes the complete reactor, including the design, operability and maintainability of the five major reactor systems + Auxiliary systems (~250 documents):
 - Fuel and Core System.
 - Reactivity Control System.
 - MARVEL Reactor Structure.
 - Instrumentation & Control System.

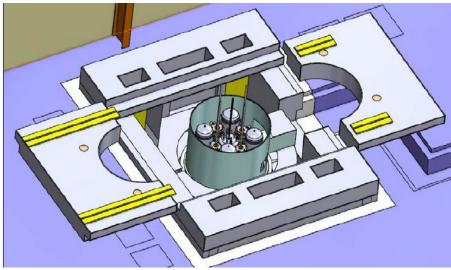
- Power Generation System.
- The scope of this design also includes the primary and secondary coolant loading system (vendor system).
- Summarized in MARVEL 90% Final Design Report - INL/RPT-23-74280

90% Final Design Deliverables

~250 Total Documents

- Safety Design Strategy (1)
- Hazard Analysis (1)
- Requirements (7)
- Code of Record (1)
- Specifications (17)
- Commercial Grade Dedication Plans (22)
- Engineering Calculation and Analysis Reports (33)
- Risk & Opportunity Matrix (1)
- Current Cost Estimate (1)

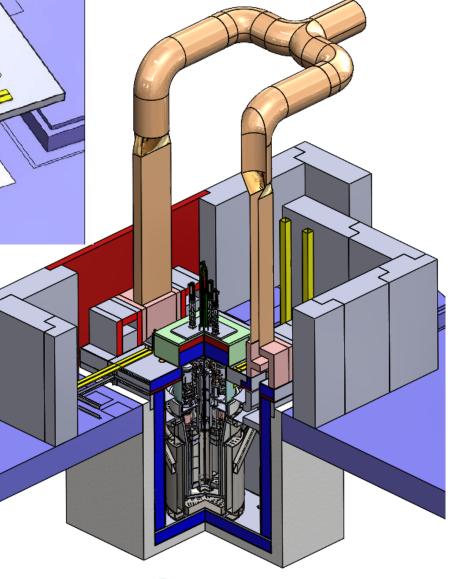
Does not include:


- High-grade heat extraction system (HGHES)
- Interfacing systems in TREAT facility (provided by TREAT Micro-Reactor Experiment Cell (T-REXC) project)

- Current Construction Schedule (1)
- **Project Execution Plan (1)**
- Security & Vulnerability Assessment (1)
- Software Quality Assurance Plan (1)
- Test Plans (3)
- Engineering Change Forms (5)
- Final Design Review Comments and Resolutions (1)
- Engineering Verification Matrix (1)
- Drawings (152)

TREX-C Project

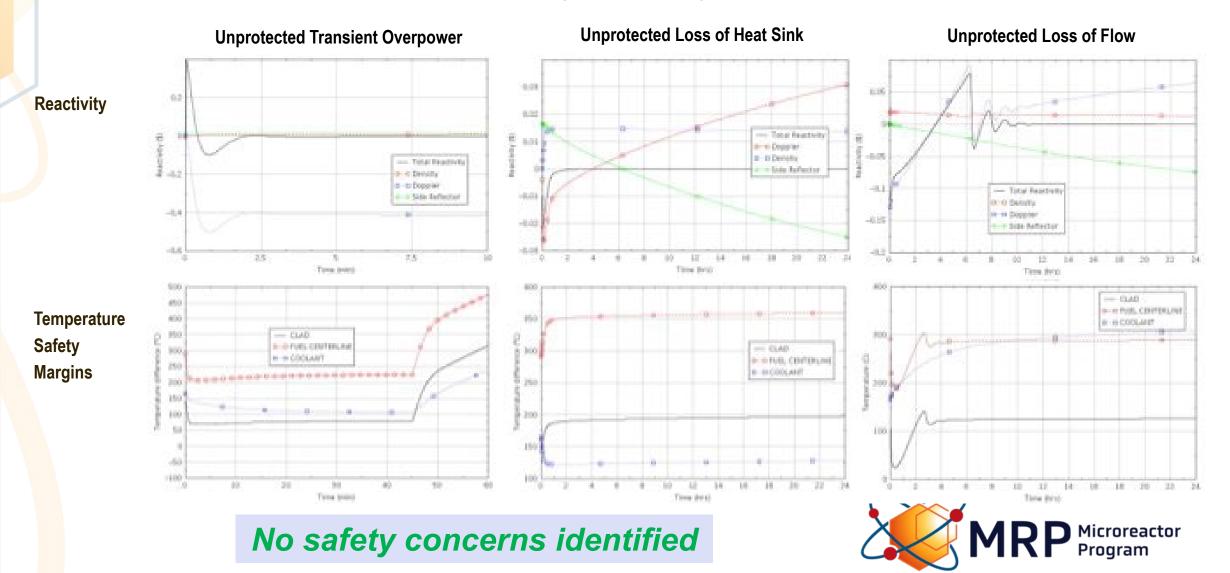
Institutionally-funded project to prepare TREAT to host multiple demonstrations (MARVEL will be the first)



<u>T-REXC Scope</u>: (SPC-70454 T-REXC Interface Specification)

- Pit shield structures (to prevent neutron activation of the concrete)
- Pit lid, with integrated top shielding
- I&C infrastructure facility data and demonstrator data displays)
- Electrical power infrastructure interface panel, standby generator
- Signal/data transfer between MFC-720 & MFC-724 Control Room
- Ventilation, including HEPA filter and exhaust monitoring

- Fire detection, including Na and NaK fires
- Fire mitigation systems, per TREAT fire hazards analysis
- Neutron source for startup
- Radial static neutron reflectors
- Beryllium oxide (BeO) control drums for neutron population control
- A system to preclude water intrusion into the pit
- Radiation monitoring.


T-REXC safety-related SSC design will be incorporated in MARVEL PDSA

Microreactor

MARVEL Safety Modeling

Postulated Severe Accident Models (no scram) –

90% Final Design Summary

Completion of 90% Final Design per DOE-STD-1189 indicates project design can support testing, procurement, construction, & operations (Office of Nuclear Safety (AU-30), 2016)

- Incorporate in PDSA for DOE review/authorization
- Triggers cost estimate update(s)
- Enables procurement preps for construction

Open Design Item	Discussion	Systems	EC	Needed for:
Detailed ASME Section III Analysis**	Completion of detailed ASME Section III analyses and simulation is required, as well as update of MARVEL's ASME specification	PCS	1755	PDSA Submittal
Qualification Testing	Discussion	Systems	EC	Needed for
RCS Qualification Testing	Qualification testing of the Reactivity Control System	RCS	1756	Assembly in Cell
Stirling Engine Prototype Test	Prototype testing of the Stirling Engine and IHX Liner system in GaInSn. Two parts: 1) corrosion testing (in PICS) 2) Stirling engine testing (working alternatives analysis)	PGS, RCS	1755, 1757	 PDSA submittal Assembly in Cell
PCAT Testing	Completion of PCAT testing is required to validate thermo-hydraulic analysis suitability	PCS	1755	PDSA Submittal

Open Design Item and Qualification Testing after 90% Final Design

** ASME Section III Analysis: identified in CCN 254615 as an open design item and now controlled per ASME NQA-1-2008 Part 1, Requirement 3 "Design Control" Para 500 (b) and DOE STD-1189

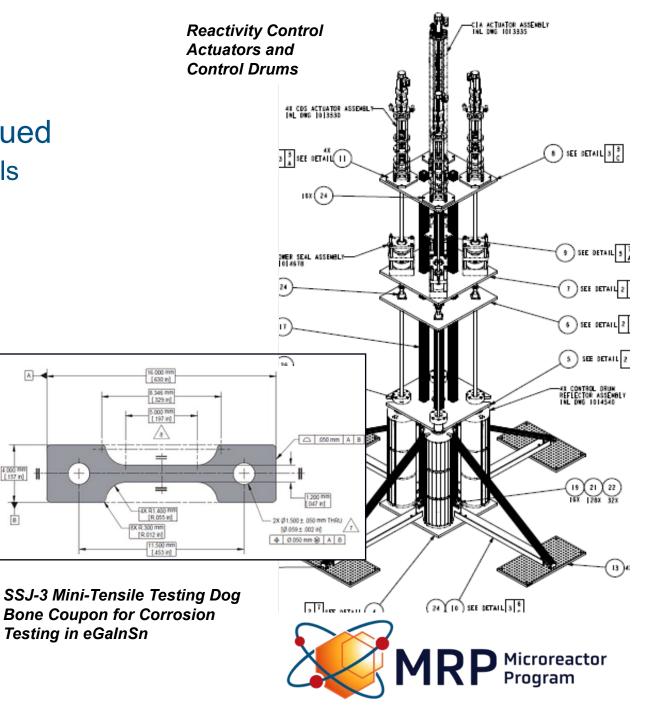
MARVEL Progress in FY 2024

- Long Lead Procurement
 - Material procurement & fabrication of 316H SS structures, systems, and components
 - Switching fabrication subcontractors
 - Guard Vessel fabrication underway
 - MARVEL Fuel
 - HALEU feedstock procured/shipped to France (June 2023)
 - Fabrication contract placed November 2023
 - Fuel element fabrication
 - Prepping molds, batching plans etc.
 - Casting start ~April 2024 (pending UFS Release 2 fusion/refusion completion
 - Finish Fall 2024
 - Shipping container recertification under review by French regulator

Guard Vessel Tapered Wall

MARVEL 5 meat Fuel Element

Microreactor

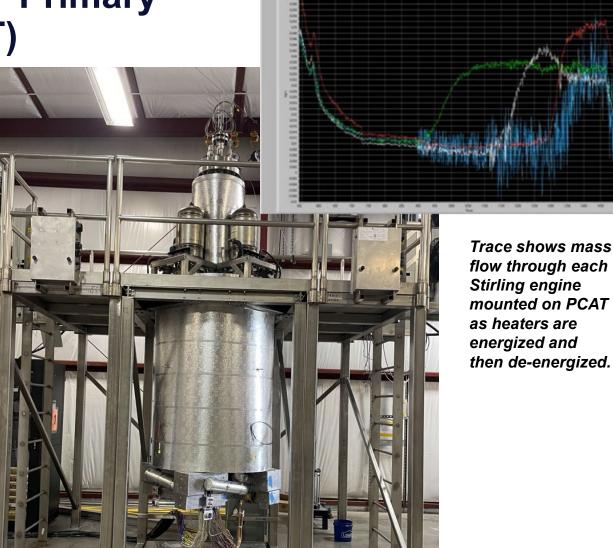

MARVEL Progress in FY 2024 - continued

- Long Lead Procurement continued
 - Beryllium metal reflectors and dowels
 - **RFP** prepared
 - Procurement on hold funding
 - BeO reflectors ordered by T-REXC

A

B

- Procurement and Fabrication of the **Reactivity Control System**
 - Parts ordered
 - Early testing underway
- Stirling Engines and Controls
 - Focus on corrosion testing
 - First test complete early March
- Independent Project Review -Complete


Thermal Hydraulic Prototype – Primary Coolant Apparatus Test (PCAT)

Thermal Hydraulic Prototype

- Started up 9/19/2023
 - Achieved natural circulation
 - Measurable power output
- Experiment paused after initial startup to verify glycol mix to cool Stirling engines

FY24 progress/next steps

- Fabrication, calibrations, programming, & NaK fill complete
- System certification in March 2024
- Qualification testing in April 2024

lass Flow Rate Char

Microreactor

Level 2 Milestones for FY2024

Level	WBS	WP Title	Milestone ID Number	Milestone Title	Estimated Finish
M2	2.04.08.05.03	MARVEL Engineering - INL	M2AT-24IN0805032	Complete development of Long Lead Procurement (LLP) #3 request and submit for approval to DOE-ID	11/30/2023 Complete
M2	2.04.08.05.06	Fuel Production & Procurement - INL	M2AT-24IN0805062	Award MARVEL Fuel Fabrication Contract	11/30/2023 Complete
M2	2.04.08.05.06	Fuel Production & Procurement - INL	M2AT-24IN0805063	Start of production for MARVEL fuel elements at TRIGA International (TI)	2/29/2024 Start dependent or UFS fusion/refusio
M2	2.04.08.05.07	TREAT SAR Addendum - INL	M2AT-24IN0805076	Complete Primary Coolant Apparatus Test (PCAT) Thermohydraulic Testing	4/30/2024 On track
M2	2.04.08.05.08	MARVEL Readiness - INL	M2AT-24IN0805086	Submit MARVEL Plan of Action (POA) to DOE-ID	5/20/2024 Defer - funding
M2	2.04.08.05.02	MARVEL Leadership - INL	M2AT-24IN0805023	Complete MARVEL program plan for Phase 2- Operations	5/30/2024 On track
M2	2.04.08.05.07	TREAT SAR Addendum - INL	M2AT-24IN0805072	Complete and submit MARVEL Preliminary Documented Safety Analysis (PDSA) to DOE-ID for review	7/31/2024 On track
M2	2.04.08.05.04	MARVEL Fabrication - INL	M2AT-24IN0805047	Complete fabrication of the MARVEL reactivity control system	9/5/2024 On track

Thank-you

Questions?