
This is a preprint of a paper intended for publication in a
journal or proceedings. Since changes may be made
before publication, this preprint should not be cited or
reproduced without permission of the author.

This document was prepared as a account of work
sponsored by an agency of the United States Government.
Neither the United States Government nor any agency
thereof, or any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or
responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or
process disclosed in this report, or represents that its
use by such third party would not infringe privately
owned rights. The views expressed in this paper are
not necessarily those of the U.S. Government or the
sponsoring agency.

INEEL/CON-02-00258
PREPRINT

A PVM Executive Program For Use With
RELAP5-3D

W. L. Weaver (INEEL)
E. T. Tomlinson (Bechtel Bettis, Inc.)
D. L. Aumiller (Bechtel Bettis, Inc.)

April 14, 2002 – April 18, 2002

International Conference on Nuclear
Engineering (ICONE-10)

1

Abstract
A PVM executive program has been developed for use with

the RELAP5-3D© computer program. The PVM executive

allows RELAP5-3D© to be coupled with any number of other
computer programs to perform integrated analyses of nuclear
power reactor systems and related experimental facilities. The
executive program manages all phases of a coupled
computation. It starts up and configures a virtual machine,
spawns all of the coupled processes, coordinates the time step
size between the coupled codes, manages the production of
printed and plotable output, and shuts the virtual machine down
at the end of the computation. The executive program also
monitors that status of the coupled computation, repeating time
steps as needed and terminating a coupled computation
gracefully if one of the coupled processes is terminated by the
computational node on which it is executing.

Background
Several previous papers (Martin, 1995; Aumiller, 2001;

Weaver,2002) have described the methodology by which the

RELAP5-3D© computer program (RELAP5-3D, 1999) may be
coupled to another computer code either explicitly or semi-
implicitly. The first two papers (Martin,1995 and Aumiller,

2001) describes how RELAP5-3D© was coupled explicitly to

both another instance of RELAP5-3D© and to another thermal-
hydraulic analysis code. The last paper (Weaver, 2002)

describes the methodology by which RELAP5-3D© can be

coupled to another thermal-hydraulic code using a semi-implicit

coupling methodology. The coupling between RELAP5-3D©

and the other code was accomplished using the PVM (Parallel
Virtual Machine) message passing software developed at Oak
Ridge National Laboratory (Geist, 1993). Data items are passed
between the coupled codes in messages having unique message
identifiers. In the original implementation of the PVM

methodology, RELAP5-3D© could only be coupled to one other
computer code. Other restrictions inherent in the original

implementation of the PVM methodology in RELAP5-3D©

include lack of coordination of the time step size to be used by
the coupled codes, the inability to monitor the status of the two
coupled codes, and lack of coordination in the printed and
plotable output of the two coupled codes. Each code was
required to choose its own time step size which forced the user
to use a fixed time step size (i.e., fixed so that they would use
the same time step size for semi-implicit coupling) or fixed
simulation time intervals for explicit coupling (the explicit
coupling algorithm exchanges data between coupled processes
at fixed time intervals). The inability to monitor the status of the
code also forced the user to choose a time step size in such a
way that the time step advancements would always be
successful so that no time step repeats or time step size
reductions would be necessary. The user also had to configure
the virtual machine by hand before executing the coupled
calculation and the coupled codes had to be executed on the
same computational node. The PVM executive program was
developed to remove these restrictions and to make the PVM

A PVM Executive Program
For Use With RELAP5-3D©

W. L. Weaver
Idaho National Engineering and Environmental Laboratory

P.O. Box 1625
2525 North Fremont Ave.

Idaho Falls, ID 83415-3880

E. T. Tomlinson and D. L. Aumiller
Bechtel Bettis, Inc.

Bettis Atomic Power Laboratory
P.O. Box 79

West Mifflin, PA 15122-0079

Proceedings of ICONE10
10t h International Conference on Nuclear Energy

Arlington, VA, April 14-18, 2002

2

methodology used by RELAP5-3D© more versatile.

Design of the PVM Executive Program
The PVM executive program was designed to remove the

restrictions of the original implementation of the PVM coupling

methodology in RELAP5-3D©. It has five major
responsibilities. First, it must configure the virtual machine,
starting the PVM daemon process on the computational nodes
comprising the virtual machine. Second, it must start up the
coupled processes on the several computational nodes. Third, it
must tell each of the coupled processes what data to send to and
what data to receive from the other processes. Fourth, it must
manage the time advancements of the coupled computation,
coordinating the time step size between the several coupled
codes, monitoring the status of the advancements and directing
code backups and time step repeats as necessary. Fifth and
lastly, it must coordinate the production of printed and plotable
output between the coupled codes so that computational results
are available from all of the coupled codes at the same
simulation times during tho computation.

The user supplies the information needed by the PVM
executive program in an input file. The input file is divided into
four sections (the input needed to accomplish fourth and fifth
responsibilities are contained in the same section of the input
file). The sections of the input file are delimited by reserved
keywords. The first section of the input file is delimited by the
keyword ‘virtual’. The lines following this keyword contain the
names of the computational nodes to be used in the virtual
machine along with the location of the executable files to be
used by that computational node and the location of the input
files for the processes to be executed on that computational
node (i.e., the working directory). Using this information, the
PVM executive program builds a PVM hostfile for the virtual
machine and starts the PVM daemon process on the several
computational nodes.

The second section of the input file is delimited by the
keyword ‘processes’ and specifies the processes (i.e., codes) to
be executed on the several computational nodes. The names of
the computational nodes contained in the first section of the
input file become keywords in the second section of the input
file. One or more coupled processes may be executed on each of
the computational nodes. The specification of each coupled
process contains a unique name for each process as well as any
command line parameters that are to be passed to that process as
it begins its execution (i.e., names of input files, output file,
etc.). The names of the coupled processes are used to
distinguish multiple instances of the same executable file being
executed in the virtual machine. Finally each processes is
labelled as ‘synchronous’ or ‘asynchronous’. These labels
denote whether or not the time step size for the process is
determined by the executive program. Synchronous processes,
such as processes that are coupled semi-implicitly, need to use

the same time step size for each advancement so their time step
size is coordinated by the executive program. Asynchronous
processes, such as processes coupled explicitly, need only
exchange data at fixed intervals and it does not matter what size
of time step they use to advance in time, only that they reach the
same point in time to exchange data.

The third section of the input file is delimited by the keyword
‘messages’ and specified the data to be sent to and received
from the other coupled processes. Each message uses the unique
name of the sending and receiving process along with the
specification of the data to be sent or received. The specification
of messages occur in pairs, one message specification for the
process sending the data and the other specification for the
process receiving the data. The data items to be sent by the
sending process are specified in terms that the sending code can
understand and vice-versa for the receiving code. This means
that the same data item may be specified by a different identifier
for the sending and receiving processes. For example, the
sending code may refer to the liquid density using the code
variable ‘rhof’ while the receiving code may refer to the liquid
density by the code variable ‘rholiq’. The data specifications are
sent to the several coupled codes as they appear in the third
section of the input file. It is the responsibility of the individual
coupled codes to understand their data specification.

The last section of the input file is delimited using the
keyword ‘timesteps’. This section of the input file contains data
for one of more simulation intervals during the coupled
computation. The data for each interval are the end time for the
simulation interval, the maximum and minimum time step sizes
for the simulation interval, the print, plot, restart write, and
explicit coupling frequencies for that interval along with other
control information for that interval.

A schematic of a typical coupled computation is shown in
Figure 1. In this coupled computation, two instances of

RELAP5-3D© are coupled semi-implicitly to model the coolant
systems in a reactor power plant, one of the instances of

RELAP5-3D© is coupled to a code that performs a reactor
power computation using a nodal neutron kinetics methodology,

and the other instance of RELAP5-3D© is coupled explicitly to
a containment analysis code. The data flows between the several
coupled codes as well as between the coupled codes and the
executive program is also shown in Figure 1. What Figure 1
does not shown is that each of the processes might be executing
on a different computational node and that the communication
between the processes would be carried over a network. Also
not shown is that the computational nodes might be different
computer architectures from different vendors, i.e., an mix of
different types of UNIX workstations and PCs.

Sequence of Events in a Coupled Computation
A coupled computation can be divided into two phases, that

are the input and initialization phase of the computation and the

3

transient simulation phase of the coupled computation.

Input and Initialization Phase

The PVM executive program is executed by the user in a
manner appropriate for the users operating system specifying
the input file and the output file for the executive program as
command line parameters (default input and output files are also
defined). The executive program reads the first section of its
input file, constructs a PVM hostfile, and starts the PVM
daemon process on the several computational nodes in the
virtual machine. Then the executive program spawns the several
coupled processes on the one or more computational nodes. The
coupled processes that are spawned read their respective input
files, process the data contained in their input files and then
listen to receive messages from the executive process. After the
executive process has spawned all of the coupled processes, it
sends messages to each of the spawned processes containing the
data specifications for messages to send to and receive from the
other coupled processes. Each spawned process proceeds with
its own input and initialization after the coupling data
specifications have been received from the executive process.
The executive process listens to receive a message from each

Figure 1. Schematic of a coupled computation

EXECUTIVE

KINETICS

RELAP5-3D

RELAP5-3D

CONTAINMENT

Edit Control

Time Step Control

Semi-implicit

Asynchronous

Synchronous

process describing its initialization status and its run status.
Each coupled code sends its initialization status to the executive
program at the end of its initialization process. This
initialization status may be zero (initialization successful) or
one (errors during input and initialization). They also sent the
executive program their run status, where zero denotes no
transient to be executed because of input or initialization errors
or because this run was for input checking only, or one, ready
for transient simulation. The coupled computation is terminated
if any of the coupled processes return an initialization error or
returns a zero run status. The executive program determines the
global initialization and run status and broadcasts this status to
all of the coupled processes.

Transient Computation Phase

Assuming that the initialization was successful for all of the
coupled processes and that the run status indicated that all
coupled processes are ready to perform a transient simulation,
the executive program broadcasts an initial set of output control
times. This message specifies the next simulation times for the

production of printed output, printing of RELAP5-3D© minor
edit variables, generation of plot data, writing of restart data and
the next time explicit coupling data transfers are to be
performed. The PVM executive program assumes that each
code will produce its own initial printed output, plot data, and
restart data automatically. The executive program then
coordinates the initial exchange of any explicit coupling data
between asynchronously coupled processes. When more than
two codes are coupled explicitly, the data exchanges between
the codes needs to be coordinated by the executive program.
The data exchange paradigm used in the PVM coupled
computation is that all messages received will be followed by an
acknowledgement returned to the sender. The sending process
waits to receive an acknowledgement before sending the next
message. If all of the codes were to send all of their messages
and then listen to receive all of their messages, there would be a
deadlock condition because all processes would be sending and
no processes would be listening for acknowledgements. The
executive program broadcasts the PVM identifiers of each of
the explicitly coupled processes to all of the explicitly coupled
processes one at a time. The process named in the broadcast
message sends its data and all of the other explicitly coupled
process listen to receive the messages sent by the process named
by the executive process. This works like the old telephone
party line where each of the explicitly coupled processes must
wait its turn to talk on the party line. Each explicitly process
receives permission to send its data in its turn. This process of
coordinating the exchange of explicit coupling data occurs each
time the simulation time reaches the time for an explicit
exchange of data.

Once any initial explicit coupling data is exchanged, time step
advancements may begin. The executive program listens to
receive a time step size from each of the synchronously coupled

4

processes. Each synchronically coupled code determines the
time step size that it wants to use and sends it to the PVM
executive. The executive program receives the several time step
sizes, determines a global time step size as the minimum of the
time step sizes received from the synchronously coupled
processes and broadcasts the global time step size back to the
synchronously coupled processes. This message also contains
updated edit, print, and plot times so that output may be
produced each time step rather than at predetermined intervals.
Output every time step is useful in debugging and this capability

existed previously in RELAP5-3D©. After the synchronously
coupled processes receive the global time step size from the
executive program, they proceed with the time step
advancement, performing any communication needed with the
other coupled processes during the advancement. At the end of
the advancement, just before the point of no return, each of the
synchronously coupled processes sends its advancement status
to the PVM executive program. The point of no return is that
point in the computations sequence after which no backup may
be performed in order to fix any errors that occurred during the
advancement. The executive program listens to receive the
advancement status from all of the synchronously coupled
processes, determines the global advancement status, and
broadcasts the global advancement status to the synchronously
coupled processes. Assuming that no errors have occurred
during the advancement, the coupled codes and the executive
program proceed to the next time step advancement. Time step
advancements are performed until the end time for the
simulation is reached. The executive program assumes that all
of the coupled processes will terminate automatically when the
end time is reached. The executive program waits for the
coupled code to finish, and then shuts down the virtual machine.

Error Handling

If any one of the synchronously coupled processes encounters
an error during its advancement, it specifies the type of error in
its advancement status flag. There are three categories of
advancement errors; errors that cause the computation to
terminate, errors that cause a backup and time step repeat with a
smaller time step size, and errors that cause a backup and time

step repeat with the same time step size. RELAP5-3D© has ten
types of advancement errors that the code detects and for which
there are methods for fixing the errors. If the advancement
status flag indicates a code termination, the executive sends a
terminate message to all of the coupled processes, waits for
confirmation that all of the coupled processes have terminated,
and shuts down the virtual machine as if the computation had
finished successfully. If the advancement status indicates that
any one of the coupled codes wants to perform a backup and a
time step repeat, a backup message is sent to all of the coupled
processes and the time step is repeated as if the time step had
been successful. That is, each process sends its desired time step
size to the executive and a new global time step size is chosen.

If the process requesting the time step repeat needs to reduce the
time step size, it sends a reduced time step size to the executive
program and the global time step size will be reduced per their
request. If the type of failure can be fixed using the same time
step size, the global time step size will remain the same but the
advancement will be repeated from the same starting point. The
code requesting the time step repeat must remember the reason
for the time step repeat and proceed through a different logic
path during the repeated advancement to avoid the error that
caused the time step repeat.

The previous discussion assumes that all of the coupled
processes continue to execute and do not fail catastrophically. If
any of the coupled process fails catastrophically with a divide
by zero, floating point overflow, etc., the process will be
terminated by the operating system of the computational node
on which the process is executing. The executive process
monitors the execution status of all of the coupled processes and
sends a terminate message to all executing processes if one of
them fails catastrophically. It then waits for all of the processes
to terminate and then shuts the virtual machine down. The same
process of termination occurs if a process exceeds its wait time
while waiting for a message or message acknowledgement from
another process. The user defines the length of time a process is
to wait to receive a message or message acknowledgement from
another coupled process. If the wait time is exceeded, the
process exceeding the wait time sends a message to the
executive program and shuts itself down gracefully. If the
executive program receives a time-out message, it broadcasts a
terminate message to all of the other coupled processes, waits
for them to terminate, and then shuts the virtual machine down
as if the coupled computation had terminated normally. The
wait time was implemented for the case in which a coupled code
might get into a infinite loop where it never sends an expected
message but also never fails catastrophically.

In order for the user to understand the state of the coupled
computation, status messages are written to the terminal from
which the PVM executive process was executed at e ten second
intervals. These messages are similar to the messages that

RELAP5-3D© writes to the terminal screen when it executes as
an uncoupled process. The messages contain the current
simulation time and the current advancement count. Failure
messages are also written to the terminal so that the user will
understand why the coupled computation terminated. These
status messages are also written to the output file of the PVM
executive program.

Verification of PVM Executive Program
The operation of the PVM executive program was verified by

executing the several test cases described in the previous papers
under the control of the PVM executive program. These test

cases use two instances of RELAP5-3D© coupled to each other
executing on the same computational node. Two test cases were

5

executed, one using explicit coupling (Aumiller, 2001) and the
other using semi-implicit coupling (Weaver, 2002). These test
cases were chosen to exercise the executive program logic for
asynchronously and synchronously coupled computations. The
results from the execution of the test cases as a simgle
uncoupled process was compared to the results of the execution
of the same test cases under the control of the PVM executive
program. Examination of the two versions of each test case
showed that identical results were obtained. These test cases
assume that no initialization or advancement faults occur and in
fact the input for these test cases had previously been adjusted
so that no faults occured.

Test cases were developed for each of the ten types of

advancement faults in RELAP5-3D©. Two versions of each of
the ten test cases were developed, that is one version of the test
case as an uncoupled computation and the other as an coupled
version of the test case executed under the control of the PVM
executive program. The results from the execution of the two
versions of each test case were compared and identical results
were obtained. These ten test cases verify that the PVM
executive program recognizes the several types of advancement
faults, directs the coupled processes to perform a code backup,
and coordinates the repeated attempted advancement.

Finally, the several types of catastrophic failures were
simulated by using the ‘kill’ operating system command to
manually terminate one of the coupled processes during both
the input and initialization phase of a coupled computation and
during the transient phase of a coupled computation. The correct
messages were written to the terminal and output file for the
PVM executive program, the other process in the coupled
computation was shut down gracefully, and the virtual machine
was shut down as designed. The time-out mechanism was also
tested by manually interrupting the execution of one of the
coupled processes and observing that the correct time-out
messages were sent, that the processes terminated as directed,
and the virtual machine was shut down.

Summary
A PVM executive program has been developed to control and

coordinate a computation using several computational codes
coupled together using the PVM message passing software. The
design of this executive program has been described along with
the sequence of events that occur during a coupled computation.
The verification testing has demonstrated that the PVM
executive program performs as designed and that it is capable of
initiating a coupled computation, controlling the coupled
computation including recognizing and correcting faults in the
coupled computation and termination of the computation when
it is finished. The operation of the executive program was

demonstrated using the RELAP5-3D© computer program but
the PVM executive program is general enough to be used to
couple any number of simulation codes.

Acknowledgement
Work supported by the U. S. Department of Energy, under

DOE Idaho Field Office Contract No. DE-AC07-99ID13727.

References
Aumiller, D. L., Tomlinson, E. T., Bauer, R. C., 2001. “A
Coupled RELAP5-3D/CFD Methodology with Proof-of-
Principle Calculation,” Nuclear Engineering and Design, Vol.
205, pp 83-90.

Geist, A. et. al., 1993. “PVM (Parallel Virtual Machine) User’s
Guide and Reference Manual,” Oak Ridge National Laboratory,
ORNL/TM-12187.

Martin, R. P.,1995. “RELAP5/MOD3 Code Coupling Model,”
Nuclear Safety, Vol. 36, No. 2, pp. 290-299.

RELAP5-3D, 1999. “RELAP5-3D Code Manuals, Volumes I,
II, IV, and V,” Idaho National Engineering and Environmental
Laboratory, INEEL-EXT-98-00834, Revision 1.1b. (See also
the RELAP5-3D home page at http://www.inel.gov/relap5)

Weaver, W. L., Tomlinson, E. T., Aumiller, D. L, 2002, “A
Generic Semi-Implicit Coupling Methodology for use in
RELAP5-3D”, Nuclear Engineering and Design, Vol. 211, pp
13-26.

