Technical Issues Map for the NHI System Interface and Support Systems Area: 3rd Quarter FY 07

S. R. Sherman

June 2007

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Technical Issues Map for the NHI System Interface and Support Systems Area: 3rd Quarter FY 07

S. R. Sherman

June 2007

Idaho National Laboratory Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

ABSTRACT

This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to tackling such issues in the future. This technical issues map is useful for understanding the relative importance of various technical challenges and will be used as a planning tool for future work package planning. The technical map in its present form will be discontinued in FY08 and will be folded into a larger NHI System Interface and Support Systems project management plant and scope baseline statement in FY08.

CONTENTS

ABSTRACT	iii
FIGURES	vi
TABLES	vii
1. INTRODUCTION	
2. SET OF TECHNICAL ISSUES	5
3. SET OF REPORTS AND PROJECTS	
4. MAPPING OF PROJECTS TO TECHNICAL ISSUES	19
5. ASSESSMENT OF THE MAP	33
TEXT REFERENCES	36
REPORT OR PROJECT REFERENCES	36
2007 WORK PACKAGE DESCRIPTIONS	41

FIGURES

Figure 1.	DOE Nuclear Hydrogen Initiative Project Schedule (Fall 2006)	2
_	Overall goals for solving technical issues.	
_	Liquid Salt Systems Technical Area	
_	Helium Systems Technical Area	
-	Materials Technical Area	
-	Balance-of-Plant Technical Area	
•	Safety Technical Area	
_	Operations Technical Area	

TABLES

Table 1.	Set of Technical Issues	5
	Sequential Ordering of Technical Issues and Goals	
Table 3.	Set of System Interface and Supporting Systems Projects/Reports	15
Table 4.	Map of Projects and Issues.	20

1. INTRODUCTION

This document provides a mapping of known technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to resolving such issues in the future. This technical issues map may be useful as a program planning tool for understanding the relative importance of various technical challenges.

The NGNP Project also has responsibility for the development of parts of the intermediate heat transport loop including one or more Intermediate Heat Exchangers (IHX). Work has just begun on IHX development and energy conversion under the NGNP Project and has so far been confined to funding industry trade studies. The results of the industry trade studies will be available towards the end of FY07. No information is yet publicly available from these trade studies, and so the Technical Issues Map is written from the viewpoint of the DOE NHI. Once the results of the industry trade studies become available, it is expected that the list of technical issues and ranking of relative priorities will change significantly, and this Technical Issues Map will be altered accordingly. In recognition of the shared research and development responsibility for the intermediate heat transport loop and the technical implications of choices made by both projects, the Technical Issues Map will be modified from previous versions to include technical issues associated with the IHX.

The Map is presented as a series of tables. One table lists the set of technical issues or technological targets along with their relative importance. Another table lists the set of reports or projects that have been completed or are currently underway. A subsequent table shows the linkage between the set of technical issues and the set of completed or ongoing work. The latest DOE NHI project schedule is shown in Figure 1. Significant dates on the DOE NHI project schedules are: NHI Intermediate heat transport loop fluid down-select, 2009; Begin pilot-scale plant construction, 2011; Begin engineering-scale hydrogen plant construction, 2015. All technical issues are arranged in priority to support either pilot-scale or engineering-scale deployment of nuclear hydrogen production technologies.

The schedule for the companion program, the NGNP Project, is more aggressive, and places the intermediate fluid down select in FY08, the hydrogen pilot plant start-up in 2011, and full-scale combined plant operation by 2018. It is expected that the schedules for the two programs will be reconciled within the next fiscal year (FY08).

Following the Map is an assessment of how well the DOE NHI is performing in resolving the technical issues, and recommendations are given for any changes in research directions (if needed) and for additional projects.

Development of the Map is an attempt to systematically understand and catalog the multitude of technical issues that must be resolved in order to connect a high-temperature nuclear plant to a nuclear-heat-driven hydrogen production plant. The overall thought process going into the selection and solution of specific technical issues is shown in Figure 2. In this figure, component technical issues, system-specific technical issues, and overall plant-wide safety technical questions are addressed in order to arrive at a level of technical detail sufficient to support

detailed design of the NGNP. It is hoped that this Map will prove useful to the greater NGNP-related development programs for future planning, and that it will be illustrative in sorting between issues that are feasibility-related (Go/No-Go) and issues that are more related to plant economics (capital cost improvements, efficiency improvements, etc.). Certainly the feasibility-related issues must be tackled first, but those related to plant economics must ultimately be resolved in order to build a successful and economically competitive NGNP.

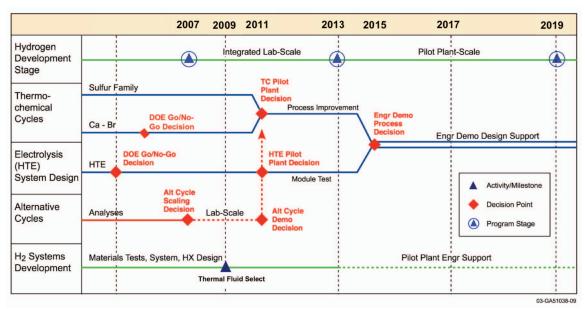


Figure 1. DOE Nuclear Hydrogen Initiative Project Schedule (Fall 2006)

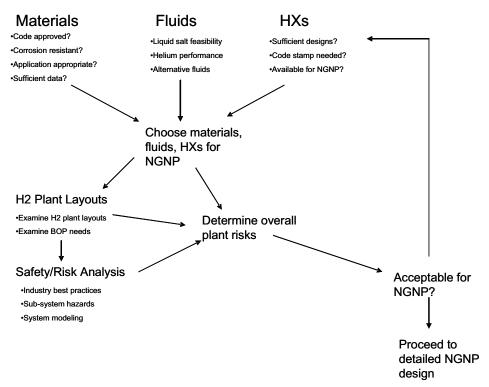


Figure 2. Overall goals for solving technical issues.

2. SET OF TECHNICAL ISSUES

The list of known System Interface and Supporting Systems technical issues is shown in Table 1 and Table 2. This list originated from technical issues described in the document ANL W7500-0002-ES-0, "Reactor/Process Interface Heat Exchanger and Intermediate Loop Technical Issues" and has been updated periodically as some issues were resolved and new ones were discovered. In Table 1 the issues are organized by technical area, while in Table 2, the issues are presented by the year in which they must be resolved. Estimates of the total cost of resolving each issue have not yet been developed, and so there is no linkage between the required resolution date and the cost of resolving the issue. The focus of the list is on the near-term leading up to the 2011 pilot-scale selection in Figure 1. The list is organized under six headings. These headings are: "1. Use of Liquid Salt for Intermediate Heat Transport Loop", "2. Use of Helium for Intermediate Heat Transport Loop", "3. General Materials and Components", "4. Balance-of-Plant and Infrastructure", "5. Safety", and "6. General Operations." The column on the right-hand-side of the table indicates when the technical issue must be resolved to provide the highest quality, lowest risk recommendations to the larger project concerning pilot-plant down selects, overall system designs, and safety. By 2011, the DOE NHI will begin a transition period from applied research and development activities to an organized construction and operation project with a sizeable industrial component. When that happens, research of the technical issues listed below may continue, but the constraints on equipment designs, plant layouts, and other considerations will become more fixed and more costly to alter. Therefore, research money is best directed to solving these issues within the prescribed time instead of waiting until design options have become more limited and resolution of unforeseen problems might be more costly to obtain.

Following the tables, Gantt charts are presented in Figures 3 through 8 for each technical area. These Gantt charts provide some information about the timing and duration of technical tasks, and the dates of select milestones.

Table 1. Set of Technical Issues

Number	Description	Needed by							
1. Use of Lie	1. Use of Liquid Salt for Intermediate Heat Transport Loop								
1.	1. Determine suitability of liquid salt for the NGNP intermediate								
	loop and provide recommendations for/against its use in the								
	engineering-scale demonstration.								
1.1	1.1 Compare liquid salt intermediate heat transport loop to helium								
	heat transport loop (physical sizes, temperature/pressure								
	distributions, characteristics, materials, equipment, energy								
	costs, etc.)								
1.2	Develop system understanding of liquid salt intermediate heat	2009							
	transport loop with necessary support systems (design								
	concepts, steady-state modeling, description of start-up,								
	shutdown, off-normal behaviors and responses, etc.).								

Number	Description	Needed by
1.3	Determine redox control technique(s) or corrosion prevention methods/procedures for chosen salt(s) in order to minimize corrosion of intermediate loop containment/devices.	2009
1.4	Recommend heat exchanger designs for a He/Salt IHX and determine implications of using liquid salt on design of H ₂ SO ₄ decomposer and related process heat exchangers.	2009
1.5	Recommend best candidate salt/structural material sets for use in the intermediate heat transport loop.	2008
1.6	Measure liquid salt data and corrosion data, as needed, to fill in "holes." Data must be collected in priority order.	2008
1.7	Assemble liquid salt data and materials corrosion data from literature sources and identify and prioritize physical data "holes."	2007
2. Use of He	lium for Intermediate Heat Transport Loop	
2.	Develop system understanding of a practical helium intermediate heat transport loop to support intermediate heat transport fluid down-select (pipe configuration, length limitations, pressure drops, energy consumption, etc.)	2009
2.1	Determine effects of helium environments (commercial purity) on IHX candidate materials and recommend conditions to minimize corrosion/erosion.	2009
2.2	Model and test internal pipe insulation materials and methods for helium transport pipes.	2008
2.3	Recommend heat exchanger designs/materials for He/He IHX and process heat exchangers that are connected to the intermediate loop (excluding the H ₂ SO ₄ decomposer).	2008
	Materials and Components	ı
3.	Provide detailed list of candidate component designs or concepts and suitably matched materials for use in pilot-scale demonstration plant(s) and independent pilot-scale testing.	2011
3.1	Examine use of high performance alloys and ceramics for IHX use (not code approved)	2009
3.2	Initiate assembled heat exchanger tests in the laboratory.	2009
3.3	Obtain high-temp creep, mechanical property data, permeability, manufacturing methods and so on to fill in data "holes" for IHX-suitable materials (code approved or nearly code-approved materials only).	2008
3.4	Obtain high-temp mechanical properties, permeability, and identify manufacturing methods, as needed, for candidate process heat exchanger materials to supplement heat exchanger design efforts.	2008
3.5	Identify designs and materials for high-temp oxygen cooler.	2008

Number	Description	Needed by
3.6	Perform corrosion testing of structural materials (metals, ceramics, cladded/coated samples) exposed to liquid/vapor H ₂ SO ₄ and related chemicals.	On-going
3.7	Perform corrosion testing of structural materials (metals, ceramics, cladded/coated samples) exposed to HIx solutions under flow conditions.	On-going
3.8	Review and assess components shown on hydrogen	2007,
	production process flow sheets (S-I, high-temp electrolysis, and alternative processes if needed) for technical readiness.	2008, 2009,
	and afternative processes if needed) for technical readiness.	2010,
		2011
3.9	Revise the NHI Materials and Components Qualification Plan	2007,
	as needed to make it more usable by the program.	2008,
		2009,
		2010
3.10	Develop suitable database and begin implementation of the	2007
	NHI Materials and Components Qualification Plan across the	
2.11	larger research program.	2007
3.11	Develop NHI Materials and Components Qualification Plan	2007
	of-Plant and Infrastructure	2011
4.	Determine baseline balance-of-plant and infrastructure configurations of candidate pilot-scale hydrogen production	2011
	plants.	
4.1	Examine physical and spatial relationships between HTE	2009
'	plant units and the intermediate heat transport loop, and	2009
	determine minimum heat transfer distances while maximizing	
	distance between nuclear plant and hydrogen	
	production/storage units.	
4.2	Examine physical and spatial relationships between S-I plant	2008
	units and the intermediate heat transport loop, and determine	
	minimum heat transfer distances while maximizing distance	
1.2	between nuclear plant and hydrogen production/storage units.	2000
4.3	Identify environmental permitting requirements for S-I and	2008
4.4	HTE plants and initiate permitting activities (as needed).	2000
4.4	Identify necessity, operational requirements and equipment options for auxiliary heat source/sink for intermediate loop.	2008
5. Safety	options for auxiliary near source/shik for intermediate loop.	
5. Safety 5.	Submit detailed safety strategy containing defenses-in-depth,	2011
]	risk-based features, and operational recommendations to	
	maximize safety of the combined nuclear plant/hydrogen	
	plant.	
5.1	Perform transient analyses of combined plant to look for	2010
	potential safety problems that would not be present under	
	steady-state operating conditions.	

Number	Description	Needed by						
5.2	Determine tritium permeation and control strategies to minimize concentrations of tritium in the hydrogen product (must be coordinated with intermediate heat transport fluid selection).	2010						
5.3	Examine chemical industry safety "best practices" and begin incorporation of usable information into the DOE NHI R&D plant design process.	2008						
5.4								
6. General O	perations	•						
6.	Develop steady-state and transient modeling capabilities for combined system that are applicable for NRC licensing	2009						
6.1	Incorporate economic evaluation capabilities into HyPEP.	2009						
6.2								
6.3	Develop transient modeling capabilities for the combined plant that are suitable for safety and operations analysis and the design of control system strategies.	2008						
6.4	Complete beta testing of HyPEP model.	2008						
6.5	Complete alpha testing of HyPEP model.	2007						

Table 2. Sequential Ordering of Technical Issues and Goals

2007						
	1.7	Assemble liquid salt data and materials corrosion data from literature sources and identify and prioritize physical data "holes."				
	3.8	Review and assess components shown on hydrogen production flow sheets (S-I, high-temp electrolysis, and alternative processes, if needed) for technical readiness.				
	3.9	Revise the NHI Materials and Components Qualification Plan, as needed, to make it more usable by the program.				
3	3.10 Develop suitable database and begin implementation of the NHI Materia and Components Qualification Plan across the larger research program.					
3	3.11	Develop NHI Materials and Components Qualification plan.				
	6.5	Complete alpha testing of HyPEP model.				
2008						
	1.5 Recommend best candidate salt/structural material sets for use in the intermediate heat transport loop.					
	1.6	Measure liquid salt data and corrosion data, as needed, to fill in "holes." Data must be collected in priority order.				
	2.2	Model and test internal pipe insulation materials and methods for helium				

	transport pipes.					
2	.3 Recommend heat exchanger designs/materials for He/He IHX and process					
	heat exchangers that are connected to the intermediate loop (excluding the					
	H_2SO_4 decomposer).					
3	.3 Obtain high-temp creep, mechanical property data, permeability,					
	manufacturing methods and so on to fill in data "holes" for IHX-suitable					
	materials (code-approved or nearly code-approved materials only).					
3	.4 Obtain high-temp mechanical properties, permeability, and identify					
	manufacturing methods, as needed, for candidate process heat exchanger					
	materials to supplement heat exchanger design efforts.					
	.5 Identify designs and materials for high-temp oxygen cooler.					
3	.8 Review and assess components shown on hydrogen production process					
	flow sheets (S-I, high-temp electrolysis, and alternative processes, if					
	needed) for technical readiness.					
] 3	.9 Revise the NHI Materials and Components Qualification Plan as needed to					
	make it more usable by the Program.					
4	.2 Examine physical and spatial relationships between S-I plant units and the					
	intermediate heat transport loop, and determine minimum heat transfer					
	distances while maximizing distance between nuclear plant and hydrogen					
	production/storage units.					
4	.3 Identify environmental permitting requirements for S-I and HTE plants and					
	initiate permitting activities, as required.					
4						
5						
5						
 4.4 Identify necessity, operating requirements and equipment options for auxiliary heat source/sink for intermediate loop. 5.3 Examine chemical industry safety "best practices" and begin incorporation of usable information into the DOE NHI R&D pant design process. 5.4 Develop or identify high-temp isolation valve designs or concepts for further testing (applicable to IHX). 6.2 Complete steady-state HyPEP Model to include both S-I and HTE 						
c						
<u> </u>	processes.					
6	.3 Develop transient modeling capabilities for the combined plant that are					
	suitable for safety and operational analysis and the design of control system					
	strategies.					
	.4 Complete beta testing of the HyPEP model.					
2009						
	1. Determine suitability of liquid salt for the NGNP intermediate loop and					
	provide recommendations for/against its use in the engineering-scale					
	demonstration.					
1	.1 Compare liquid salt intermediate heat transport loop to helium heat					
	transport loop (physical sizes, temperature/pressure distribution,					
	characteristics, materials, equipment, energy costs, etc.)					
1	.2 Develop system understanding of liquid salt intermediate heat transport					
	loop with necessary support systems (design concepts, steady-state					
	modeling, description of start-up, shutdown, off-normal behaviors and					
	responses, etc.)					
L	responses, etc.)					

1.3	1 \ /
	methods/procedures for chosen salt(s) in order to minimize corrosion of
1 1	intermediate loop containment/devices.
1.4	
	implications of using liquid salt on design of H ₂ SO ₄ decomposer and
2	related process heat exchangers. Develop system-level understanding of a practical helium intermediate heat
2	transport loop to support intermediate heat transfer fluid down-select (pipe
	configuration, length, limitations, pressure drops, energy consumption,
	etc.)
2.1	
	candidate materials and recommend conditions to minimize
	corrosion/erosion.
3.1	
	code approved).
3.2	<u> </u>
3.8	
	(S-I, high-temp electrolysis, and alternative processes if needed) for
	technical readiness.
3.9	1
4.1	make it more usable by the program.
4.1	
	the intermediate heat transport loop, and determine minimum heat transfer distances while maximizing distance between nuclear plant and hydrogen
	production/storage units.
6	*
	system that are applicable for NRC licensing.
6.1	
2010	
3.8	Review and assess components shown on hydrogen production process
	flow sheets (S-I, HTE and alternative processes if needed) for technical
	readiness.
3.9	1
	make it more usable by the program.
5.1	
	problems that would not be present under steady-state operating conditions.
5.2	1
	concentrations of tritium in the hydrogen product (must be coordinated with the intermediate heat transport fluid selection).
2011	with the intermediate heat transport fluid selection).
3	Provide detailed set of candidate component designs or concepts and
	suitably matched materials for use in pilot-scale demonstration plant(s) and
	independent pilot-scale testing.
3.8	
	(S-I, HTE and alternative processes if needed) for technical readiness.
	1 /

- 4. Determine baseline balance-of-plant and infrastructure configurations of candidate pilot-scale hydrogen production plants.
- 5. Submit detailed safety strategy containing defense-in-depth, risk-based features, and operational recommendations to maximize safety of the combined plant.

ID	Task Name	Start	Finish	Duration	2007	2008	2009
					Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4
1	Assemble salt and corrosion data , and identify /prioritize "data holes ."	4/2/2007	9/30/2009	653d			
2	Measure liquid salt and corrosion data , as needed.	10/1/2007	9/30/2009	523d			
3	FY 07 Year end report on salt data and data needs.	10/1/2007	10/1/2007	0d	•		
4	FY 08 Year end report on salt data and data needs.	9/30/2008	9/30/2008	0d		*	
5	Recommend best combinations of salts and materials for HX use .	9/30/2008	9/30/2008	0d		*	
6	FY 09 Year end report on salt data and data needs.	9/30/2009	9/30/2009	0d			•
7	Study IHX designs employing helium and molten salts .	4/1/2008	9/30/2009	392d			
8	FY 08 Year end report on IHX designs using helium and molten salts .	9/30/2008	9/30/2008	0d		♦	
9	FY 09 Year end report on IHX designs using helium and molten salts .	9/30/2009	9/30/2009	0d			•
10	Recommend HX design (s) for He / salt IHX.	9/30/2009	9/30/2009	0d			•
11	Study redox control mechanisms for molten salts.	4/2/2007	9/30/2009	653d			
12	FY 07 Year end report on redox chemistry work with molten salts .	10/1/2007	10/1/2007	0d	•		
13	FY 08 Year end report on redox chemistry work with molten salts .	9/30/2008	9/30/2008	0d		*	
14	FY 09 Year end report on redox chemistry work with molten salts .	9/30/2009	9/30/2009	0d			•
15	Recommend redox control system for chosen salt system (s).	9/30/2009	9/30/2009	0d			•
16	Study system behavior of salt intermediate loop.	4/2/2007	9/30/2009	653d			
17	FY 07 Year end report on system studies work with molten salts	10/1/2007	10/1/2007	0d	•		
18	FY 08 Year end report on system studies work with molten salts .	9/30/2008	9/30/2008	0d		*	
19	Provide recommendation on use of salt for NGNP intermediate loop .	9/30/2008	9/30/2008	0d		*	
20	FY 09 Year end report on system studies work with molten salts .	9/30/2009	9/30/2009	0d			•
21	Provide comparison of helium loop system to chosen salt loop system .	10/1/2008	4/1/2009	131d			
22	Provide report on He /salt comparison .	4/1/2009	4/1/2009	0d			*

Figure 3. Liquid Salt Systems Technical Area

ID	TaskName	Start	Finish	Duration	2007			2008				2009	
טו	i askivame	Start	FINISN		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 Q2	Q3
1	Analyze HX concepts for He /He IHX.	4/2/2007	9/30/2008	392d									
2	FY 07 Year end reporton IHX analysis .	10/1/2007	10/1/2007	0d		4	>						
3	FY 08 Year end reporton IHX analysis .	9/30/2008	9/30/2008	0d						•	>		
4	Recommend He / He IHX design for intermediate loop.	9/30/2008	9/30/2008	0d		•							
5	Analyze HXs and systems that use alternative fluids (steam, CO2).	10/1/2007	9/30/2008	262d									
6	Report on HX and systems using alternative fluids.	9/30/2008	9/30/2008	0d		•							
7	Analyze and test pipe insulation for high-temp systems.	4/2/2007	9/30/2009	653d									
8	FY 07 Year end reporton pipe insulation .	10/1/2007	10/1/2007	0d	*								
9	Initiate pipe insulation experiments	4/1/2008	4/1/2008	0d				*					
10	FY 08 Year end reporton pipe insulation work .	9/30/2008	9/30/2008	0d						•	>		
11	Provide recommendation and report on pipe insulation .	9/30/2009	9/30/2009	0d									

Figure 4. Helium Systems Technical Area

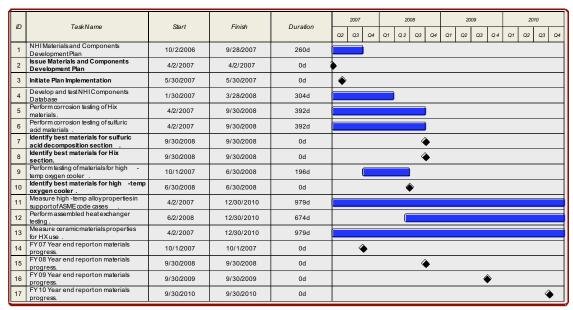


Figure 5. Materials Technical Area

Figure 6. Balance-of-Plant Technical Area

Figure 7. Safety Technical Area

Figure 8. Operations Technical Area

3. SET OF REPORTS AND PROJECTS

The list of past and on-going System Interface and Supporting Systems projects is shown in Table 3. The table provides the project date, the description, and origin (location) for the project. Where reports or documents have been written, report or document titles are provided under the description heading. Where work is underway and reports or project documents have yet to be issues, the work package or NERI project title is provided under the description heading instead.

Table 3. Set of System Interface and Supporting Systems Projects/Reports

Identifier	Description	Origin
FY 2004		
UNLV 1Q_2004	UNLV HTHX Project Quarterly Report, 1Q FY04	UNLV
UNLV 2Q_2004	UNLV HTHX Project Quarterly Report, 2Q FY04	UNLV
UNLV 3Q 2004	UNLV HTHX Project Quarterly Report, 3Q FY04	UNLV
UNLV 4Q 2004	UNLV HTHX Project Quarterly Report, 4Q FY04	UNLV
ANL W7500-	Reactor/Process Interface Requirements	ANL-W
001-ES-00	-	
ANL W7500-	Reactor/Process Interface Heat Exchanger and Intermediate	ANL-W
002-ES-00	Loop Technical Issues	
ANL W7500-	Balance of Plant Requirements for a Nuclear Hydrogen	ANL-W
003-ES-00	Production Plant	
INEEL EXT-04-	Infrastructure Requirements for a Nuclear Hydrogen Pilot	INEEL
01791	Plant	
FY 2005		
UNLV 1Q_2005	UNLV HTHX Project Quarterly Report, 1Q FY05	UNLV
UNLV 2Q 2005	UNLV HTHX Project Quarterly Report, 2Q FY05	UNLV
UNLV 3Q 2005	UNLV HTHX Project Quarterly Report, 3Q FY05	UNLV
UNLV 4Q 2005	UNLV HTHX Project Quarterly Report, 4Q FY05	UNLV
UNLV 2005	UNLV HTHX Project FY 2005 Year-End Report	UNLV
INL EXT-05-	An Engineering Analysis for Separation Requirements of a	INL
00137	Hydrogen Production Plant and High-Temperature Nuclear	
	Reactor, Revision 0	
INL EXT-05-	Thermal-Hydraulic Analysis of Heat Transfer Fluid	INL
00453	Requirements and Characteristics for Coupling a Hydrogen	
	Production Plant to a High-Temperature Nuclear Reactor	
INL EXT-05-	Engineering Analysis of Intermediate Loop and Process	INL
00690	Heat Exchanger Requirements to Include Configuration	
	Analysis and Materials Needs	
NERI 05-032	Silicon Carbide Ceramics for Compact Heat Exchangers (3-	Johns Hopkins
	year project)	University
NERI 05-154 1Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 1 st Quarterly Report	
NERI 05-154 2Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 2 nd Quarterly Report	

Identifier	Description	Origin
FY 2006		
UNLV 1Q_2006	UNLV HTHX Project Quarterly Report, 1Q FY06	UNLV
UNLV 2Q_2006	UNLV HTHX Project Quarterly Report, 2Q FY06	UNLV
UNLV 3Q_2006	UNLV HTHX Project Quarterly Report, 3Q FY06	UNLV
UNLV 4Q_2006	UNLV HTHX Project Quarterly Report, 4Q FY06	UNLV
UNLV	NHI Report: Hydrodynamic, Thermal and Decomposition	UNLV
Ceramic_2006a	Performance for Ceramic Sulfuric Acid Decomposer	
UNLV	Mechanical and Thermal Stress Analysis of Ceramic HTHX	UNLV
Ceramic_2006b		
UNLV	NHI Report: Optimization Studies and Manifold Design of	UNLV
Stripfin_2006	Compact Off-set Strip Fin HTHX	
GA	Corrosion Studies of Construction Materials in HI	GA
Corrosion_2006	Decomposition Environment	
Ceramatec 2006	FY2006 Materials Characterization and Heat Exchanger	Ceramatec
	Design Development for NHI Applications	
INL EXT-06-	Balance of Plant Requirements for a Nuclear Hydrogen	INL
11232	Plant, Revision 1	
INL EXT-06-	Assessment of Codes and Standards Applicable to a	INL
11482	Hydrogen Production Plant Coupled to a Nuclear Reactor	
INL EXT-05-	An Engineering Analysis for Separation Requirements of a	INL
00137 Rev. 1	Hydrogen Production Plant and High-Temperature Nuclear	
	Reactor	
INL EXT-06-	HyPEP FY06 Report: Models and Methods	INL, ANL,
11725		KAERI
ORNL TM-2006	NHI Materials and Components Development Plan	ORNL, INL
563		
ORNL TM-2006	Assessment of Candidate Molten Salt Coolants for the	ORNL
69	NGNP/NHI Heat-Transfer Loop	
NERI 05-032	Silicon Carbide Ceramics for Compact Heat Exchangers (3-	Johns Hopkins
	year project)	University
NERI 05-154 3Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 3 rd Quarterly Report	
NERI 05-154 Y1	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, Year 1 Report	
NERI 05-154 5Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 5 th Quarterly Report	
NERI 05-154 6Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 6 th Quarterly Report	
NERI 05-154 7Q	Molten Salt Transport Loop: Materials Corrosion and Heat	U of Wis.
	Transfer Phenomena, 7 th Quarterly Report	
NERI 06-024	Ni-Si Alloys for the S-I Reactor/Hydrogen Production	U of Mo and
	Process Interface (3-year project)	INL
NERI 06-041	Dynamic Simulation and Optimization of Nuclear Hydrogen	MIT
EV 2007	Production Systems (3-year project)	
FY 2007	Taking Managarat and Assault 14's at NOND C	TAIT
INL EXT-07-	Tritium Movement and Accumulation in NGNP System	INL
12746	Interface and Hydrogen Plant Stoody State and Transient Modeling of Combined Nyelson	ANII
N-AN07SS0101	Steady State and Transient Modeling of Combined Nuclear	ANL
	Hydrogen Plant	

Identifier	Description	Origin
N-ID07SS0101	UNLV NHI Materials Support	UNLV
N-ID07SS0102	UNLV NHI Momentum/Heat/Mass Transfer	UNLV
N-ID07SS0103	UNLV NHI Liquid Salt Systems	UNLV
N-ID07SS0104	UNLV NHI Materials/Surface Characterization	UNLV
N-ID07SS0105	UNLV NHI Chemistry Support	UNLV
N-ID07SS0106	Measurement of Mechanical Alloy Properties at UNLV –	UNLV
	FY06 Carryover	
N-ID07SS0107	Corrosion and Crack Growth Studies in HIx Solutions at	GA
	General Atomics – FY06 Carryover	
N-ID07SS0108	Numerical Analysis of Advanced Heat Exchanger Concepts at UNV – FY06 Carryover	UNLV
N-ID07SS0109	C-SiC Materials for HTHX's at UC-Berkeley – FY06 Carryover	UCB
N-ID07SS0110	Ceramic Heat Exchanger Development for Application to NHI Hydrogen Production Processes (FY06 Carryover)	Ceramatec
N-ID07SS0111	Ceramic Heat Exchanger Development for Application to NHI Hydrogen Production Processes (FY07 Bridge Package)	Ceramatec
N-ID07SS0112	UNLV RF High Temperature Heat Exchanger Project – FY06 Carryover	UNLV
N-ID07SS0113	The Development of Self-Catalytic Materials for Thermochemical Water Splitting Using the Sulfur-Iodine Process	MIT
N-IN07SS0101	Steady-State and Transient Modeling of Combined Nuclear Hydrogen Plant	INL
N-IN07SS0102	Technical Director and Project Management Support for the DOE NHI	INL
N-OR07SS0101	Development of NHI Materials and Components Test Plan	ORNL
UNLV 1Q_2007	High Temperature Heat Exchanger Project: Quarterly Progress Report, October 1, 2006 through December 31, 2006	UNLV
UNLV 2Q_2007	High Temperature Heat Exchanger Project: Quarterly Progress Report, January 1, 2007 through March 31, 2007	UNLV
UNLV	Tensile Property Measurements of Structural Materials for	UNLV
Alloy_2007a	High-Temperature Heat Exchanger Applications	
GA	FY2006 Year End Report: Corrosion Studies of	GA
Corrosion_2007a	Construction Materials for HI Decomposition Environment	
ANL	Dynamic Modeling Efforts for System Interface Studies	ANL
Model_2007a		
NERI 05-032	Silicon Carbide Ceramics for Compact Heat Exchangers (3-	Johns Hopkins
NEDI 05 154	year project)	University
NERI 05-154	Molten Salt Transport Loop: Materials Corrosion and Heat Transfer Phenomena (3-year project)	U of Wis.
NERI 06-024	Ni-Si Alloys for the S-I Reactor/Hydrogen Production	U of Mo and
	Process Interface (3-year project)	INL
NERI 06-041	Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems (3-year project)	MIT
NERI 07-030	Liquid Salts as Media for Process Heat Transfer	U of Wis.
1.210 07 000	21quia Sano do intedia foi i 100000 ficar fidilorei	0 01 1110.

4. MAPPING OF PROJECTS TO TECHNICAL ISSUES

Table 4 shows the mapping of projects to technical issues. The project identifiers are the same ones used in Tables 2 and 3 to differentiate between projects. If the project identifier box is empty in Table 4, then no projects have yet been pursued to solve the technical issue. The "Resolved?" indicator shows whether the technical issue has been resolved or will be resolved this fiscal year. The "Year Needed" column shows when the particular technical issue must be solved in order to support the construction and operation of pilot-scale and engineering-scale equipment. If the "Year Needed" box is filled with an "On-going" indicator, then the work is expected to be ongoing and does not have a defined resolution.