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‘Granular Elasticity’ and the loss of elastic stability in
granular materials

Paul W. Humrickhouse
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Abstract. A recently proposed hyperelastic model for granular materials, called "granular elasticity”, identifies a yield
angle as a result of thermodynamic instability. GE gives yield angles that are smaller than those found in real materials;
a generalization of the theory is considered here that includes dependence on the third strain invariant. This generalization
proves unsuccessful, as it gives smaller, not larger, yield angles. Fully convex hyperelastic models are identified as a point for

future investigation.

Keywords: Granular Elasticity, Hyperelastic Models, Non-linear Elasticity, Thermodynamic Stability

PACS: 05.70.Ce, 45.70.Cc, 46.25.-y, 62.20.D-

INTRODUCTION

In a series of recent papers [1-7], a hyperelastic model
for granular statics (called “granular elasticity” or GE)
has been proposed, in which the Helmholtz free energy
is of the form

F=AA®(3¢0% +42) (1

Here A and ¢ are material constants, A = —uy;, u’ =
o Uy = uz; — Juged;, and u;; are small elastic
strains. A and »? are the first and second invariants of
the strain tensor,

A = —(u11 +u22 + uss) ()
w)=ul +uhtuds+3rh+ 313+ 37— 347 (3)
where «;; are the “engineering” shear strains, v;; =
2u;;. This form of the free energy is intended to capture
the widely observed variation of the elastic moduli in

granular materials as a power law function of pressure;
the stresses are given by
_OF
au,-j
and the stiffness tensor Mijxe = 0°F/Ou;;0uge, and
thus the elastic moduli 3(. 1 scale as u®, In terms of
the stresses, K, ju ~ P&FT; Jiang and Liu take a = 1/2
(K, o~ P ), consistent with “Hertz contacts”, for GE;
we shall leave a unspecified for the time being, and

investigate different choices of a below. The free energy
is convex only for

O"'j

@)

u?  2€(a+2)

A2 & ba ©)
implying an absence of static solutions outside this re-
gion, which, remarkably, is the Drucker-Prager form of
the Coulomb yield criterion in terms of the stresses [2].

THE YIELD ANGLE

GE also defines the yield angle in terms of the material
constants a and £. For the case of a granular layer subject
to a normal stress [V and shear stress 7', there are two
non-zero strain components, one normal (x) and one
shear (v); they are given in terms of the stresses by
equation 4, from which one may obtain

X

tan¢ = 4

L 6)
B 2 2a242a+4 (

2¢(a+2)+jaly + 303
As there is a limit on the ratio of shear to normal strain
(equation 5), substituting this critical value of the strain
ratio, 5

-y 4€(a+2) 4

< 7

u? % 5a 3 @
into equation 6 gives the yield angle ¢, in terms of only
the constants a and &:

£(a+2) 1
Sa 3

tang, = —2 > (8)
YU Zg(a+2)+ 3

Of course, we must also pick a value for the exponent
a, and it is apparent from equation 8 that the yield angle
depends on a. The Hertz theory for spheres suggests
a = 1/2, while a large body of experimental evidence
suggests a ~ 1 for dry, cohesionless materials (see, e. g.,
[8, 91), which may be due to non-spherical contacts, an
increasing number of contacts [8], or soft oxidized layers
surrounding the spherical particles [10]. Consider, then,
¢y(€) fora=1/2 and a = 1, shown in Figure 1. Equation

8 simplifies to
/€~ 1
¢y = arctan ( <

£+% B
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Figure 1. The yield angle ¢y for GE as a function of £. The
maximum occurs at ~ 25,57 fora = 1/2 and ~ 17° fora = 1.
fora—1/2 and
J2E il
. 5 3
¢, = arctan LR (10)

541 [eg]
Iy
Lo

for @ = 1. The peculiar feature of these curves is that
they have a maximum; for GE (a = 1/2) it occurs at
£ =4/3, ¢, = 25.5°. So no matter what the value of the
constant &, granular elasticity predicts a yield angle that
is, at most, 25.5°. This, of course, is lower than the 30-
40" observed for many materials.

While the choice of a = 1/2 is motivated by the Hertz
theory, we have also seen that real granular materials,
except at high pressures [8], generally have elastic mod-
uli varying as P'/2, implying a ~ 1. We shall subse-
quently refer to this case as GE-C, for “granular elasticity
- cubic”, since the free energy is a cubic function of the
strains:

F = 26AN® + AAu? (11)
In this case, ¢, (&) has a similar shape, but shifts to
even lower values of ¢,, with a maximum at £ = 5/3,
¢y ~ 17°. The peak in the curve, as a function of a,
can be determined by solving for £ at the maximuim,
¢y, /0& = 0, with

5(14 2a)

3(a+2) (12)

gnmx —
and the value of the maximum yield angle given by

3

ala+1) a3

' 1
(J‘f)y,'m ax — arctan (4

We see in Figure 2 that ¢, ;... 18 a decreasing function
of a. Thus, in employing GE/GE-C, one is forced (o
take a ~ 1/4, say, to allow for realistic yield angles (a
maximum of ~ 37.76° in that case), but contrary to what

Figure 2. The maximum yield angle for GE. a decreasing
function of a.

we know about the pressure dependence of the elastic
moduli, or take a ~ 1 to match the latter, implying sand
piles cannot be stable if steeper than ~ 17°. a — 1/2
is something of a compromise in that regard. Below
we investigate two potential generalizations in hopes of
alleviating this discrepancy.

GENERALIZING THE GRANULAR
ELASTICITY THEORY

Differing dependence of bulk and shear moduli on
compression

Originally, Jiang and Liu considered the following
more general form for the free energy [1]:

F =26 ANPT? 4 AA? (14)
of which granular elasticity is the special case a = b =
1/2. This gives the freedom to choose a < 1/2 in an
attempt to allow higher yield angles, and & = 1 such
that, for isotropic compression, the bulk modulus has the
desired P'/? dependence. First, consider the effect on

the stability condition, which simplifies to

i
Uy

AZ =

AE(b+1)(b+2)

An‘)—u
Sa{a+1)

(15)

The presence of the term A % on the right hand side
means the limiting stress ratio is no longer constant, but
depends on the compression A; so the coulomb yield
condition of GE is lost. Taking a # b here will also result
in the effective shear and bulk moduli having different
dependence on the pressure, but both moduli usually
have the same dependence on pressure (see, e.g., [9]).
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Most importantly, for any anisotropic stress state (i.e.
us # 0), this modification will not achieve the desired
PY?% (A') dependence of the elastic moduli. While
b =1 ensures this relationship for isotropic stress, recall
that we require a < 1/2 for realistic yield angles. If
ug 7 0, this term will have a lower order dependence on
the strains than the “bulk”™ term, and since the strains are
small, the shear term w1ll dominate, and the result will
remain K, g ~uf; ~ P att,

Incorporating dependence on the third strain invariant

In a more recent paper [7], Jiang and Liu propose a
generalization of the form [8]:

at+2 p “-:f "'?u
F=Afref AT A3 (16)

where f is an arbitrary function, and w},; is the third
invariant of the (deviatoric) strain tensor,

3 0 Q
?L'f.l'f_?l'TJ JR?”# (I?)

For GE, a=1/2 and f is given by

f A(:; |;—) (18)

The simplest generalization that incorporates the third
invariant is

. 'us w3

jzA( 26t ci{.f;) (19)
where ( is another dimensionless constant; we anticipate,
then, that the yield angle will be given in terms of two
constants ¢ and &, potentially resulting in a larger range
of allowable values. With a = 1, the free energy is now
given by

F=A(30% + Aul +Culyy) (20)

Stability requires that all eigenvalues of the stiffness
matrix are positive. For the plane problem, with only two
non-zero strain components, there are two eigenvalues,
leading to the stability conditions

v? _ 8(=¢*+3¢+18)

o 2N % Uy T
@ = 02 @b
v? _ B(—3¢*¢ —5(—154-27¢)
oo
u? — 9(2¢2¢+5¢ +10) @2

First we must establish which of these is the more strin-
gent condition. As the value of 4° /u” cannot be negative,
and £ and ¢ are positive constants, we can first establish

some limits on their values to ensure real solutions. The
first condition does not depend on £ at all, and it is clear
that for the right hand side to be greater than zero, ¢ < 6.
The second condition further requires that

—3¢26—5¢—15+27€ >0 (23)

or )
£(27-3¢H) >5(+15 (24)

Regardless of the value of &, this can only be satisfied for
{ < 3. Then we can also write

5+ 15

25
73 (25)

In order to establish which of the two stability criteria
is more severe, we shall first maximize the second with

respect to £. Since

8 (8(=3¢*¢—5¢—15+27¢ 40(—¢3® +27¢ + 54)

¢ 9(2¢2¢ +5¢ + 10) 0(2¢2¢ 4 5¢ 4 10)2
(26)

which is positive for 0 < ¢ < 3, the second stability
condition is an increasing function of £. There is no upper
bound on the value of &, and

(8(—3C9£—5C— 15+27§)) 4(9-¢%)
9(2¢2¢ +5¢ +10) R

So, having chosen £ (o make condition two as lenient as
possible, we may rewrite the two conditions as follows:

lim (27)

Evoo

3¢2 42 2 5
i’_? < (—=C*+2(+12) (28)
4 u? 3
T < 9-¢) (29)
T

Figure 3 shows that the second condition is more restric-
tive of the two, even in the limit £ — oo. Identifying once
again the ratio of shear to normal forces as the tangent of
the yield angle, and substituting the stability condition
(equation 22) for the ratio of shear (o normal strain, we
arrive at an expression for the yield angle in terms of the
two constants £ and (:

¢y = arctan
B s 1 ~ 2 ", - .
V(€26 + 3¢ +5) (26 —1)* (—3¢2€ — 5 — 15+ 27€)
]

(62 + 3CE+ 186 +2026 +5C +10— 53¢ — 5¢°
(30)

%

For ¢ = 0, this simplifies to the relationship obtained
from GE-C (equation 10). Recall that GE-C has a maxi-
mum yield angle of ~ 17° at £ = 5/3. Unfortunately, the
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Figure 3. Maximum stable value of 4% /u® for the two sta-
bility criteria. equations 28-29. in the limit £ — oc. Stability is
lost at condition two before ever reaching condition one.,

Figure 4. The yield angle ¢ as a function of the constants &
and ¢. ¢y decreases rapidly with .

preceding generalization does not allow for higher yield
angles. Figure 4 shows the yield angle as a function of
& and (. The familiar shape of ¢, (&) from GE/GE-C is
apparent on the ¢ = 0 axis, but taking non-zero values
of ¢ only decreases the yield angle. The peak of the sur-
face ¢y (&, C) oceurs at § = 5/3, ¢ = 0 with the maximum
yield angle still approximately equal to 17°.

SUMMARY

The recently proposed granular elasticity theory has
been successful in describing many aspects of granular
physics, including dilatancy, stress-induced anisotropy,
yield, and stress distributions in sand piles and silos [1-
7]. Nevertheless, it possesses a significant quantitative
discrepancy; choosing a form of the free energy that
d - s el 3 X
gives K, pr ~ P2, in accordance with experimental data,
implies yield angles no larger than ~ 177, Here we inves-
tigate two possible generalizations of theory in hopes of
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relaxing this constraint; neither has proven to be success-
ful. In particular, a form incorporating the third invariant
of the strain tensor restricts the range of yield angles to
even lower values. While thermodynamic instability is
an intuitive description of yield, as the yield condition re-
sulting from these forms over-constrains, it may be desir-
able to use a hyperelastic form that is convex everywhere
[11, 12]. Such cases will be considered in a subsequent

paper.
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