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ABSTRACT

We present a robust arbitrarily high order transport method of the characteristic type for
unstructured tetrahedral grids. Previously encountered difficulties have been addressed through the
reformulation of the method based on coordinate transformations, evaluation of the moments
balance relation as a linear system of equations involving the expansion coefficients of the
projected basis, and the asymptotic expansion of the integral kernels in the thin cell limit. The
proper choice of basis functions for the high-order spatial expansion of the solution is discussed
and its effect on problems involving scattering discussed. Numerical tests are presented to illustrate
the beneficial effect of these improvements, and the improved robustness they yield.

Key Words: Deterministic Transport, Discrete-Ordinates, Unstructured Tetrahedral Grids,
High-Order, Characteristic

1. INTRODUCTION

High-order spatial discretization schemes on unstructured grids for the solution of the
discrete-ordinates approximation of the transport equation have been previously proposed. In
particular, the Arbitrarily High-Order Transport method of the Characteristic type in
three-dimensional Unstructured Grids (AHOT-C-UG) was introduced by Azmy and Barnett [1] as
an extension of the two-dimensional Cartesian-based AHOT-C approach [2]. The AHOT-C-UG
methodology combines the efficient iterative solution algorithm with local coupling that the
discrete-ordinates approximation provides, an arbitrarily high order spatial representation of the
flux and flexible geometric representation of curved surfaces through tetrahedral meshing, while
at the same time avoiding the redistribution term of the streaming operator that arises in
curvilinear geometries.

In this work we present a robust AHOT-C-UG formalism designed to address the inadequate
performance observed earlier with high order [1]. The three key improvements involve:
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• Use of affine coordinate transformation of the tetrahedral cells into a canonical unit
tetrahedron: simplifies AHOT-C-UG’s formulation in general and allows for a single
asymptotic expansion of the characteristic relations necessary in the thin cell limit,

• Evaluation of the moments balance relation as a linear system of equations, where the
unknowns consist of the expansion coefficients of the projected basis: improves the
condition number of the resulting local matrix thus leading to a stable iterative scheme,

• Asymptotic expansion of the ‘spatial weights’ appearing in the equations for the spatial
moments of the angular flux, computed through the characteristic relations: addresses the
numerical imprecision effects in the thin cell limit.

Numerical tests demonstrate the effectiveness of our improved formulation in addressing the
earlier method’s failures [1] and demonstrates the feasibility of performing higher order transport
calculations with the AHOT-C-UG formalism via a different definition of the polynomial basis
function used in the spatial expansion of the angular flux.

2. GENERAL THEORY

The exact inversion of the streaming-plus-collision operator in each cell forms the basis of short
characteristic methods. This exact inversion is made possible by the fact that the SN

approximation to the neutral particle transport equation possesses straight line ‘characteristic
curves’ along each direction Ω̂ in which the transport operator can be written as a total differential
with respect to the characteristic length. This observation was first used by Lathrop to develop the
Step Characteristics (SC) method [3] in two-dimensional Cartesian geometry, which he showed to
be positive but less accurate than the conventional Diamond Difference (DD) approach. The
Linear Characteristic (LC) method, an extension to the SC method, was developed in
two-dimensional Cartesian geometry by Larsen and Alcouffe [4] in order to improve the accuracy
of Lathrop’s method. The LC method is an extension of the SC method in which the edge- and
cell-averaged angular fluxes are expanded into linear basis functions. Extensions of the LC
method to complex geometries, such as arbitrary polygonal and polyhedral cells, have been
reported by DeHart et al [5] and Grove [6]. The possibility of improving the accuracy of the
computational scheme gave rise to the Arbitrarily High-Order Transport Characteristic (AHOT-C)
method, in which the edge- and cell-averaged quantities are expanded into arbitrarily high-order
orthogonal polynomials [2]. The extension of the AHOT-C formalism into three-dimensional
unstructured grids, namely the AHOT-C-UG methodology, requires the use of coordinate
transformations in order to achieve the desired robustness. The coordinate transformation adopted
in this work is similar to the approach proposed by Mathews et al [7] for unstructured tetrahedral
grids.

2.1. Potential Characteristic Tetrahedron (CT) Configurations

Similar to the cell splitting procedure in AHOT-C, the use of the characteristic relation in
AHOT-C-UG will require the splitting of the arbitrary tetrahedron into subcell tetrahedra. The
number of subcell tetrahedra and their shape for a given tetrahedral cell will depend on the angular
direction under consideration. Such subcell tetrahedra will be referred to as a Characteristic
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Tetrahedron (CT). The CT configurations define the splitting or slicing of a tetrahedral cell into
constituent CTs with respect to a discrete angular direction Ω̂. More specifically, an arbitrary
tetrahedron may be split into CTs depending on the number of incoming and outgoing cell faces
with respect to the particle direction of motion. The total number of potential configurations
depends on the cell shape. For the particular instance of a tetrahedron, three configurations are
possible: one incoming face and three outgoing faces, two incoming and two outgoing faces, and
three incoming faces and one outgoing face. These three general cases are sketched in Fig. 1.

In the first case, in which there is one incoming and three outgoing faces, the characteristic
relation is used to calculate the outgoing face angular flux at each of the faces by splitting the
incoming face into three triangles that serve as bases of the resulting CTs. In the second case, in
which there are two incoming and two outgoing faces, the incoming faces are split, and the
characteristic relation is used to compute the outgoing angular flux through four CTs. Once the
CT outgoing angular fluxes are computed, the two CT outgoing angular fluxes per cell face are
projected into a single face. Finally, in the case of three incoming and one outgoing angular flux,
the characteristic relation is used to compute the outgoing angular flux through three CTs, and the
three outgoing angular fluxes are projected into a single face. Once all the cell face angular fluxes
have been computed, the cell balance of all retained moments is applied over the entire tetrahedral
cell and the cell-moments of the angular flux are computed.

Figure 1. Potential Characteristic Tetrahedron (CT) configurations for non-planar angular
direction

In addition to the CT configurations described above, there are three degenerate cases, in which
the orientation of the arbitrary tetrahedron may cause one of its faces to coincide with the angular
direction Ω̂. In general, there are three degenerate cases: two incoming faces and one outgoing
face, one incoming face and two outgoing faces, and one incoming and one outgoing face. These
are shown schematically in Fig. 2. In the first case, two incoming face angular fluxes may split
the tetrahedron into two CTs due to the angular direction being parallel to one of the cell faces.
Once these two CTs are used to compute the outgoing CT angular flux via the characteristic
equation, the two outgoing angular fluxes are projected into a single outgoing cell face. In the
second case, one incoming face angular flux may split the tetrahedron into two CTs, where the
incoming face angular flux is split and the two cell face outgoing angular fluxes can be readily
obtained from the two CTs. Finally, the third degenerate case is the trivial case in which the cell is
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a CT, thus there is only a single incoming and outgoing cell face.

Figure 2. Degenerate Characteristic Tetrahedron (CT) configurations for planar coincidental
angular direction

An algorithm that determines the CT configurations with respect to the cell orientation can be
devised by simply testing the number of incoming and outgoing cell faces. Since the unstructured
nature of the geometric description makes it impossible to determine a priori the sweeping order,
each cell is examined throughout the sweep to determine how it’s equations can be solved for the
outgoing face angular fluxes. This determination and the necessary transformations are performed
on-the-fly.

2.2. Affine Coordinate Transformation Among Global, Cell, and CT Coordinate Systems

Unlike the case of AHOT-C, in which the computational cell edges coincide with a global
Cartesian coordinate systems, the AHOT-C-UG formalism requires the transformation of an
arbitrary tetrahedral cell into a unit tetrahedral cell. This transformation simplifies the derivation
of the final set of discrete-variable equations and allows for a single asymptotic expansion of the
‘characteristic kernel’, i.e. integral form of the characteristic relation along the streaming
direction. First, consider an arbitrary tetrahedron with respect to a global Cartesian coordinate
system as illustrated in Fig. 3.

The global coordinate system is assumed to be an orthogonal Cartesian system where a point
located at the coordinates (xj

1, x
j
2, x

j
3) is specified by the j-th position vector �r j ,

�r j = xj
i êi (1)

where êi are unit vectors that define the global Cartesian coordinate system. Note that Einstein
summation convention has been introduced, in which repeated latin indices are summed over. Let
{�r 0, �r 1, �r 2, �r 3} be a set of vectors that specify the position of the four vertices that define a
tetrahedral cell with respect to the global Cartesian coordinate system. The first task is to define
an affine transformation that maps an arbitrary tetrahedron into a unit tetrahedron. This procedure
will simplify the computation of face- and volume-moments over the computational cell. The
vector basis for the local cell-coordinate system is defined with respect to the cell vertices
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Figure 3. Arbitrary tetrahedron in global Cartesian coordinates

position vectors in the following manner,

�Uj = �r j − �r j−1 j = 1, 2, 3 (2)

Thus, any arbitrary tetrahedral cell may be mapped into a local coordinate system as prescribed
by Eq. (2). An illustration of the local cell coordinate system is shown in Fig. 4. Note that the
transformation automatically normalizes the arbitrary tetrahedron into a ‘canonical’ form that has
unit side lengths in the cell coordinate system.

Figure 4. Normalized tetrahedron in local coordinates

Now that the global and cell coordinate systems have been defined, it is possible to express any
point �r inside a certain arbitrary tetrahedron to vector �u inside the transformed unit tetrahedron
and vice versa through the relation

�r = �r 0 + �U1u1 + �U2u2 + �U3u3 (3)
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where the basis vectors on the right hand side of Eq. (3) are defined by Eq. (2). Thus, Eq. (3)
transforms a vector �u in the cell coordinate system, into the vector �r in the global coordinate
system. This transformation can be written as

�r = �r 0 + J�u (4)

where J is known as the Jacobian matrix

J =

⎡
⎣x1

1 − x0
1 x2

1 − x1
1 x3

1 − x2
1

x1
2 − x0

2 x2
2 − x1

2 x3
2 − x2

2

x1
3 − x0

3 x2
3 − x1

3 x3
3 − x2

3

⎤
⎦ (5)

The determinant of the Jacobian matrix, denoted by ‖J‖, has the important property that allows
for the transformation of integral quantities over a certain domain in the global system into the
equivalent quantity projected into the cell coordinate system. Identical transformation relations
may be derived for the subcell tetrahedra inside the tetrahedral cell.

Analogous to the cell and CT transformations described above, it will be necessary to perform
similar transformations on the cell faces. Unlike the case of AHOT-C in Cartesian geometry, the
cell faces are not normal to the axes of the global coordinate system and thus need special
treatment. Similar transformation and face Jacobian matrices can be defined for the cell and CT
face coordinate systems. In summary, all transformations of the cells and CTs into local face- and
volume-coordinate systems are performed through the use of Jacobian matrices and their
determinants. Now that the geometry preliminaries have been covered, the AHOT-C-UG
formalism will be presented.

2.3. The Arbitrarily High Order Transport Method of Characteristic Type (AHOT-C)

The starting point for deriving the AHOT-C-UG method is the moments balance equation, in
which the transport equation is multiplied by a ‘test’ or basis function and integrated over the
spatial domain. Let B�i(�r) denote a polynomial basis function of order�i = {ij, j = 1, 2, 3}, where
the ij satisfies (0 ≤ i1 + i2 + i3 ≤ Λ) if a ‘complete’ basis is used or (0 ≤ ij ≤ Λ, j = 1, 2, 3) if a
‘double’ Pascal tetrahedron is used, in which case the mixed moments are always retained by the
expansion. In both cases, Λ denotes the highest order of the polynomial basis, and thus
determines the spatial expansion order of the method. The steady-state, mono-energetic,
discrete-ordinates approximation of the transport equation is

Ω̂ · �∇ψ(�r) + σT (�r)ψ(�r) = S(�r) (6)

where the total and scattering macroscopic cross-sections are denoted as σT and σsc, respectively,
and S(�r) is the distributed source. By multiplying Eq. (6) by the basis function and integrating

over the cell domain, the�i-th moment balance equation is obtained

1

V

∫
V

dV B�i(�r){Ω̂ · �∇ψ(�r) + σT ψ(�r) = S(�r)} (7)

Applying Green’s Theorem to the streaming term of Eq. (7) yields

1

V

∫
V

dV B�i(�r)(Ω̂ · �∇ψ(�r)) =
1

V

∫
A

dA(n̂ · Ω̂)B�i(�r)ψ(�r)

− 1

V

∫
V

dV ψ(�r)(Ω̂ · �∇B�i(�r)) (8)

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/15



A Robust Arbitrarily High Order Transport Method of the Characteristic Type

At this point it is necessary to consider the effects of transforming between the global and local
cell coordinate systems. Specifically, if Eq. (8) is to be evaluated locally in the cell coordinate

system, then it is necessary to re-write the streaming operator Ω̂ · �∇B�i(�r) on the right hand side as

Ω̂ · �∇B�i(�r) = Ω̂ ·
(

3∑
k=1

∂

∂xk

B�i(�r)êk

)

= Ω̂ ·
(

3∑
k=1

∂uj

∂xk

B�i(�u)

∂uj

êk

)
(9)

where the repeated subscript j indicates summation. In order to further simplify the above

relation, let Ω̂ = (μ1, μ2, μ3). Noting that
∂uj

∂xk
denotes the inverse of the Jacobian matrix defined

in Eq. (5), Eq. (9) becomes

Ω̂ · �∇B�i(�r) = μkJ
−1
jk

B�i(�u)

∂uj

(10)

The specific choice of basis functions for AHOT-C-UG in the cell coordinate system will be the
monomial basis B�i(�u) = ui1

1 ui2
2 ui3

3 and in the cell face coordinate system B�i(�u
F ) = (uF

1 )i1(uF
2 )i2 .

The cell face or area moment, and cell volume moments, are defined as

ψF
�i

≡ 1

AF

∫
AF

dAF B�i(�r)ψ(�r) (11)

g�i ≡
1

V

∫
V

dV B�i(�r)g(�r) (12)

respectively, where g(�r) = ψ(�r), φ(�r), or S(�r). Finally, by substituting Eq. (10), and definitions
(11) and (12) into Eq. (8), the resulting expression for the transformed streaming term of the
balance equation is obtained

1

V

∫
V

dV B�i(�r)(Ω̂ · �∇ψ(�r)) =
1

V

3∑
F=0

(n̂F · Ω̂)AF ψF
�i
− μkJ

−1
jk ijψ�i−ĵ (13)

where ψ�i−ĵ denotes a lower-order spatial moment of the angular flux, arising from differentiating

the monomial basis function. Finally, the�i-th moment balance equation is obtained

1

V

3∑
F=0

(n̂F · Ω̂)AF ψF
�i
− μkJ

−1
jk ijψ�i−ĵ + σT ψ�i = S�i (14)

Equation (14) represents the�i-th spatial moment balance for an arbitrary tetrahedral cell in the
global coordinate system evaluated in the local cell coordinate system. Since the zeroth-moment
is equivalent to the average angular flux over cell, and thus remains invariant under
transformation, the cell-average angular flux is identical in both the global and local coordinate
systems. This property can be verified by noting that the lower-order moment term on the left
hand side of Eq. (14) that contains elements of the Jacobian matrix is not evaluated for the
zeroth-moment. Furthermore, all non-zero moments represent spatial moments in the local cell
coordinate system, thus readily allowing for the evaluation of the local distributed source in the
presence of scattering and fission.
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A similar form of Eq. (14), the moment balance equation, had been previously derived by Azmy
and Barnett [1]. A recursive scheme was devised by the authors such that higher-order moments
are computed from lower-order moments. This recursive scheme, which can be alternatively
viewed as a lower triangular matrix form which is solved for the moments via forward
substitution, was found to produced inaccurate higher-order moments of the angular flux for
optically thin cells. These inaccuracies in the high-order moments are due to the ill-conditioning
of the lower triangular matrix, which is caused by the fact that the ‘pivot’ elements in the matrix
involve a σT term. Thus, the solution of the matrix via forward substitution causes the
accumulation of roundoff error for very small σT as the higher-order moments are solved for in
terms of lower-order moments. In fact, Eq. (14) was implemented in the work presented here and
similar numerical issues were observed. In order to circumvent the problem, Eq. (14) was re-cast
in terms of expansion coefficients. This procedure stabilized the numerical algorithm by casting
the problem into a non-triangular matrix form and then dividing the final system of equations by
σT , which improved the conditioning of the system even as the cell becomes optically thin.
Unlike the case of orthogonal functions in structured geometries, in which orthogonal functions
such as Legendre polynomials are used in rectangular cells, the use of monomials requires the
solution of a linear system of equations in order to obtain the expansion coefficients. For instance,
if the function g(�r), in definition (12), is expanded locally into the set of ‘trial’ basis functions

such that g(�u) =
∑Λ

�i′=0 G�i′B�i′(�u), then the expansion coefficients and moments are related by

�g�i = M �G�i′ (15)

where matrix M is the tensor product of the monomial basis and is also known as the mass
matrix in finite element methods nomenclature. Similarly, the Jacobian term in Eq. (14) can be
related to the expansion coefficients via

μkJ
−1
jk ij �ψ�i−ĵ = D�Ψ�i′ (16)

where matrix D is known as the stiffness matrix in finite element methods nomenclature. It is
now possible to recast Eq. (14) by substituting relations (15), in particular �ψ�i = M �Ψ�i′ , and (16)
into the balance equation, thus producing the balance equation in terms of the angular flux
expansion coefficients

(−D + σT M) �Ψ�i′ = �S�i −
1

V

3∑
F=0

(n̂F · Ω̂)AF �ψF
�i

(17)

The solution to Eq. (17) as a system of linear equations via numerical inversion can still become
problematic as the cell becomes optically thin due to the loss of precision in the computation of
the angular flux face-moments via the characteristic relation. In order to resolve this issue, Eq.
(17) is divided by σT , yielding the expression(

− 1

σT

D + M

)
�Ψ�i′ =

�S�i

σT

− 1

V

3∑
F=0

(n̂F · Ω̂)AF
�ψF
�i

σT

(18)

where elements of matrices D and M are known exactly, the source is assumed to be an external

source or to have come from a previous iteration, and the face angular fluxes �ψF
�i

/σT are assumed
to be either known from either an upstream cell or computed through the characteristic relation. In
fact, asymptotic expressions which involve the division of face angular flux moments by σT will
be derived shortly in order to provide an accurate representation of the right hand side of (18).
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2.3.1. Asymptotic Expansion of the Arbitrarily High-Order Characteristic Relation

The outgoing face-angular flux for a Characteristic Tetrahedron (CT), with known incoming and
source spatial moments, is given by the characteristic relation. This characteristic relation comes
from the exact inversion of the streaming-plus-collision operator of the transport equation. In the

CT coordinate system (q1, q2, q3), defined by �Qj = �r j
ct − �r j−1

ct (j = 1, 2, 3), the characteristic
relation has the following form

ψf,out(�q) = ψf,in(�q)e−εq3 + τ

∫ q3

0

Sv(�q)e−ε(q3−q′3)dq′3 (19)

where ψf,in(�q) is the incoming CT face angular flux, Sv(�q) is the CT distributed source, ε ≡ σT τ
is the cell optical thickness, and τ is the physical thickness of each cell with respect to the angular
direction under consideration and the CT configuration. The outgoing face moments in the CT

face coordinate system (qf
1 , qf

2 ), defined by �Qf
j = �r f,j − �r f,j−1(j = 1, 2), are computed via the

relation

�ψf,out
�if

=
1

Af

∫
Af

dAfBf,out
�if

(�r)ψf,out(�r) (20)

where B�if (�r
f ) is the basis function in the CT outgoing face coordinate system. By substituting

(19) into (20), and dividing by σT ,the following expression is obtained

�ψf,out
�if

/σT = F �Ψf,in
�if ′ /σT + V �Sv

�i′/σT (21)

where matrices F and V can be evaluated analytically. The explicit analytical evaluation of the
elements of the matrices F and V , can cause numerical loss-of-precision as cells become
optically thin. A more robust evaluation can be obtained by performing an asymptotic expansion.
Defining the following parameters

γ1 ≡ if
′

1 + if1 (22a)

γ2 ≡ if
′

2 + if2 (22b)

γ3 ≡ if
′

3 (22c)

and expanding the exponential function in Eq. (19) into the Taylor series expansion

e±εq3 =
∞∑

n=0

(±1)n

n!
εn (q3)

n
(23)

the following asymptotic expressions for the matrix elements can be obtained

F = 2
∞∑

n=0

(−1)n

n!

εn

(γ1 + γ2 + n + 2)(γ2 + n + 1)
(24)

V = 2τ
∞∑

n=0

∞∑
m=0

(−1)mεn+m

n!m!(γ1 + γ2 + γ3 + n + m + 3)(γ2 + γ3 + n + m + 2)(γ3 + n + 1)
(25)

Once the CT outgoing face angular flux moments are computed through the characteristic
relation, based on the CT incoming face angular flux moments and the distributed source
moments, the balance relation can be solved by combining all outgoing CT face moments in
accordance to the CT configurations described in previous sections.
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2.4. Pascal Pyramid versus Double Pascal Pyramid Basis Functions

An aspect that is currently under investigation is the choice of monomial basis functions in which
to represent the face and volume angular fluxes. While the AHOT-C formulation in Cartesian
geometry [2] used Legendre polynomials as basis functions that retain all the mixed term, the use
of a monomial basis that retains mixed terms has been found numerically unstable in the
AHOT-C-UG formulation. This numerical instability manifests itself in the divergence of the
inner iterations, specifically in a highly scattering medium where many iterations are required to
achieve convergence, thus allowing round-off errors to accumulate sufficiently and cause the
iterations to fail to converge. We note that the numerical results presented in the next section
correspond to the case in which the basis is considered to be complete, such that
�i = {ij, j = 1, 2, 3} satisfies (0 ≤ i1 + i2 + i3 ≤ Λ)

3. Numerical Results

In order to verify the formulation of AHOT-C-UG, and its implementation into the new
Tetrahedral High Order Radiation (THOR) transport code written in FORTRAN 90, the test
problems presented in [1] were used in this exercise. A 3 x 3 x 3 mean-free-path (mfp) cube in a
medium with σT = 1 and four possible values of σsc = 0, 0.1, 0.5, and 0.9 was subdivided into 27
unit subcubes at each refinement level and solved with THOR. The mesh refinement studies were
performed by subdividing each of the 27 unit subcubes by two in each dimension, resulting in
eight new subcubes per unit subcube. Each of these subcubes are subsequently tessellated into five
tetrahedrons, as shown in Fig. 5. A total of five meshes, ranging from 135 to 552,960 tetrahedral
cells, were generated in order to test the convergence behavior of the AHOT-C-UG methodology.

Figure 5. Subcube tessellated into five tetrahedrons

Two versions of the configuration discussed above were used to determine the solution accuracy:
problems with analytical solutions and problems with numerical reference solutions. The
problems with analytical solutions do not include scattering and involve two variants: a problem
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with a flat distributed source and vacuum boundary conditions, and a problem with constant
incoming boundary sources on three external faces, but no distributed sources. The problems in
which numerical reference solutions are computed involve three scattering ratios:
c = 0.1, 0.5, 0.9, where c is defined as c = σsc/σT . The maximum absolute-value of the error
between the approximate and reference solution (L∞ error norm) is computed over each of the 27
subcubes for the averaged scalar flux.

3.1. Problems with Analytical Solutions: Cube with Purely Absorbing Medium

The analytical solution for the average scalar flux in each unit subcube, based on a single angular
direction (one octant in an S2 quadrature), was derived to serve as reference value. Each subcube
was tessellated and THOR was used to solve for the average angular flux in each cell. The
average scalar flux in each cell was computed from the angular flux via the S2 quadrature
formula, and subsequently spatially integrated over the unit subcubes. An error norm based on
each subcube’s exact and approximate average scalar fluxes, Φi and φi respectively, was defined
as ‖e‖∞ ≡ max{|Φi − φi|}, i = 1, ..., 27 and computed for the flat source and boundary source
problems. A total of 5 meshes and five spatial approximation orders, based on the complete basis
for Λ = 0, ..., 4, were used to solve this problem. The plots of the error norms for the flat source
and fixed boundary source problems are shown in Figs. 6 and 7, respectively. Evident from these
plots is the decrease of the maximum error in the asymptotic regime with mesh refinement, which
supports correctness of the implementation. Furthermore, the order of accuracy obtained from
fitting a polynomial to the plotted points on each curve, of the maximum error is listed next to the
curves and is observed to increase as the spatial expansion order is increased. It is interesting to
note the “fractional” increase in this order as the polynomial spatial approximation order of the
angular flux is also increased.

3.2. Problems with Numerical Solutions: Cube with Scattering

The second set of problems is designed to test the higher order spatial representation of the
angular flux, via its influence on the scattering term. A reference fine-mesh TORT [8] calculation,
with approximately 1 billion cells, was used in this case for the computation of the reference
solution. In order to complete the calculations within a reasonable execution time, only four
meshes were used in THOR for the Λ = 0, ..., 3. Similar to the first set of problems results, Figs.
8 through 10 illustrate that the maximum error decreases in the asymptotic regime with mesh
refinement and the order of accuracy increases as the spatial expansion order increases, exhibiting
a similar “fractional” increase in the order of accuracy.

4. CONCLUSIONS

We have presented an improved AHOT-C-UG methodology that circumvents previous difficulties
by introducing coordinate transformations, asymptotic expansion of the integral kernels, and the
solution of a linear system representing the cell particle balance. Numerical results are provided
to support our ultimate objective of demonstrating the feasibility and accuracy of the method.
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Figure 6. Log-log plot of the L∞ error norm of the scalar flux over the 27 subcubes and order
of convergence for the flat source problem with c=0.0
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Figure 7. Log-log plot of the L∞ error norm of the scalar flux over the 27 subcubes and order
of convergence for fixed incoming boundary source problem

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

12/15



A Robust Arbitrarily High Order Transport Method of the Characteristic Type

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

M
ax

im
um

 E
rr

or

Mesh Size

Maximum Error versus Mesh Refinement

0.82

1.67

2.11
2.25

Lambda = 0
Lambda = 1
Lambda = 2
Lambda = 3

Figure 8. Log-log plot of the L∞ error norm of the scalar flux over the 27 subcubes and order
of convergence for flat source problem with c=0.1
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Figure 9. Log-log plot of the L∞ error norm of the scalar flux over the 27 subcubes and order
of convergence for flat source problem with c=0.5
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