INL Seismic Monitoring Annual Report: January 1, 2008 – December 31, 2008

S. J. Payne

N. S. Carpenter

J. M. Hodges

R. G. Berg

September 2009

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

INL Seismic Monitoring Annual Report: January 1, 2008 – December 31, 2008

S. J. Payne N. S. Carpenter J. M. Hodges R. G. Berg

September 2009

Idaho National Laboratory Seismic and Structural Analysis Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

SUMMARY

During 2008, the INL Seismic Monitoring Program evaluated 7,284 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 2,396 earthquakes and man-made blasts were evaluated within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, 25 were small to moderate size earthquakes ranging in magnitude from 3.0 to 3.9. 823 earthquakes occurred within the 161km radius of INL and over 300 events were associated with eight different earthquake swarms which were located in active regions of the Basin and Range Province that surrounds the eastern Snake River Plain. Eight microearthquakes in 2008 of magnitude (M) 2.0 and less were located within the eastern Snake River Plain, seven at or near the Craters of the Moon National Monument and one within the INL boundary. Further analyses of the anomalously deep focal depths (15 to 42 km) and different waveform characteristics of all Craters of the Moon National Monument events (1999-2008) suggest association with magmatic processes. From 1972 to 2008, INL located 36 other small-magnitude microearthquakes (M < 2.0) at depths (< 11 km) within the eastern Snake River Plain and attributes these events to regional tectonic tensional stresses.

(Intentionally Blank)

ACKNOWLEDGEMENTS

We thank Alan Marley for his continued support. We also thank staff at the University of Utah Seismograph Stations, U. S. Geological Survey, Montana Bureau of Mines and Geology, and BYU-Idaho for their earthworm data shares.

(Intentionally Blank)

CONTENTS

1.	Introdu	action		1
	1.1	History of	f INL Seismic Monitoring Program	1
		1.1.1	Purpose	1
		1.1.2	Seismic Stations	2
		1.1.3	Strong Motion Accelerographs	2
2.	Instrur	mentation		5
	2.1	Seismic S	tation Network	5
	2.2	Strong Mo	otion Accelerographs	5
	2.3	Continuo	us GPS Stations	6
	2.4	Seismic D	Data Acquisition and Analysis System	7
3.	Data A	analysis		17
	3.1	Location 1	Method	17
	3.2	Magnitud	e Calculations	18
	3.3	Peak Acce	elerations	19
	3.4	Location	Quality	19
	3.5	Depth Qu	ality	20
	3.6	Data Com	npleteness	20
4.	2008 E	Earthquake A	Activity	22
	4.1	Regional	Earthquake Activity	22
	4.2	Local Ear	thquake Activity	22
	4.3	Earthquak	kes Within the Eastern Snake River Plain	23
5.	1972 –	- 2008 Earth	nquake Activity	24
6.	Refere	nces		31

(Intentionally Blank)

FIGURES

Figure 1. Map shows locations of the earthquake reporting area within the 161-km (100 mile) radius of the INL, Basin and Range normal faults, and volcanic rift zones.	4
Figure 2. Locations of INL seismic stations and stations monitored by INL that are operated by other institutions.	. 14
Figure 3. Numbers of SMAs located at INL.	15
Figure 4. Locations of the continuous GPS stations co-located at INL seismic stations and operated by the Plate Boundary Observatory (PBO) under the EarthScope Science Program	. 16
Figure 5. Map shows epicenters of earthquakes for magnitudes greater than 3.0 during 2008	. 26
Figure 6. Map shows location of the M6.0 earthquake near Wells, NV and locations of INL seismic stations and accelographs that recorded ground motions.	. 27
Figure 7. Map shows epicenters of earthquakes within the 161-km radius of INL from January 1, 2008 to December 31, 2008	. 28
Figure 8. Map shows epicenters of earthquakes and year of occurrence at Craters of the Moon National Monument from 1999-2008.	. 29
Figure 9. Map shows epicenters of earthquakes from 1972 to 2008 within the 161-km radius of INL	. 30

(Intentionally Blank)

TABLES

Table 1. Seismic stations operated by INL.	8
Table 2. Agencies and stations from which INL receives data shares.	11
Table 3. Strong-motion accelerographs operated by INL in 2008.	12
Table 4. Continuous GPS sites co-located with INL seismic stations.	13
Table 5. P-wave velocity models used in location programs.	21
Table 6. Peak accelerations measured at INL accelerographs for the 21 February 2008 M 6.0 Wells, Nevada Earthquake	

(Intentionally Blank)

ACRONYMS

ANL Argonne National Laboratory

BLM Bureau of Land Management

CFA Central Facilities Area

COM Craters of the Moon National Monument

DAAS Data Acquisition/Analysis System

DOE Department of Energy

DSL Digital Subscriber Line

EFS Experimental Field Station

ESRP Eastern Snake River Plain

GPS Global Positioning System

INL Idaho National Laboratory

INTEC Idaho Nuclear Technology and Engineering Center

IP Internet Protocol

IRC INL Research Center

LOFT Loss of Fluid Test

MFC Materials and Fuels Complex

NEIC National Earthquake Information Center

NRF Naval Reactor Facility

PBF Power Burst Facility

PBO Plate Boundary Observatory

P-wave Compressional Wave

RTC Reactor Technology Complex

RWMC Radioactive and Waste Management Complex

S-wave Shear Wave

SMC Special Manufacturing Complex

SMA Strong Motion Accelerograph

SSCs Structures, Systems, and Components

STC Science and Technology Complex

TA Transportable Array

TAN Test Area North

TRA Test Reactor Area

USGS United States Geological Survey

INL Seismic Monitoring Annual Report: January 1, 2008 – December 31, 2008

1. Introduction

The Idaho National Laboratory (INL) has accumulated 36 years of earthquake data (1972-2008). This report covers the earthquake activity from January 1, 2008 through December 31, 2008 within a 161-km (100-mile) radius from the center of the INL designated as 43° 39.00' N, 112° 47.00' W (Figure 1). The report is a continuation of previous annual reports on earthquake activity surrounding the eastern Snake River Plain (ESRP) and within and near the INL. It discusses the earthquake activity that has occurred around the local region and within the 161-km radius of the INL. It discusses the seismic station and strong motion accelerograph instrumentation used to record earthquake data and how they were analyzed. It also includes a brief discussion of continuous GPS (Global Positioning System) stations colocated at INL seismic stations.

1.1 History of INL Seismic Monitoring Program

1.1.1 Purpose

The purpose of the INL Seismic Monitoring Program is to provide the INL with earthquake data and staff expertise to support the requirements set forth by Presidential executive orders, DOE directives, orders, and standards, and the Nuclear Regulatory Commission for seismic safety of: Structures, Systems, and Components (SSCs); workers and the public; and operations at INL of reactors and waste management activities. The program supports safety of operations through continuous monitoring of earthquake activity, the development of INL seismic design criteria, assessments of seismic hazards for existing facilities and acquisition of major new programs, and early warning of potential future volcanic eruptions near INL. For example, the earthquake data are used to assess seismic hazards and develop seismic design criteria for the INL as required by DOE Order 420.1A "Facility Safety" (DOE, 2003).

The INL Seismic Monitoring Program operates 27 permanent seismic stations for the purpose of determining the time, location, and size of earthquakes occurring in the vicinity of the INL. The seismic data are compiled to develop an historical database that defines the zones and frequency of earthquake activity. Seismic stations are located within and around the INL near potential earthquake sources that include major range-bounding normal faults and volcanic rift zones (Figure 1). Additionally, thirteen seismic stations have GPS receivers at them for the purpose of determining rates of crustal deformation. GPS velocities are used to identify regions of higher crustal deformation rates (such as Yellowstone, Wyoming) relative to regions of lower deformation rates (Snake River Plain, Idaho).

The INL Seismic Monitoring Program operates 24 strong-motion accelerographs (SMAs) for the purpose of recording strong ground motions from local moderate or major earthquakes. The SMAs are located within INL buildings to determine the response of these buildings to ground motions in the event of a large earthquake. Several SMAs are located at "free-field" sites (not within buildings) at INL facility areas and are used to determine the levels of earthquake ground motions at the ground (rock or soil) surface. SMAs are also co-located with several INL seismic stations to record acceleration data and assess attenuation effects of small to large magnitude normal faulting earthquakes.

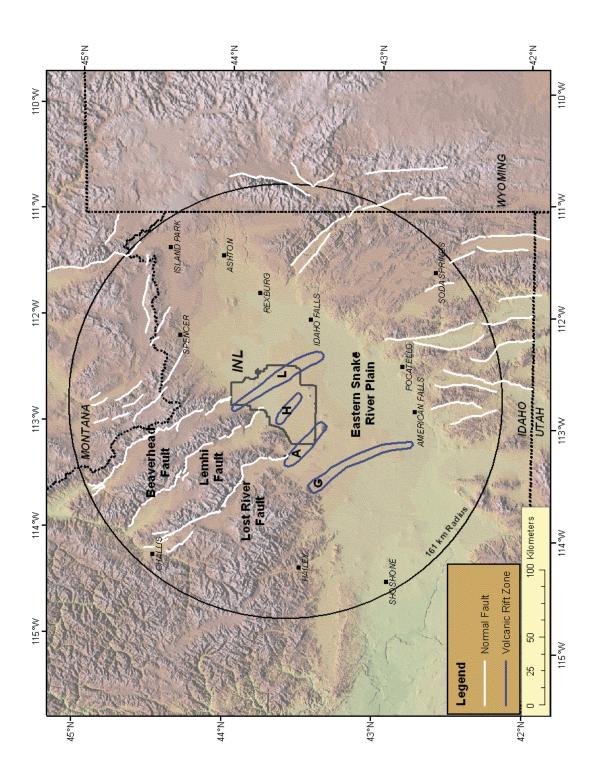
1.1.2 Seismic Stations

The INL seismic network has evolved from a single analog station to its current configuration of 27 digital seismic stations. The INL Seismic Monitoring Program also records data from seismic stations owned and operated by other seismic networks. The INL seismic network began with a single station in 1971 and expanded to three stations by October of 1972. In 1977, the INL began monitoring a station operated by BYU-Idaho in Rexburg, Idaho, and the INL installed two additional stations in 1979. From 1979 to 1985, the INL monitored earthquake activity using six seismic stations. In 1985, the INL installed a simulated Wood-Anderson system to improve the capabilities of measuring the magnitude of local earthquakes ($3.0 \le M_L \le 5.0$). During 1986, the INL began receiving seismic data from a station located in Pocatello, Idaho and operated by the University of Utah in Salt Lake City, Utah. Also, in 1986, the INL began receiving data from a station located near Palisades Reservoir, Idaho that is operated by BYU-Idaho. A seismic station within the INL boundaries was added to the INL seismic network in 1987.

From 1990 to 1994, INL seismic network under went a major expansion of seismic stations. During 1990, four seismic stations were installed within the INL boundaries. From 1991 to 1992, thirteen new stations were installed in support of construction and operation of the proposed New Production Reactor at INL. Shallow boreholes (<20 m) were drilled for seismic stations located within the ESRP. Also, monitoring of BYU-Idaho seismic station near Palisades Reservoir was terminated in 1991 to accommodate the addition of the new INL seismic stations. In 1994, two new INL seismic stations were installed near Gray's Lake, Idaho.

Several changes occurred to seismic stations from 1999 to 2003. During 1999, the INL Howe Scarp, Idaho (HWSI) seismic station was relocated further east to a new location now referred to as the Howe Fault, Idaho or HWFI because of a lawsuit filed against the Bureau of Land Management (BLM). With the implementation of the EARTHWORM computer software in 2000, up to 14 stations from several nearby networks were being recorded in real-time along with the INL seismic stations. During 2001-2003, analog seismic instruments at all INL seismic stations were replaced with digital instruments. In 2003, the University of Utah transferred ownership of the Pocatello, Idaho (PTI) seismic station to the INL Seismic Monitoring Program at which time a digital seismic station was installed. With addition of the PTI station, INL currently operates 27 seismic stations.

In 2007, INL began recording data from Transportable Array (TA) seismic stations deployed in Idaho as part of the EarthScope Science program funded under the National Science Foundation. These seismic stations are three-component broadband stations that are temporarily deployed for 18-24 months in a grid that systematically covers the United States. One TA station is co-located at the INL's Crow's Nest, Idaho (CNCI) seismic station. Additionally, the INL began acquiring data from the National Earthquake Information Center's Intermountain West network. As with the TA stations, these stations employ three-component, broadband seismometers.


1.1.3 Strong Motion Accelerographs

The INL began an accelerograph network by installing SMAs in buildings at INL facility areas, and more recently at free-field sites for both rock and soil conditions. In 1973, the INL began an accelerograph network by installing eleven SMAs in critical INL facilities. Three were located within buildings at the Idaho Nuclear Technology and Engineering Center (INTEC) (formerly referred to as Idaho Chemical Processing Plant - ICPP), two within the Materials and Fuels Complex (MFC) facilities (formerly referred to as Argonne National Laboratory – ANL), three within the Power Burst Facility (PBF), two within buildings at the Reactor Technology Complex (RTC) (formerly referred to as Test Reactor Area – TRA), and one at the Old Fire Station (OFS). From 1978 to 1979, four SMAs were installed at Test Area North (TAN) within the Containment Test facility (formerly referred to as Loss of

Fluid Test – LOFT facility). Just prior to the October 1983 M_s 7.3 Borah Peak, Idaho earthquake, one SMA was installed at the INL Research Center (IRC), which is now part of the Science and Technology Complex (STC) in Idaho Falls, Idaho. Following the 1983 earthquake, two SMAs were installed within buildings at the Naval Reactor Facility (NRF). In 1984, two additional SMAs were placed within buildings at INTEC. During 1990, one SMA was installed at the Central Facilities Area (CFA). A digital SMA was co-located with an analog SMA at MFC in 1993. In 1996, two free-field SMA sites were installed, one at NRF and the other at PBF. In 1997, one SMA was installed as a free-field site at the Radioactive Waste Management Complex (RWMC). In 2003, the SMAs were upgraded to digital NetDAS SMAs. At that time, one NetDAS digital SMA replaced two SMAs co-located at Building ANL-767 (Kinemetrics analog SMA-1 and digital SSA-2 accelerograhs). The SMA on the crane beam at PBF-620 was not upgraded, but removed due to decommissioning activities.

Over the years, several SMAs have been relocated because buildings have been decommissioned and demolished. In 1995, the SMA at OFS was moved to a storage building directly behind the fire station because the fire station was decommissioned. In 1997 when the storage building was demolished, this SMA was relocated to the Experimental Field Station (EFS). In 1996, the Containment Test facilities or LOFT facilities were decommissioned. Three of the SMAs from LOFT were moved to the TAN Hot Shop and one was placed at the TAN Air Monitoring building. In 1997, the SMA at CFA was relocated to CFA-1607 Refueling Building. In 2004, the TAN Air Monitoring building was demolished so the SMA was removed and was reinstalled in 2005 as a free-field near the TAN Hot Shop. In 2004, the PBF building was demolished and the three SMAs were removed. The SMAs were reinstalled in 2005 as free-field sites near PBF and RWMC. In 2006, four SMAs at TAN were removed due to demolition of the TAN Hot Shop. In 2007, two of these SMAs were reinstalled; one was installed at the Special Manufacturing Complex (SMC) and the other at a free-field site east of SMC. In 2008, one SMA was removed and three SMAs were installed as a result of building demolition activities. One SMA at INTEC in building CPP-668 was removed. This SMA and two others were reinstalled at TAN, RTC, and the New Production Reactor (NPRI) seismic station.

Three-component accelerometers were added to some of the seismic stations. In 2002, accelerometers were added to four seismic stations: Bear Canyon (BCYI), Gray's Range (GRRI), NPRI, and HWFI,. In 2003, accelerometers were added to seismic stations Telchick Spring, Idaho (TCSI), Split Crater (SPCI), and PTI. During 2008, the INL Accelerograph Network operated up to 24 SMAs within or near INL Site facility areas and 6 three-component accelerometers at seismic stations.

Figure 1. Map shows locations of the earthquake reporting area within the 161-km (100 mile) radius of the INL, Basin and Range normal faults, and volcanic rift zones: G – Great Rift, A – Arco, H – Howe-East Butte, and L – Lava Ridge-Hell's Half Acre.

2. Instrumentation

2.1 Seismic Station Network

During 2008, the INL Seismic Monitoring Program operated 27 permanent seismic stations and monitored up to 65 seismic stations from other nearby seismic networks (Figure 2). Table 1 lists the name, location, and date of installation for the seismic stations owned and operated by the INL Seismic Monitoring Program. Table 2 lists the name, location, and operation dates of seismic stations owned by other agencies. Table A-1 (Appendix A) lists the information for the EarthScope Science Program TA stations. The INL recorded seismic data from these other seismic stations to improve the quality of earthquake locations within the 161-km radius of INL.

Instrumentation for INL seismic stations consists of digital recorders, one- and three-component seismometers, and three-component accelerometers. The digital recorder is a DAQSystems NetDAS field unit, which is an embedded LINUX computer with a GPS clock and Symmetric Research 24 bit digitizer. The NetDAS units have nearly 22 bits of data resolution over \pm 20 volts for a four-channel unit or \pm 10 volts for an eight-channel unit. Four channel units (NetDAS-CH4) are located at seismic stations that have one or three sensors; eight channel units (NetDAS-CH8) are at seismic stations that have more than three sensors (such as three seismometers and three accelerometers). The seismic stations have preamplifiers that improve signal to noise ratios. The NetDAS digitizes data at the seismic station and time stamps the data with accuracies greater than 0.001 seconds. The seismic signals are transmitted by FreeWave Technologies DGR115 900 MHz Wireless Modem radios. These radios use standard IP (Internet Protocol) networking features that are included in the embedded LINUX.

Single-component seismic stations have vertically oriented velocity sensors (or seismometer) that are a Mark Products model L-4C, Teledyne Geotech (TG) model S-13 or TG model S-13 Jr. seismometer buried within 3 m of the ground surface. All seismic stations located within the ESRP have their vertical-component seismometer located at the bottom of 18 m or greater borehole to help dampen wind and cultural noise (Seismic, 1993). Seismic stations with horizontally-oriented velocity sensors have two Teledyne Geotech model S-13 seismometers located within a concrete vault, in addition to the vertically-oriented sensor. Seismic stations with acceleration sensors have Applied MEMs Inc. model SF1500A, SF2500A, or SF3000L tri-axial accelerometers.

Where AC power is not available, seismic stations are powered by batteries, solar panels, and at some locations small wind generators. Radio frequency compatible antennas transmit and receive the seismic signals. Several seismic stations are used as relay stations to allow transmission of seismic signals to the IRC in Idaho Falls. The seismic data are relayed by digital radios or internet Digital Subscriber Line (DSL) links (Appendix A). The data are acquired through EARTHWORM data shares on the Internet (discussed in Section 2.5). Digital seismograms are continuously displayed on three of four computer monitors referred to as "Webicorders." The fourth monitor displays a map of current earthquakes located by the INL Seismic Monitoring Program.

2.2 Strong Motion Accelerographs

The INL accelerograph network has 24 strong-motion accelerographs at INL Site facilities; 23 are located at the INL Site and 1 is located in the IRC at the STC. Table 3 lists the location and date of installation for each of the SMAs in operation. There are 1 to 5 accelerographs at each INL Site facility area (Figure 3). During 2008, earthquakes did not trigger SMAs located within INL facilities.

In 2008, one SMA was removed and three SMAs were installed as a result of building demolition activities. An SMA at INTEC in building CPP-668 was removed and the building was demolished. This SMA and two others were reinstalled at other locations, building TAN-601 (first floor), building TRA-670 (first floor), and the NPRI seismic station (Table 3). Two of these instruments were from a building at TAN that was demolished in 2006.

INL SMAs are DAQSystems NetDAS digital accelerographs that have Applied MEMS SiFlex SF2500 tri-axial accelerometers. Each SMA is set to trigger and record to compact flash when ground motions exceed 2500 counts, which is equivalent to about 0.005 g. The record lengths are set for 30 s of pre- and post-trigger thresholds. The tri-axial accelerometers have two horizontal components oriented in an orthogonal manner, generally aligned in the north-south and east-west directions. Appendix B lists the accelerometer orientation and instrument response for the horizontal and vertical components of each SMA. SMAs at free-field sites have GPS clocks to synchronize the internal clocks to an absolute time system. For some SMAs at free-field sites and locations within buildings, acceleration data are transmitted to the IRC via digital radios or the Internet. Other SMAs record data on compact flash disks that are retrieved by INL seismic personnel using a laptop PC computer.

2.3 Continuous GPS Stations

The INL Seismic Monitoring Program has a geodetic network for the purpose of monitoring horizontal crustal deformation in support of INL seismic hazards assessments. GPS data are used to investigate active crustal deformation that is on the order of millimeters of movement per year within the ESRP, the surrounding Basin and Range, and Yellowstone Plateau. GPS data define regions of high velocity gradients (or strain rates) having more frequent damaging earthquakes (e.g., Yellowstone – Hebgen Lake, Montana) than regions of low velocity gradients (e.g., eastern Snake River Plain). The regional spatial patterns of GPS data also help constrain the fundamental geodynamic processes that drive active continental deformation in the western United States.

During 2008, INL collected additional GPS phase data and teamed with Dr. Robert King at the Massachusetts Institute of Technology to process INL GPS phase data. In 2007, INL personnel installed GPS receivers at eight INL seismic stations bringing the total number of INL continuous GPS sites to thirteen (Table 4). As part of the Plate Boundary Observatory (PBO) under the EarthScope Science Program, there are currently 18 other continuous GPS sites near the Snake River Plain (Figure 4). One of these GPS receivers is co-located at INL's Great Rift, Idaho (GTRI) seismic station. In addition to continuously operating GPS sites, INL personnel collected GPS phase data at several campaign GPS sites. Dr. King processed all of INL's GPS phase data acquired up to 2008 and located within the ESRP and surrounding Basin and Range. He combined the INL GPS data with other data in the region to produce a velocity field that encompasses the Pacific Northwest. Locally, the horizontal GPS velocities indicate the Basin and Range is extending at a rate that is an order of magnitude greater than the Snake River Plain, which is thought to explain its relative low seismicity (Payne et al. 2008a; Payne et al. 2008b; Payne et al. 2008c).

An INL continuous GPS station consists of a Trimble NetRS GPS receiver connected to a L1/L2 dual frequency choke ring antenna. The antenna is attached to a 2.4 m steel rod that is drilled into a rock outcrop to a depth of about 1 m. Above ground the antenna is stabilized using a much larger PVC pipe filled with sand. This reduces the amount of wind noise within the GPS data, improving the accuracy. The NetRS receivers continuously collect GPS phase data. The phase data are relayed along with the seismic station data to DSL links, which are then accessed from the Internet at the IRC. Also, the phase data are downloaded daily from the Internet and archived by University NAVSTAR Consortium (UNAVCO).

2.4 Seismic Data Acquisition and Analysis System

The INL records earthquake data on a computer Data Acquisition/Analysis System (DAAS) at the IRC. INL began recording earthquake data on the DAAS June 8, 1991 using the U. S. Geological Survey (USGS) CUSP processing software. Since 2001, significant upgrades have been made to the DAAS as a result of computer hardware and software advances. The USGS CUSP data acquisition and analysis software that supported use of the TIMIT program were replaced with the earthquake analysis program SEISAN (developed by the University of Bergen, Norway) in 2002 and the USGS EARTHWORM processing software in 2003. From June 1991 to November 2002, earthquake data were analyzed using the USGS TIMIT program. As of December 2002, earthquake data are now being analyzed using the SEISAN program. Use of the SEISAN and EARTHWORM programs facilitated the upgrades of seismic stations and SMAs to the NetDAS digital units, allowing concurrent waveform analyses of both velocity and acceleration data. Instrument responses of the NetDAS units at seismic stations and SMAs are now routinely determined and are integrated into the SEISAN database (see Appendices B and C). All digital earthquake data are also routinely archived to removable media after analysis.

The EARTHWORM program constantly monitors the ratios of the short-term average divided by the long-term average (STA/LTA) of incoming data. This involves comparing the short-term average (1-s window) of the seismic data to a longer-term average, which is the background noise or voltage level determined over a time interval of 20 s. The program determines that an earthquake has occurred when the STA/LTA ratios for several stations within a subnet exceed a threshold value. When an earthquake is detected, the seismograms for all stations within triggered subnets and the time codes are saved in a file on a disk. This file is labeled with a sequential number based on the date and time of the trigger for later reference to the earthquake in the SEISAN database. Each seismogram has 30 s of pre-event data and 20 s of post-event data stored within the file. In some instances, earthquakes have low-amplitude emergent P-waves with larger amplitude S-waves. When this occurs the DAAS may trigger on the S-waves instead of the P-waves, thus, saving 30 s of pre-event time allows recording of the P-waves also.

The earthquake detection software is set up to trigger on earthquakes detected by several stations within a subnet. Subnets contain several stations that are located in a small area and which are likely to detect the same local earthquake. Subnets are specified for stations in close proximity to each other and their relationship to known seismic sources. For the ESRP though, a subnet was created for detection of small magnitude (M < 0.5) microearthquakes. All INL seismic stations usually detect earthquakes of magnitude 1.5.

The EARTHWORM program also enables data sharing with other seismic networks in near real time over the Internet. The INL provides data from various seismic stations to the University of Utah, Montana Bureau of Mines and Geology, and National Earthquake Information Center (NEIC), which in return provide data to INL (Table 2). EARTHWORM records seismic data from INL and these other agencies, which are analyzed using the SEISAN program. In 2007, data from EarthScope's TA stations and the NEIC's Intermountain West seismic network were added to the data shares. These data increased the earthquake-detection sensitivity and enhanced the azimuth coverage and magnitude determinations of earthquakes within the 161-km radius of INL, particularly for earthquakes in the southern and western parts of the ESRP and to the northwest in the Basin and Range mountains.

 Table 1. Seismic stations operated by INL.

Code	Station Name	Types of Sensors	Latitude North (°)	Longitude West (°)	Elevation (m)	Date Installed (Month/Year)
ARNI	Argonne North, Idaho	Borehole Vertical Seismometer; GPS Receiver	43.6667	112.6235	1533	09/1990
BCYI	Bear Canyon, Idaho	Vertical Seismometer; Three-component Accelerometers; GPS Receiver	44.3108	113.4052	2194	05/1992
CBTI	Cedar Butte, Idaho	Borehole Vertical Seismometer	43.3875	112.9115	1734	07/1986
COMI	Craters of the Moon, Idaho	Three-component Seismometers	43.4618	113.5938	1890	03/1992
CNCI	Crows Nest Canyon, Idaho	Vertical Seismometer	43.9283	113.4522	1914	05/1992
CRBI	Circular Butte, Idaho	Borehole Vertical Seismometer; GPS Receiver	43.8303	112.6345	1520	11/1987
ECRI	Eagle Creek, Idaho	Vertical Seismometer	43.0535	111.3705	2086	08/1994
EMI	Eightmile Canyon, Idaho	Vertical Seismometer; GPS Receiver	44.0742	112.9262	1963	04/1992
GBI	Big Grassy Butte, Idaho	Borehole Vertical Seismometer; GPS Receiver	43.9875	112.0633	1541	10/1981
GRRI	Grays Range, Idaho	Vertical Seismometer; Three-component Accelerometers; GPS Receiver	42.9380	111.4217	2207	08/1994
GTRI	Great Rift, Idaho	Borehole Vertical Seismometer; GPS Receiver*	43.2440	113.2410	1522	05/1992
HHAI	Hell's Half Acre, Idaho	Borehole Vertical Seismometer	43.2950	112.3795	1371	06/1992
HPI	Howe Peak, Idaho	Vertical Seismometer; GPS Receiver	43.7113	113.0983	2597	10/1972

 Table 1. Continued.

Code	Station Name	Types of Sensors	Latitude North (°)	Longitude West (°)	Elevation (m)	Date Installed (Month/Year)
HWFI	Howe Fault, Idaho	Three-component Seismometers; Three-component Accelerometers; GPS Receiver	43.9257	113.0973	1743	10/1999
ICI	Italian Canyon, Idaho	Vertical Seismometer; GPS Receiver	44.3293	112.9412	2463	04/1992
IRCI	INL Research Center, Idaho	Low-gain Three-component Seismometers	43.5153	112.0333	1442	11/1988
JGI	Juniper Gulch, Idaho	Three-component Seismometers	44.0927	112.6768	1657	11/1979
KBI	Kettle Butte, Idaho	Borehole Vertical Seismometer	43.5907	112.3767	1678	05/1992
LJI	Lemhi Junction, Idaho	Vertical Seismometer	43.8208	112.8440	1643	05/1990
LLRI	Little Lost River, Idaho	Three-component Seismometers	43.7230	112.9330	1476	05/1990
NPRI	New Production Reactor, Idaho	Three-component Seismometers; Three-component Accelerometers	43.5975	112.8272	1495	09/1990
PTI	Pocatello, Idaho	Vertical Seismometer; Three-component Accelerometers; GPS Receiver	42.8703	112.3702	1670	10/1984
PZCI	Patelzick Creek, Idaho	Vertical Seismometer; GPS Receiver	44.3410	112.3172	2073	12/1991
SMBI	Sixmile Butte, Idaho	Borehole Vertical Seismometer	43.5022	113.2677	1716	05/1992
SPCI	Split Crater, Idaho	Three-component Seismometers; Three-component Accelerometers	43.4500	112.6370	1553	06/1992

 Table 1. Continued.

Code	Station Name	Types of Sensors	Latitude North (°)	Longitude West (°)	Elevation (m)	Date Installed (Month/Year)
TCSI	Telchick Spring, Idaho	Vertical Seismometer; GPS Receiver	43.6193	113.4783	1731	05/1992
TMI	Taylor Mountain, Idaho	Three-component Seismometers; GPS Receiver	43.3057	111.9182	2179	10/1972

^{* -} GPS instrumentation is owned by the Plate Boundary Observatory under the EarthScope Science Program.

Table 2. Agencies and stations from which INL receives data shares.

Code	Station Name	Latitude North (°)	Longitude West (°)	Elevation (m)	Operating (Month/			
National E	National Earthquake Information Center, Golden, Colorado							
AHID	Auburn, Idaho	42.7653	111.1003	1960	11/1997	Pres		
BW06	Boulder, Wyoming	42.7667	109.5582	2224	05/1996	Pres		
DCID1	Drake Creek, Idaho	43.5945	-111.1845	1871	03/2005	Pres		
HLID	Hailey, Idaho	43.5625	114.4063	1498	08/1988	Pres		
IMW	Indian Meadows, Wyoming	43.8970	-110.9392	2646	07/1980	Pres		
LOHW	Long Hollow, Wyoming	43.6123	-110.6037	2121	01/1986	Pres		
RRI2	Red Ridge, Idaho	43.3473	-111.3202	2558	07/1986	Pres		
TPAW	Teton Pass, Wyoming	43.4902	-110.9507	2512	01/1986	Pres		
University	of Utah, Salt Lake City, Utah							
BEI	Bear River Range, Idaho	42.1167	111.7823	1859	11/1984	Pres		
BMUT	Black Mountain, Utah	41.9582	111.2342	2243	10/1979	Pres		
MCID	Moose Creek, Idaho	44.1903	111.1827	2149	12/1995	Pres		
MLI	Malad Range, Idaho	42.0268	112.1255	1896	10/1974	Pres		
NPI	North Pocatello, Idaho	42.1473	112.5183	1640	04/1975	Pres		
YMC	Maple Creek, Wyoming	44.7593	111.0062	2073	12/1983	Pres		
YPP	Pitchstone Plateau, Wyoming	44.2710	110.8045	2707	08/1996	Pres		
Montana I	Bureau of Mines and Geology, But	te, Montana						
MCMT	McKenzie Canyon, Montana	44.8277	112.8488	2323	09/1989	Pres		
MOMT	Monida, Montana	44.5933	112.3943	2220	10/1995	Pres		
TPMT	Teepee Creek, Montana	44.7298	111.6657	2518	10/1992	Pres		

Table 3. Strong-motion accelerographs operated by INL in 2008.

MFC ANL-767 Basement EBR 1973 MFC ANL-768 Basement FCF 1973 CFA CFA-1607 Free-field CFAF 1996 CFA EFS Free-field CFPF 1997 INTEC CPP-668 Free-field CPPF 1992 INTEC CPP-666 Second Basement CPP2 1973 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NRFF 1996 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field ARAF 2005	INL Site Facility Area	Building Number	Location	SMA Code	Year Installed
CFA CFA-1607 Free-field CFAF 1996 CFA EFS Free-field EFSF 1997 INTEC* CPP-668 Free-field CPPF 1992 INTEC CPP-601 First Floor CPP1 1973 INTEC CPP-661 Second Basement CPP2 1973 INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-768 Free-field NRFF 1996 NRF NRF-81W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field TRAF 2003 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 First Floor TRA3 2	MFC	ANL-767	Basement	EBR	1973
CFA EFS Free-field EFSF 1997 INTEC* CPP-668 Free-field CPPF 1992 INTEC CPP-601 First Floor CPP1 1973 INTEC CPP-601 Second Basement CPP2 1973 INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field TRAF 2003 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RWMC NA Free-field RWMC 1997	MFC	ANL-768	Basement	FCF	1973
INTEC* CPP-668 Free-field CPPF 1992 INTEC CPP-601 First Floor CPP1 1973 INTEC CPP-601 Second Basement CPP2 1973 INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field TRAF 2003 RTC TRA-602 Free-field TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 19	CFA	CFA-1607	Free-field	CFAF	1996
INTEC CPP-601 First Floor CPP1 1973 INTEC CPP-601 Second Basement CPP2 1973 INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983	CFA	EFS	Free-field	EFSF	1997
INTEC CPP-601 Second Basement CPP2 1973 INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field TRAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983	INTEC*	CPP-668	Free-field	CPPF	1992
INTEC CPP-666 Second Floor FAS1 1984 INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 <t< td=""><td>INTEC</td><td>CPP-601</td><td>First Floor</td><td>CPP1</td><td>1973</td></t<>	INTEC	CPP-601	First Floor	CPP1	1973
INTEC CPP-666 Second Basement FAS2 1984 NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	INTEC	CPP-601	Second Basement	CPP2	1973
NPRI NA Free-field NPRF 2008 NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	INTEC	CPP-666	Second Floor	FAS1	1984
NRF NRF-768 Free-field NRFF 1996 NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	INTEC	CPP-666	Second Basement	FAS2	1984
NRF NRF-A1W First Floor A1W 1983 NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	NPRI	NA	Free-field	NPRF	2008
NRF NRF-S1W First Floor S1W 1983 PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	NRF	NRF-768	Free-field	NRFF	1996
PBF NA Free-field PBFF 2005 PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	NRF	NRF-A1W	First Floor	A1W	1983
PBF NA Free-field ARAF 2005 RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	NRF	NRF-S1W	First Floor	S1W	1983
RTC TRA-602 Free-field TRAF 2003 RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	PBF	NA	Free-field	PBFF	2005
RTC TRA-670 Basement TRA2 1996 RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	PBF	NA	Free-field	ARAF	2005
RTC TRA-670 First Floor TRA3 2008 RWMC NA Free-field RWMC 1997 RWMC NA Free-field RWME 2005 STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	RTC	TRA-602	Free-field	TRAF	2003
RWMCNAFree-fieldRWMC1997RWMCNAFree-fieldRWME2005STCIRC-602First FloorIRC1983TANNAFree-fieldTANA2007TANTAN-601First FloorTANH2008	RTC	TRA-670	Basement	TRA2	1996
RWMCNAFree-fieldRWME2005STCIRC-602First FloorIRC1983TANNAFree-fieldTANA2007TANTAN-601First FloorTANH2008	RTC	TRA-670	First Floor	TRA3	2008
STC IRC-602 First Floor IRC 1983 TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	RWMC	NA	Free-field	RWMC	1997
TAN NA Free-field TANA 2007 TAN TAN-601 First Floor TANH 2008	RWMC	NA	Free-field	RWME	2005
TAN TAN-601 First Floor TANH 2008	STC	IRC-602	First Floor	IRC	1983
	TAN	NA	Free-field	TANA	2007
TAN SMC First Floor SMC 2007	TAN	TAN-601	First Floor	TANH	2008
	TAN	SMC	First Floor	SMC	2007

NA – Not within a building.

^{* -} Removed due to building demolition.

Table 4. Continuous GPS sites co-located with INL seismic stations.

		Latitude	Longitude	Elevation	
Code	Station Name	North (°)	West (°)	(m)	Year Installed
ARNG	Argonne North, Idaho	43.6667	112.6235	1533	2005
BCYI	Bear Canyon, Idaho	44.3108	113.4052	2194	2003
CRBG	Circular Butte, Idaho	43.8303	112.6345	1520	2007^{a}
EMIG	Eightmile Canyon, Idaho	44.0742	112.9262	1963	2005
GBIG	Big Grassy Butte, Idaho	43.9875	112.0633	1541	2007 a
GRRG	Grays Range, Idaho	42.9380	111.4217	2207	$2007^{\rm a}$
GTRG	Great Rift, Idaho	43.2440	113.2410	1522	1998 ^b
HPIG	Howe Peak, Idaho	43.7113	113.0983	2597	2005
HWFG	Howe Fault, Idaho	43.9257	113.0973	1743	2007 a
ICIG	Italian Canyon, Idaho	44.3293	112.9412	2463	2007
PTIG	Pocatello, Idaho	42.8703	112.3702	1670	2007 a
PZCG	Patelzick Creek, Idaho	44.3410	112.3172	2073	2007 a
TCSG	Telchick Spring, Idaho	43.6193	113.4783	1731	2005
TMIG	Taylor Mountain, Idaho	43.3057	111.9182	2179	$2007^{\rm a}$

a - Although hardware was installed for the GPS receiver in 2007, the receiver began acquiring phase data in 2008.

b - Co-located at INL's seismic station GTRI, but operated by the Plate Boundary Observatory under the EarthScope Science Program.

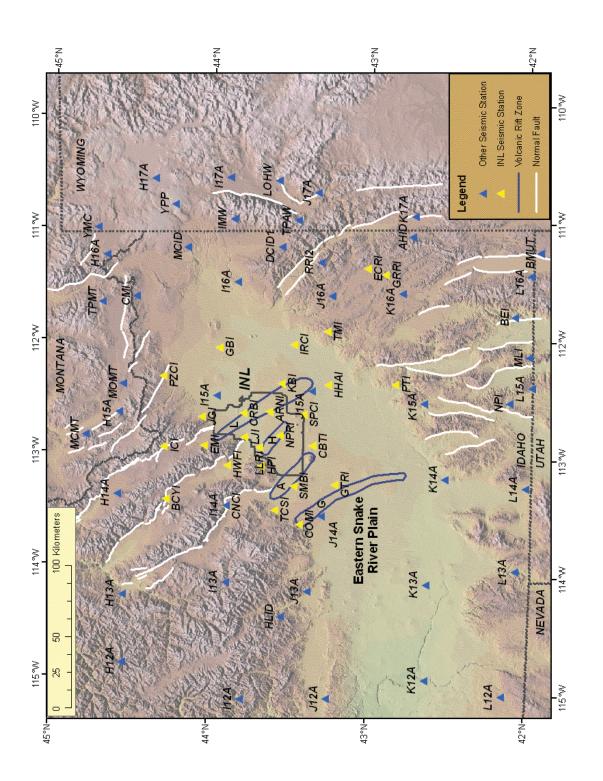


Figure 2. Locations of INL seismic stations and stations monitored by INL that are operated by other institutions. See Figure 1 for names of normal faults and volcanic rift zones.

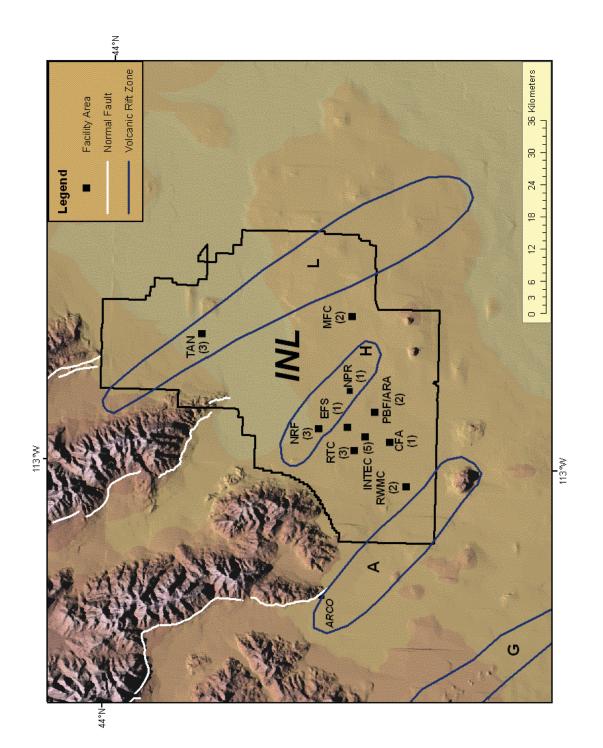


Figure 3. Numbers (in parentheses) of SMAs located at INL. See Figure 1 for names of normal faults and volcanic rift zones.

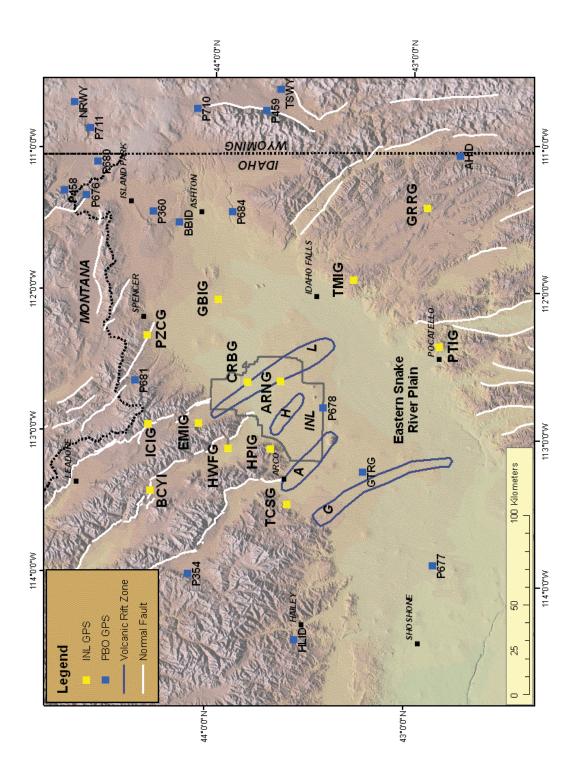


Figure 4. Locations of the continuous GPS stations co-located at INL seismic stations and operated by the Plate Boundary Observatory (PBO) under the EarthScope Science Program. See Figure 1 for names of normal faults and volcanic rift zones.

3. Data Analysis

Digital seismograms are analyzed using the SEISAN program to determine the earthquake's location, magnitude, and peak ground accelerations. SEISAN displays multiple seismograms on a computer screen with corresponding time codes having accuracy of \pm 0.001 s. P- and S-phase arrival times of the seismograms are selected with accuracies up to 0.01 s. Duration and/or amplitude of a seismic signal is selected and then used to calculate the magnitude of an earthquake. The arrival times, durations, and amplitudes measured for an earthquake are saved in a computer file directly from the SEISAN program. The HYPOINVERSE program is used to compute the location. Two methods may be used to calculate the final magnitude of an earthquake depending on its size. Amplitudes of the accelerograms are also measured using the SEISAN program, then processed using a separate program that outputs peak horizontal and vertical accelerations. The locations and magnitudes of the earthquakes are plotted on maps to assess seismically active regions near the INL.

3.1 Location Method

The HYPOINVERSE computer program (Klein, 1989) is used to determine locations for all local earthquakes recorded. Phase data files (arrival times of the earthquake) from the output of SEISAN are input into the HYPOINVERSE location program. According to Zollweg and Sprenke (1995), stable locations are usually obtained from about seven to ten arrival times (P- and S-waves combined) for recorded events that are not surrounded by INL seismic stations. Within the INL network, stable locations can be obtained with a minimum of six arrival times. Because of the density and sensitivity of the INL seismic network, the majority (usually more than 90%) of earthquakes located within the 161-km radius have a minimum of six arrival times. However, some earthquakes are located with fewer than six arrival times and, thus, their locations have larger errors. Seismic stations from other agencies monitored by the INL provide coverage outside the INL network and phase arrivals from these stations supplement phase data from INL stations in an attempt to reduce location errors.

Four P-wave velocity models are used in the HYPOINVERSE location program depending on the location of the earthquakes (Table 5). The "ESRP" velocity model is used for locating earthquakes that occur within the ESRP including the mountainous terrain on the northern and eastern edge of the Plain (Olsen et al., 1979; Sparlin et al., 1979; Braile and Smith, 1979; and Ackerman, 1979). The "INL ESRP" velocity model is used to locate earthquakes that occur on the ESRP and are near or within the INL Site boundaries. This model was developed from Sparlin et al. (1982) and Braile et al. (1982) and checked with respect to a few microearthquakes located within the ESRP (Jackson et al., 1989). The "BPEAK" velocity model is used for locating earthquakes that occur in the Borah Peak aftershock area and the mountainous terrain northwest of the Plain (Richins et al., 1987). Finally, the "SMT" velocity model is used to locate earthquake in southwestern Montana (Stickney, 1997). For all velocity models, a P-wave velocity to S-wave velocity ratio of 1.75 is used (Bones, 1978; Greensfelder and Kovach, 1982; and Richins et al., 1987).

Other notable parameters used in the HYPOINVERSE location program are the starting focal depth, set to 5 km, and the distance cutoff for arrival weighting, set to 50 km. Zollweg and Sprenke (1995) evaluated the parameters chosen for the HYPOINVERSE program used by INL. They determined that the parameters chosen yield good location results despite the poor coverage in azimuth of earthquakes outside the network. An evaluation of the difference between the observed and computed latitude and longitude was less than 0.25 km.

3.2 Magnitude Calculations

Magnitudes are determined using two methods 1) coda magnitudes using signal duration of digital seismograms and 2) local magnitudes using amplitudes from digital seismograms. A coda magnitude (M_c) is calculated for an earthquake using several signal durations measured from the seismograms of different seismic stations. A local magnitude (M_L) is calculated using the largest peak-to-peak trace amplitude measured from digital waveforms and the Richter magnitude equation. If a magnitude cannot be determined for a local earthquake, then magnitudes determined by other seismic networks may be used. These include the University of Utah, Montana Bureau of Mines and Geology, NEIC, the University of Nevada, Reno, and the University of Washington. The summary list of earthquakes in Appendix D lists the type of magnitude calculated and what institution reported the magnitude.

For the signal duration method, the following expression is used to calculate coda magnitude at a station (Arabasz et al., 1979):

$$M_c = -3.13 + 2.74 \log \tau + 0.0012 \Delta$$

Where:

 τ = Total signal duration recorded at the station in seconds;

 Δ = Epicentral distance from the station in km.

The duration is measured from the start of the earthquake signature (P-wave arrival) to the end of the coda, where the signal fades into the background noise of the trace. The final magnitude is determined by averaging the coda magnitude calculated for each seismogram. The SEISAN program automatically selects the duration of the earthquake when the P-wave arrival time is selected. Equation (1) is usually used to estimate magnitudes for events located by the HYPOINVERSE location program.

Local magnitudes calculated from the digital seismograms are based on the Richter magnitude scale. Richter (1958) defined the local magnitude scale from the following equation:

$$M_{L} = \text{Log A} - \text{Log A}_{o}$$
 [2]

Where:

A = Recorded maximum trace amplitude from the zero-line measured in millimeters on a standard seismogram;

 A_{o} = Maximum trace amplitude from the zero-line in millimeters for a selected standard earthquake.

Dr. Richter developed the scale for a standard earthquake of magnitude 3.0 at 100 km for $A_o = 0.001$ mm and amplitude of 1.0 mm measured on the standard seismogram. He constructed a table of magnitudes based on distance and -Log A_o for maximum trace amplitudes recorded on the standard Wood-Anderson seismogram.

SEISAN has a program that uses equation [2] with amplitudes measured on a synthetic Wood-Anderson digital seismogram. The program allows the user to convert waveforms recorded on the horizontal channels of accelerometers and seismometers at INL seismic stations to synthetic Wood-Anderson seismograms. The SEISAN program uses the instrument response information contained in

Appendix B for accelerograms and Appendix C for seismograms to calculate synthetic Wood-Anderson seismograms at a magnification of 2800. The user then selects the largest peak-to-peak amplitude (or A) in millimeters from the digital display of the synthetic Wood-Anderson seismogram. The SEISAN program then uses the distance of the simulated Wood-Anderson station to the earthquake's epicenter and one-half the peak-to-peak amplitude to determine local magnitude using Richter's table. The program determines the local magnitude for the amplitude selected.

3.3 Peak Accelerations

Peak horizontal and vertical accelerations are determined for accelerograms (or acceleration time histories) using the SEISAN program (Section 2.4). SEISAN displays the horizontal and vertical accelerograms for some free-field SMAs located at the INL and accelerometers co-located with the seismic stations. The SEISAN program allows the user to correct the accelerograms by removing the instrument responses listed in Appendices A and B. A separate program is used to measure the largest zero-to-peak acceleration amplitude from the corrected acceleration time history.

3.4 Location Quality

Comparisons between earthquake locations determined by the INL and locations determined by other temporary networks or NEIC have been used to approximate locations errors of earthquake epicenters (Jackson et al., 1993a). This method was very general and yielded an approximation of the quality of the INL earthquake locations. In 1995, the State of Idaho requested Zollweg and Sprenke (1995) to perform an independent assessment of the INL Seismic Monitoring Program. Zollweg and Sprenke (1995) evaluated the location accuracy of the INL seismic network by two methods: 1) directly comparing INL locations to well-located earthquakes; and 2) indirectly by evaluating the network bias or non-random error through varying independent permutations (or combinations) of recording stations.

For the first method, twenty-two earthquakes having high-quality locations determined from a temporary seismic network installed near Challis, Idaho from July 1, 1992 to July 12, 1992 (by Boise State University) were compared to INL locations for these earthquakes. The earthquakes were located about 120 km from the center of INL, had varying magnitudes ranging from 1.9 to 4.5, and had absolute errors less than 1 km. The epicenters determined by INL seismic stations for these events differed by 1.6 to 11.5 km with an average of 7.1 km. The differences in locations were dependent on magnitude, with the smaller magnitude earthquakes tending to have greater differences in locations (Zollweg and Sprenke, 1995). These results are similar to the earlier estimates of an error radius of 5 km for a comparison to high-quality locations of the aftershocks from the $M_{\rm s}$ 7.3 October 28, 1983 earthquake (Jackson et al., 1993a). However it is noted that this estimate for an error radius was based on having five stations in the INL seismic network at that time. The closest station to the aftershocks was at a distance of 50 km or more.

The second method used by Zollweg and Sprenke (1995) evaluates the network bias. Unless all earthquakes are located using exactly the same groups of stations and phases (P- and S-waves), the relative locations will be affected by a non-random error or network bias. The network bias is important for the smaller earthquakes that make up the majority of the events in an earthquake catalog since fewer stations usually record smaller earthquakes. Five earthquakes located northwest of the INL seismic network and ranging in magnitude from 1.8 to 3.8 were used in the analysis. Because INL operated 26 seismic stations at the time of the assessment, there were millions of possible combinations of recording stations. Zollweg and Sprenke (1995) chose to vary the combination of the ten most influential phase arrivals for the permutation analysis. The locations for most of the permutations clustered about radii ranging from 6.5 to 11 km. For the magnitude 3.8 earthquake, 8% of the permutations resulted in a linear

band extending 100 km. Zollweg and Sprenke (1995) suggested that earthquakes located with fewer S-wave arrival times have less well-constrained locations. Some of the larger earthquakes, like the magnitude 3.8 earthquake, have fewer S-wave arrival times because the signals saturate the instrumentation and onset of the S- wave is indistinguishable from the P-waves. Earthquakes with more than three S-wave-arrival times resulted in better-constrained locations.

3.5 Depth Quality

The HYPOINVERSE location program also calculates depth to the hypocenter. Focal depths calculated by this program are not accurate for many of the earthquakes recorded by the INL seismic network for two reasons: 1) the station spacing is usually greater than twice the focal depth of the earthquake recorded; and 2) the earthquake usually occurs outside of the network. To calculate accurate focal depths, the earthquake must occur within the seismic network or at a distance equal to or less than its focal depth. Although focal depths are listed in Appendix D, they should be interpreted within the context of the limitations discussed in this section unless otherwise indicated.

3.6 Data Completeness

Local earthquakes are easily discriminated from other seismic data such as local mine blasts, air blasts (or sonic booms), and distant (worldwide) and regional earthquakes occurring far outside of the INL seismic network. For example, man-made blasts are easily discriminated from earthquakes on the basis of waveform characteristics, the time the event occurred, and the location of the event. The NEIC earthquake website listing is regularly inspected to confirm consistency with the INL earthquake catalog for magnitudes 2.5 and greater (the cutoff magnitude for NEIC earthquake locations).

Detection threshold can provide a measure of completeness for the INL earthquake catalog. It is defined as the magnitude level at which the seismic network will nearly always locate an earthquake. Zollweg and Sprenke (1995) evaluated the detection threshold by plotting the cumulative number of earthquakes as a function of magnitude to determine the lowest magnitude point that the curve begins to flatten. Zollweg and Sprenke (1995) determined the detection threshold to be a magnitude 1.3 anywhere within a 100-mile radius around INL. Their conclusion was based on a plot of 1360 earthquakes for an 18-month period. Since the seismic stations are all located within 90 km of the center of INL, they suggested that the detection threshold is magnitude 0.8 within the network on the ESRP. The analysis of Zollweg and Sprenke (1995) suggests that the INL earthquake catalog is complete for magnitudes above 1.3 within a 100-mile radius of INL and may be complete for magnitudes as low as 0.8 within the network. Hardware and software upgrades for the current DAAS have increased detection sensitivities on the order of magnitude 0.0 which allow recording of small magnitude microearthquakes within ESRP.

Table 5. P-wave velocity models used in location programs.

	•			
Velocity Model Code	Velocity (km/sec)	Depth to Top of Layer (km)	Layer Thickness (km)	References
ESRP	4.90	0.00	2.00	Olsen et al., 1979;
	6.00	2.00	15.00	Sparlin et al., 1979; Braile & Smith, 1979;
	6.70	17.00	23.00	Ackerman, 1979.
	7.90	40.00	Half-space	
INL ESRP	3.30	0.00	1.00	Sparlin et al., 1982;
	4.90	1.00	2.00	Braile et al., 1982; Jackson et al., 1989.
	5.30	3.00	2.00	Jackson et al., 1707.
	6.15	5.00	2.00	
	6.53	7.00	10.00	
	6.80	17.00	23.00	
	8.00	40.00	Half-space	
BPEAK	4.75	0.00	1.64	Richins et al., 1987.
	5.59	1.64	5.31	
	6.16	6.95	11.05	
	6.80	18.00	22.00	
	8.00	40.00	Half-space	
SMT	5.52	0.00	5.86	Stickney, 1997.
	6.12	5.86	12.78	
	6.74	18.64	20.05	
	8.00	38.69	Half-space	

4. 2008 Earthquake Activity

During 2008, INL recorded 7,284 independent triggers from earthquakes that occurred worldwide, in the western United States, and in the local region of the ESRP. Within the local region, INL located 2,396 earthquakes and man-made blasts outside and within a 161-km (or 100-mile) radius of INL. Of these, twenty-five were small to moderate size earthquakes ranging in magnitude from 3.0 to 3.9 and 823 earthquakes occurred within the 161-km radius of INL.

4.1 Regional Earthquake Activity

Eighteen earthquakes of magnitudes from 3.0 to 3.9 occurred in the immediate region outside the 161-km radius of INL. Eleven of these earthquakes with magnitudes (M) from M 3.0 to M 3.9 occurred in 2008 as part of a large swarm in Yellowstone National Park (east of Island Park in Figure 5), which consisted of more than 900 earthquakes that spanned the time period from 26 December 2008 to 8 January 2009. The swarm was centered beneath Yellowstone Lake and exhibited a northward migration of epicenters. Three earthquakes in this swarm were reported felt by local residents: M 3.5 and M 3.2 events on 27 December 2008 and the M 3.9 event on 28 December 2008. Earlier in 2008, three other earthquakes occurred in Yellowstone National Park. The first M 3.7 event occurred on 9 January 2008, the second M 3.1 event occurred on 12 March 2008, and the third M 3.4 event occurred on 24 March 2008. The largest event was reported felt by local residents. To the west of Yellowstone National Park, two earthquakes of M 3.2 and M 3.0 occurred on 24 June 2008 and 31 August 2008, respectively. Further west, an M 3.1 event on 25 March 2008 occurred near Dillon, MT. One earthquake M 3.3 occurred southeast of Pocatello, ID just outside the 161-km radius. Residents felt this event on 16 August 2008.

INL also recorded the 21 February 2008 M 6.0 mainshock that occurred near Wells, Nevada and 250 aftershocks that occurred from 21 February 2008 to 31 March 2008. The mainshock was located more than 300 km (190 miles) from INL facilities and was not reported felt at INL. The earthquake did not trigger SMAs that are located within buildings at the INL Site. Free-field accelerographs (not within buildings) and accelerometers co-located with seismic stations recorded acceleration data. Peak accelerations are listed in Table 6, and the locations of the accelerometers relative to the mainshock epicenter are shown in Figure 6.

4.2 Local Earthquake Activity

There were 823 earthquakes located within the 161-km radius of INL, which occurred within the ESRP and in the surrounding Basin and Range Province (Figure 7). The large number of earthquakes within the 161-km radius of INL is the result of eight different earthquake swarms that occurred throughout the year. Six of the seven earthquakes of M 3.0 to M 3.7 were associated with these swarms. Eight earthquakes occurred within the ESRP; seven near Craters of the Moon National Monument and one within the INL boundary.

Eight earthquake swarms occurred in central Idaho, in southwestern Montana, near the Idaho-Wyoming border, and in southeastern Idaho. The central-Idaho earthquake swarm, which occurred southeast of Stanley, ID, included the M 3.7 event of 26 November 2008 and M 3.6 event of 27 November 2008 and had 51 earthquakes associated with it (Figure 7). This swarm began 25 November 2008 and ended on 29 December 2008. Another swarm of earthquakes occurred east of Stanley and southwest of Challis, ID near Clayton, ID. This short-duration swarm began on 2 November 2008, ended 4 November 2008, and included 22 events. Throughout the year, 62 events were associated with the aftershock zone of the 1983 Borah Peak earthquake along the northwest-trending Lost River fault south of Challis.

Three earthquake swarms occurred along the east-west trending Centennial fault in southwestern Montana, which is north of Spencer, ID (Figure 7). The first swarm of 26 events began 22 February 2008 and included the M 3.1 and M 3.0 events of 22 February 2008 and 23 February 2008, respectively. The swarm was located near the west end of the Centennial fault. The second swarm of 14 events occurred to the east of the first swarm near the center of the Centennial fault beginning 4 March 2008 and ending 28 March 2008. The time period of second swarm overlapped with the third swarm, but was located to the west of the first swarm near Lima Reservoir. The third swarm of 36 events began 26 March 2008 and ended 14 April 2008.

Two earthquake swarms occurred near the Idaho-Wyoming border southeast of Ashton, ID and near the north-south trending Teton fault (Figure 7). The first swarm had only 12 events and lasted one day on 9 July 2008 with the largest event of M 2.0. The second swarm of M < 2.6 events occurred in the footwall of the east-dipping Teton fault and included 28 events. This swarm began 30 October 2008 and ended 5 November 2008.

An earthquake swarm with 112 events occurred within the scattered events covering southeastern Idaho east of Pocatello, ID (Figure 7). The earthquake swarm began 14 May 2008, continued over three months, and ended 31 August 2008. Two events of M 3.0 and M 3.2 occurred on 14 May 2008 and 22 July 2008, respectively. Neither event was felt by local residents.

4.3 Earthquakes within the Eastern Snake River Plain

During 2008, eight small-magnitude earthquakes occurred within ESRP, one of which was located within the INL boundary (Figure 7). The event of M 1.5 occurred in the central part of INL on 9 October 2008. Its focal depth was shallow at 3.9 km, typical of past microearthquakes observed within the ESRP (e.g., Jackson et al. 1993b). Another event occurred within the ESRP and was located south of the INL boundary. The M 1.1 event of 3 October 2008 had an uncharacteristically deep, though poorly constrained, focal depth of 37 km.

Six other earthquakes of uncharacteristic focal depths and waveform character were located within and around Craters of the Moon National Monument (COM) during 2008. Adding to the three similar events which occurred 2007, Carpenter and Payne (2009) performed additional studies of these events. After re-analysis of all INL events within the ESRP and adjacent Basin and Range near the northern end of COM, twelve earthquakes of magnitudes from 0.5 to 2.5 and depths from 16 to 42 km were found from 1999 through 2008 in the study area (Figure 8). Eight events with stable, well-constrained locations nucleated at mid-crustal depths from 15 to 25 km below the surface, six of which occurred from February, 2007 through November, 2008. Confidence of the hypocenter depths was gained by searching for root mean square travel-time residual minima through fixed event depths, plotting predicted arrivals on waveforms, and relocating events with subsets of arrivals (P- and S-phases).

The COM events are anomalous for two reasons: Firstly, the hypocenter depths are uncharacteristic as ESRP earthquakes have occurred at depths of less than 10 km and nearby Basin and Range events typically occur at depths of 15 km or less. The observed focal depths are significant as they are located near and around base of the mid-crustal sill where magma is thought to reside and at depths hypothesized to be source regions for dikes. Secondly, the character of the waveforms differs dramatically from typical brittle-fracture earthquakes observed in the ESRP and Basin and Range. Upon inspection, waveforms from several of these earthquakes are quite similar to waveforms recorded from long-period volcanic events in other active volcanic regions, including having dominant frequencies of less than 2 Hz.

5. 1972 – 2008 Earthquake Activity

Earthquakes in 2008 were located within and around the ESRP that have been active in the past (Figure 9). Of the more than 10,000 earthquakes shown in Figure 9, only 48 small-magnitude microearthquakes ($M_L \le 2.0$) have occurred within the ESRP near the region of the INL (excluding events near Ashton and Island Park). Of these, 13 events have anomalous focal depths and may be associated with magmatic processes at or near COM. The other 35 events have shallow focal depths (< 11 km), more typical of earthquakes associated with regional tectonic tensional stresses. Even though microearthquakes have occurred within the ESRP, earthquake monitoring by the INL seismic network for the last 36 years indicates that the ESRP has been seismically inactive relative to the surrounding Basin and Range Province (Jackson et al., 1993b).

Table 6. Peak accelerations measured at INL accelerographs for the 21 February 2008 M 6.0 Wells, Nevada Earthquake.

		Peak Acce	leration (g)			n Earthquake enter
Station Code	Maximum	North	East	Vertical	(km)	(miles)
PTI	0.0048	0.0048	0.0048	0.0021	281	175
RWME	0.0015	0.0015	0.0015	0.0009	304	189
RWMC	0.0013	0.0013	0.0012	0.0006	306	190
NRFF	0.0011	0.0011	0.0011	0.0005	324	201

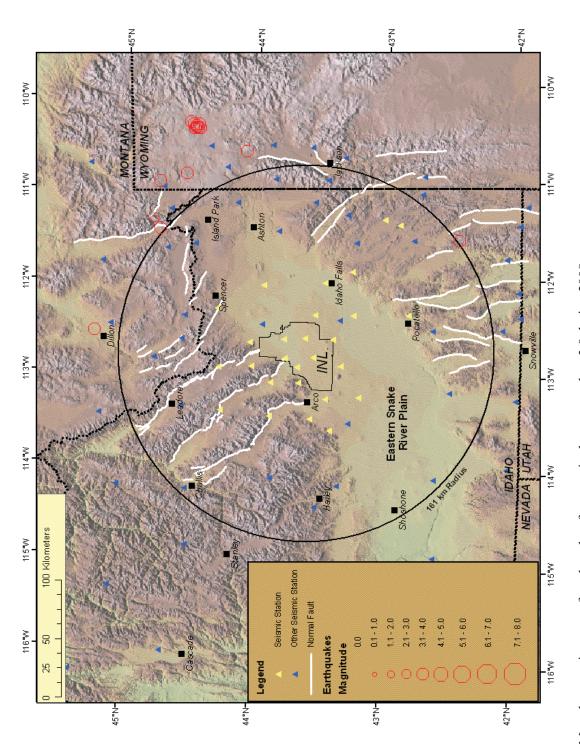
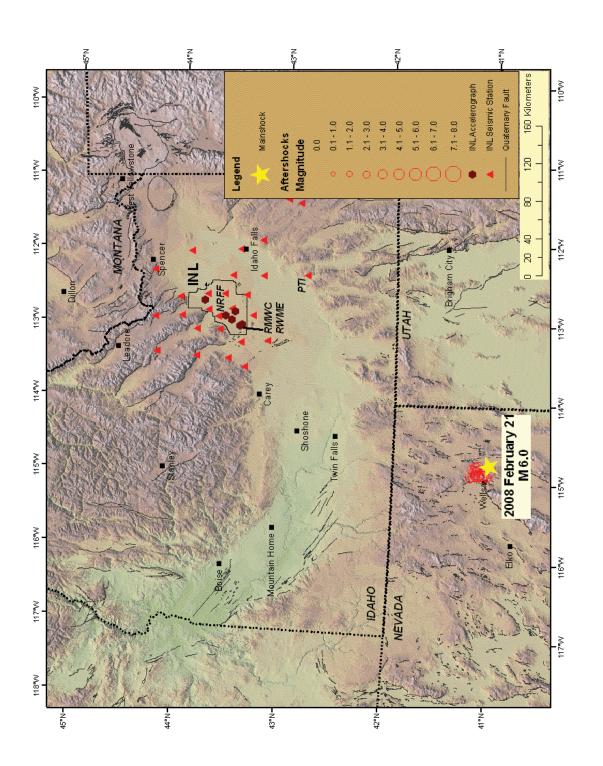



Figure 5. Map shows epicenters of earthquakes for magnitudes greater than 3.0 during 2008.

Figure 6. Map shows location of the M6.0 earthquake near Wells, NV and locations of INL seismic stations and accelographs that recorded ground motions listed in Table 6.

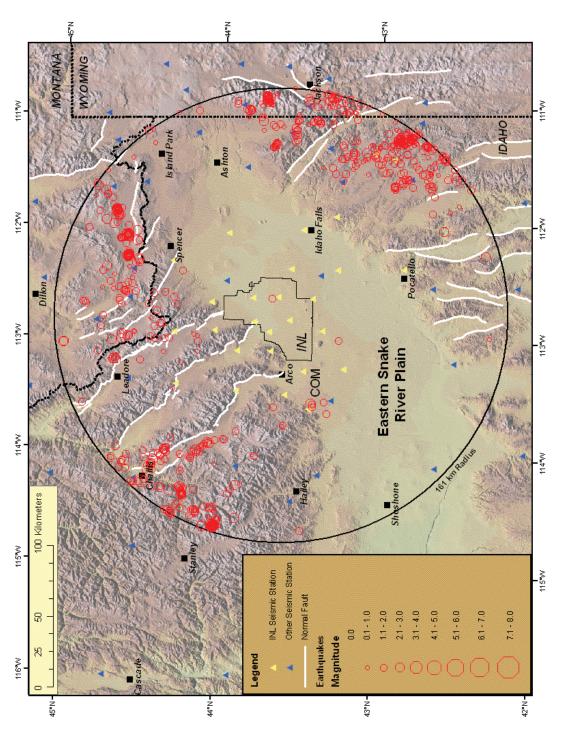
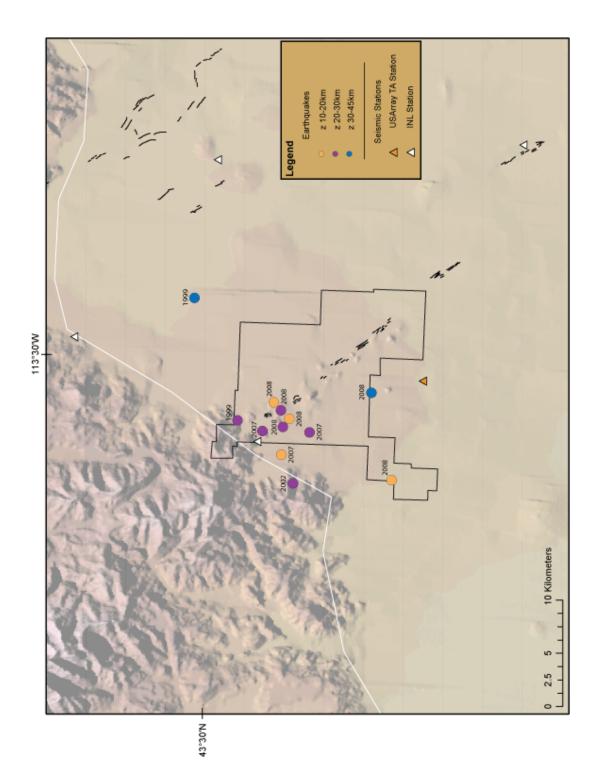



Figure 7. Map shows epicenters of earthquakes within the 161-km radius of INL from January 1, 2008 to December 31, 2008.

Figure 8. Map shows epicenters of earthquakes (colored by focal depth) and year of occurrence at Craters of the Moon National Monument (black box) from 1999-2008 (Carpenter and Payne 2009).

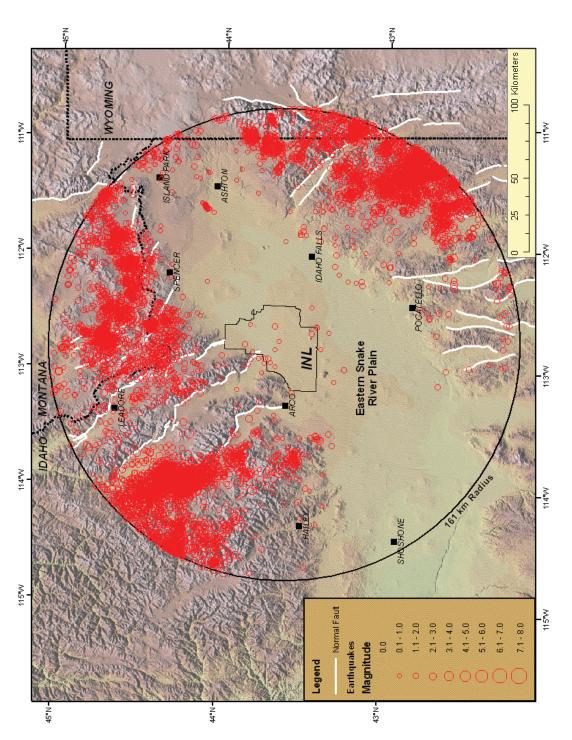


Figure 9. Map shows epicenters of earthquakes from 1972 to 2008 within the 161-km radius of INL.

6. References

- Ackerman, H. D. (1979). Velocity Structure to 3000-Meter Depth at the Idaho National Engineering Laboratory, Eastern Snake River Plain (abstract), EOS Transactions, American Geophysical Union, v. 60, no. 46, p. 942.
- Anders, M. H., J. W. Geissmann, L. A. Piety and J. T. Sullivan (1989). Parabolic Distribution of Circumeastern Snake River Plain Seismicity and Latest Quaternary Faulting: Migratory Pattern and Association with the Yellowstone Hotspot, Journal of Geophysical Research, v. 94, no. 2, p. 1589-1621.
- Arabasz, W. J., R. B. Smith, and W. D. Richins (1979). Earthquake Studies Along the Wasatch Front, Utah: Network Monitoring, Seismicity, and Seismic Hazards, Earthquake Studies in Utah 1850 to 1978, W. J. Arabasz, R. B. Smith, and W. D. Richins, Editors, published by the University of Utah, p. 253-286.Bones, D. B. (1978). Seismicity of the Intermountain Seismic Belt in Southeastern Idaho and Western Wyoming, and Tectonic Implications, unpublished M. S. Thesis, University of Utah.
- Braile, L. W. and R. B. Smith (1979). The Structure of the Crust in the Yellowstone-Snake River Plain Area and Adjacent Provinces and Implications for Crustal Evolution (abstract), EOS Transactions, American Geophysical Union, v. 60, no. 46, p. 941.
- Braile, L. W., R. B. Smith, J. Ansorge, M. R. Baker, M. A. Sparlin, C. Prodehl, M. M. Schilly, J. H. Healy, ST. Mueller, and K. H. Olsen (1982). The Yellowstone-Snake River Plain Seismic Profiling Experiment: Crustal Structure of the Eastern Snake River Plain, Journal of Geophysical Research, v. 87, no. B4, p. 2597-2609.
- Carpenter, N. S. and S. J. Payne (2009). Deep, Long-Period Earthquakes in and around Craters of the Moon National Monument, Idaho, Seismological Research Letters, v. 80, p. 350.
- DOE (2003). Facility Safety, U.S. Department of Energy, DOE Order 420.1A.
- DOE-ID (2002). DOE-ID Architectural and Engineering Standards, U.S. Department of Energy Idaho Operations Office, Idaho Falls, Idaho, Issue Number 29, September.
- Greensfelder, R. W. and R. L. Kovach (1982). Shear Wave Velocities and Crustal Structure of the Eastern Snake River Plain, Idaho, Journal of Geophysical Research, v. 87, no. B4, p. 2643-2653.
- Griscom, M. and W. J. Arabasz (1979). Local magnitude (M_L) in the Wasatch front and Utah region: Wood Anderson calibration, coda-duration estimates of M_L, and M_L vs M_B, Earthquake Studies in Utah 1850 to 1978, W. J. Arabasz, R. B. Smith, and W. D. Richins, Editors, published by University of Utah, p. 433-444.
- Jackson, S. M. and D. M. Anderson (1986). INEL Seismograph Stations Annual Report: January 1 December 31, 1985, EG&G Internal Technical Report ST-ES-03-86, March, 33 p.
- Jackson, S. M., D. M. Anderson, G. S. Carpenter, H. K. Gilbert, S. M. Martin, and P. J. Permann (1989). The 1988 INEL Microearthquake Survey near the Western Edge of the eastern Snake River Plain, EG&G Internal Technical Report EGG-BEG-8665, August, 48 p.

- Jackson, S. M., G. S. Carpenter, D. M. Anderson, D. L. Scott, J. L. Casper, and R. B. Powell (1993a). INEL Seismograph Stations Annual Report: January 1 - December 31, 1992, EG&G Internal Technical Report EGG-EELS-004, 114 p.
- Jackson, S. M., I. G. Wong, G. S. Carpenter, D. M. Anderson, and S. M. Martin (1993b). Contemporary Seismicity in the eastern Snake River Plain, Idaho based on Microearthquake Monitoring, Bulletin of the Seismological Society of America, v. 83, no. 3, June, p. 680-695.
- Klein, F. W. (1989). User's Guide to HYPOINVERSE, a program for VAX computers to solve for earthquake locations and magnitudes, U. S. Geological Survey Open File Report 89-314.
- Kuntz, M. A., B. Skipp, M.A. Lanphere, W. E. Scott, K.L. Pierce, G.B. Dalrymple, D.E. Champion, G.F.
 Embree, W.R. Page, L.A. Morgan, R.P. Smith, W.R. Hackett, and D.W. Rodgers (1994). Geologic map of the Idaho National Engineering Laboratory and adjoining areas, eastern Idaho; U.S.
 Geological Survey Miscellaneous Investigation Map, I-2330, 1:100,000 scale.
- Olsen, K. H., E. F. Homuth, J. N. Stewart, R. N. Felch, T. G. Handel, and P. A. Johnson (1979). Upper Crustal Structure Beneath the Eastern Snake River Plain Interpreted from Seismic refraction Measurements Near Big Southern Butte, Idaho (abstract), EOS Transactions American Geophysical Union, v. 60, no. 46, p. 941.
- Qamar, A., R. Ludwin, R. S. Crosson, and S. D. Malone (1987). Earthquake hypocenters in Washington and Oregon: 1982-1986, Washington Division of Geology and Earth Resources, Information Circular 84.
- Payne, S. J., R. McCaffrey, and R. W. King (2008a). Strain Rates and Contemporary Deformation in the Snake River Plain and Surrounding Basin and Range From GPS and Seismicity, Geology, v. 36, p. 647-650.
- Payne, S. J., R. W. King, and R. McCaffrey (2008b). Crustal Rotation and Deformation in the Snake River Plain and Northern Basin and Range Province, Invited*, Geological Society of America Abstracts with Programs, 263-4, October.
- Payne, S. J., R. W. King, S. A. Kattenhorn, and R. McCaffrey (2008c). Accommodation of Right-lateral Shear Along the Northwest Boundary of the Snake River Plain, Idaho, EOS Trans. Am. Geophys. Union, 89(53), Fall Meet. Suppl. Abstract
- Reasenberg, P. A. and D. Oppenheimer (1985). FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault plane solutions, U.S. Geological Survey Open File Report 85-739, 25 p.
- Richins, W. D., J. C. Pechmann, R. B. Smith, C. J. Langer, S. K. Goter, J. E. Zollweg, and J. J. King (1987). The 1983 Borah Peak, Idaho Earthquake and Its Aftershocks, Bulletin of the Seismological Society of America, v. 77, no. 3, p. 694-723.
- Richter, C. F. (1958). Elementary Seismology, W. H. Freenam and Company, San Francisco, p. 340-342.
- Scott, W. E., K. L. Pierce, and M. H. Hait, Jr. (1985). Quaternary Tectonic Setting of the 1983 Borah Peak Earthquake, Central Idaho, Bulletin of the Seismological Society of America, v. 75, no. 4, p. 1053-1066.

- Seismic (1993). INEL Seismic Network: Seismic station boreholes, EG&G Idaho, Inc., Idaho Falls, Idaho Engineering Design File EDF-SEIS-0003, 28 p.
- Sparlin M., L. W. Braile, M. R. Baker, and R. B. Smith (1979). Interpretation of Seismic Profiles Across the Eastern Snake River Plain (abstract), EOS Transactions American Geophysical Union, v. 60, no. 46, p. 941.
- Sparlin, M. A., L. W. Braile and R. B. Smith (1982). Crustal Structure of the Eastern Snake River Plain Determined from Ray Trace Modeling of Seismic Refraction Data, Journal of Geophysical Research, v. 87, no. B4, p. 2619-2633.
- Stickney, M.C. (1997). Seismic source zones in southwest Montana, Montana Bureau of Mines and Geology, Butte, Montana Open-file report 366.
- Stickney, M. C., and M. J. Bartholomew (1987). Seismicity and Late Quaternary Faulting of the Northern Basin and Range Province, Montana and Idaho, Bulletin of the Seismological Society of America, v. 77, no. 5, p. 1602-1625.
- Stickney, M.C. and D.R. Lageson (1999). The 1999 Red Rock Valley, Montana earthquake: Seismological constraints and structural model, EOS, Transactions, American Geophysical Union, v. 80, No. 66, p. F725.
- Zollweg, J.E., and K. F. Sprenke (1995). Review of Idaho National Engineering Laboratory Seismographic Networks and Seismic Hazard Program, prepared for the State of Idaho INEL Oversight Program, Technical Report 95-01, 72 p.

Appendix A Seismic Network Information

Appendix A

Seismic Network Information

EarthScope Science Program

USArray is a component of the EarthScope Science Program to capture high-resolution images of structure of the continental lithosphere and deeper mantle using passive seismic events such as earthquakes that occur worldwide. Broadband seismometers are being deployed in N-S transects across the United States for 18-24 months. While installed in Idaho, the USArray's Transportable Array (TA) stations enhance detection and coverage of local earthquakes for the INL Seismic Monitoring Program. The TA stations that were recorded by the INL and used to compute earthquake locations and magnitudes during part of 2008 are listed in Table A-1.

Table A-1. EarthScope Science Program Transportable Array seismic stations monitored by INL.

Code	Longitude West (°)	Latitude North (°)	Elevation (m)
G11A	-116.2680	45.3997	1343
G12A	-115.3257	45.1285	1780
G13A	-114.2329	45.0931	1538
G14A	-113.4604	45.2432	2140
G15A	-112.4887	45.1660	1857
G16A	-111.8046	45.2285	1769
G17A	-110.7398	45.3212	1574
H10A	-116.7474	44.5890	882
H11A	-116.0127	44.7035	1525
H12A	-114.8554	44.5494	1777
H13A	-114.2545	44.5642	1563
H14A	-113.3674	44.6165	1933
H15A	-112.6439	44.6173	1957
H16A	-111.2478	44.7038	2080
H17A	-110.5762	44.3951	2400
I10A	-116.8029	44.0860	782
I11A	-115.9578	43.9121	1288
I12A	-115.1328	43.7945	1849
I13A	-114.1169	43.9146	2104
I14A	-113.4518	43.9286	1897
I15A	-112.4850	43.9997	1470
I16A	-111.4868	43.8756	1744
I17A	-110.5759	43.9200	2134
J10A	-116.7670	43.4275	748
J11A	-115.8278	43.4151	1302
J12A	-115.0980	43.2500	1587
J13A	-114.1742	43.3979	1552
J14A	-113.5178	43.3234	1649
J15A	-112.4334	43.3998	1497
J16A	-111.6119	43.2741	2004
J17A	-110.7118	43.3629	1975
K10A	-116.8705	42.7779	1701
K10/A K11A	-116.0323	42.7713	914
K1174 K12A	-114.9029	42.6360	1091
K12A K13A	-114.0840	42.6493	1222
K13A K14A	-113.1760	42.5452	1387
K14A K15A	-112.5305	42.6852	1566
K15A K16A	-111.5884	42.8321	1885
K17A	-110.9201	42.7507	1922
L10A	-116.4711	42.0773	1537
	-116.4711 -115.7541	42.0773 42.1669	
L11A L12A		42.1460	1511 1756
	-115.0162	42.1460	
L13A L14A	-113.9444	42.0886	1482
L14A L15A	-113.2398 112.3860	42.0343 42.0041	1528
L15A L16A	-112.3860 -111.4319	42.0041 42.0149	1645 2013

INL Seismic Network Telemetry

Digital radios, Internet, and DSL links transmit seismic data from INL seismic stations and free-field SMAs to the IRC. Some seismic stations are used as relay links to transmit several seismic stations to a DSL drop point or directly to the IRC. Figure A-1 shows the telemetry configuration during 2008.

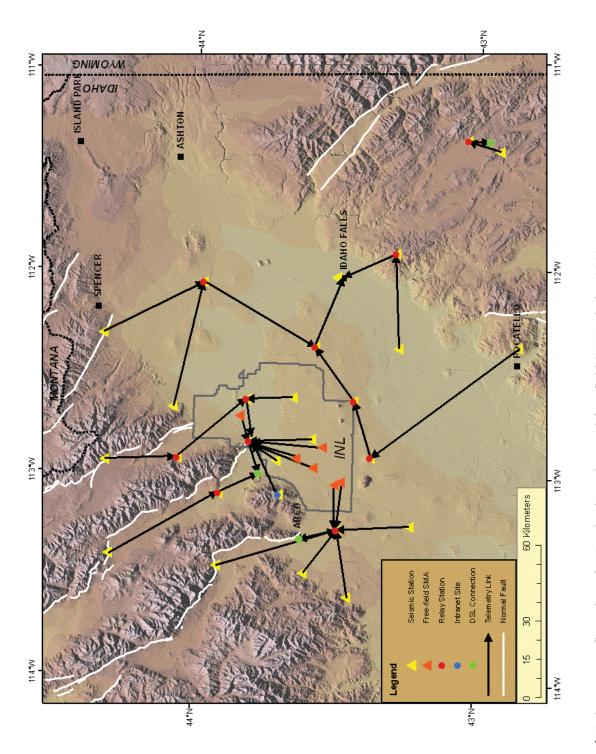


Figure A-1. Telemetry configuration of INL seismic stations and free-field SMAs during 2008.

Appendix B Instrument Response of NetDAS SMAs

Appendix B

Instrument Response of NetDAS SMAs

B.1 Method for Determining Amplitude Response

The instrument response of the NetDAS-SMA is used to convert the measured counts of ground motion amplitude to units of g. Instrument responses for NetDAS units that have accelerometers mounted within the unit are determined by conducting 1-g (acceleration of gravity) tilt tests. These tests are done on a leveled pad at the IRC seismic lab or on the actual leveled pad at their physical location listed in Table 3. These 1-g tilt tests provide a relationship between the number of digitizer counts and the 1-g offset. Equation B-1 provides the conversion from the measured count level to actual g level for the recorded motion. Trigger threshold accelerations and counts/g are listed for NetDAS units with SMAs in Table B-1 using equation:

Acceleration (g) = Counts
$$(Measured or target) / (Counts/g)$$
 [B-1]

For accelerographs without internally installed accelerometers within the NetDAS units, Equation B-1 does not apply; there is a frequency dependent amplitude response, which is discussed further in Appendix C. The frequency response information for the NetDAS-4CH should be applied to the acceleration data recorded by these external-type accelerometers. Table B-2 lists the instrument response for these accelerometers using the methods discussed in Appendix C.

Tables B-1 and B-2 list the beginning and ending dates for the time periods that the instrument responses are applicable. If changes occurred to SMA or seismic station instrumentation (such as accelerometer or NetDAS unit) during the year, then more than one range of dates are listed for a location. Also, note that the building numbers and locations for the SMA codes are listed in Table 3.

 Table B-1. Instrument responses for strong-motion accelerographs.

	Trigger Level (g)	0.0046	0.0045	0.0046	0.0046	0.0045	0.0045	0.0046	0.0045	0.0045	0.0046	0.0045	0.0045	0.0045	0.0048	0.0045	0.0045	0.0044	
		533228	555864	543393	549212	559404	558307	530620	547301	906099	553558	544446	558342	553390	526189	549747	559216	569302	
	Orientation Counts/g	Vertical	North	East	Vertical	North													
ometer	Serial #	46			61			37			37			49			42		
Accelerometer	Model	SF2500A			SF2500A														
	NetDAS Serial #	1095			1079			1097			1097			1096			2000		
Response	End Date	12/31/2008			12/31/2008			10/21/2008			12/31/2008			12/31/2008			12/31/2008		
Instrument Response	Begin Date	2/8/2006			6/2/2003			2/8/2006			10/21/2008			5/6/2004			2/2/2006		
	SMA Code	EBR			FCF			CFAF			CFAF			EFSF			CPPF		
	INL Site Facility Area	MFC						CFA									INTEC		

Table B-1. Continued.

	Trigger Level (g)	0.0048	0.0044	0.0044	0.0041	0.0039	0.0040	0.0044	0.0044	0.0045	0.0046	0.0045	0.0044	0.0046	0.0045	0.0045	0.0045	0.0044	0.0044	0.0044	0.0045	0.0045
	Counts/g	522025	563402	060699	615499	647203	628378	573249	573389	546041	544357	549370	565218	540182	553738	551745	541217	570002	564995	561125	558488	558473
	Orientation Counts/g	Vertical	North	East																		
ometer	Serial #	NA			NA			48			52			55			53			45		
Accelerometer	Model	SF2500A																				
	NetDAS Serial #	1099			1078			1084			1083			1098			1091			1088		
Response	End Date	12/31/2008			12/31/2008			12/31/2008			12/31/2008			12/31/2008			12/31/2008			12/31/2008		
Instrument Response	Begin Date	5/19/2004			5/19/2004			2/2/2006			2/2/2006			1/31/2005			1/31/2005			1/31/2005		
	SMA Code	CPP1			CPP2			FAS1			FAS2			NRFF			A1W			S1W		
	INL Site Facility Area	INTEC												NRF								

Table B-1. Continued.

	Trigger Level (g)	0.0047	0.0045	0.0045	0.0047	0.0045	0.0045	0.0045	0.0044	0.0042	0.0045	0.0044	0.0042	0.0045	0.0043	0.0048	0.0045	0.0043	0.0048	0.0048	0.0043	0.0045
		559223	553304	557374	559649	550303	559707	530586	553243	550731	526920	562795	550302	552610	554529	572590	552358	540927	556424	526114	574035	549477
	Orientation Counts/g	Vertical	North	East																		
ometer	Serial #	NA			NA			99			99			42			40			41		
Accelerometer	Model	SF2500A																				
	NetDAS Serial #	1089			1089			1086			1086			1081			1077			1094		
Response	End Date	11/12/2008			12/31/2008			12/04/2008			12/31/2008			12/31/2008			12/31/2008			12/31/2008		
Instrument Response	Begin Date	6/7/2005			11/12/2008			6/8/2005			12/04/2008			9/21/2007			9/21/2007			9/1/2005		
	SMA Code	PBFF						ARAF						RWMC			RWME			TRAF		
	INL Site Facility Area	PBF												RWMC						RTC		

Table B-1. Continued.

		Instrument Response	Response		Accelerometer	ometer			
INL Site Facility Area	SMA Code	Begin Date	End Date	NetDAS Serial #	Model	Serial #	Orientation Counts/g	Counts/g	Trigger Level (g)
RTC	TRA2	5/6/2004	12/31/2008	1085	SF2500A	38	Vertical	543172	0.0046
							North	556212	0.0045
							East	268860	0.0044
STC	IRC	9/25/2008	12/31/2008	1093	SF2500A	NA	Vertical	NIR	NA
							North	NIR	NA
							East	NIR	NA
TAN	TANA	6/7/2005	10/31/2008	1090	SF2500A	40	Vertical	553849	0.0044
							North	564675	0.0044
							East	530791	0.0045
		10/31/2008	10/31/2008 12/31/2008	1090	SF2500A	40	Vertical	558999	0.0044
							North	557465	0.0044
							East	531326	0.0045
	SMC	NA	12/31/2008	1087	SF2500A	39	Vertical	NIR	0.0044
							North	NIR	0.0042
							East	NIR	0.0045
NIR – No instrument response due to problems with the SMA.	ment respo	onse due to prob	dems with the	SMA.					

NA – Not available.

Table B-2. Instrument responses of accelerometers located at seismic stations.

	Instrument Response	Response		A	Accelerometer	er			
Seismic		,	NetDAS	;	:		Datalogger	Sensor	Station
Station	Begin Date	End Date	Serial #	Model #	Serial #	Orientation	Counts/Volt	Volt/g	Counts/g
BCYI	9/06/2007	9/10/2008	1068	SF3000L	185	Vertical	833043	1.220	1016312
						North	837181	1.200	1004617
						East	831948	1.220	1014977
	9/10/2008	12/31/2008	1068	SF3000L	185	Vertical	841008	1.220	1026030
						North	848147	1.200	1017776
						East	845503	1.220	1031514
GRRI	8/24/2007	11/04/2008	1013	SF2500A	57	Vertical	838085	1.396	1169967
						North	846390	1.345	1138395
						East	843067	1.412	1190411
	11/04/2008 12/	12/31/2008	1013	SF2500A	57	Vertical	3932869	1.396	5490285
						North	4014708	1.345	5399782
						East	3980407	1.412	5620335
HWFI	11/3/2005	9/09/2008	1069	SF2500A	62	Vertical	804003	1.378	1107916
						North	805254	1.371	1104003
						East	809573	1.352	1094542
	9/09/2008	12/31/2008	1069	SF2500A	62	Vertical	1757768	1.378	2422204
						North	1173136	1.371	1608369
						East	19243242	1.352	26016863
NPRI	10/21/2005 12/	12/31/2008	1065	SF2500A	36	Vertical	810927	1.427	1157193
						North	802533	1.376	1104286
						East	808520	1.371	1108481
PTI	8/23/2007	8/23/2007 10/22/2008	1071	SF3000L	188	Vertical	834190	1.230	1026054
						North	833375	1.194	995050
						East	834469	1.244	1038079

Table B-2. Continued.

	Instrument Response	Response		F	Accelerometer	ter			
Seismic			NetDAS				Datalogger	Sensor	Station
Station	Station Begin Date End Date	End Date	Serial #	Model#	Serial #	Model # Serial # Orientation	Counts/Volt	Volt/g	Counts/g
PTI	10/22/2008	12/31/2008	1071	SF3000L	188	Vertical	835018	1.230	1027072
						North	835559	1.194	1263299
						East	835957	1.244	1039931
SPCI	8/28/2007 12/3	12/31/2008	1070	SF3000L	186	Vertical	834485	1.216	1014734
						North	834508	1.237	1032286
						East	835579	1.215	1015228

Appendix C Instrument Response of Seismic Stations

Appendix C

Instrument Response of Seismic Stations

C.1 Method for Determining Amplitude Response

The INL determines instrument responses for both the four (4CH) and eight channel (8CH) NetDAS units. The INL establishes a DC counts/volt level by measuring a known voltage level for a specified duration of time for each channel on the NetDAS units and recording the mean and standard deviation in counts for this duration. The input voltage polarity is often reversed in order to obtain a greater measurement range. The mean provides the method to produce the DC counts/volt level (Equation C-1a and C-1b) and the standard deviation provides an idea of the measurement uncertainty and system noise.

Single ended:

$$Counts/Volt = \mu/v_i$$
 [C-1a]

Reversed Polarity:

Counts/Volt =
$$(\mu + - \mu^{-}) / (v_i + - v_i^{-})$$
 [C-1b]

Where:

μ is mean counts

v_i is input voltage

Subscript "+" is positive polarity

Subscript "-" is negative polarity

C.2 NetDAS-4CH Frequency Response

The response of the Symmetric Research PAR4CH (4CH) digitizer used in the NetDAS-4CH was calculated at the INL to establish the instrument response of NetDAS units. The DAQSystems, Inc., manufacturer of the NetDAS units, reviewed INL's frequency response results and methods, which is discussed in the following steps.

The NetDAS-4CH frequency response was determined empirically by measuring the output counts resulting from a known input signal. Trials were conducted using a constant-amplitude sine wave with frequencies varying between 0.1, 5, 10, 15, 20, 25, 30, and 35 Hz. The frequency sweep was performed twice and the averages of the measured counts at each frequency were then converted into decibel responses relative to the average response at 0.1 Hz, because the vendor data sheets list a gain of 1 at this frequency. A 2nd order polynomial was then fit to the data creating a simple amplitude response in frequency. The perfectly matched response (R-squared of one) is shown here in Equations C-2 and C-3 (conversion to decibels).

$$Y_{dB} = -0.0045f^2 + 0.0074f - 0.014$$
 [C-2]

$$dB = 20 \log (E_2/E_1)$$
 [C-3]

Where:

f – frequency (Hz)

 E_1 – original signal level

E₂ - modified signal level

 E_2/E_1 – commonly referred to as gain

This relationship was then used to calculate the gains out to the Nyquist frequency (1/2 the sample rate - the INL samples all data at 100 samples per second or 0.01 Hz). The information was then entered into MATLAB, which has a function to determine poles and zeros. Poles-and-zeros notations are the form that many seismic applications use to remove the instrument response. The NetDAS-4CH frequency response in dB and poles and zeros are shown in Figure C-1.

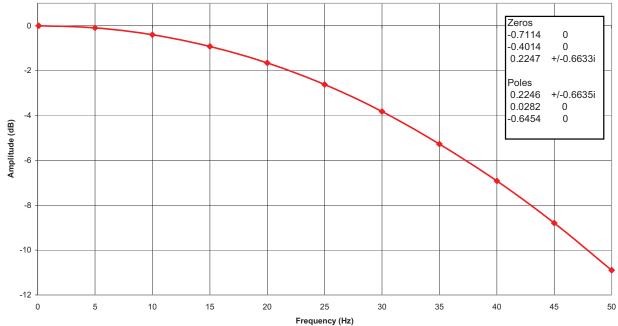
Equations C-2 and C-3 can be used in conjunction with the DC counts/volt measurement to generate a count based frequency response for short hand calculations or spectral deconvolution to remove the frequency response.

Yeounts = Counts/Volt x
$$10^{(-0.0045f^2 + 0.0074f - 0.014)/20)$$
 [C-4]

Where:

10[^] - Indicates 10 to the power of the number calculated in parentheses.

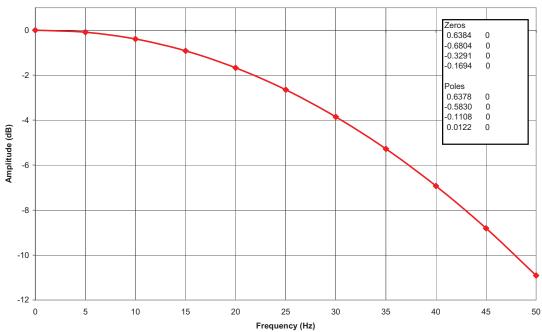
However, the preferred method for removing the frequency response from a recorded waveform is to use a seismic analysis package, such as SEISAN. This program uses the poles-and-zeros representation of instrument response, which quickly and accurately corrects recorded waveforms to actual ground motions.


C.3 NetDAS-8CH Frequency Response

The response of the Symmetric Research PAR24B (8CH) digitizer used in the NetDAS-8CH was based on vendor provided information, and calculated in the same method as described above for the PAR4CH. A 2nd order polynomial was fit to the data creating a simple amplitude response in frequency that matched the amplitude response (R-squared of 0.999). Equation C-5, listed below, is similar to Equation C-3 used for the response of the NetDAS-4CH. The NetDAS-8CH frequency response in dB and poles and zeros are shown in Figure C-2.

$$Y_{dB} = -0.0045f^2 + 0.0071f - 0.0158$$
 [C-5]

C.4 Short-period high-gain seismic stations


In the fall of 2002, INL seismic personnel began recording instrument response of the seismic stations. These response values, in combination with the instrument frequency responses (see C.2 and C.3), are used to create site- and date-specific system response files for the INL seismic stations. These response files are used in SEISAN to correct waveforms for further analyses such as calculating local magnitudes by measuring amplitudes. Table C-1 lists the measured responses (including any system amplification) for the seismic stations that have been measured for instrument responses (in counts/volt).

PAR4CH Amplitude Response

Figure C-1. Amplitude verses frequency system response of the Symmetric Research PAR4CH digitizer used in the NetDAS-4CH.

PAR24B Amplitude Response

Figure C-2. Amplitude verses frequency system response of the Symmetric Research PAR24B digitizer used in the NetDAS-8CH.

 Table C-1. Instrument responses of seismometers located at seismic stations.

	Instrument	Instrument Response					
Seismic Station	Begin Date	End Date	NetDAS Serial #	Digitizer Model	Orientation	Datalogger Counts/Volt	Seismometer Model
Single-comp	Single-component seismic stations	tations					
ARNI	8/28/2007	12/31/2008	1017	4CH	Vertical	47977741	S13J
BCYI	9/6/2007	9/10/2008	1068	8CH	Vertical	835518	S13J
	9/10/2008	12/31/2008	1068	24USB5V	Vertical	87561743	S13J
CBTI	8/29/2007	12/31/2008	1024	4CH	Vertical	48948934	S13J
CNCI	9/6/2007	5/16/2008	1066	4CH	Vertical	48587278	L4C
	5/16/2008	9/10/2008	1066	24USB5V	Vertical	2838620	L4C
	9/10/2008	12/31/2008	1066	24USB5V	Vertical	2838706	L4C
COMI	9/21/2007	7/25/2008	2005	4CH	Vertical	36022837	S13
	7/25/2008	12/03/2008	2005	24USB5V	Vertical	2837766	S13
	12/03/2008	12/31/2008	1025	24USB5V	Vertical	2834323	S13
CRBI	8/28/2006	12/31/2008	1027	4CH	Vertical	401458	S13J
ECRI	8/24/2007	10/23/2008	1051	4CH	Vertical	46797192	S13
	10/23/2008	12/31/2008	1051	4CH	Vertical	48049216	S13
EMI	9/13/2007	12/31/2008	1019	4CH	Vertical	48487157	L4C
GBI	9/13/2007	9/11/2008	30802	24USB5V	Vertical	2833423	S13J
	9/11/2008	12/31/2008	30802	24USB5V	Vertical	2844458	S13J
GRRI	8/24/2007	11/04/2008	1013	4CH	Vertical	1965667	L4C
	11/04/2008	12/31/2008	1013	24USB5V	Vertical	2831677	L4C

Table C-1. Continued.

\sim	Instrument Response	2 V C +0]	Distriction		Dotologgo	Couganomorphi
End Date		NetDAS Serial #	Digitizer Model	Orientation	Datalogger Counts/Volt	Seismometer Model
11/24/2008		1021	4CH	Vertical	49147158	L4C
12/31/2008		9001	24USB5V	Vertical - borehole	2776147	L4C
12/31/2008		9001	24USB5V	Vertical - surface	2949858	L4C
10/22/2008		1014	4CH	Vertical	460431	L4C
12/31/2008		1014	4CH	Vertical	458174	L4C
12/31/2008		1015	4CH	Vertical	47682925	L4C
12/31/2008		1020	4CH	Vertical	48888117	L4C
12/31/2008		1018	4CH	Vertical	45839400	S13J
9/09/2008		1052	4CH	Vertical	48539000	S13J
12/31/2008		1052	4CH	Vertical	48429387	S13J
10/22/2008		1071	8CH	Vertical	79944873	S13
12/31/2008		1071	8CH	Vertical	86459806	S13
9/11/2008		1023	4CH	Vertical	50322662	S13J
12/31/2008		1023	4CH	Vertical	47216457	S13J
9/10/2008		1064	4CH	Vertical	48952563	S13J
12/31/2008		1064	24USB5V	Vertical	2835711	S13J
12/31/2008		1010	24USB5V	Vertical	2873122	L4C
11/24/2008		1021	4CH	Vertical	49147158	L4C

Table C-1. Continued.

	Instrument	Instrument Response					
Seismic Station	Begin Date	End Date	NetDAS Serial #	Digitizer Model	Orientation	Datalogger Counts/Volt	Seismometer Model
Three-comp	Three-component seismic stations	tations					
HWFI	11/16/2007	9/09/2008	1069	8CH	Vertical	86285415	S13
					North	86332010	S13
					East	83363500	S13
	9/09/2008	12/31/2008	1069	8CH	Vertical	86375959	S13
					North	86381403	S13
					East	84982876	S13
IRCI	6/3/2005	12/31/2008	1012	4CH	Vertical	469890	S13
					North	461125	S13
					East	467680	S13
JGI	9/13/2007	9/11/2008	30801	24USB5V	Vertical	2823772	S13
					North	2837383	S13
					East	2834625	S13
	9/11/2008	12/31/2008	30801	24USB5V	Vertical	2856927	S13
					North	2887634	S13
					East	2867169	S13
LLRI	9/20/2007	12/31/2008	1029	4CH	Vertical	48337000	S13J
					North	48888449	S13
					East	48725117	S13

Table C-1. Continued.

	Instrument	Instrument Response					
Seismic Station	Begin Date	End Date	NetDAS Serial #	Digitizer Model	Orientation	Datalogger Counts/Volt	Seismometer Model
NPRI	10/21/2005	12/31/2008	1065	8CH	Vertical	836486	S13J
					North	837155	S13
					East	839175	S13
SPCI	8/28/2007	12/31/2008	1070	8CH	Vertical	83330000	S13J
					North	83376700	S13
					East	83485300	S13
TCSI	9/20/2007	9/10/2008	1010	24USB5V	Vertical	2838206	L4C
					North	2840762	S13
					East	2839697	S13
TCSI	9/10/2008	12/03/2008	1010	24USB5V	Vertical	2873122	L4C
					North	2887077	S13
					East	2868820	S13
TMI	11/6/2007	12/31/2008	2004	24USB5V	Vertical	2837736	S13
					North	2843957	S13
					East	2839995	S13

Appendix D 2008 Earthquake List

(Intentionally Blank)

Appendix D

2008 Earthquake List

The summary list of earthquakes includes those located within a 161-km (100-mile) radius of the INL centered at 43.0° 39.00' N, 112° 47.00' W. Table D-1 provides an explanation of the headings listed in Table D-2 for the earthquake list. The format for this table has been modified from previous years. The earthquake identification number is no longer reported since the SEISAN analysis package identification number is simply the origin data and time. The listing also includes the distance of the earthquake epicenter from the center of INL.

Table D-1. Explanation of the earthquake summary table headings.

Heading	Example	Explanation
ORIGIN	1/3/2008 5:02	Date of the earthquake: month/day/year (1/3/2008); origin time of the earthquake: hour and minute in UTC (5:02)
LAT N	44.3655	Latitude of epicenter in degrees North
LONG W	-113.9947	Longitude of epicenter in degrees West
MAG	1.1	Magnitude of the earthquake.
TYPE	Mc IE	Type of magnitude reported and reporting agency. Magnitude types: Coda magnitude (Mc); Local magnitude (ML); Moment magnitude (Mw); and Body wave magnitude (mb). Reporting agencies include: Idaho National Laboratory (IE); NEIC (US); University of Utah (UU); and Montana Bureau of Mines and Geology (MB). NM with a magnitude of 0.00 indicates that no magnitude was calculated as a result of multiple earthquakes, which obscures the coda of the first event or the record length was insufficient to include the full coda of the earthquake.
DIST	125.6	Distance in km from center of INL at: 43° 39.00' N, 112° 47.00' W.
Z	6.15	Calculated focal depth in km. Not all earthquakes have appropriate seismic station geometry for calculating a reliable focal depth, thus the errors (ERZ) are typically large.
NO	16	Number of station readings used in locating the earthquakes.
GAP	95	Largest azimuthal separation in degrees between stations.
DMIN	30.2	Distance in km from the epicenter to the nearest station.
RMS	0.09	Root mean square error of arrival time residuals in second using all weights as calculated by: RMS=SQRT($\Sigma R_i^2/N$)
		Where: SQRT is the square root; ΣR_i is the sum of the time residuals for the i^{th} station; and N is the number of residuals.
ERH	0.4	Standard horizontal error of the epicenter in km.
ERZ	14.6	Standard vertical error of the focal depth in km.

Table D-2. Earthquakes located within 161-km radius of INL in 2008.

Table D-2. Ear		located wi	tnin i		adius o		ın 20	08.				
ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
1/3/2008 5:02	44.3655	-113.9947	1.1	Mc IE	125.6	6.15	16	95	30.2	0.09	0.4	14.6
1/13/2008 22:38	44.3950	-114.0470	1.6	Mc IE	130.9	0.49	17	88	53.7	0.14	0.5	17.0
1/13/2008 23:05	42.7280	-111.3045	2.0	ML IE	158.0	2.04	14	91	17.2	0.11	0.6	15.7
1/15/2008 9:05	44.3970	-114.0362	1.6	Mc IE	130.4	6.76	16	87	54.0	0.22	0.5	3.2
1/18/2008 1:40	43.5475	-111.0708	2.0	Mc IE	138.7	12.65	24	57	10.6	0.19	0.4	1.1
1/19/2008 5:55	42.6197	-112.0338	2.2	Mc IE	129.8	8.84	28	63	41.4	0.11	0.3	2.1
1/20/2008 1:59	44.6360	-112.0857	1.2	Mc IE	123.1	6.36	8	110	25.0	0.06	0.6	11.1
1/21/2008 15:35	42.7427	-111.3058	2.0	ML IE	156.8	6.44	11	100	17.0	0.13	0.6	3.1
1/23/2008 3:48	42.7520	-111.3272	2.4	Mc IE	154.8	11.39	39	138	23.1	0.16	0.3	8.0
1/23/2008 23:46	42.7350	-111.3083	0.0	Mc IE	157.2	2.11	15	89	17.4	0.09	0.3	11.4
1/28/2008 20:30	44.3345	-113.8848	2.0	Mc IE	116.6	4.10	9	287	38.4	0.09	4.0	8.2
1/29/2008 22:42	44.3675	-113.9957	2.2	Mc IE	125.8	5.25	27	96	30.0	0.11	0.3	1.0
1/31/2008 23:26	42.7322	-111.3133	1.9	ML IE	157.1	1.88	11	89	17.8	0.10	0.5	15.0
2/4/2008 0:30	44.8947	-112.7090	1.5	Mc IE	138.6	7.09	15	108	31.2	0.07	0.7	2.7
2/4/2008 21:31	44.7897	-112.4077	1.8	ML IE	130.3	6.63	11	82	21.8	0.12	0.6	13.7
2/6/2008 2:07	44.7665	-111.9578	2.5	ML IE	140.6	16.17	25	83	23.5	0.07	0.4	0.9
2/9/2008 6:47	44.5533	-112.3152	2.3	Mc IE	107.2	9.59	28	72	7.7	0.12	0.5	0.5
2/10/2008 9:25	44.5238	-114.2825	1.2	Mc IE	154.5	6.69	13	99	45.6	0.26	0.6	3.6
2/14/2008 9:17	43.7708	-111.0813	2.2	ML IE	137.7	11.49	17	93	21.3	0.05	0.3	2.2
2/14/2008 22:42	44.2685	-114.3188	2.1	Mc IE	141.1	0.04	18	84	42.5	0.26	0.6	6.3
2/17/2008 21:28	44.7403	-112.5067	1.7	ML IE	123.3	5.07	13	94	17.5	0.14	0.6	1.8
2/21/2008 18:29	44.6787	-111.9207	1.3	Mc IE	133.6	8.83	8	106	21.0	0.08	0.6	3.5
2/22/2008 13:17	44.6300	-112.0870	1.4	Mc IE	122.4	4.59	16	55	24.7	0.15	0.6	1.0
2/22/2008 21:57	44.6327	-112.0958	3.1	ML MB	122.4	13.69	48	73	24.1	0.11	0.3	8.0
2/22/2008 22:01	44.6385	-112.0983	2.0	Mc IE	122.9	11.99	19	57	24.0	0.12	0.5	2.3
2/23/2008 5:01	44.6442	-112.0978	2.5	Mc IE	123.4	13.50	39	64	24.2	0.14	0.4	1.1
2/23/2008 5:13	44.6285	-112.0918	3.0	ML MB	122.1	13.54	46	53	24.3	0.14	0.4	0.9
2/23/2008 5:50	43.2998	-110.8705	1.5	Mc IE	159.5	12.99	17	207	14.6	0.10	0.7	0.9
2/23/2008 21:27	43.0477	-111.4023	1.9	Mc IE	130.4	13.63	37	72	28.4	0.10	0.3	0.7
2/24/2008 0:21	43.0582	-111.4037	1.4	Mc IE	129.7	8.71	18	84	40.9	0.08	0.3	0.9
2/26/2008 16:34	44.6347	-112.0840	1.3	Mc IE	123.0	6.40	14	110	25.1	0.10	0.6	12.0
2/27/2008 1:26	43.2693	-111.4102	1.1	Mc IE	118.9	16.76	6	132	11.3	0.12	1.0	1.9
2/28/2008 8:10	42.6155	-111.4295	1.8	Mc IE	159.3	8.47	28	97	27.4	0.11	0.3	1.9
2/28/2008 9:26	42.5238	-111.8190	1.0	Mc IE	147.8	4.87	8	336	56.3	0.06	12.1	12.5
3/1/2008 9:04	44.6268	-112.5177	1.1	Mc IE	110.7	2.75	6	159	10.5	0.08	5.1	9.3
3/3/2008 12:54	44.5998	-112.5230	2.0	Mc IE	107.7	10.27	31	47	9.8	0.10	0.2	0.4
3/4/2008 2:13	44.7077	-111.8745	2.7	Mc IE	138.3	11.02	28	160	16.7	0.06	0.6	1.1
3/4/2008 12:43	44.7008	-111.8670	2.0	Mc IE	137.9	11.91	19	121	16.3	0.12	0.6	0.9
3/4/2008 15:44	44.7057	-111.8752	2.1	Mc IE	138.1	11.33	22	75	16.8	0.12	0.5	1.2
3/4/2008 17:20	44.7930	-112.9068	1.2	ML IE	127.5	10.86	9	193	6.0	0.05	1.2	0.6
3/7/2008 2:52	44.6197	-114.1040	2.5	Mc IE	151.0	5.83	33	86	13.4	0.09	0.3	0.6
3/7/2008 8:41	44.6993	-111.8862	1.7	Mc IE	137.0	13.86	9	94	17.8	0.11	0.9	1.5
3/7/2008 15:14	43.1150	-111.3620	2.2	Mc IE	129.6	1.86	39	76	6.9	0.11	0.3	8.0
3/7/2008 15:55	42.4528	-111.6727	1.2	Mc IE	161.0	13.23	15	93	38.4	0.10	0.5	1.0
3/8/2008 3:19	43.2572	-111.4078	1.1	Mc IE	119.5	3.09	11	113	12.3	0.04	0.5	7.0
3/8/2008 16:12	44.2817	-113.2133	0.7	Mc IE	78.3	4.40	8	154	15.7	0.06	3.4	5.8
3/10/2008 2:14	42.8232	-111.6527	1.2	ML IE	129.9	8.56	8	284	5.4	0.08	1.1	0.9
3/11/2008 4:39	44.4395	-114.0260	1.7	Mc IE	132.8	6.15	16	76	22.8	0.17	0.7	1.9
3/12/2008 1:27	42.8770	-111.6473	1.0	Mc IE	126.1	10.80	7	154	6.9	0.21	1.3	1.9
3/12/2008 1:39	42.8797	-111.6052	0.7	Mc IE	128.4	8.75	6	239	5.5	0.17	1.9	2.9
-: -= - 30000							-					•

65

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
3/13/2008 3:17	44.4773	-112.8255	0.7	Mc IE	92.1	9.84	12	122	18.8	0.06	0.6	2.9
3/14/2008 4:04	43.3412	-110.8780	1.5	Mc IE	157.8	12.54	17	117	13.7	0.16	0.4	1.0
3/14/2008 4:18	43.3395	-110.8758	1.8	Mc IE	158.0	12.24	23	119	13.6	0.10	0.4	8.0
3/14/2008 14:46	44.3655	-113.9925	1.9	Mc IE	125.4	6.82	28	86	30.4	0.24	0.4	1.9
3/15/2008 9:30	42.6573	-111.4323	8.0	Mc IE	155.7	13.58	9	252	23.2	0.23	2.6	2.7
3/15/2008 11:50	44.2062	-114.0615	1.9	Mc IE	119.8	1.72	25	100	32.7	0.15	0.4	1.2
3/15/2008 16:33	44.7052	-111.8617	2.3	Mc IE	138.6	14.28	33	75	15.8	0.08	0.3	0.7
3/15/2008 23:05	44.7015	-111.8660	1.8	Mc IE	138.0	12.19	16	105	16.2	0.07	0.4	1.1
3/16/2008 17:17	44.3582	-114.0095	1.5	Mc IE	126.0	7.39	20	98	30.1	0.30	0.6	10.9
3/16/2008 18:47	44.7007	-111.8615	1.7	Mc IE	138.2	13.84	16	94	15.8	0.09	0.5	0.9
3/16/2008 20:11	42.8785	-111.5263	1.8	ML IE	133.3	11.23	11	116	7.2	0.11	0.6	0.9
3/16/2008 20:38	44.7017	-111.8680	1.5	ML IE	138.0	11.27	11	177	16.3	0.11	0.9	1.5
3/17/2008 21:32	44.2402	-114.3188	1.6	Mc IE	139.6	0.04	8	234	73.4	0.23	3.0	3.3
3/19/2008 9:00	44.3760	-113.9940	1.7	Mc IE	126.3	6.71	19	74	29.4	0.17	0.4	2.3
3/20/2008 1:10	44.6973	-111.8613	1.2	Mc IE	137.9	13.25	11	72	15.9	0.08	0.5	1.1
3/20/2008 1:47	44.7052	-111.8813	1.9	Mc IE	137.8	10.58	23	75	17.3	0.09	0.4	1.4
3/20/2008 4:33	42.9607	-111.3005	1.3	Mc IE	142.6	8.12	16	97	10.2	0.11	0.4	1.2
3/20/2008 23:38	43.2250	-110.8945	1.4	Mc IE	160.0	19.39	14	155	21.3	0.12	8.0	2.8
3/21/2008 4:50	43.2222	-110.9210	2.4	Mc IE	158.0	11.18	45	132	23.1	0.12	0.3	1.3
3/22/2008 4:15	44.6945	-111.8698	1.4	ML IE	137.2	13.39	14	73	16.6	0.05	0.4	1.0
3/23/2008 3:13	43.0087	-111.5235	2.1	Mc IE	124.6	8.33	28	60	11.4	0.08	0.3	0.8
3/24/2008 2:04	42.3508	-112.2462	2.2	Mc IE	151.0	3.50	27	72	37.3	0.09	0.3	7.1
3/25/2008 6:58	44.1413	-113.9575	1.7	Mc IE	109.0	4.79	24	93	28.2	0.12	0.3	0.9
3/25/2008 19:10	44.2135	-114.0447	1.1	Mc IE	119.1	6.93	16	94	33.7	0.09	0.7	14.7
3/26/2008 12:40	44.6247	-112.2767	2.3	Mc IE	115.8	4.59	45	75	29.2	0.12	0.3	1.4
3/26/2008 13:00	44.6285	-112.2783	2.2	Mc IE	116.1	5.10	30	54	29.0	0.19	0.4	1.6
3/26/2008 13:18	44.6277	-112.2733	1.9	Mc IE	116.2	4.40	20	77	29.4	0.09	0.4	2.1
3/26/2008 13:24	44.6195	-112.2578	1.6	Mc IE	115.8	2.95	13	182	30.6	0.02	0.6	1.3
3/26/2008 13:41	44.6302	-112.2852	1.9	Mc IE	116.1	5.84	23	77	28.5	0.09	0.4	13.4
3/26/2008 15:03	44.6258	-112.2762	1.6	Mc IE	115.9	4.85	17	77	29.2	0.12	0.5	1.9
3/26/2008 15:32	44.6252	-112.2785	2.3	Mc IE	115.8	3.96	36	59	29.0	0.14	0.3	0.8
3/27/2008 11:01	44.7002	-111.8752	1.9	Mc IE	137.5	7.74	14	79	49.7	0.11	0.5	5.6
3/27/2008 23:53	44.4747	-114.1398	1.3	Mc IE	142.2	6.26	11	253	61.3	0.05	1.8	3.5
3/28/2008 4:41	44.7183	-111.8593	1.3	Mc IE	139.9	13.89	15	129	15.4	0.09	0.6	1.4
3/28/2008 17:48	44.6918	-111.8747	1.9	Mc IE	136.8	9.85	23	70	17.1	0.12	0.4	1.3
3/28/2008 22:01	44.6220	-112.2870	2.4	Mc IE	115.2	10.49	46	47	9.1	0.16	0.3	0.6
3/29/2008 1:11	44.6217	-112.2798	0.7	Mc IE	115.4	7.42	6	271	9.6	0.07	1.5	1.5
3/29/2008 2:35	44.6252	-112.2563	2.1	Mc IE	116.4	9.53	33	76	11.5	0.07	0.4	0.7
3/29/2008 4:55	44.6255	-112.2722	2.5	Mc IE	116.0	10.47	51	91	10.3	0.11	0.2	0.5
3/29/2008 7:27	44.6222	-112.2665	2.2	Mc IE	115.8	9.13	37	167	10.6	0.15	0.4	0.9
3/29/2008 13:42	44.6248	-112.2667	0.6	Mc IE	116.0	6.51	5	223	10.7	0.04	2.0	3.9
3/30/2008 1:24	44.6315	-112.2892	1.5	Mc IE	116.1	7.43	18	123	9.4	0.09	0.4	1.2
3/30/2008 1:45	44.6208	-112.2753	0.7	Mc IE	115.4	8.25	15	180	9.9	0.09	0.4	1.0
3/30/2008 3:08	43.9900	-113.8863	1.7	Mc IE	96.4	6.99	29	100	20.3	0.11	0.4	14.3
3/30/2008 11:54	44.6328	-112.2705	1.2	Mc IE	116.8	5.36	14	115	10.8	0.13	0.5	0.6
3/30/2008 18:33	44.6277	-112.2718	1.7	Mc IE	116.2	7.82	24	114	10.4	0.13	0.5	1.3
3/31/2008 2:09	44.6285	-112.2742	1.5	Mc IE	116.2	8.53	23	114	10.3	0.12	0.5	1.2
3/31/2008 8:33	42.9903	-111.5317	1.1	Mc IE	125.2	0.03	12	89	10.7	0.08	0.4	0.8
3/31/2008 14:52	44.3708	-113.9965	1.6	Mc IE	126.1	6.90	15	116	29.7	0.10	0.4	14.9
3/31/2008 16:51	44.4998	-114.0650	2.0	Mc IE	139.5	4.97	25	81	16.7	0.13	0.4	1.1
3/31/2008 16:58	43.2412	-111.3933	1.5	ML IE	121.3	7.32	11	103	13.2	0.13	0.4	2.2
0/0//2000 10.00	70.∠↑1∠	111.0000	1.0	1V/L L	121.0	1.52	- 1 1	100	10.2	U. 1Z	J. ↑	۷.۲

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
3/31/2008 17:12	44.5608	-112.3003	2.1	Mc IE	108.4	5.88	23	85	28.0	0.18	0.5	18.5
3/31/2008 20:16	42.8050	-111.1780	1.5	Mc IE	160.7	10.27	19	78	7.7	0.06	0.4	0.7
3/31/2008 20:25	42.7918	-111.2057	0.9	Mc IE	159.8	7.72	8	171	9.1	0.08	1.0	1.3
4/1/2008 8:13	44.8813	-112.0282	1.9	Mc IE	149.6	2.08	21	75	33.3	0.15	0.4	1.8
4/1/2008 11:32	44.8807	-112.0255	1.9	Mc IE	149.7	6.68	26	147	33.0	0.09	0.3	10.5
4/1/2008 22:39	42.5802	-111.8710	0.9	Mc IE	140.2	3.37	14	100	36.3	0.15	0.4	15.1
4/2/2008 2:47	44.3713	-113.9877	2.1	Mc IE	125.6	6.96	33	51	30.2	0.23	0.3	15.1
4/2/2008 3:56	44.6277	-112.2840	2.5	Mc IE	115.9	3.94	52	59	28.6	0.09	0.2	0.6
4/2/2008 4:52	44.6280	-112.2787	2.4	Mc IE	116.0	3.55	43	59	29.0	0.10	0.3	0.9
4/2/2008 6:48	44.6235	-112.2702	1.8	Mc IE	115.8	4.14	24	76	29.7	0.11	0.3	0.9
4/2/2008 7:45	44.6292	-112.2803	1.4	Mc IE	116.1	10.29	17	113	28.9	0.18	0.5	2.5
4/2/2008 8:38	44.6230	-112.2683	2.2	Mc IE	115.8	4.49	35	53	29.8	0.06	0.3	1.4
4/2/2008 18:06	44.2708	-114.3162	1.6	Mc IE	141.1	6.52	18	132	33.0	0.10	0.4	2.2
4/2/2008 18:08	43.0775	-111.2877	0.4	Mc IE	136.9	1.97	5	266	7.3	0.18	3.0	3.8
4/2/2008 23:25	43.3563	-110.9035	1.3	ML IE	155.4	13.37	14	182	15.3	0.08	0.6	1.0
4/3/2008 0:26	44.2005	-112.9635	8.0	Mc IE	62.9	3.08	10	110	14.4	0.10	0.4	1.5
4/3/2008 15:46	44.1753	-113.0248	1.6	Mc IE	61.6	10.51	25	87	18.4	0.21	0.5	3.1
4/4/2008 7:20	44.6325	-112.2972	1.5	Mc IE	116.0	5.72	18	112	32.4	0.09	0.7	2.4
4/5/2008 7:23	43.5585	-111.2435	1.8	Mc IE	124.7	12.74	34	75	24.3	0.18	0.3	1.2
4/6/2008 2:02	44.6258	-112.2783	2.5	Mc IE	115.8	13.91	45	103	29.0	0.10	0.2	0.6
4/6/2008 2:12	44.6452	-112.2737	1.5	Mc IE	118.0	6.27	13	159	29.5	0.25	8.0	19.2
4/6/2008 2:53	44.6305	-112.2848	1.8	Mc IE	116.1	5.97	31	75	28.5	0.13	0.3	16.3
4/6/2008 21:57	44.6273	-112.2833	2.3	Mc IE	115.8	5.26	47	75	28.6	0.14	0.2	1.3
4/6/2008 22:02	42.7388	-111.2952	1.4	Mc IE	157.8	2.50	7	181	16.2	0.12	1.5	15.0
4/7/2008 2:19	44.6297	-112.2883	1.8	Mc IE	116.0	8.74	25	54	28.2	0.11	0.3	3.0
4/8/2008 16:30	43.3013	-110.8892	1.3	Mc IE	158.0	12.33	14	164	15.9	0.13	0.6	1.3
4/8/2008 18:06	43.5520	-111.2002	1.4	Mc IE	128.2	12.34	18	124	21.3	0.15	0.4	2.1
4/8/2008 21:16	44.6928	-111.9298	1.5	Mc IE	134.6	3.21	14	87	49.8	0.10	0.4	1.8
4/9/2008 2:03	44.6295	-112.2792	2.2	Mc IE	116.2	4.24	30	75	29.0	0.15	0.4	1.2
4/10/2008 9:11	43.5730	-111.2685	1.8	Mc IE	122.5	4.79	18	144	7.2	0.31	8.0	10.0
4/10/2008 9:19	44.7615	-111.7273	1.8	Mc IE	149.7	5.65	17	95	52.3	0.15	0.4	2.9
4/11/2008 3:49	44.6307	-112.2783	1.5	Mc IE	116.3	4.26	12	113	29.0	0.10	8.0	1.7
4/11/2008 9:08	44.6023	-111.3997	8.0	ML IE	153.2	5.05	5	247	16.5	0.11	6.8	13.7
4/11/2008 10:44	44.3358	-112.6368	1.1	Mc IE	77.2	3.11	16	89	24.3	0.13	0.3	1.2
4/11/2008 16:58	44.7148	-112.4462	1.0	Mc IE	121.5	5.39	10	198	19.1	0.07	1.0	1.1
4/12/2008 6:22	44.6840	-111.9312	1.5	Mc IE	133.7	0.03	15	78	48.9	0.11	0.5	2.1
4/12/2008 8:22	44.6262	-112.2795	1.9	Mc IE	115.8	10.75	30	59	28.9	0.11	0.3	2.0
4/14/2008 14:00	44.6250	-112.2837	1.5	Mc IE	115.6	4.91	14	120	28.6	0.16	0.6	2.6
4/14/2008 23:12	42.9358	-111.0863	0.5	Mc IE	158.9	4.90	7	168	19.0	0.05	1.0	10.6
4/16/2008 5:46	42.6818	-111.7385	1.7	Mc IE	137.1	5.89	19	73	20.7	0.17	0.5	3.6
4/16/2008 16:13	44.6425	-112.0938	0.6	Mc IE	123.4	6.21	7	199	24.5	0.06	1.3	12.9
4/16/2008 18:03	44.6247	-112.1050	2.9	Mc IE	121.2	14.18	74	45	23.2	0.16	0.3	0.7
4/17/2008 9:24	44.3568	-114.5232	2.0	Mc IE	160.1	1.98	25	91	31.4	0.11	0.5	1.9
4/17/2008 21:31	42.7612	-111.5410	1.7	ML IE	141.3	3.42	8	286	21.9	0.06	3.3	10.8
4/18/2008 8:28	42.8613	-111.5865	0.8	Mc IE	130.9	11.85	9	129	3.2	0.08	1.0	1.0
4/18/2008 8:29	42.8950	-111.6157	2.3	Mc IE	126.6	7.69	44	54	7.3	0.11	0.2	0.5
4/18/2008 8:36	42.8945	-111.6067	1.0	Mc IE	127.2	9.51	9	101	7.1	0.05	1.0	1.6
4/18/2008 8:42	42.8783	-111.6125	2.2	Mc IE	128.0	10.72	37	52	5.5	0.11	0.3	0.5
4/18/2008 10:18	42.5382	-111.6013	2.1	Mc IE	156.7	13.00	33	88	32.7	0.15	0.4	1.2
4/19/2008 0:25	44.4425	-112.7608	1.6	Mc IE	88.2	3.72	17	63	19.1	0.15	0.5	1.3
4/19/2008 2:59	44.6298	-112.2600	1.7	Mc IE	116.8	6.80	24	161	11.4	0.11	0.4	1.5

ORIGIN TIME LAT N LONG W MAG -TYPE DIST Z NO GAP DMIN RMS 4/19/2008 4:26 44.1407 -114.0002 1.5 Mc IE 112.0 5.21 24 96 26.8 0.10	0.3	ERZ
4/19/2008 4:26 44.1407 -114.0002 1.5 Mc IE 112.0 5.21 24 96 26.8 0.10	0.3	
	0.7	8.0
4/19/2008 11:46	0.7	2.2
4/24/2008 22:55	0.3	0.9
4/24/2008 23:04	1.3	0.9
4/25/2008 9:25	0.3	1.0
4/26/2008 7:10	0.6	0.4
4/27/2008 23:49	2.9	14.4
4/28/2008 9:02 44.1065 -114.4848 1.4 ML IE 145.8 6.77 6 260 60.8 0.14	9.4	12.8
4/28/2008 17:44	2.0	4.6
4/28/2008 23:12	1.2	10.8
4/28/2008 23:16	1.7	2.5
4/29/2008 8:49 44.7645 -112.3730 2.4 Mc IE 128.2 4.99 40 110 27.0 0.17	0.4	1.8
4/30/2008 22:04 42.6542 -111.3888 0.0 Mc IE 158.5 4.98 4 294 26.7 0.08	9.2	11.4
5/2/2008 10:46 44.4817 -112.9943 1.7 Mc IE 94.1 6.02 25 70 17.4 0.10	0.2	0.6
5/3/2008 12:17 44.7012 -111.8742 2.0 Mc IE 137.7 12.31 36 83 16.8 0.12	0.4	1.0
5/4/2008 5:48	1.1	1.4
5/4/2008 9:02 44.6333 -112.2445 1.0 ML IE 117.6 9.57 8 184 12.7 0.07	1.1	1.4
5/4/2008 21:56 44.6560 -114.1643 1.7 Mc IE 157.2 6.71 19 99 48.9 0.12	0.4	3.6
5/5/2008 0:54 43.2673 -111.6015 1.1 Mc IE 104.6 8.93 9 239 24.5 0.11	1.5	4.0
5/5/2008 0:54 43.2493 -111.5420 1.4 Mc IE 109.9 0.23 11 120 21.0 0.08	0.6	1.6
5/5/2008 0:57 42.7347 -111.3090 0.0 Mc IE 157.2 2.35 8 210 17.4 0.07	1.2	13.3
5/5/2008 2:41 42.7053 -111.6390 0.7 Mc IE 140.3 0.13 7 292 14.7 0.09	5.0	6.6
5/5/2008 20:06 44.2678 -114.3285 1.9 Mc IE 141.8 1.30 26 75 33.5 0.10	0.3	1.3
5/7/2008 0:22 42.7252 -111.3940 0.1 Mc IE 152.7 5.10 4 276 23.7 0.04	2.0	9.7
5/8/2008 10:21 42.9092 -111.1628 0.9 Mc IE 155.1 13.23 10 127 16.8 0.10	1.1	3.5
5/8/2008 10:34 42.9285 -111.1568 0.7 Mc IE 154.4 6.64 10 105 18.7 0.06	0.5	3.7
5/8/2008 14:10 44.6860 -112.5550 2.0 Mc IE 116.7 14.32 16 126 10.4 0.10	1.4	0.6
5/8/2008 20:12 43.0182 -111.0185 0.5 Mc IE 159.4 5.00 6 197 29.0 0.08	1.2	12.9
5/11/2008 19:53 44.6243 -112.2465 0.8 ML IE 116.6 9.01 6 239 12.2 0.05	1.3	2.4
5/12/2008 21:26 44.4513 -113.0107 1.3 Mc IE 91.0 8.14 5 133 14.6 0.06	0.9	2.5
5/13/2008 4:44 42.7377 -111.5488 2.4 Mc IE 142.7 8.02 41 75 11.0 0.13	0.3	8.0
5/13/2008 4:58 42.7112 -111.5372 0.8 Mc IE 145.5 3.17 8 259 14.1 0.07	1.4	7.8
5/13/2008 7:27 42.7060 -111.5410 0.8 Mc IE 145.7 2.71 5 325 14.5 0.12	1.8	15.1
5/13/2008 10:50 44.1110 -114.6453 2.5 Mc IE 158.1 7.13 46 43 47.7 0.20	0.3	7.1
5/13/2008 14:08 42.7197 -111.5682 1.7 ML IE 143.0 8.40 9 271 12.6 0.12	1.2	1.2
5/13/2008 17:42 42.7820 -111.5035 1.5 ML IE 141.9 6.80 7 280 18.6 0.08	9.1	4.7
5/13/2008 18:21 44.8232 -111.6563 2.1 Mc IE 158.5 8.37 17 186 10.4 0.05	0.6	0.7
5/13/2008 21:39 42.6608 -111.5463 0.9 Mc IE 149.1 10.22 9 278 19.3 0.09	1.3	1.7
5/14/2008 3:55 42.8327 -111.2425 2.5 Mc IE 154.6 11.30 44 72 13.8 0.10	0.3	0.6
5/14/2008 6:03 42.8562 -111.2320 1.1 ML IE 153.8 5.02 8 132 14.8 0.09	0.8	4.7
5/14/2008 6:12 42.8328 -111.2487 1.1 Mc IE 154.2 8.56 15 149 14.3 0.09	0.9	1.6
5/14/2008 6:42 42.8263 -111.2358 3.0 ML IE 155.5 11.19 52 72 13.0 0.13	0.3	0.5
5/14/2008 6:42 42.8245 -111.2488 2.8 ML IE 154.8 9.55 9 154 13.8 0.06	0.7	1.3
5/14/2008 6:47 44.4520 -114.1105 1.3 Mc IE 138.8 4.26 14 79 16.9 0.05	0.5	1.2
5/14/2008 6:49 42.8317 -111.2048 0.3 Mc IE 157.2 16.58 6 174 11.3 0.01	3.2	1.3
5/14/2008 6:53 42.7957 -111.2802 0.6 Mc IE 154.7 8.44 5 222 15.1 0.09	1.5	2.3
5/14/2008 6:56 42.8417 -111.2445 1.5 ML IE 153.9 5.49 7 133 14.5 0.11	1.3	4.0
5/14/2008 6:56 42.8005 -111.2730 0.6 Mc IE 154.8 9.87 6 217 14.7 0.01	2.4	1.6
5/14/2008 7:00 42.8275 -111.2500 0.8 Mc IE 154.5 10.27 8 153 14.1 0.06	1.0	1.1
5/14/2008 7:01 42.8307 -111.2400 2.0 Mc IE 154.9 9.97 32 73 13.5 0.09	0.3	0.7
5/14/2008 7:45 42.8357 -111.2423 1.4 Mc IE 154.4 9.90 18 80 14.0 0.10	0.5	1.2

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
5/14/2008 7:52	42.8412	-111.2300	0.8	Mc IE	154.9	9.90	5	177	13.5	0.02	2.4	1.7
5/14/2008 12:51	42.8297	-111.2505	0.7	Mc IE	154.3	8.49	10	151	14.2	0.07	0.8	1.9
5/14/2008 16:40	42.9457	-111.4162	1.0	Mc IE	135.8	7.20	8	110	1.0	0.07	0.5	1.1
5/14/2008 17:39	42.8257	-111.2505	0.9	Mc IE	154.6	10.62	5	194	14.0	0.02	1.6	2.2
5/14/2008 18:58	42.8427	-111.5755	0.9	ML IE	132.9	12.19	4	173	1.6	0.00	4.9	2.4
5/16/2008 0:14	43.1120	-111.3942	1.2	Mc IE	127.4	2.35	4	185	6.8	0.03	2.5	11.2
5/16/2008 7:25	43.1965	-111.2482	2.1	Mc IE	134.1	11.94	17	128	17.7	0.11	8.0	2.3
5/16/2008 22:32	42.8665	-111.1992	1.3	Mc IE	155.3	0.02	9	154	13.8	0.13	0.9	1.6
5/17/2008 0:47	42.8220	-111.2438	8.0	Mc IE	155.2	9.64	5	194	13.3	0.04	1.4	2.1
5/17/2008 3:40	42.8363	-111.2267	0.5	Mc IE	155.4	9.91	7	179	13.0	0.04	1.0	2.0
5/17/2008 4:54	42.8133	-111.2875	0.9	ML IE	153.0	3.08	6	213	16.2	0.07	1.1	10.9
5/17/2008 5:23	42.8408	-111.2198	1.4	ML IE	155.6	10.49	7	174	12.9	0.06	0.9	1.6
5/17/2008 5:23	42.8282	-111.2322	1.3	Mc IE	155.6	10.87	7	187	12.8	0.08	1.0	1.7
5/17/2008 5:24	42.8437	-111.2165	1.0	Mc IE	155.6	11.07	7	171	12.9	80.0	1.1	2.0
5/17/2008 6:41	44.7093	-111.8932	1.1	Mc IE	137.6	5.00	6	206	18.2	0.28	10.1	11.7
5/17/2008 12:03	42.8568	-111.2060	2.2	Mc IE	155.5	6.78	16	170	13.3	0.11	0.7	2.4
5/18/2008 23:15	42.9078	-111.2048	0.4	Mc IE	152.4	5.00	4	190	18.0	0.04	1.3	10.7
5/18/2008 23:16	42.8832	-111.2312	0.9	Mc IE	152.1	18.70	6	152	16.7	80.0	1.8	3.2
5/21/2008 13:51	42.9033	-111.2108	1.2	Mc IE	152.2	10.99	11	132	17.6	0.14	0.6	2.3
5/21/2008 18:23	43.3143	-110.8870	1.0	Mc IE	157.8	9.84	9	197	15.2	0.28	1.3	3.6
5/21/2008 18:25	43.3163	-110.8923	1.0	Mc IE	157.3	15.96	7	196	15.5	0.04	1.0	1.7
5/21/2008 18:28	43.6467	-111.1338	8.0	Mc IE	133.0	4.99	7	249	22.8	0.04	2.0	12.8
5/21/2008 18:31	43.3023	-110.8985	1.0	Mc IE	157.2	12.28	11	202	16.6	0.11	0.7	1.5
5/21/2008 19:30	43.3093	-110.8958	0.7	Mc IE	157.2	12.28	8	210	16.1	0.08	0.6	1.7
5/21/2008 19:41	43.3133	-110.9048	8.0	Mc IE	156.4	13.65	9	196	16.6	0.33	1.5	3.0
5/22/2008 20:56	43.1692	-111.2618	8.0	Mc IE	134.3	11.13	8	172	20.4	0.12	0.9	3.1
5/23/2008 18:19	42.7067	-111.6582	2.2	Mc IE	139.2	5.04	13	163	15.1	0.07	8.0	3.4
5/23/2008 21:51	44.1980	-114.0015	1.1	Mc IE	115.3	4.02	6	230	32.8	0.11	1.9	2.6
5/24/2008 13:25	42.8577	-111.2053	1.6	Mc IE	155.5	5.03	15	81	13.4	0.10	0.4	3.0
5/24/2008 13:31	43.5745	-111.2225	1.0	Mc IE	126.2	6.08	7	194	3.8	0.21	1.7	2.7
5/24/2008 14:57	44.2005	-114.0340	8.0	Mc IE	117.6	7.41	10	145	32.5	0.04	0.8	12.9
5/24/2008 19:14	42.5508	-111.5612	1.6	ML IE	157.6	5.00	6	290	31.3	0.06	1.4	13.1
5/24/2008 22:17	42.6862	-111.3237	1.7	Mc IE	159.9	2.57	6	268	20.3	0.13	5.4	15.4
5/25/2008 13:32	42.8278	-111.2318	1.2	Mc IE	155.6	11.18	8	187	12.8	0.05	1.0	1.6
5/25/2008 14:35	43.4907	-111.1047	0.9	Mc IE	136.7	13.57	8	148	12.5	0.03	0.9	1.8
5/25/2008 14:52	42.8338	-111.2202	0.9	Mc IE	156.0	11.96	6	179	12.4	0.07	1.1	2.0
5/26/2008 15:07	44.4898	-114.2602	2.0	Mc IE	150.7	11.14	26	92	8.3	80.0	0.3	0.4
5/26/2008 17:01	44.4100	-112.8762	1.2	Mc IE	84.9	6.16	5	151	10.3	0.02	1.7	1.0
5/28/2008 2:35	44.4510	-114.1193	2.1	Mc IE	139.3	4.83	26	52	16.5	0.07	0.4	0.8
5/28/2008 12:26	44.1633	-113.9863	2.1	Mc IE	112.2	6.05	25	88	29.5	0.13	0.4	2.1
5/28/2008 12:33	42.8513	-111.6162	0.9	Mc IE	129.9	18.58	6	227	3.1	0.10	2.8	2.5
5/30/2008 14:45	43.9393	-114.3232	1.4	Mc IE	128.0	5.91	15	91	16.8	0.07	0.4	0.7
5/30/2008 22:44	42.7005	-111.3332	1.6	ML IE	158.2	5.03	7	232	20.4	0.01	3.6	7.5
5/31/2008 8:36	44.3873	-113.0093	1.1	Mc IE	84.0	14.48	10	114	8.4	0.10	8.0	1.1
5/31/2008 13:01	44.6880	-111.9055	2.8	MI MB	135.1	4.07	33	153	19.6	0.14	0.6	1.2
5/31/2008 20:59	43.4267	-110.9553	1.4	Mc IE	149.7	9.73	10	201	7.1	0.13	1.1	0.8
6/1/2008 14:55	44.7070	-111.8915	2.2	Mc IE	137.5	12.85	29	75	18.1	0.07	0.2	0.7
6/1/2008 16:29	42.9043	-111.2548	1.3	Mc IE	149.2	2.49	8	114	20.0	0.10	0.5	14.9
6/2/2008 18:31	42.9040	-111.2395	1.3	Mc IE	150.2	11.98	13	112	19.1	0.05	0.4	1.9
6/3/2008 17:46	42.9272	-111.2368	0.7	Mc IE	149.0	5.00	5	156	21.2	0.07	1.2	10.2
6/4/2008 4:09	44.7225	-113.0308	2.5	MI MB	121.0	7.81	37	106	18.6	0.10	0.3	2.3
	-					•		_	-	-		

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
6/4/2008 9:24	44.1233	-113.9458	1.5	Mc IE	107.2	0.43	11	240	26.9	0.12	2.7	3.3
6/4/2008 11:35	43.0042	-111.2817	1.4	Mc IE	141.3	10.49	14	84	30.4	0.09	0.4	2.7
6/4/2008 14:07	43.8112	-114.0057	1.0	ML IE	100.1	7.04	8	172	14.6	0.09	0.7	13.0
6/5/2008 21:14	42.8597	-111.3712	1.7	ML IE	144.4	2.43	7	146	9.6	0.14	0.8	14.0
6/6/2008 9:21	42.9050	-111.2562	1.6	Mc IE	149.0	7.89	8	127	14.0	0.11	8.0	3.1
6/6/2008 18:57	42.9012	-111.2602	1.6	Mc IE	149.0	2.21	12	116	13.8	0.11	0.6	14.8
6/8/2008 1:19	43.2530	-110.9330	1.0	ML IE	156.1	15.56	6	174	21.7	0.12	1.4	3.1
6/8/2008 3:20	43.9132	-114.2820	2.3	Mc IE	124.1	7.87	33	68	13.3	0.14	0.3	1.6
6/8/2008 6:55	43.8817	-114.2710	0.7	Mc IE	122.5	2.80	8	235	12.9	0.08	1.5	1.5
6/8/2008 9:02	42.8855	-111.2792	1.9	Mc IE	148.7	13.80	14	165	13.0	0.05	8.0	1.2
6/8/2008 10:08	44.5705	-112.0537	2.2	ML IE	117.9	5.16	34	60	27.2	0.15	0.3	3.0
6/8/2008 13:36	44.3877	-114.3263	2.3	Mc IE	148.4	6.18	34	71	20.4	0.09	0.3	0.7
6/8/2008 13:39	44.3908	-114.3187	1.9	Mc IE	148.1	7.14	20	81	19.9	0.08	0.4	4.8
6/9/2008 8:43	44.8325	-111.6328	2.0	Mc IE	160.4	7.82	23	69	11.7	0.11	0.3	1.4
6/9/2008 12:10	43.7973	-114.0202	1.4	Mc IE	101.0	5.48	7	102	15.2	0.10	1.3	3.2
6/9/2008 12:45	43.2013	-111.4995	1.0	Mc IE	115.3	4.95	6	114	19.5	0.05	8.0	10.8
6/9/2008 18:00	42.8972	-111.3957	0.6	Mc IE	140.3	2.13	4	240	5.0	0.22	4.6	20.7
6/9/2008 22:32	44.3177	-114.5445	2.2	Mc IE	159.6	0.03	19	71	35.7	0.21	8.0	10.1
6/10/2008 2:34	44.4118	-114.0253	1.5	Mc IE	130.7	4.41	12	186	24.9	0.10	1.1	1.8
6/10/2008 7:41	43.0380	-111.4552	1.1	Mc IE	127.3	6.73	6	171	7.1	0.01	1.1	1.9
6/12/2008 15:46	42.7110	-111.4978	1.5	Mc IE	147.7	12.83	10	232	15.4	0.10	1.3	1.6
6/14/2008 6:05	44.7217	-112.5737	1.0	Mc IE	120.4	6.55	7	93	12.9	0.07	1.3	2.6
6/14/2008 8:04	44.7003	-111.9033	1.1	MI MB	136.4	4.25	9	134	40.7	0.06	0.6	2.9
6/14/2008 10:25	44.7927	-112.5628	1.0	Mc IE	128.3	7.79	6	149	20.5	0.02	1.6	11.6
6/14/2008 19:56	42.9382	-111.4493	1.3	ML IE	134.1	7.41	4	161	2.3	0.17	8.4	4.9
6/15/2008 8:39	44.1148	-114.6570	2.3	Mc IE	159.2	6.83	31	71	48.7	0.11	0.3	1.6
6/15/2008 17:37	44.4190	-112.8700	1.4	Mc IE	85.8	13.97	13	141	11.5	0.10	0.6	1.3
6/16/2008 18:38	44.0525	-114.1062	0.9	Mc IE	115.4	14.31	8	259	15.3	0.08	1.6	1.0
6/17/2008 11:04	44.4950	-112.6980	1.6	Mc IE	94.3	6.91	19	58	14.2	0.09	0.5	12.6
6/19/2008 4:58	42.6823	-111.4463	0.9	Mc IE	153.0	12.50	8	247	20.3	0.10	1.5	2.2
6/20/2008 21:11	43.2770	-111.4097	1.7	Mc IE	118.6	6.74	12	115	10.7	0.11	0.5	1.7
6/21/2008 9:14	44.6120	-114.0453	1.4	Mc IE	147.1	5.54	14	104	17.4	0.07	0.4	1.0
6/22/2008 20:12	42.8435	-111.2777	0.9	ML IE	151.6	10.39	4	192	15.8	0.00	2.8	3.1
6/23/2008 3:22	44.4615	-114.1223	1.8	Mc IE	140.2	6.40	19	80	15.5	0.07	0.3	0.5
6/23/2008 11:24	44.4532	-114.1165	1.7	Mc IE	139.3	4.57	16	79	16.5	0.04	0.4	1.0
6/23/2008 18:37	43.8810	-110.9738	1.8	ML IE	147.9	9.40	9	77	3.3	0.07	0.6	0.7
6/24/2008 6:52	44.1508	-114.5163	8.0	Mc IE	149.9	6.98	10	152	41.4	0.09	0.4	12.6
6/24/2008 7:12	44.1595	-114.5295	2.5	Mc IE	151.3	6.69	28	99	42.8	0.13	0.4	2.2
6/24/2008 13:03	44.4582	-114.1412	1.3	Mc IE	141.1	9.16	11	103	14.8	0.11	0.6	1.9
6/24/2008 13:09	43.2747	-110.8807	0.9	ML IE	159.4	5.06	5	229	16.8	0.15	1.7	12.7
6/24/2008 13:45	44.4522	-114.1063	1.1	Mc IE	138.6	0.67	12	123	17.1	0.15	0.8	2.0
6/24/2008 16:16	44.4482	-114.1377	1.9	Mc IE	140.2	8.63	17	89	15.9	0.12	0.5	1.9
6/24/2008 19:28	44.1617	-114.5275	1.8	Mc IE	151.2	6.96	14	98	42.9	0.17	0.6	6.2
6/24/2008 20:13	44.5058	-114.0087	1.1	Mc IE	136.7	7.80	6	157	52.4	0.05	1.1	12.7
6/25/2008 5:03	43.3007	-110.8682	1.9	Mc IE	159.7	12.70	17	176	14.4	0.09	0.4	1.1
6/25/2008 5:09	43.3303	-110.8422	1.0	Mc IE	160.9	16.37	10	194	11.2	0.07	0.9	0.9
6/26/2008 21:13	42.9000	-111.4492	1.6	Mc IE	136.7	1.15	5	209	4.8	0.04	10.6	1.3
7/5/2008 22:09	43.1553	-110.9355	1.3	Mc IE	159.4	14.88	11	140	29.4	0.12	0.6	2.7
7/6/2008 7:20	43.1695	-110.9667	0.8	Mc IE	156.5	5.00	7	234	34.8	0.12	1.3	13.5
7/6/2008 13:58	45.0278	-113.0530	2.4	Mc IE	154.8	7.11	16	155	27.5	0.08	0.6	11.4
7/6/2008 14:04	45.0307	-113.0568	2.3	Mc IE	155.2	7.08	16	156	27.9	0.07	0.7	13.9
.70,2000 14.04	10.0007	1.10.0000	0	17.5 1	.00.2				20	0.01	0.7	

7/6/2008 15:02 44.1947 -114.5652 1.3 7/8/2008 0:21 44.1723 -114.5242 2.7	-TYPE Mc IE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
7/8/2008 0:21 44.1723 -114.5242 2.7	Mc IE								
		155.4	7.29	9	164	47.5	0.10	1.0	14.3
	Mc IE	151.4	7.46	34	71	43.4	0.16	0.4	8.5
	Mc IE	153.5	10.47	21	88	4.7	0.21	0.6	0.7
	Mc IE	106.9	7.00	12	118	7.2	0.11	0.6	1.2
7/9/2008 4:15 43.6980 -111.2898 1.3	ML IE	120.5	11.53	12	112	14.3	0.13	0.5	2.4
7/9/2008 4:15 43.7032 -111.3070 1.0	Mc IE	119.1	12.20	14	76	24.0	0.19	0.5	1.6
7/9/2008 4:22 43.6887 -111.2823 2.0	Mc IE	121.1	11.23	25	80	13.1	0.10	0.3	1.3
7/9/2008 4:23 43.6823 -111.2898 2.1	Mc IE	120.4	13.17	26	54	12.9	0.06	0.3	0.9
7/9/2008 4:27 43.7080 -111.3177 0.6	Mc IE	118.3	2.51	10	234	16.6	0.04	1.5	12.7
7/9/2008 4:33 43.7067 -111.3055 1.1	ML IE	119.3	2.50	9	189	36.3	0.33	2.0	29.7
7/9/2008 4:36 43.7112 -111.3140 1.2	Mc IE	118.6	2.50	14	208	16.7	0.13	0.7	15.7
7/9/2008 4:44 43.6958 -111.2843 1.0	Mc IE	120.9	11.93	9	136	13.8	0.09	0.6	2.7
7/9/2008 4:47 43.6985 -111.2878 1.4	ML IE	120.6	6.85	12	111	14.2	0.07	0.4	3.3
7/9/2008 4:50 43.6885 -111.2707 1.2	ML IE	122.0	11.45	11	134	12.6	0.08	0.5	2.3
7/9/2008 5:06 43.6890 -111.2770 1.0	Mc IE	121.5	12.16	12	110	12.9	0.09	0.5	2.6
7/9/2008 5:10 43.6880 -111.2783 1.7	Mc IE	121.4	10.38	22	111	12.9	0.12	0.5	2.8
7/9/2008 5:18 43.6968 -111.3032 1.1	Mc IE	119.4	12.69	15	73	14.9	0.10	0.4	2.0
7/9/2008 14:27 43.2647 -111.2897 1.8	Mc IE	128.2	7.65	23	110	9.5	0.10	0.4	1.2
7/9/2008 22:10 42.9467 -111.2903 1.3	Mc IE	144.2	5.43	9	145	10.8	0.09	0.7	3.0
7/9/2008 23:18 42.9480 -111.2892 1.0	Mc IE	144.1	7.30	8	145	10.9	0.11	0.7	3.0
7/10/2008 3:15 44.5807 -112.9508 0.7	Mc MB	104.4	7.45	12	100	24.7	0.16	0.5	13.5
7/10/2008 3:15 44.5835 -112.9472 0.7	ML IE	104.7	7.42	7	99	24.4	0.11	0.7	14.0
7/12/2008 13:18 44.6997 -113.1795 1.1	Mc IE	121.0	0.80	5	162	17.5	0.01	1.2	1.6
7/12/2008 16:34 44.7093 -113.2065 1.3	Mc MB	122.6	10.65	14	108	16.4	0.08	0.9	1.6
7/12/2008 16:41 44.6745 -112.1188 1.6	Mc MB	125.7	6.07	18	116	40.3	0.12	0.5	14.2
7/12/2008 19:11 44.6955 -113.2005 2.1	Mc IE	121.0	11.72	19	161	15.9	0.08	0.6	0.6
7/13/2008 1:47 44.6967 -113.1660 1.0	Mc IE	120.4	0.55	5	164	18.3	0.03	1.4	1.3
7/13/2008 9:55 44.7213 -113.2033 1.1	Mc IE	123.8	6.10	11	149	17.5	0.06	0.8	1.6
7/13/2008 10:02 44.7182 -113.1812 1.2	Mc IE	123.0	1.64	6	174	18.6	0.02	1.4	5.7
7/13/2008 12:15 44.5575 -114.2808 1.7	Mc IE	156.7	5.42	11	93	2.2	0.09	0.7	0.3
7/13/2008 14:28	ML IE	160.9	5.21	7	161	22.9	0.07	1.1	4.0
7/13/2008 23:39 44.6725 -112.1188 1.5	Mc MB	125.5	2.42	20	66	40.1	0.07	0.4	2.7
7/14/2008 0:03 44.6777 -112.1155 2.0	ML IE	126.2	7.06	20	66	40.7	0.11	0.4	12.1
7/14/2008 14:47	ML IE	109.5	2.94	27	96	24.7	0.12	0.4	0.7
7/14/2008 15:05 44.6362 -114.0997 1.6	Mc IE	152.1	6.03	14	102	14.7	0.23	0.7	1.3
7/14/2008 20:37 44.5135 -114.2815 2.8	ML IE	153.7	6.74	40	87	45.8	0.14	0.3	2.5
7/15/2008 8:14 42.8983 -111.5363 1.6	Mc IE	131.2	9.87	10	147	8.5	0.13	8.0	1.9
7/15/2008 12:53 44.3873 -114.0690 1.0	Mc IE	131.7	7.37	6	139	24.6	0.09	0.9	14.6
	Mc IE	130.4	8.71	8	132	2.8	0.09	0.7	2.1
	Mc IE	133.8	7.58	7	170	5.2	0.08	1.7	1.8
	Mc IE	146.7	9.86	5	252	12.4	0.02	3.9	3.6
	ML IE	145.8	13.66	5	276	11.7	0.01	3.1	2.8
	ML IE	141.0	8.41	5	237	7.7	0.05	3.7	1.6
	Mc IE	130.4	2.23	6	123	7.5	0.16	0.9	17.0
	Mc IE	133.1	7.02	8	165	6.7	0.19	1.7	2.6
	Mc IE	153.5	1.97	8	195	36.4	0.04	0.7	2.2
	Mc IE	60.9	0.02	7	303	12.4	0.02	4.3	5.4
	ML IE	121.6	5.72	15	122	25.2	0.14	0.5	3.0
	Mc IE	135.2	5.81	20	107	6.2	0.09	0.3	0.8
	ML IE	122.3	4.84	32	55	24.9	0.11	0.3	0.7
	Mc IE	150.8	7.06	7	105	42.5	0.09	0.6	14.8

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
7/21/2008 23:14	42.8985	-111.2610	1.5	Mc IE	149.1	8.72	10	117	13.8	0.12	0.6	1.9
7/22/2008 9:32	42.9043	-111.2523	3.2	MLUS	149.4	10.49	67	82	14.3	0.12	0.3	0.5
7/22/2008 9:37	42.8928	-111.2612	1.0	Mc IE	149.5	11.59	12	119	14.0	0.17	0.7	1.5
7/22/2008 9:39	42.9013	-111.2512	1.1	Mc IE	149.6	7.08	13	120	14.5	0.16	0.6	1.8
7/22/2008 9:45	42.8958	-111.2553	0.9	Mc IE	149.7	0.03	9	118	14.4	0.08	8.0	2.0
7/22/2008 9:46	42.8893	-111.2243	0.4	Mc IE	152.2	5.01	3	292	17.0	0.08	2.8	12.0
7/22/2008 9:51	42.9082	-111.2630	8.0	ML IE	148.4	2.98	5	118	13.4	0.02	0.9	9.6
7/22/2008 9:52	42.9058	-111.2522	0.6	Mc IE	149.3	7.20	9	121	14.3	0.11	0.5	2.6
7/22/2008 9:53	42.9082	-111.2552	2.0	Mc IE	148.9	3.35	27	81	14.0	0.10	0.3	4.9
7/22/2008 9:56	42.9110	-111.2533	1.0	Mc IE	148.9	3.08	8	122	14.1	0.09	0.6	10.8
7/22/2008 10:00	42.8972	-111.2743	1.2	ML IE	148.3	2.99	6	120	12.9	0.07	0.7	10.7
7/22/2008 10:02	42.9025	-111.2597	0.9	Mc IE	149.0	3.84	8	119	13.8	0.08	0.6	5.7
7/22/2008 10:06	42.9028	-111.2610	8.0	Mc IE	148.9	4.94	7	118	13.7	0.08	8.0	5.5
7/22/2008 10:07	42.9025	-111.2745	0.7	Mc IE	148.0	0.03	6	118	12.7	0.18	1.2	4.9
7/22/2008 10:08	42.9093	-111.2593	1.1	Mc IE	148.6	4.92	9	119	13.6	0.08	0.5	3.3
7/22/2008 10:30	42.9068	-111.2512	1.5	Mc IE	149.3	2.51	15	113	14.3	0.11	0.5	12.3
7/22/2008 10:45	42.9065	-111.2580	1.5	Mc IE	148.8	6.99	18	114	13.8	0.11	0.4	2.0
7/22/2008 11:09	42.9013	-111.2603	0.4	Mc IE	149.0	9.05	6	144	13.8	0.13	1.0	3.5
7/22/2008 11:19	42.9002	-111.2575	8.0	Mc IE	149.3	2.18	5	167	14.0	0.07	8.0	13.4
7/22/2008 11:53	42.9038	-111.2513	0.5	Mc IE	149.5	2.50	5	171	14.4	0.08	1.2	13.2
7/22/2008 13:48	42.9003	-111.2535	1.2	Mc IE	149.5	8.07	7	120	14.4	0.11	8.0	2.5
7/22/2008 15:57	42.9013	-111.2607	0.9	ML IE	149.0	3.06	6	166	13.8	0.05	0.7	9.9
7/22/2008 16:12	42.8940	-111.2683	0.3	Mc IE	148.9	9.26	5	161	13.4	0.08	1.6	3.8
7/22/2008 16:29	42.8997	-111.2575	1.0	Mc IE	149.3	7.99	8	144	14.1	0.12	0.6	2.4
7/22/2008 16:47	42.8957	-111.2612	1.1	Mc IE	149.3	6.77	7	119	13.9	0.09	0.7	2.9
7/22/2008 18:47	42.8955	-111.2667	0.3	Mc IE	148.9	5.84	5	161	13.5	0.08	0.9	4.3
7/22/2008 19:48	44.3897	-112.5973	1.3	Mc MB	83.6	12.98	22	72	23.0	0.06	0.3	1.1
7/23/2008 5:14	42.8925	-111.2605	0.9	Mc IE	149.5	8.98	8	120	14.1	0.17	8.0	3.3
7/23/2008 7:17	42.9000	-111.2640	0.7	Mc IE	148.8	2.87	7	143	13.5	0.08	0.7	10.0
7/24/2008 19:46	42.8983	-111.2553	1.2	ML IE	149.5	6.12	6	145	14.3	0.10	0.8	4.1
7/25/2008 0:21	43.9615	-114.3572	1.1	ML IE	131.3	7.32	10	153	20.0	0.12	0.7	14.0
7/25/2008 1:10	42.9177	-111.2663	0.6	Mc IE	147.6	5.91	5	280	12.9	0.07	5.6	9.0
7/25/2008 2:08	44.2695	-114.4572	1.9	ML IE	151.0	7.04	18	89	44.4	0.15	0.5	11.0
7/25/2008 2:09	44.2822	-114.4652	1.5	ML IE	152.2	0.02	8	89	43.0	0.13	0.7	2.5
7/25/2008 7:20	43.8665	-111.0348	1.0	ML IE	142.8	5.37	5	256	8.4	0.03	2.4	1.7
7/25/2008 10:18	43.6270	-113.7507	0.9	Mc IE	78.1	0.37	16	84	22.0	0.06	0.3	2.1
7/25/2008 10:58	43.8422	-110.9947	0.9	Mc IE	145.6	2.19	7	120	7.6	0.16	0.9	15.9
7/25/2008 12:02	43.8688	-110.9903	1.3	Mc IE	146.3	7.57	16	65	5.2	0.29	0.6	1.2
7/26/2008 1:55	44.6348	-112.0958	2.0	ML IE	122.6	6.07	20	60	24.1	0.12	0.4	13.9
7/26/2008 7:17	42.8962	-111.2633	1.2	Mc IE	149.1	6.32	12	119	13.7	0.11	0.5	2.5
7/26/2008 7:19	42.9110	-111.2463	0.9	Mc IE	149.3	2.43	8	123	14.6	0.12	0.8	14.3
7/26/2008 7:23	42.9020	-111.2555	8.0	Mc IE	149.3	2.48	7	120	14.2	0.09	0.7	13.0
7/26/2008 7:52	42.9093	-111.2565	1.7	Mc IE	148.8	0.07	20	81	13.9	0.21	0.4	1.8
7/26/2008 11:11	42.9030	-111.2547	1.0	Mc IE	149.3	0.03	8	115	14.2	0.09	0.6	3.3
7/26/2008 12:11	43.5692	-110.7953	0.3	Mc IE	160.6	2.49	5	107	15.3	0.17	1.2	18.2
7/26/2008 12:29	43.1390	-111.4333	0.6	Mc IE	123.2	4.21	3	204	10.8	0.02	4.5	11.8
7/26/2008 12:58	42.9083	-111.2542	1.6	Mc IE	149.0	6.69	18	112	14.1	0.14	0.5	2.7
7/26/2008 14:23	42.9057	-111.2512	1.2	Mc IE	149.3	4.98	9	121	14.4	0.12	0.6	5.2
7/26/2008 15:46	42.9032	-111.2598	8.0	ML IE	148.9	0.02	5	167	13.8	0.09	8.0	3.7
7/26/2008 16:02	44.1063	-113.9340	1.0	Mc IE	105.5	8.12	7	142	25.9	0.04	0.7	11.8
7/26/2008 21:23	43.1747	-111.4413	1.2	ML IE	120.8	13.07	6	133	14.6	0.12	0.9	3.1

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
7/26/2008 22:46	44.0507	-114.4967	1.5	Mc IE	144.8	6.95	11	125	34.0	0.10	0.5	14.0
7/27/2008 7:48	42.8947	-111.2670	8.0	Mc IE	149.0	4.74	5	155	13.5	0.08	1.0	6.6
7/27/2008 12:23	42.9057	-111.2563	8.0	Mc IE	149.0	3.62	8	127	14.0	0.08	0.7	6.0
7/27/2008 14:15	42.9005	-111.2587	1.0	Mc IE	149.2	5.81	9	116	13.9	0.08	0.5	2.5
7/27/2008 15:03	42.8992	-111.2520	0.6	Mc IE	149.7	2.44	6	115	14.5	0.06	0.7	12.0
7/27/2008 19:14	42.8993	-111.2610	1.2	Mc IE	149.1	6.77	10	117	13.8	0.10	0.6	2.6
7/27/2008 20:10	42.9025	-111.2548	1.6	Mc IE	149.3	6.52	11	115	14.2	0.08	0.5	2.6
7/28/2008 5:26	42.9117	-111.2565	0.5	Mc IE	148.6	4.30	5	171	13.8	0.13	1.6	9.2
7/30/2008 5:59	44.6787	-113.9792	2.0	Mc IE	149.1	0.31	10	243	61.3	0.11	1.5	7.3
7/30/2008 23:34	42.8813	-111.2803	0.9	Mc IE	148.9	11.27	5	168	13.1	0.05	1.7	4.0
8/1/2008 6:13	43.3217	-111.0890	0.4	Mc IE	141.8	11.21	5	229	19.0	0.06	1.3	2.0
8/1/2008 20:06	44.0958	-113.9137	2.3	ML IE	103.5	6.81	21	191	41.4	0.28	0.7	3.1
8/2/2008 8:20	43.9213	-113.8087	1.4	Mc IE	87.9	7.19	11	276	28.6	0.10	0.9	14.4
8/2/2008 18:00	42.8930	-111.1997	0.7	Mc IE	153.6	15.15	5	136	16.3	0.04	1.4	1.8
8/3/2008 22:02	42.8750	-111.2945	0.9	Mc IE	148.4	14.20	9	178	12.5	0.06	0.9	0.9
8/3/2008 22:07	42.8732	-111.2898	1.1	Mc IE	148.8	12.62	12	144	13.0	80.0	0.5	0.6
8/3/2008 23:05	42.8737	-111.2885	0.7	Mc IE	148.9	15.44	5	177	13.0	0.04	1.8	2.0
8/4/2008 0:25	42.8727	-111.2923	0.5	Mc IE	148.7	15.56	4	178	12.8	0.05	1.4	2.0
8/4/2008 0:27	42.8750	-111.2945	0.5	Mc IE	148.4	14.51	4	177	12.5	0.05	1.1	1.8
8/4/2008 1:07	42.8823	-111.2812	0.7	Mc IE	148.8	12.89	4	168	13.0	0.04	1.0	1.7
8/4/2008 1:40	42.8838	-111.2798	0.9	Mc IE	148.8	11.93	9	167	13.0	0.05	1.0	1.9
8/4/2008 2:45	42.8718	-111.2925	0.7	Mc IE	148.8	14.64	6	179	12.9	0.06	1.2	1.0
8/4/2008 2:57	42.8720	-111.2953		NM	148.6	15.10	9	180	12.7	0.04	8.0	8.0
8/4/2008 15:03	42.8705	-111.3032		NM	148.1	14.02	7	183	12.2	80.0	1.3	1.0
8/6/2008 11:53	42.5065	-111.5935	1.7	Mc IE	159.9	7.60	25	90	36.2	0.18	0.4	4.9
8/6/2008 21:11	42.8597	-111.3717	1.4	Mc IE	144.4	15.15	6	146	9.6	0.21	1.1	2.2
8/7/2008 6:25	43.3293	-110.8643	0.4	Mc IE	159.2	11.32	11	266	12.9	0.07	1.7	1.1
8/7/2008 6:34	43.3317	-110.8570	8.0	Mc IE	159.7	12.81	11	264	12.3	0.07	8.0	1.0
8/7/2008 17:50	42.8167	-111.4277	1.2	Mc IE	143.9	12.07	7	177	13.3	0.15	1.3	2.4
8/8/2008 10:46	42.5985	-111.5910	1.1	Mc IE	151.9	12.91	14	85	26.0	0.16	0.5	1.1
8/8/2008 16:16	44.3128	-114.5673	1.1	Mc IE	161.0	6.91	16	149	34.9	0.07	0.4	13.7
8/9/2008 12:04	44.3098	-112.7000	1.1	Mc IE	73.7	3.46	8	132	24.2	0.13	8.0	1.7
8/9/2008 18:22	42.8995	-111.2598	1.6	Mc IE	149.1	7.02	19	87	13.9	0.11	0.3	1.4
8/9/2008 19:52	43.5728	-111.2010	1.4	Mc IE	127.9	6.40	13	117	2.8	0.12	0.5	2.4
8/10/2008 14:49	44.3590	-112.9983	1.3	Mc IE	80.7	11.28	7	267	5.6	0.07	1.0	0.9
8/10/2008 15:42	44.1603	-114.5432	1.9	Mc IE	152.3	7.19	21	101	43.7	0.10	0.4	13.7
8/12/2008 19:11	43.4403	-113.5565	1.2	ML IE	66.7	25.33	19	109	13.4	0.27	1.3	2.5
8/12/2008 22:36	42.9180	-111.2567	0.5	Mc IE	148.2	2.47	5	222	13.7	0.02	2.4	12.3
8/13/2008 7:44	44.6377	-112.0655	8.0	Mc IE	124.0	6.34	12	129	38.6	0.16	0.5	17.7
8/13/2008 13:37	42.9055	-111.2557	1.6	Mc IE	149.0	5.08	24	114	14.0	0.14	0.3	2.8
8/14/2008 8:03	44.6733	-112.1130	1.4	Mc IE	125.8	5.86	18	94	24.0	0.12	0.4	13.9
8/14/2008 8:26	44.9108	-112.6880	1.5	Mc IE	140.5	1.83	10	168	15.7	0.03	0.5	1.5
8/14/2008 11:27	42.8993	-111.2600	1.5	Mc IE	149.1	2.08	14	117	13.9	0.12	0.4	16.1
8/14/2008 16:15	44.9117	-112.6887	1.5	Mc IE	140.6	3.12	12	183	15.7	0.04	0.4	1.2
8/14/2008 17:09	42.6910	-111.6492	2.0	Mc IE	141.0	2.50	10	113	16.5	0.10	0.9	12.1
8/14/2008 20:37	42.9070	-111.2578	1.1	ML IE	148.8	0.03	8	145	13.8	0.11	0.6	3.1
8/15/2008 15:06	42.8917	-111.2608	1.6	ML IE	149.6	12.09	9	121	14.1	0.17	0.9	1.8
8/15/2008 20:46	44.7045	-111.8483	1.6	Mc MB	139.1	13.05	16	83	14.7	0.10	0.5	1.1
8/15/2008 20:49	44.6170	-112.1372	0.8	Mc IE	119.3	13.76	5	273	20.6	0.01	2.0	2.8
8/16/2008 3:03	42.7848	-111.1967	1.1	Mc IE	160.8	6.29	11	175	8.2	0.10	1.0	1.7
8/16/2008 3:16	42.7807	-111.2012	1.0	Mc IE	160.8	6.36	10	180	8.4	0.13	1.2	2.0

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
8/16/2008 15:33	43.4203	-111.0817	1.8	Mc IE	139.8	11.11	22	148	13.1	0.09	0.5	8.0
8/17/2008 5:13	44.6620	-112.9572	0.9	Mc IE	113.4	13.94	5	161	20.3	0.05	8.0	2.5
8/17/2008 11:07	44.3660	-114.0760	1.1	Mc IE	130.7	4.64	12	71	26.2	0.26	0.9	2.3
8/17/2008 11:22	44.4617	-111.2720	8.0	Mc IE	151.0	35.86	6	198	27.0	80.0	2.0	2.5
8/17/2008 21:32	44.6442	-112.1685	1.1	Mc IE	121.0	13.75	15	53	18.8	0.07	0.4	1.2
8/18/2008 13:44	44.7627	-111.5202	1.0	Mc IE	159.7	13.39	7	197	12.1	0.04	1.0	1.6
8/19/2008 7:46	42.9007	-111.2632	8.0	Mc IE	148.8	2.29	10	117	13.6	0.10	0.6	13.5
8/19/2008 8:05	42.8960	-111.2508	2.8	Mc IE	150.0	13.03	57	117	14.7	0.16	0.4	0.7
8/19/2008 8:24	42.8942	-111.2598	8.0	Mc IE	149.5	4.62	14	119	14.1	0.14	0.6	4.5
8/19/2008 8:25	42.9022	-111.2567	1.0	Mc IE	149.2	2.71	9	144	14.0	0.10	8.0	11.6
8/19/2008 13:09	42.8985	-111.2542	1.4	Mc IE	149.6	1.23	11	117	14.4	0.09	0.5	1.8
8/19/2008 17:03	42.9720	-111.5293	1.2	Mc IE	126.6	3.73	10	106	9.6	0.09	0.6	5.0
8/20/2008 17:40	44.1573	-113.9888	1.3	Mc IE	112.1	10.28	9	145	28.9	0.10	0.5	3.1
8/21/2008 6:26	44.5707	-114.3070	8.0	ML IE	159.3	5.67	6	241	4.2	0.07	3.4	2.3
8/21/2008 18:44	44.3207	-114.5512	2.0	Mc IE	160.2	5.01	12	101	35.1	80.0	0.6	14.2
8/22/2008 3:10	44.0022	-113.8790	2.0	Mc IE	96.4	6.52	25	65	21.4	0.15	0.4	1.9
8/23/2008 6:27	42.7998	-111.1932	0.7	Mc IE	160.0	11.04	6	194	8.5	0.04	1.3	2.5
8/23/2008 10:12	44.4842	-114.1765	1.4	Mc IE	145.1	5.18	9	202	10.8	0.10	8.0	0.9
8/23/2008 19:22	42.7157	-111.5433	1.2	ML IE	144.7	3.08	7	324	13.5	0.08	1.5	12.8
8/24/2008 22:24	42.9050	-111.2548	0.9	Mc IE	149.1	6.79	7	146	14.1	0.10	0.6	2.5
8/25/2008 18:28	42.8765	-111.2867	0.7	Mc IE	148.8	12.92	8	131	13.0	0.05	0.7	1.9
8/25/2008 20:39	43.0718	-111.2985	0.5	ML IE	136.4	3.53	4	263	6.2	0.05	1.7	4.7
8/27/2008 3:49	44.5770	-114.2868	1.4	ML IE	158.5	5.62	9	115	2.9	0.06	0.6	0.5
8/27/2008 6:40	43.4058	-110.8567	1.3	Mc IE	158.0	14.30	10	209	12.1	0.10	0.7	1.3
8/29/2008 1:16	43.5552	-111.0840	1.4	ML IE	137.5	6.51	8	157	13.0	0.02	1.1	4.0
8/29/2008 7:28	44.2723	-114.0457	0.7	Mc IE	122.7	7.13	8	93	36.5	0.17	8.0	14.0
8/29/2008 10:46	42.8570	-111.1702	8.0	Mc IE	157.9	6.60	6	162	11.7	0.07	0.9	5.0
8/30/2008 11:44	44.1797	-113.1142	0.7	Mc IE	64.7	6.10	10	174	19.1	0.20	0.9	1.2
8/30/2008 18:56	43.1968	-111.2637	1.0	Mc IE	132.9	9.83	9	127	17.3	0.15	1.0	2.8
8/30/2008 19:40	44.6135	-114.1677	2.0	Mc IE	154.1	5.22	18	92	8.8	0.10	0.3	0.4
8/31/2008 8:08	44.7068	-111.8497	1.4	Mc MB	139.2	11.14	13	133	14.8	0.14	0.4	1.4
8/31/2008 13:57	42.9068	-111.2683	2.8	Mc IE	148.1	10.68	37	80	13.0	0.11	0.3	0.5
8/31/2008 14:52	42.9100	-111.2542	2.5	Mc IE	148.9	5.71	30	89	14.0	0.12	0.2	1.6
9/1/2008 18:18	43.0558	-111.3755	1.1	Mc IE	131.8	4.10	7	115	0.5	0.02	1.0	0.7
9/2/2008 23:15	42.6203	-111.4018	2.4	Mc IE	160.4	15.02	25	100	28.1	0.17	0.5	0.9
9/2/2008 23:24	42.6252	-111.4065	2.3	Mc IE	159.8	14.83	21	99	27.4	0.22	0.7	1.1
9/2/2008 23:32	42.6185	-111.4108	1.5	Mc IE	160.1	13.05	12	99	27.8	0.29	1.1	1.8
9/2/2008 23:33	42.5578	-111.4988	1.8	ML IE	160.3	15.46	8	282	31.3	0.08	1.7	2.3
9/3/2008 1:59	44.5887	-112.4175	1.0	Mc IE	108.5	10.08	7	89	1.9	0.06	0.6	1.0
9/3/2008 21:03	42.8588	-111.3655	1.3	Mc IE	144.9	2.55	7	146	9.9	0.14	1.0	12.4
9/5/2008 17:10	42.9833	-111.3980	1.7	Mc IE	134.6	8.39	24	71	5.4	0.11	0.3	0.5
9/6/2008 15:18	43.7922	-110.9238	0.7	Mc IE	150.6	7.44	6	133	11.7	0.04	1.2	3.7
9/6/2008 15:33	43.7822	-110.9483	1.0	Mc IE	148.5	0.04	13	72	12.8	0.20	0.5	2.2
9/6/2008 18:58	43.3462	-110.9332	0.7	Mc IE	153.3	14.34	9	178	16.1	0.04	0.8	1.7
9/7/2008 3:08	43.3423	-110.9375	1.3	ML IE	153.1	12.40	10	140	16.5	0.11	0.7	1.8
9/7/2008 4:32	44.6267	-112.0067	1.4	Mc IE	125.1	13.43	11	86	29.4	0.08	0.6	2.1
9/7/2008 5:05	42.8973	-111.2665	2.0	Mc IE	148.8	10.03	31	118	13.5	0.16	0.4	1.0
9/8/2008 5:42	44.4405	-114.3278	1.8	Mc IE	151.8	4.29	20	78	14.9	0.18	0.5	1.3
9/8/2008 16:37	44.1677	-114.0103	1.2	Mc IE	114.1	7.83	9	129	29.4	0.04	0.5	11.5
9/9/2008 8:10	42.9165	-111.3697	0.4	Mc IE	140.7	9.48	6	243	4.9	0.13	3.6	1.0
9/10/2008 1:13	44.2630	-114.1493	0.7	Mc IE	129.1	15.67	7	180	34.5	0.05	5.0	1.4
3/ 10/2000 1.10	Z000	117.1700	0.1	IVIOIL	120.1	10.07		100	U-F.U	0.00	0.0	1.7

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
9/10/2008 17:18	44.2440	-114.3103	1.0	ML IE	139.2	6.58	6	242	39.7	0.03	2.0	9.9
9/10/2008 17:45	44.1618	-114.5110	1.3	Mc IE	150.0	9.70	9	106	41.9	0.07	0.6	10.9
9/12/2008 10:18	44.2808	-112.4032	1.5	Mc IE	76.5	9.75	19	98	9.6	0.10	0.4	1.0
9/13/2008 1:13	43.0215	-111.4618	1.2	ML IE	127.9	10.63	6	130	8.3	0.04	1.4	2.5
9/13/2008 4:06	44.1777	-114.3408	1.5	Mc IE	138.2	3.29	11	101	34.3	0.14	0.7	2.5
9/13/2008 18:42	44.0203	-114.5928	1.5	Mc IE	151.2	10.65	16	100	40.0	0.08	0.4	3.6
9/13/2008 18:50	44.0257	-114.5950	1.3	Mc IE	151.5	12.26	6	227	40.3	0.03	0.8	7.2
9/14/2008 6:36	44.6028	-112.4725	0.5	ML IE	108.9	17.67	4	182	6.3	0.05	3.1	1.1
9/14/2008 20:12	43.1762	-111.0728	1.5	Mc IE	148.1	13.83	20	111	27.7	0.13	0.4	1.4
9/14/2008 22:21	44.4448	-114.1738	1.5	Mc IE	142.2	18.54	9	137	55.4	0.09	8.0	14.7
9/16/2008 19:16	43.4865	-110.8720	1.4	ML IE	155.4	11.67	8	112	6.4	0.10	1.0	1.3
9/17/2008 21:50	43.2002	-111.3562	1.2	Mc IE	125.9	8.53	6	140	16.3	0.07	0.7	3.4
9/18/2008 1:57	43.6908	-110.8350	0.9	Mc IE	157.1	12.55	7	134	20.6	0.03	0.6	2.8
9/18/2008 11:22	44.0948	-113.9170	1.1	Mc IE	103.7	2.88	9	114	25.6	0.11	0.7	1.1
9/18/2008 16:44	42.7027	-111.6343	1.6	Mc IE	140.8	2.38	10	86	14.9	0.06	8.0	11.5
9/19/2008 11:59	44.3645	-113.9720	1.4	Mc IE	124.1	7.27	10	78	31.6	0.14	8.0	10.3
9/19/2008 22:46	44.4615	-112.6112	1.1	Mc IE	91.3	15.80	6	139	22.6	0.03	0.9	3.2
9/20/2008 13:16	42.6432	-111.4020	1.0	ML IE	158.6	12.38	10	157	26.0	0.07	1.2	1.7
9/20/2008 15:42	44.0685	-114.4770	1.4	ML IE	143.9	6.79	6	128	33.6	0.07	1.0	3.4
9/20/2008 16:08	43.3438	-113.6335	1.4	Mc IE	76.7	18.40	16	189	9.7	0.22	1.3	1.3
9/20/2008 16:13	43.3648	-113.5328	2.0	ML IE	68.4	35.75	20	110	4.8	0.38	1.2	2.0
9/20/2008 23:50	43.2672	-110.9833	1.1	Mc IE	151.7	17.30	6	187	28.7	0.04	3.7	12.0
9/21/2008 6:28	42.8083	-111.2515	0.6	Mc IE	155.7	2.95	6	206	13.3	0.06	2.7	11.5
9/21/2008 21:00	44.7825	-112.8138	2.0	ML MB	126.0	11.43	32	68	5.7	0.09	0.3	0.6
9/22/2008 6:38	44.5688	-112.1445	2.1	ML IE	114.3	14.25	42	57	20.0	0.10	0.2	0.7
9/22/2008 6:42	44.5612	-112.1385	2.0	ML IE	113.7	13.77	16	66	20.6	0.12	0.5	1.5
9/22/2008 8:34	43.2963	-110.9543	0.7	Mc IE	153.0	2.05	7	212	21.0	0.26	1.4	24.8
9/22/2008 12:07	43.5730	-111.1373	1.3	ML IE	133.1	8.70	9	92	4.5	0.09	8.0	3.5
9/23/2008 3:42	44.7103	-114.0873	2.0	Mc IE	157.4	6.97	18	91	21.0	0.09	0.3	10.9
9/23/2008 8:02	44.7085	-114.0672	1.7	Mc IE	156.2	4.90	11	116	21.9	0.13	0.8	2.1
9/24/2008 2:19	44.0860	-113.9240	2.1	Mc IE	103.7	6.94	27	86	24.5	0.16	0.3	11.2
9/24/2008 6:26	44.1178	-113.9293	1.6	Mc IE	105.8	6.94	24	53	27.1	0.27	0.6	17.0
9/25/2008 12:16	44.3598	-113.9708	1.5	Mc IE	123.7	6.19	13	79	32.0	0.08	0.7	5.1
9/25/2008 17:42	43.3310	-111.4888	1.6	ML IE	110.5	20.40	6	189	11.8	0.07	10.2	2.1
9/25/2008 17:44	43.1858	-111.4263	0.9	Mc IE	121.4	9.45	11	114	15.4	0.12	0.5	2.2
9/28/2008 0:36	44.0718	-114.5005	1.1	Mc IE	145.8	28.10	5	221	57.1	0.01	2.2	9.8
9/28/2008 11:39	43.0338	-111.3017	1.0	Mc IE	138.3	7.55	8	194	6.0	0.11	1.0	1.4
9/28/2008 15:38	43.5463	-111.0240	8.0	Mc IE	142.4	13.49	8	144	8.6	0.03	3.6	2.3
9/29/2008 14:53	44.6987	-111.8558	1.5	Mc IE	138.2	12.64	12	115	15.5	0.07	0.6	1.8
9/30/2008 4:01	43.5600	-111.1613	1.7	Mc IE	131.3	5.14	16	104	4.3	0.22	0.6	4.6
9/30/2008 6:23	44.8103	-111.8820	1.5	Mc IE	147.8	13.37	5	153	19.3	0.01	1.6	2.9
9/30/2008 21:42	43.3273	-110.9543	1.4	ML IE	152.2	12.70	8	197	18.1	0.10	0.9	2.1
9/30/2008 23:31	43.4903	-114.6623	1.2	Mc IE	152.8	0.04	9	162	22.2	0.17	1.2	2.7
10/1/2008 15:39	43.7132	-110.8853	0.9	Mc IE	153.1	2.47	8	127	20.9	0.04	0.6	12.5
10/1/2008 21:10	42.9057	-111.4245	0.5	Mc IE	137.9	1.70	4	224	3.6	0.14	12.8	2.1
10/2/2008 0:26	44.5537	-112.3393	1.7	Mc IE	106.6	5.62	15	97	6.2	0.11	0.4	0.3
10/2/2008 9:10	44.8385	-111.7425	0.8	Mc IE	156.2	3.86	3	201	13.5	0.02	8.6	8.1
10/2/2008 10:11	44.8988	-112.6903	1.1	Mc IE	139.1	3.33	7	150	14.8	0.07	0.8	2.8
10/2/2008 12:19	42.9377	-111.6457	1.7	Mc IE	121.6	11.97	15	69	12.6	0.05	0.4	0.8
10/2/2008 13:11	44.7175	-111.9938	2.5	Mc IE	134.5	14.97	37	51	26.0	0.12	0.3	0.8
10/2/2008 16:30	42.9218	-111.6355	0.9	Mc IE	123.4	15.76	10	93	10.7	0.09	1.1	1.1
101212000 10:30	42.3210	-111.0300	0.9	IVIC IE	123.4	13.70	10	93	10.7	0.09	1.1	1.1

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
10/2/2008 17:16	42.9285	-111.6565	2.2	ML IE	121.6	13.37	14	112	12.1	0.10	0.5	1.0
10/2/2008 17:17	42.9335	-111.6503	1.1	ML IE	121.6	10.75	6	264	12.3	0.01	1.0	2.6
10/2/2008 17:18	42.9393	-111.6472	1.4	ML IE	121.4	12.82	10	196	18.4	0.07	1.1	1.8
10/2/2008 17:19	42.9300	-111.6583	2.3	ML IE	121.4	8.07	15	99	19.3	0.05	0.5	1.5
10/2/2008 17:20	42.9357	-111.6590	1.6	ML IE	120.9	12.41	8	198	19.4	0.06	1.6	2.3
10/2/2008 17:24	42.9288	-111.6623	0.6	Mc IE	121.3	12.98	7	216	12.3	0.06	1.4	2.5
10/3/2008 3:06	43.3545	-110.9633	0.7	Mc IE	150.7	11.80	7	182	20.4	0.02	0.6	3.6
10/3/2008 3:18	43.2788	-112.9932	1.1	ML IE	44.7	37.01	27	110	13.8	0.14	0.6	1.0
10/3/2008 15:08	42.6872	-111.4777	1.1	Mc IE	150.8	15.39	7	257	18.5	0.13	1.7	1.4
10/4/2008 11:06	44.0385	-114.5195	1.0	Mc IE	146.1	6.94	8	165	53.7	0.17	1.6	12.9
10/4/2008 13:19	44.6410	-112.0870	1.3	Mc IE	123.5	6.19	9	178	25.0	0.09	1.1	12.9
10/4/2008 13:46	44.6605	-112.1127	1.2	Mc IE	124.5	2.46	7	185	23.6	0.07	1.1	1.3
10/4/2008 20:56	42.9343	-111.6752	1.3	Mc IE	120.1	11.92	11	102	13.4	0.11	1.1	2.6
10/5/2008 10:01	43.7727	-111.0333	0.7	Mc IE	141.6	2.54	8	221	15.8	0.06	1.0	12.4
10/5/2008 16:53	44.6268	-112.0957	1.4	Mc IE	121.8	16.63	16	134	24.0	0.10	0.5	0.4
10/6/2008 9:53	44.6252	-112.0993	2.2	ML IE	121.5	13.93	32	53	23.7	0.28	0.4	1.2
10/6/2008 10:10	43.5565	-111.1560	1.6	Mc IE	131.7	9.35	19	94	4.8	0.16	0.4	1.9
10/6/2008 15:11	44.3947	-113.1198	0.7	Mc IE	87.1	7.15	7	154	16.0	0.28	1.9	20.8
10/6/2008 22:12	44.6802	-112.6755	1.1	Mc IE	114.9	2.49	4	127	7.4	0.01	2.9	4.4
10/7/2008 1:23	44.6698	-112.7073	1.2	ML IE	113.6	6.40	4	189	7.7	0.24	9.2	4.7
10/7/2008 16:49	44.6820	-112.6572	1.2	Mc IE	115.3	1.10	4	214	7.3	0.07	3.6	10.2
10/9/2008 8:07	43.7093	-112.6377	1.5	Mc IE	13.4	3.90	26	107	4.9	0.18	0.3	0.5
10/11/2008 5:15	43.6195	-113.7458	2.0	Mc IE	77.7	3.84	26	85	21.4	0.13	0.3	0.9
10/12/2008 3:01	44.6420	-114.1203	2.0	Mc IE	153.7	5.78	24	89	13.7	0.14	0.3	0.6
10/15/2008 23:53	44.6193	-112.3757	0.9	Mc MB	112.7	5.90	5	278	21.3	0.03	1.7	12.7
10/16/2008 7:56	43.1972	-111.3585	1.3	ML IE	125.8	10.42	10	132	16.0	0.06	0.5	1.8
10/16/2008 8:07	43.1935	-111.3653	2.1	Mc IE	125.5	8.32	26	112	15.6	0.12	0.3	1.4
10/16/2008 8:23	43.1988	-111.3737	1.8	Mc IE	124.6	7.12	22	135	17.1	0.20	0.6	2.4
10/16/2008 15:50	44.7747	-111.6930	2.6	Mc IE	152.4	7.16	38	100	5.4	0.04	0.2	0.5
10/17/2008 2:40	43.1035	-110.9583	0.5	ML IE	159.8	4.99	7	219	34.0	0.18	1.1	17.7
10/17/2008 14:07	43.1863	-111.4702	1.3	Mc IE	118.1	8.45	10	100	15.1	0.11	0.4	2.1
10/17/2008 17:17	43.6682	-111.1062	1.7	ML IE	135.2	9.17	12	90	10.3	0.19	0.6	3.5
10/19/2008 2:10	43.2640	-111.3073	1.4	Mc IE	126.9	0.98	17	138	9.3	0.09	0.4	1.5
10/19/2008 11:45	43.4108	-111.1030	1.5	Mc IE	138.3	11.04	15	108	15.1	0.06	0.6	1.1
10/19/2008 12:08	43.4212	-111.0863	0.5	ML IE	139.4	8.13	8	146	13.4	0.25	1.6	3.5
10/19/2008 12:13	43.4077	-111.0987	1.4	Mc IE	138.7	9.75	11	152	15.1	0.06	0.7	1.5
10/19/2008 12:46	43.3973	-111.0925	8.0	ML IE	139.5	11.20	5	206	15.4	0.01	2.7	1.6
10/19/2008 15:54	43.4090	-111.1100	1.0	Mc IE	137.8	9.11	9	151	15.7	0.04	8.0	1.5
10/19/2008 16:51	43.3913	-111.4910	0.9	Mc IE	108.3	4.81	5	218	14.7	0.03	4.3	11.8
10/20/2008 10:11	43.4552	-110.8095	0.9	ML IE	160.9	2.50	5	147	12.1	0.26	2.0	23.8
10/21/2008 10:29	42.6068	-111.4270	1.1	Mc IE	160.1	6.44	10	152	28.3	0.22	1.0	10.2
10/21/2008 20:56	44.6975	-111.8523	2.0	Mc IE	138.3	14.20	18	73	15.2	0.09	0.4	0.7
10/21/2008 21:46	44.6742	-111.8555	1.4	Mc IE	135.9	12.01	9	144	16.3	0.10	0.6	1.4
10/22/2008 10:15	43.1272	-111.4200	0.5	Mc IE	124.8	4.28	6	135	9.1	0.06	0.8	4.3
10/23/2008 6:59	43.0338	-111.3212	0.4	ML IE	136.9	3.42	6	218	4.6	0.06	2.4	1.6
10/23/2008 7:00	43.0315	-111.3153	0.4	Mc IE	137.4	2.79	5	220	5.1	0.01	1.7	3.5
10/23/2008 8:35	44.0502	-113.8943	1.4	Mc IE	99.8	6.91	15	138	23.4	0.18	1.0	19.7
10/23/2008 9:47	42.6917	-111.8863	1.6	Mc IE	129.1	4.41	12	125	29.0	0.11	0.9	8.6
10/23/2008 20:56	43.0385	-111.3368	0.7	Mc le	135.5	5.10	5	293	3.2	0.00	2.4	1.9
10/24/2008 3:53	43.1940	-111.0043	1.0	Mc IE	152.6	2.50	10	209	30.8	0.20	1.2	19.8
10/24/2008 9:04	43.1035	-111.4155	0.3	Mc IE	126.4	9.96	5	174	6.7	0.02	0.9	2.0

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
10/24/2008 12:48	43.0665	-111.3863	1.7	Mc IE	130.5	9.46	8	102	1.9	0.09	8.0	1.3
10/27/2008 23:01	42.7040	-111.3038	2.0	ML IE	159.8	2.92	8	222	18.0	0.06	1.2	11.6
10/27/2008 23:40	44.3215	-114.5533	1.8	ML IE	160.4	5.01	12	98	34.9	0.08	0.5	14.3
10/27/2008 23:41	42.7017	-111.6772	1.4	Mc IE	138.6	2.29	10	148	16.2	0.06	0.6	12.2
10/28/2008 11:42	42.7297	-111.6432	1.0	Mc IE	138.1	7.99	5	236	12.2	0.22	4.2	2.8
10/28/2008 11:51	42.7380	-111.6915	0.0	Mc IE	134.8	0.03	6	161	13.4	0.11	2.0	2.2
10/28/2008 17:36	42.9243	-111.2728	1.0	Mc IE	146.7	11.30	7	184	16.4	0.08	1.6	2.8
10/28/2008 21:02	44.6592	-112.9745	2.8	Mc IE	113.3	11.98	42	57	21.2	0.13	0.2	8.0
10/30/2008 2:15	43.4055	-110.9302	1.8	Mc IE	152.2	8.62	13	155	9.5	0.06	0.6	1.6
10/30/2008 6:15	43.9075	-114.5753	2.1	Mc IE	147.0	6.90	24	88	36.8	0.14	0.3	1.6
10/30/2008 9:05	43.7315	-110.9153	0.5	ML IE	150.8	2.50	6	168	18.5	0.15	1.0	17.3
10/30/2008 9:25	43.7455	-110.8955	2.6	Mc IE	152.5	2.17	38	81	17.2	0.20	0.4	19.9
10/30/2008 11:28	43.7358	-110.9168	0.7	ML IE	150.7	2.50	6	169	18.0	0.23	1.2	22.0
10/30/2008 11:35	43.7387	-110.9042	1.2	Mc IE	151.7	2.50	10	102	17.8	0.26	0.8	22.5
10/30/2008 11:40	43.7352	-110.9022	1.2	Mc le	151.9	2.50	11	101	18.2	0.24	0.7	20.6
10/30/2008 12:28	43.7335	-110.9247	0.7	ML IE	150.0	2.50	7	172	18.2	0.17	1.0	18.2
10/30/2008 12:59	44.2012	-114.0438	1.2	Mc IE	118.3	7.05	16	99	32.4	0.14	0.4	14.5
10/30/2008 13:13	42.9578	-111.3593	1.1	Mc IE	138.8	7.67	5	217	10.7	0.00	2.7	1.7
10/30/2008 19:45	43.7463	-110.8812	2.3	Mc IE	153.6	2.12	28	98	17.4	0.19	0.4	19.7
10/30/2008 21:06	43.7315	-110.9090	1.5	Mc IE	151.3	2.50	10	118	18.5	0.18	0.6	16.9
10/31/2008 3:00	43.7403	-110.8847	1.8	Mc IE	153.3	2.49	14	71	17.9	0.25	0.5	19.4
10/31/2008 10:12	43.7410	-110.8842	1.4	Mc IE	153.3	2.49	11	71	17.9	0.24	0.7	19.5
10/31/2008 11:21	43.7380	-110.8892	1.9	Mc IE	152.9	2.30	19	70	18.1	0.25	0.5	21.9
10/31/2008 12:16	43.7348	-110.8865	1.2	ML IE	153.1	2.50	7	169	18.5	0.35	1.5	28.9
10/31/2008 12:18	43.7580	-110.8913	1.1	ML IE	152.9	2.49	6	162	15.9	0.11	0.8	14.2
11/1/2008 2:34	42.9980	-111.2978	1.3	ML IE	140.6	9.08	9	170	8.5	0.11	0.7	1.5
11/1/2008 2:48	43.7260	-110.9280	0.5	ML IE	149.7	2.50	7	174	19.0	0.08	1.0	13.6
11/1/2008 4:32	43.8573	-110.9847	2.3	Mc IE	146.6	1.92	28	63	5.7	0.22	0.4	1.6
11/1/2008 4:41	43.8685	-111.0422	1.0	ML IE	142.2	2.36	5	259	8.9	0.22	2.8	12.7
11/1/2008 5:07	43.3338	-111.1100	1.4	Mc IE	139.8	8.54	11	177	17.1	0.13	0.9	2.3
11/1/2008 5:42	43.4463	-113.5473	2.3	ML IE	65.8	18.18	31	95	4.1	0.09	0.3	0.6
11/1/2008 5:43		-110.9705	1.2		147.6	5.00	8	159	39.8	0.12	0.9	12.0
11/1/2008 9:51	43.8527 44.6168		1.2	ML IE	108.8		7				1.3	2.3
		-112.9857	0.5	Mc IE	156.0	5.97	7	115 141	25.8	0.15		
11/1/2008 9:53	43.6830	-110.8485		Mc IE		2.28			21.3	0.05	0.5	13.1
11/1/2008 13:13	43.7415	-110.9212	1.1	Mc IE	150.4	9.88	9	104	17.3	0.18	8.0	2.8
11/1/2008 17:20	43.8475	-110.9787	1.1	ML IE	146.9	2.01	6	161	6.3	0.06	0.8	13.6
11/2/2008 4:48	44.2463	-114.3355	1.1	Mc IE	141.1	7.39	6	144	35.9	0.09	1.3	14.4
11/2/2008 7:24	42.7327	-111.5987	0.8	Mc IE	140.3	5.81	5	280	11.1	0.03	1.6	2.4
11/2/2008 7:40	44.2468	-114.3793	1.6	Mc IE	144.3	7.24	13	100	36.6	0.08	0.5	14.0
11/2/2008 7:45	44.2652	-114.1775	1.2	Mc IE	131.1	7.00	9	182	33.8	0.06	13.1	13.3
11/2/2008 8:07	44.2513	-114.3738	2.4	Mc IE	144.1	7.11	28	100	36.0	0.11	0.4	15.4
11/2/2008 8:23	44.2500	-114.3727	1.2	ML IE	144.0	6.90	7	136	36.2	0.15	1.3	17.7
11/2/2008 8:37	44.2482	-114.3760	1.4	Mc IE	144.1	7.90	10	100	36.4	0.15	0.6	16.0
11/2/2008 9:31	44.2540	-114.3855	1.3	Mc IE	145.1	7.07	8	130	36.0	0.10	0.7	15.2
11/2/2008 9:43	44.2437	-114.3715	1.5	Mc IE	143.6	8.11	12	80	36.8	0.16	0.8	13.9
11/2/2008 12:25	44.2533	-114.3782	8.0	Mc IE	144.5	8.08	12	87	35.9	0.12	0.7	14.6
11/2/2008 18:51	43.7417	-110.8965	2.3	Mc IE	152.4	2.27	20	69	17.6	0.25	0.6	22.2
11/2/2008 18:53	43.7238	-110.8668	1.1	Mc IE	154.6	15.68	10	75	24.6	0.17	8.0	1.1
11/2/2008 21:22	43.7462	-110.8750	2.3	Mc IE	154.1	2.34	38	106	17.5	0.17	0.4	15.2
11/2/2008 22:27	43.7453	-110.8692	2.2	ML IE	154.6	2.48	13	142	17.8	0.11	0.5	13.1
11/2/2008 23:33	43.7503	-110.8615	2.3	Mc IE	155.2	2.18	30	109	17.5	0.10	0.4	15.2

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
11/2/2008 23:35	43.7468	-110.8678	2.4	Mc IE	154.7	2.10	30	107	17.6	0.14	0.4	16.9
11/2/2008 23:46	43.7380	-110.8890	1.3	Mc IE	152.9	2.49	7	167	18.1	0.28	1.5	22.9
11/3/2008 1:56	43.7228	-110.9312	1.0	Mc IE	149.5	2.49	6	245	19.4	0.11	1.3	14.9
11/3/2008 14:20	44.2473	-114.3628	1.3	Mc IE	143.1	7.90	12	138	36.2	0.15	0.7	15.5
11/3/2008 15:33	44.2477	-114.3347	0.6	ML IE	141.1	7.45	7	185	35.7	0.10	2.2	15.0
11/3/2008 16:48	44.2478	-114.3780	8.0	ML IE	144.2	7.16	4	225	36.5	0.21	4.4	21.4
11/3/2008 17:06	43.7477	-110.8717	2.0	Mc IE	154.4	2.19	18	106	17.5	0.11	0.4	15.4
11/3/2008 23:26	44.2477	-114.3945	1.5	Mc IE	145.4	7.25	12	83	36.9	0.21	1.0	20.7
11/4/2008 2:28	43.7150	-110.9408	1.0	ML IE	148.6	2.45	7	248	20.2	0.13	2.1	15.2
11/4/2008 6:12	44.2468	-114.3838	1.6	Mc IE	144.6	6.73	19	81	36.7	0.37	8.0	4.0
11/4/2008 6:13	44.2442	-114.3733	1.5	Mc IE	143.7	7.78	12	135	36.8	0.15	0.8	15.4
11/4/2008 6:17	44.2577	-114.3530	1.6	Mc IE	143.0	7.16	12	104	35.0	0.16	0.7	18.0
11/4/2008 6:25	43.7162	-110.9350	1.0	Mc IE	149.1	2.50	7	247	20.1	0.18	1.6	18.2
11/4/2008 6:54	43.7350	-110.8932	1.0	Mc IE	152.6	2.50	8	99	18.4	0.27	0.9	23.6
11/4/2008 8:04	44.2417	-114.3942	1.6	Mc IE	145.1	8.20	11	133	37.5	0.17	0.9	16.3
11/4/2008 13:56	43.7445	-110.8645	1.3	Mc IE	154.9	2.49	7	143	18.0	0.09	0.9	13.6
11/4/2008 14:02	43.7390	-110.8773	1.5	Mc IE	153.9	2.50	10	72	18.2	0.18	0.7	17.4
11/4/2008 14:37	43.7418	-110.8573	1.3	Mc IE	155.5	2.48	11	145	18.5	0.10	0.5	13.8
11/5/2008 4:54	44.3122	-111.0080	0.9	Mc IE	160.3	4.86	4	239	16.9	0.01	3.0	11.8
11/5/2008 10:03	43.7467	-110.8768	1.0	Mc IE	154.0	2.46	7	163	17.4	0.09	1.7	14.2
11/5/2008 11:51	43.8490	-110.9788	1.2	ML IE	146.9	2.64	5	145	6.2	0.04	1.5	9.3
11/5/2008 14:13	43.7423	-110.8837	1.7	Mc IE	153.4	2.47	11	136	17.8	0.08	0.7	13.2
11/5/2008 16:07	43.7568	-110.8570	1.2	ML IE	155.6	2.41	6	157	16.9	0.03	1.2	12.7
11/11/2008 5:51	43.4730	-110.9510	0.7	ML IE	149.3	8.88	7	245	1.9	0.01	2.7	0.8
11/13/2008 6:39	42.3188	-112.9487	0.9	Mc IE	148.7	5.01	5	154	31.3	0.14	1.0	14.7
11/14/2008 22:58	44.3300	-114.5298	2.2	Mc IE	159.2	5.03	9	190	35.6	0.02	1.2	12.6
11/15/2008 11:20	44.3905	-114.1000	1.1	Mc IE	133.9	5.40	9	214	22.9	0.09	4.3	4.8
11/15/2008 19:00	43.1047	-111.5445	0.6	Mc IE	117.2	5.16	4	206	15.3	0.15	2.7	16.1
11/17/2008 1:16	43.4330	-113.5660	0.7	ML IE	67.7	16.67	18	104	3.9	0.13	0.5	0.5
11/17/2008 8:35	42.9742	-111.1888	1.2	Mc le	149.5	9.93	8	152	17.2	0.08	0.9	3.0
11/17/2008 10:08	44.1807	-110.9850	1.2	Mc IE	156.0	2.50	5	118	15.8	0.08	0.8	13.0
11/18/2008 10:12	44.5412	-113.2022	1.2	Mc MB	104.7	7.09	10	119	15.6	0.05	0.6	11.5
11/18/2008 15:58	42.8523	-111.5888	1.4	ML IE	131.4	7.14	5	180	2.2	0.14	3.0	3.6
11/18/2008 15:58	42.8442	-111.5913	1.3	ML IE	131.9	7.79	6	190	1.4	0.06	1.8	1.7
11/18/2008 17:01	42.8682	-111.5820	1.1	Mc IE	130.6	5.04	11	123	4.0	0.09	0.9	1.6
11/18/2008 22:33	44.2752	-114.3292	0.9	ML IE	142.2	6.24	6	136	32.7	0.04	8.0	13.0
11/21/2008 12:01	43.6852	-113.5897	1.7	Mc IE	65.2	4.27	18	123	11.6	0.12	0.3	0.7
11/22/2008 15:37	42.7282	-111.3030	2.0	ML IE	158.0	1.35	9	103	17.1	0.14	1.1	16.8
11/23/2008 19:35	43.5545	-111.0788	1.2	ML IE	137.9	12.50	6	97	9.6	0.02	1.3	3.0
11/23/2008 20:20	43.5522	-111.0752	1.5	ML IE	138.3	13.44	9	98	10.0	0.04	8.0	2.0
11/23/2008 20:22	43.5598	-111.0822	1.0	ML IE	137.6	12.76	10	108	9.1	0.03	0.9	1.9
11/25/2008 0:40	44.0458	-114.6645	1.1	ML IE	157.5	20.40	6	129	46.8	0.07	8.0	11.4
11/25/2008 11:33	44.0427	-114.6700	1.6	Mc IE	157.8	19.99	9	129	46.3	0.12	1.0	12.7
11/25/2008 13:20	44.0432	-114.6418	1.1	ML IE	155.7	7.10	10	125	48.2	0.17	8.0	11.7
11/25/2008 13:31	44.0458	-114.6565	1.6	Mc IE	156.9	6.84	11	110	47.4	0.10	0.5	5.7
11/26/2008 7:44	44.0430	-114.6538	2.4	Mc IE	156.6	6.47	21	110	45.4	0.10	0.3	2.9
11/26/2008 11:21	44.4760	-111.1502	0.9	Mc IE	159.8	14.85	5	159	26.5	0.03	2.0	3.8
11/26/2008 17:33	44.0455	-114.6440	3.7	MLUS	155.9	6.59	32	102	44.7	0.20	0.3	1.8
11/26/2008 17:41	44.0462	-114.6560	2.4	Mc IE	156.9	6.76	17	153	45.7	0.06	0.5	4.8
11/26/2008 17:50	44.0333	-114.6457	2.1	Mc IE	155.7	7.48	11	230	44.4	0.13	1.9	14.5
11/26/2008 17:52	44.0508	-114.6542	2.0	ML IE	156.9	6.75	21	155	45.7	0.15	0.5	1.9

11/26/2008 17:54													
11/26/2008 20:22	ORIGIN TIME	LAT N	LONG W		-TYPE	DIST	Z	NO	GAP	DMIN	RMS		ERZ
11/26/2008 20:22													17.7
11/26/2008 23:54													1.5
11/27/2008 3:14													11.1
11/27/2008 3:25													12.1
11/27/2008 3:35													2.1
11/27/2008 7:08		44.0472									0.13		14.4
11/27/2008 13:39											0.20		14.4
11/27/2008 13:39			-114.6488										4.0
11/27/2008 17:44				1.9			20.52	23	106	3.0	0.17	0.5	1.2
11/27/2008 18:42	11/27/2008 13:39	44.0438			Mc IE	156.8	9.00	10	110	45.6	0.07	0.4	13.1
11/28/2008 1:25	11/27/2008 17:44	44.0453	-114.6577	2.3	Mc IE	157.0	7.11	20	110	45.8	0.07	0.3	6.9
11/28/2008 6:50	11/27/2008 18:42	44.0430	-114.6543	2.3	ML IE	156.6	8.90	20	110	45.4	0.08	0.3	11.4
11/28/2008 8:46	11/28/2008 1:25	44.6232	-112.9913	2.4	Mc IE	109.5	8.85	18	87	25.4	0.08	0.6	4.5
11/28/2008 9:21	11/28/2008 6:50	44.0367	-114.6608	1.8	Mc IE	156.9	18.35	9	110	45.7	0.08	8.0	13.9
11/28/2008 20:49	11/28/2008 8:46	44.6633	-113.0173	2.2	Mc IE	114.3	8.23	21	99	22.6	0.05	0.6	3.3
11/29/2008 17:09	11/28/2008 9:21	44.2722	-114.0235	1.3	Mc IE	121.2	7.40	10	158	37.3	0.07	0.7	13.0
11/30/2008 10:25	11/28/2008 20:49	44.0508	-114.4827	2.0	Mc IE	143.7	8.12	12	90	33.0	0.10	0.4	12.6
11/30/2008 17:28	11/29/2008 17:09	44.6320	-112.9953	1.4	Mc MB	110.6	5.00	6	174	27.9	0.08	5.8	8.5
12/1/2008 9:02 43.4838 -110.9145 2.4 ML IE 152.0 10.51 21 86 3.0 0.06 0.3 12/1/2008 12:47 44.0442 -114.6520 1.7 Mc IE 156.5 7.19 10 109 45.3 0.29 0.8 12/2/2008 4:23 44.0520 -114.6577 2.1 Mc IE 157.2 7.32 13 155 46.0 0.09 0.5 12/2/2008 9:54 44.0833 -113.9303 2.0 Mc IE 104.0 2.73 18 56 24.0 0.17 0.6 12/2/2008 12:03 44.0755 -114.5685 0.9 ML IE 156.0 9.43 4 234 44.9 0.08 0.8 12/3/2008 18:03 44.0482 -114.6443 0.5 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.04027 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 <td< td=""><td>11/30/2008 10:25</td><td>44.4383</td><td>-114.0752</td><td>2.2</td><td>Mc IE</td><td>135.7</td><td>1.82</td><td>12</td><td>122</td><td>20.0</td><td>0.05</td><td>0.9</td><td>1.6</td></td<>	11/30/2008 10:25	44.4383	-114.0752	2.2	Mc IE	135.7	1.82	12	122	20.0	0.05	0.9	1.6
12/1/2008 12:47 44.0442 -114.6520 1.7 Mc IE 156.5 7.19 10 109 45.3 0.29 0.8 12/2/2008 4:23 44.0520 -114.6577 2.1 Mc IE 157.2 7.32 13 155 46.0 0.09 0.5 12/2/2008 9:54 44.0833 -113.9303 2.0 Mc IE 104.0 2.73 18 56 24.0 0.17 0.6 12/2/2008 12:03 44.0755 -114.5685 0.9 ML IE 151.1 18.01 6 148 55.0 0.08 0.8 12/3/2008 18:03 44.0482 -114.6443 0.5 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/4/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 <td< td=""><td>11/30/2008 17:28</td><td>43.7120</td><td>-111.1123</td><td>1.7</td><td>ML IE</td><td>134.8</td><td>10.57</td><td>10</td><td>99</td><td>24.8</td><td>0.07</td><td>0.4</td><td>3.9</td></td<>	11/30/2008 17:28	43.7120	-111.1123	1.7	ML IE	134.8	10.57	10	99	24.8	0.07	0.4	3.9
12/2/2008 4:23 44.0520 -114.6577 2.1 Mc IE 157.2 7.32 13 155 46.0 0.09 0.5 12/2/2008 9:54 44.0833 -113.9303 2.0 Mc IE 104.0 2.73 18 56 24.0 0.17 0.6 12/2/2008 12:03 44.0755 -114.5685 0.9 ML IE 151.1 18.01 6 148 55.0 0.08 0.8 12/3/2008 5:33 44.0482 -114.6443 0.5 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.0273 -114.6437 0.8 ML IE 155.3 7.61 7 150 44.1 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/4/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 M	12/1/2008 9:02	43.4838	-110.9145	2.4	ML IE	152.0	10.51	21	86	3.0	0.06	0.3	0.7
12/2/2008 9:54 44.0833 -113.9303 2.0 Mc IE 104.0 2.73 18 56 24.0 0.17 0.6 12/2/2008 12:03 44.0755 -114.5685 0.9 ML IE 151.1 18.01 6 148 55.0 0.08 0.8 12/3/2008 5:33 44.0482 -114.6437 0.8 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 16:30 44.0405 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:09 43.2317 -111.0152 1.0 <t< td=""><td>12/1/2008 12:47</td><td>44.0442</td><td>-114.6520</td><td>1.7</td><td>Mc IE</td><td>156.5</td><td>7.19</td><td>10</td><td>109</td><td>45.3</td><td>0.29</td><td>0.8</td><td>14.5</td></t<>	12/1/2008 12:47	44.0442	-114.6520	1.7	Mc IE	156.5	7.19	10	109	45.3	0.29	0.8	14.5
12/2/2008 12:03 44.0755 -114.5685 0.9 ML IE 151.1 18.01 6 148 55.0 0.08 0.8 12/3/2008 5:33 44.0482 -114.6443 0.5 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.0273 -114.6437 0.8 ML IE 155.3 7.61 7 150 44.1 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0152 1.0 <t< td=""><td>12/2/2008 4:23</td><td>44.0520</td><td>-114.6577</td><td>2.1</td><td>Mc IE</td><td>157.2</td><td>7.32</td><td>13</td><td>155</td><td>46.0</td><td>0.09</td><td>0.5</td><td>14.5</td></t<>	12/2/2008 4:23	44.0520	-114.6577	2.1	Mc IE	157.2	7.32	13	155	46.0	0.09	0.5	14.5
12/3/2008 5:33 44.0482 -114.6443 0.5 ML IE 156.0 9.43 4 234 44.9 0.08 1.7 12/3/2008 18:03 44.0273 -114.6437 0.8 ML IE 155.3 7.61 7 150 44.1 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 <	12/2/2008 9:54	44.0833	-113.9303	2.0	Mc IE	104.0	2.73	18	56	24.0	0.17	0.6	1.2
12/3/2008 18:03 44.0273 -114.6437 0.8 ML IE 155.3 7.61 7 150 44.1 0.08 1.7 12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6	12/2/2008 12:03	44.0755	-114.5685	0.9	ML IE	151.1	18.01	6	148	55.0	0.08	8.0	14.2
12/3/2008 18:03 44.0503 -114.6500 0.7 ML IE 156.5 8.99 5 154 45.4 0.15 0.7 12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/5/2008 2:54 43.3597 -110.8518 1.5 <	12/3/2008 5:33	44.0482	-114.6443	0.5	ML IE	156.0	9.43	4	234	44.9	0.08	1.7	12.6
12/3/2008 18:31 44.0400 -114.6573 2.1 Mc IE 156.8 7.36 8 153 45.5 0.06 0.8 12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/5/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5	12/3/2008 18:03	44.0273	-114.6437	8.0	ML IE	155.3	7.61	7	150	44.1	0.08	1.7	14.2
12/4/2008 1:45 44.6280 -112.0973 1.7 Mc IE 121.8 14.92 13 112 23.9 0.07 0.6 12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1	12/3/2008 18:03	44.0503	-114.6500	0.7	ML IE	156.5	8.99	5	154	45.4	0.15	0.7	16.1
12/4/2008 16:30 44.0405 -114.6482 1.5 Mc IE 156.1 6.72 9 152 44.9 0.30 1.1 12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 <	12/3/2008 18:31	44.0400	-114.6573	2.1	Mc IE	156.8	7.36	8	153	45.5	0.06	8.0	12.1
12/4/2008 22:03 43.2273 -111.0063 2.0 ML IE 151.3 12.17 16 132 28.2 0.11 0.5 12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 1:45	44.6280	-112.0973	1.7	Mc IE	121.8	14.92	13	112	23.9	0.07	0.6	1.3
12/4/2008 22:09 43.2317 -111.0152 1.0 ML IE 150.4 9.88 7 177 27.9 0.02 1.2 12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 16:30	44.0405	-114.6482	1.5	Mc IE	156.1	6.72	9	152	44.9	0.30	1.1	3.9
12/4/2008 22:12 42.7313 -111.2883 1.6 Mc IE 158.7 9.92 6 135 15.8 0.03 1.1 12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 22:03	43.2273	-111.0063	2.0	ML IE	151.3	12.17	16	132	28.2	0.11	0.5	3.0
12/4/2008 22:17 43.2567 -111.0135 0.8 ML IE 149.7 10.54 7 229 26.4 0.10 1.3 12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 22:09	43.2317	-111.0152	1.0	ML IE	150.4	9.88	7	177	27.9	0.02	1.2	4.2
12/5/2008 2:54 43.3597 -110.8518 1.5 Mc IE 159.4 11.63 13 137 11.4 0.13 0.7 12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 22:12	42.7313	-111.2883	1.6	Mc IE	158.7	9.92	6	135	15.8	0.03	1.1	4.2
12/5/2008 6:46 44.0452 -114.6467 1.1 Mc IE 156.1 7.28 7 153 44.9 0.09 0.7 12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/4/2008 22:17	43.2567	-111.0135	8.0	ML IE	149.7	10.54	7	229	26.4	0.10	1.3	3.7
12/5/2008 9:46 44.0427 -114.6525 2.1 Mc IE 156.5 6.71 24 110 45.3 0.15 0.4	12/5/2008 2:54	43.3597	-110.8518	1.5	Mc IE	159.4	11.63	13	137	11.4	0.13	0.7	1.3
	12/5/2008 6:46	44.0452	-114.6467	1.1	Mc IE	156.1	7.28	7	153	44.9	0.09	0.7	14.5
12/5/2008 9:58 44 0433 -114 6595 2.5 MalE 157.0 7.22 22 110 45.9 0.09 0.4	12/5/2008 9:46	44.0427	-114.6525	2.1	Mc IE	156.5	6.71	24	110	45.3	0.15	0.4	1.9
12/0/2000 0.00	12/5/2008 9:58	44.0433	-114.6595	2.5	Mc IE	157.0	7.22	22	110	45.8	0.08	0.4	13.4
	12/5/2008 10:38	44.0287	-114.6425	1.4		155.3		6	150	44.0	0.02	0.7	11.9
													1.5
	12/6/2008 6:11												16.9
													10.8
													14.1
													13.7
													8.2
													13.3
													17.4
													13.5
													14.8
													4.3

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
12/7/2008 16:02	44.0315	-114.6547	0.9	ML IE	156.3	21.23	5	152	45.1	0.11	1.4	11.7
12/7/2008 16:25	44.0392	-114.6463	0.5	Mc IE	155.9	8.15	8	152	44.7	0.12	0.9	14.6
12/8/2008 4:59	43.6988	-111.1290	1.1	ML IE	133.4	6.22	5	192	26.8	0.36	2.7	23.9
12/8/2008 6:21	44.0440	-114.6567	1.7	Mc IE	156.8	7.26	12	110	45.6	0.09	0.4	12.5
12/8/2008 6:24	44.0272	-114.6467	1.8	Mc IE	155.6	7.07	8	150	44.3	0.13	8.0	16.6
12/9/2008 4:42	44.0372	-114.6482	1.4	Mc IE	156.0	8.62	9	152	44.8	0.13	0.6	13.2
12/9/2008 6:48	43.7702	-111.1635	0.9	ML IE	131.1	10.76	6	145	22.9	0.05	8.0	4.5
12/10/2008 4:50	44.0398	-114.6448	1.9	Mc IE	155.8	7.19	17	108	44.6	0.12	0.4	13.3
12/11/2008 8:46	43.2253	-111.0030	1.5	ML IE	151.6	3.34	14	171	28.1	0.11	0.6	12.8
12/13/2008 9:02	44.0248	-114.5808	0.7	Mc IE	150.4	25.13	5	219	39.2	0.04	3.2	9.3
12/14/2008 13:52	43.3125	-111.0278	8.0	ML IE	146.8	5.01	8	141	20.7	0.05	0.7	11.3
12/14/2008 18:10	43.2055	-111.3903	1.2	Mc IE	123.1	16.28	6	126	16.7	0.13	1.6	3.6
12/14/2008 18:56	44.0512	-114.6558	1.2	Mc IE	157.0	7.20	8	111	45.8	0.12	0.7	16.0
12/14/2008 19:26	43.7847	-111.0500	1.3	Mc IE	140.4	6.28	10	141	36.6	0.07	0.8	11.2
12/15/2008 1:30	44.0348	-114.6460	1.0	Mc IE	155.7	7.24	8	108	44.5	0.10	0.6	15.1
12/15/2008 20:25	44.6823	-112.1303	0.9	ML IE	126.1	9.56	5	164	23.2	0.11	1.1	10.8
12/18/2008 2:54	43.0320	-111.3110	0.9	ML IE	137.7	5.58	5	263	5.4	0.02	3.2	1.5
12/18/2008 9:50	44.4543	-112.9020	1.6	Mc IE	90.0	12.10	7	218	14.2	0.04	1.6	1.6
12/18/2008 15:31	44.0357	-114.6517	1.7	Mc IE	156.2	6.64	14	152	45.0	0.12	0.5	2.9
12/18/2008 20:33	43.2770	-110.9213	1.2	ML IE	156.2	3.67	9	295	19.5	0.01	1.6	8.0
12/18/2008 22:46	44.0462	-114.6558	1.9	ML IE	156.8	7.29	13	110	45.6	0.07	0.3	13.8
12/18/2008 22:56	44.0438	-114.6438	2.5	ML IE	155.8	7.09	22	109	44.7	0.22	0.4	12.9
12/19/2008 3:30	44.8118	-113.1325	1.3	ML IE	132.2	11.78	9	154	22.5	0.17	2.9	4.7
12/19/2008 8:04	43.4315	-111.0750	1.7	ML IE	140.1	11.26	18	106	12.0	0.06	1.0	1.0
12/19/2008 9:08	43.4430	-111.0825	0.9	ML IE	139.3	11.15	9	181	11.9	0.06	1.5	1.1
12/19/2008 14:20	43.4298	-111.0735	1.2	ML IE	140.3	11.03	7	142	12.0	0.02	2.3	1.4
12/20/2008 2:51	42.9145	-111.2960	0.9	ML IE	145.8	6.54	4	141	10.6	0.00	1.1	3.9
12/20/2008 6:10	44.0508	-114.6465	0.9	ML IE	156.3	7.84	7	153	45.1	0.11	0.6	15.1
12/20/2008 11:15	43.4540	-111.0867	1.1	ML IE	138.7	10.48	10	186	11.7	0.07	0.9	1.6
12/20/2008 12:19	43.4520	-111.0957	8.0	ML IE	138.1	10.54	9	187	12.5	0.06	1.1	1.1
12/20/2008 19:59	44.0442	-114.6480	1.9	Mc IE	156.2	6.90	12	140	45.0	0.30	0.8	4.0
12/21/2008 13:30	44.1728	-114.5087	1.2	ML IE	150.3	7.55	9	140	42.5	0.07	0.5	13.8
12/22/2008 5:02	43.9388	-110.9247	1.2	Mc IE	152.9	1.84	16	79	25.6	0.27	0.8	2.7
12/22/2008 5:28	43.9385	-110.9045	1.5	Mc IE	154.5	2.49	23	77	24.7	0.26	0.8	18.7
12/22/2008 13:52	44.6350	-112.6140	0.8	Mc IE	110.4	10.18	6	138	3.1	0.03	1.4	1.4
12/22/2008 15:24	44.6673	-112.5588	2.2	ML IE	114.6	10.39	22	87	8.7	0.15	0.4	0.8
12/22/2008 17:32	44.6442	-112.5857	1.4	ML IE	111.7	6.63	13	128	5.5	0.10	1.6	1.6
12/22/2008 20:24	44.6538	-112.5812	1.6	Mc IE	112.8	5.45	8	117	6.4	0.10	3.0	4.5
12/23/2008 10:52	43.5932	-111.1752	0.5	Mc IE	129.9	10.49	6	201	8.0	0.04	2.1	4.5
12/23/2008 13:14	44.0370	-114.6532	1.7	Mc IE	156.4	6.57	13	220	45.1	0.13	0.9	3.3
12/23/2008 17:16	44.3277	-113.4472	1.0	Mc IE	92.3	7.08	15	137	32.7	0.11	0.5	5.4
12/24/2008 0:14	44.3123	-114.5548		NM	160.1	0.04	17	98	35.6	0.28	0.5	2.3
12/24/2008 5:13	44.7297	-111.7645	1.4	Mc IE	145.1	7.66	13	89	7.8	0.10	0.4	0.9
12/24/2008 15:18	44.0400	-114.6558	1.1	Mc IE	156.7	7.25	13	153	45.4	0.07	0.5	10.3
12/24/2008 15:19	44.0338	-114.6568	0.7	Mc IE	156.6	7.14	7	152	45.3	0.05	0.6	13.2
12/24/2008 16:04	44.0372	-114.6517	1.3	Mc IE	156.3	7.37	12	220	45.0	0.06	0.6	13.1
12/24/2008 17:11	44.6263	-112.5962	1.2	Mc IE	109.6	5.71	7	143	3.9	0.04	0.5	0.5
12/24/2008 21:18	44.3230	-114.5358	1.5	Mc IE	159.2	0.03	13	161	35.8	0.10	0.8	2.5
12/25/2008 4:13	44.0302	-114.6537	1.2	Mc IE	156.2	7.72	15	152	45.0	0.11	0.5	14.1
12/25/2008 18:05	44.6537	-112.5915	1.2	Mc IE	112.7	5.00	9	113	5.8	0.15	1.8	2.7
12/25/2008 22:04	42.9088	-111.2440	1.5	Mc IE	149.6	7.38	27	83	31.8	0.12	0.4	2.1
1212012000 22.04	¬∠.∪∪∪	111.2440	1.0	1V10 1L	170.0	1.50	۲1	00	01.0	U. 12	J. ↑	۷.۱

ORIGIN TIME	LAT N	LONG W	MAG	-TYPE	DIST	Z	NO	GAP	DMIN	RMS	ERH	ERZ
12/26/2008 17:10	44.6530	-112.5832	1.7	ML IE	112.7	5.51	16	118	6.2	0.09	1.9	2.8
12/27/2008 20:01	44.6482	-112.0797	1.4	ML IE	124.5	5.87	8	179	25.7	0.06	1.2	13.3
12/28/2008 8:55	44.2563	-114.5008	1.3	ML IE	153.4	6.75	10	215	39.4	0.14	1.4	4.9
12/28/2008 11:28	44.1387	-113.9473	0.9	ML IE	108.2	1.59	10	241	28.4	0.10	4.6	5.8
12/29/2008 16:39	44.0313	-114.6408	0.6	ML IE	155.2	7.11	5	227	44.0	0.09	0.9	14.7
12/30/2008 0:14	44.6398	-112.5992	1.2	ML IE	111.1	8.42	8	133	4.3	0.06	1.2	1.7
12/30/2008 17:17	42.8843	-111.2413	1.1	ML IE	151.4	13.98	7	145	17.5	0.03	1.0	2.4
12/31/2008 8:13	42.8497	-111.2575	1.3	ML IE	152.5	2.98	11	140	15.9	0.08	0.7	9.5