SNL
|daho National
Laboratory

INL/EXT-11-23047

Pebble-Bed Pebble
Motion: Simulation and
Applications

Joshua J. Cogliati
Abderrafi M. Ougouag

November 2011

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance



INL/EXT-11-23047

Pebble-Bed Pebble Motion: Simulation and
Applications

Joshua J. Cogliati
Abderrafi M. Ougouag

November 2011

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-051D14517



Acknowledgments

Thanks are due to many people who have provided information, comments and
insight. I apologize in advance for anyone that I have left out. Thanks go
to Javier Ortensi for the encouragement and discussion as he figured out how
use the earthquake data and I figured out how to generate it and for the as-
sistance with the graphite dust portion. At INL the following people assisted:
Rob Bratton and Will Windes with the graphite literature review, Brian Boer
with discussion and German translation, Hongbin Zhang with encouragement
and Chinese translation, Hans Gougar for the encouragement and ideas, and
Suzette J. Payne for providing me with the earthquake motion data. The fol-
lowing PBMR (South Africa) employees provided valuable help locating graphite
literature and data: Frederik Reitsma, Pieter Goede, and Alastair Ramlakan.
The Juelich (Germany) people—Peter Pohl, Johannes Fachinger, and Werner
von Lensa—provided valuable assistance with understanding AVR. Thanks to
Professor Mary Dunzik-Gougar for introducing me to many of these people, as
well as encouragement and feedback on this PhD and participating as co-chair
on the dissertation committee. Thanks to the other members of my commit-
tee, Dr. Michael Lineberry, Dr. Steve C. Chiu and Dr. Steve Shropshire, for
providing valuable feedback on the dissertation. Thanks to Gannon Johnson
for pointing out that length needed to be tallied separately from the length
times force tally for the wear calculation (this allowed the vibration issue to be
found). Thanks to Professor Jan Leen Kloosterman of the Delft University of
Technology for providing me the PEBDAN program used for calculating Dancoff
factors. Thanks also to Akira Tokuhiro, Donald Carlson, and Luo Xiaowei for
various suggestions. Thanks to Elizabeth Cogliati for proofreading a previous
version of this report. The work was partially supported by the U.S. Depart-
ment of Energy, Assistant Secretary for the office of Nuclear Energy, under DOE
Idaho Operations Office Contract DEAC07-05ID14517. The financial support
is gratefully acknowledged.

This report contains work that was first published in the following con-
ferences: Mathematics and Computation, Supercomputing, Reactor Physics
and Nuclear and Biological Applications, Palais des Papes, Avignon, France,
September 12-15, 2005; HTR2006: 3rd International Topical Meeting on High
Temperature Reactor Technology October 1-4, 2006, Johannesburg, South Africa;
Joint International Topical Meeting on Mathematics & Computation and Su-
percomputing in Nuclear Applications (M&C + SNA 2007) Monterey, Califor-

iii



iv ACKNOWLEDGMENTS

nia, April 15-19, 2007; Proceedings of the 4th International Topical Meeting
on High Temperature Reactor Technology, HTR2008, September 28—October 1,
2008, Washington, DC USA and PHYSOR 2010 - Advances in Reactor Physics
to Power the Nuclear Renaissance Pittsburgh, Pennsylvania, USA, May 9-14,
2010. Most of this report was published as Joshua Cogliati’s dissertation for
Idaho State University. Some of this was published in the paper “Survey of
Dust Production in Pebble Bed Reactor Cores” in Nuclear Engineering and
Design.



Contents

Acknowledgments

Abstract

1

Introduction
1.1 Pebble-Bed Reactors Introduction . . . . . ... ... ... ...
1.2 Report Introduction . . . . . ... ... oo

Motivation

Previous work
3.1 Static Friction Overview . . . . . . . . . . . . . ... ... ....
3.2 Simulation of Mechanics of Granular Material . . . . . . ... ..

Mechanics Model

4.1 Overview of Model . . . . .. ... ... oL
4.2 Integration . . . . . . . ... L
4.3 Geometry Modeling . . . .. ... ... 0oL
4.4 Packing Methods . . . . . .. ... o
4.5 Typical Parameters . . . . . . ... ... oL

A New Static Friction Model

5.1 Static Friction Formulation . . . ... ... ... ... ......
5.1.1 Use of Parallel Velocity for Slip Updating . . . .. .. ..
5.1.2  Adjustment of Oversize Slips . . . . . .. ... ... ...
5.1.3 Rotation of Stuck-Slip . . . . ... ... ... ... ...,
5.1.4 Differential Equation for Surface Slip Rotating . . . . . .

5.2 Testing of Static Friction Model With Pyramid Test . . . . . . .
5.2.1 Derivation of Minimum Static Frictions . . . . . . .. ..
5.2.2 Useof Benchmark . . ... ... ... ...........

5.3 Janssen’s Formula Comparison . . . . . ... ... ... ... ..

Unphysical Approximations

iii

xi

—_

10

11
11
14
15
17
17

19
19
19
20
20
23
24
25
28
29

33



vi

7 Code Speedup and Parallelization

7.1 General Information about Profiling . . . ... .. ..
7.2 Overview of Parallel Architectures and Coding . . . .
7.3 Lock-less Parallel O(N) Collision Detection . . . . . .
74 MPISpeedup . . .. ... ... . ... ... ...
7.5 OpenMP Speedup . . . ... ... .. ... ... .
7.6 Checking the Parallelization . . . . . ... ... .. ..
77 Results. . . . . ...

8 Applications

8.1 Applications in Support of Reactor Physics . . . . . .
8.1.1 Pebble Flow and Exit Chute . .. .. .. ...
8.1.2 Modeling of Space-Dependent Dancoff Factors
8.1.3 Angleof Repose . ... ... ... .......
8.1.4 Pebble Ordering with Recirculation . . . . ..

8.2 Application to Earthquake Modeling . . . . . .. . ..

8.2.1 Movement of Earthquakes . . . . . .. ... ..
8.2.2 Method Of Simulation . . . . .. ... .. ...
8.2.3 Earthquake Results . . . ... .. ... ... ..

8.2.4 Earthquake Equations

9 Construction of a Dust-Production Framework
9.1 HTR-10 Simulation Results

10 Future Work

11 Summary and Conclusions
Bibliography

A Calculation of Packing Fractions

B Determination of dust-production coefficients
B.1 Calculation of Force in Reactor Bed

B.2 Prior data on dust production . . . . . . ... ... ..

B.3 Prior Prediction Work

CONTENTS

67

69

71



List of Figures

3.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

7.1
7.2

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1
9.2

Comparison between PEBBLES outputs and Benenati and Brosilow

data. . . . .. 9
Principle vectors in the interaction of two pebbles. . . . . . . .. 12
PRIMe method illustration. . . . . ... ... .. ... .. .... 17
Virtual chute method. . . . . . ... ... .. ... ... ... 18
Static friction vectors. . . . . .. ... 21
Projections tods. . . . . ... oo 22
Static friction vectors for wall. . . . . .. ... ... 24
Sphere location diagram. . . . . . . . ... ... 24
Pyramid diagram. . . . ... .. ... o oo 25
Force diagram. . . . . . ... . L oo 26
Relevant forces on wall from pebble. . . . . . .. ... ... ... 29
Comparison with 0.05 and 0.15 p. . . . . .. . ... ... 31
Comparison with 0.25 and 0.9 . . . . . . . ... ... ... 32
Sample cluster architecture. . . . . . . .. ... 39
Determining nearby pebbles from grid. . . . . . .. .. ... ... 40
Flow field representation (arrow lengths are proportional to local

average pebble velocity). . . . . . ... oL 48
Dancoff factors for AVR. . . . . . .. .. ... o 49
Angle of repose. . . . . .. L. oL 50
Pebbles before recirculation. . . . . . ... ... 50
Pebbles after recirculation. . . . . . . .. ... 51
Total earthquake displacement. . . . . . . . ... ... ... ... 53
0.65 static friction packing over time. . . . . . . .. .. ... ... 54
0.35 static friction packing over time. . . . . . . .. .. ... ... 55
Different radial packing fractions. . . . . . . . .. ... ... ... 56
Changes in packing fraction. . . . . . . .. ... ... ... 57
Neutronics and thermal effects from J. Ortensi. . . . . . . .. .. 58
Wall pressure. . . . . . . .. 61
Average wear force. . . . . . .. ... 61

vii



viii

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Al
A2

B.1
B.2

LIST OF FIGURES

Velocity of pebbles at top. . . . . . . ... ... ... 62
Velocity of pebbles in chute. . . . . . ... ... ... ... .... 62
Pebble-to-pebble wear length. . . . . . .. ... ..., 63
Pebble-to-wall wear length. . . . . ... ... ... ... ... 63
Pebble-to-pebble wear length by speed. . . . . . . . .. ... ... 64
Pebble-to-pebble wear amount. . . . . .. .. ... ... .. 64
Pebble-to-wall wear amount. . . . . . . .. .. ... ... .. .. 65
Pebble-to-pebble wear amount by speed. . . . . . ... ... 65
Area inside geometry. . . .. ... Lo 78
Area outside geometry. . . . . .. ... L 78

Wear compared to temperature (Luo et al., 2005; Stansfield, 1969). 84
AVR dimensions. . . . . . ... 89



List of Tables

4.1

5.1

7.1
7.2

B.1

B.2
B.3
B4

Typical constants used in simulation. . . . . . . .. .. ... ... 18
Sphere location table. . . . . ... ... ... L. 25
OpenMP speedup results. . . . . . . ... ... L 45
MPI/OpenMP speedup results. . . . . ... ... ... ... ... 45

Different wear coefficients. Because these use different grades of
graphite and experimental setups, they are not always directly

comparable. . . . ... L Lo 85
AVR data. . . . . . ... 88
THTR data. . . . . . . ... o 88
Helium impurities in AVR and THTR (Nieder, 1990). . . . . .. 88

X



LIST OF TABLES



Abstract

Pebble-bed reactors (PBRs) have moving graphite fuel pebbles. This unique
feature provides advantages but also means that simulation of the reactor re-
quires understanding the typical motion and location of the pebbles’ granular
flow.

This report presents a method for simulating the motion of PBR pebbles. A
new mechanical motion simulator, PEBBLES, efficiently simulates the key ele-
ments of motion of PBR pebbles. This model simulates gravitational force and
contact forces including kinetic and true static friction. It is used for a variety
of tasks including simulation of the effect of earthquakes on a PBR, calculation
of packing fractions, Dancoff factors, pebble wear, and the pebble force on the
walls. The simulator includes a new differential static friction model for the
varied geometries of PBRs. A new static friction benchmark was devised via
analytically solving the mechanics equations to determine the minimum pebble-
to-pebble friction and pebble-to-surface friction for a five-pebble pyramid. This
pyramid check and a comparison to the Janssen formula were used to test the
new static friction equations.

Because larger pebble-bed simulations involve hundreds of thousands of peb-
bles and long periods of time, the PEBBLES code has been parallelized. PEB-
BLES runs on shared memory architectures and distributed memory architec-
tures. For the shared memory architecture, the code uses a new O(n) lock-less
parallel collision detection algorithm to determine which pebbles are likely to be
in contact with other pebbles. The new collision detection algorithm improves
on the traditional non-parallel O(n log(n)) collision detection algorithm. These
features combine to form a fast parallel pebble motion simulation.

The PEBBLES code provides new capabilities for understanding and opti-
mizing PBRs, the pebble motion data required to calculate the motion of pebbles
during a simulated earthquake, and the ability to determine the contact forces
and the lengths of motion in contact. This information, combined with the
proper wear coefficients, can be used to determine dust production from me-
chanical wear. These new capabilities enhance the understanding of PBRs, and
the capabilities of the code will allow future improvements in understanding.
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Chapter 1

Introduction

1.1 Pebble-Bed Reactors Introduction

Pebble-bed nuclear reactors are a unique reactor type that have been pro-
posed and used experimentally. Pebble-bed reactors were initially developed
in Germany in the 1960s when the Arbeitsgemeinschaft Versuchsreaktor (AVR)
demonstration reactor was created. In China, the 10-megawatt HTR-10 reactor
achieved first criticality in 2000, and more reactors are planned.

Pebble-bed nuclear reactors use graphite spheres (usually about 6 cm in
diameter) for containing the fuel of the reactor. The graphite spheres encase
smaller spheres of TRistructural-ISOtropic (TRISO) particle fuel. Unlike most
reactors, the fuel is not placed in an orderly static arrangement. Instead, the
graphite spheres are dropped into the top of the reactor, travel randomly down
through the reactor core, and are removed from the bottom. The pebbles are
then possibly recirculated depending on the amount of burnup of the pebble
and the reactor’s method of operation.

The first pebble-bed reactor was conceived in 1950s in West Germany using
helium-gas cooling and spherical graphite fuel elements. Construction on the
AVR 15-MWe reactor was started in 1959 at the Kernforschungsanlage Jiilich
(KFA) Research Centre. It started operation in 1967 and continued for 21 years
until 1988. The reactor operated with an outlet temperature of 950°C. The
AVR demonstrated the potential for the pebble-bed reactor concept. Over the
course of its operation, loss-of-coolant experiments were successfully performed.

The second pebble-bed reactor was the Thorium High Temperature Reactor
(THTR). This reactor was built in West Germany for an electric utility. It was
a 300-MWe plant that achieved full power in September 1986. In October 1988,
when the reactor was shutdown for maintenance, 35 bolt heads were found in
the hot gas ducts leading to the steam generators. The determination was made
that the plant could be restarted, but funding difficulties prevented this, and
the reactor was decommissioned (Goodjohn, 1991).

The third pebble-bed reactor to be constructed and the only one that is

1



2 CHAPTER 1. INTRODUCTION

currently operable is the 10-MWt High Temperature Reactor (HTR-10) at the
Tsinghua University in China. Construction started in 1994 and reached first
criticality in December 2000. This reactor is helium cooled and has an outlet
temperature of 700°C (Wu et al., 2002; Xu and Zuo, 2002).

The use of high-temperature, helium-cooled, graphite-moderated reactors
with TRISO fuel particles have a number of advantages. A TRISO particle
consists of spherical fuel kernel (such as uranium oxide) surrounded by four con-
centric layers: (1) a porous carbon buffer layer to accommodate fission-product
gases, which limits pressure on the outer layers, (2) an interior pyrolytic carbon
layer, (3) a layer of silicon carbide, and (4) an outer layer of pyrolytic carbon.
The pyrolytic layers shrink and creep with irradiation, partially offsetting the
pressure from the fission products in the interior as well as helping contain
the fission gases. The silicon carbide acts as a containment mechanism for the
metallic fission products (Miller et al., 2002). These layers provide an in-core
containment structure for the radioactive fuel and fission products.

The high-temperature gas reactors have some advantages over conventional
light water reactors. First, the higher outlet temperatures allow higher Carnot
efficiency to be obtained.! Second, the higher temperatures can be used for
process heat, which can reduce the use of methane. Third, the high tempera-
ture under which TRISO particles can operate allows for the exploitation of the
negative temperature coefficient to safely shut down the reactor without use of
control rods.? Fourth, the higher temperature is above the annealing tempera-
ture for graphite, which safely removes Wigner energy.®> These are advantages of
both prismatic and pebble-bed high-temperature reactors (Gougar et al., 2004;
Wu et al., 2002).

Pebble-bed reactors, unlike most other reactors types, have moving fuel.
This provides advantages but complicates modeling the reactors. A key advan-
tage is that pebble-bed reactors can be refueled online—that is, reactor shut-
down is not needed for refueling. As a consequence, the reactors have low excess
reactivity, as new pebbles can be added or excess pebbles removed to maintain
the reactor at critical. The low excess reactivity removes the need for burnable
poisons. A final advantage is that the moving fuel allows the pebble bed to be
run with optimal moderation, where both increases and decreases in the fuel-to-
moderator ratio cause reduction in reactivity. Ougouag et al. (2004) discuss the
advantages of optimal moderation, including improved fuel utilization. How-
ever, because the fuel is moving, many traditional methods of modeling nuclear
reactors are inapplicable without a method for quantifying the motion. Hence,
there is a need to develop usable methods for pebble-bed reactor modeling.

IThe outlet temperatures for pebble-bed reactors have ranged from 700 °C to 950 °C,
compared to typical outlet temperatures on the order of 300°C for light water reactors, so the
intrinsic Carnot efficiency is higher.

2Control rods are needed for a cold shutdown, however.

3The accumulation of Wigner energy led to the Windscale fire in that lower temperature
graphite reactor.
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1.2 Report Introduction

This report describes a computer code, PEBBLES, that is designed to provide
a method of simulating the motion of the pebbles in a pebble-bed reactor.

Chapter 4 provides the details of how the simulation works. Chapter 5
describes a new static friction model.

Several checks have been made of the PEBBLES code. Figure 3.1 in Chap-
ter 3 compares the PEBBLES simulation to experimentally determined radial
packing fractions. Section 5.2 describes a new analytical benchmark that was
used to test the static friction model in PEBBLES. Section 5.3 uses the Janssen
model to test the static friction in a cylindrical vat.

Motivating all the above are the new applications, including Dancoff factors
(Section 8.1.2), calculating the angle of repose (Section 8.3), and modeling an
earthquake in Section 8.2.
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Chapter 2

Motivation

Most nuclear reactors have fixed fuel, including typical light water reactors.
Some reactor designs, such as non-fixed fuel molten salt reactors, have fuel that
is in fluid flow. Most designs for pebble-bed reactors, however, have moving
granular fuel. Since this fuel is neither fixed nor easily treatable as a fluid,
predicting the behavior of the reactor requires the ability to understand the
characteristics of the positions and motion of the pebbles. For example, pre-
dicting the probability of a neutron leaving one TRISO’s fueled region and
entering another fueled region depends on the typical locations of the pebbles.
A second example is predicting the effect of an earthquake on the reactivity of
the pebble-bed reactor. This requires knowing how the positions of the pebbles
in the reactor change from the forces of the earthquake. Accurate prediction of
the typical features of the flow and arrangement of the pebbles in the pebble-bed
reactor would be highly useful for their design and operation.

The challenge is to gain the ability to predict the pebble flow and pebble
positions for start-up, steady-state, and transient pebble-bed reactor operation.

The research objective presented in this report is to provide this predicting
ability. The approach used is to create a distinct element method computer
simulation. The simulation determines the locations and velocities of all the
pebbles in a pebble bed reactor and can calculate needed tallies from this data.
Over the course of creating this simulation, various applications of the simulation
were performed. These models allow the operation of the pebble-bed reactor to
be better understood.
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Chapter 3

Previous work

Because the purpose of this project is to produce a high-fidelity simulation that
can provide predictions of the pattern and flow of pebbles, previous efforts to
simulate granular methods and packing were examined. A variety of simulations
of the motion of discrete elements have been created for different purposes. Lu
et al. (2001) applied a discrete element method (DEM) to determine the charac-
teristics of packed beds used as fusion reactor blankets. Jullien et al. (1992) used
a DEM to determine packing fractions for spheres using different non-motion
methods. Soppe (1990) used a rain method to determine pore structures in
different-sized spheres. The rain method randomly chooses a horizontal posi-
tion, and then lowers a sphere down until it reaches other existing spheres. This
is then repeated to fill up the container. Freund et al. (2003) used a rain method
for fluid flow in chemical processing.

The use of non-motion pebble packing methods provides an approximation
of the positions of the pebble. Unfortunately, non-motion methods will tend
to either under pack or over pack (sometimes both in the same model). For
large pebble-bed reactors, the approximately 10-meter height of the reactor core
will result in different forces at the bottom than at the top. This will change
the packing fractions between the top and the bottom, so without key physics,
including static friction and the transmittal of force, non-motion physics models
will not even be able to get correct positional information. Non-physics-based
modeling cannot be used for predicting the effect of changes in static friction or
pebble-loading methods even if only the position data is required.

The initial PEBBLES code for calculation of pebble positions minimized the
sum of the gravitational and Hookes’ law potential energies by adjusting pebble
positions. However, that simulation was insufficient for determining flow and
motion parameters and simulation of earthquake packing.

Additional references addressing full particle motion simulation were evalu-
ated. Kohring (1995) created a 3-D DEM simulation to study diffusional mixing
and provided detailed information on calculating the kinetic forces for the simu-
lation. The author describes a simple method of calculating static friction. Haile
(1997) discusses both how to simulate hard spheres and soft spheres using only

7



8 CHAPTER 3. PREVIOUS WORK

potential energy. The soft sphere method in Haile proved useful for determin-
ing plausible pebble positions but is insufficient for modeling the motion. Hard
spheres are simulated by calculating the collision results from conservation laws.
Soft spheres are simulated by allowing small overlaps and then having a result-
ing force dependent on the overlap. Soft spheres are similar to what physically
happens, in that the contact area distorts, allowing distant points to approach
closer than would be possible if the spheres were truly infinitely hard and only
touched at one infinitesimal point. Hard spheres are impractical for a pebble-
bed due to the frequent and continuous contact between spheres, so soft spheres
are used instead. The dissertation by Ristow (1998) describes multiple methods
for simulating granular materials. On Ristow’s list of methods was a model
similar to that used as the kernel of the work supporting this project. Ristow’s
dissertation mentioned static friction and provided useful references that will be
discussed in Section 3.2.

To determine particle flows, Wait (2001) developed a DEM that included
only dynamic friction. Concurrently with this project’s research, Rycroft et al.
(2006b) used a DEM, created for other purposes, to simulate the flow of pebbles
through a pebble-bed reactor.

Multiple other discrete-element codes have been created, and PEBBLES
is similar to several of the full-motion models. For most of the applications
discussed in this report, only a model that simulates the physics with high
fidelity is useful. The PEBBLES dynamic friction model is similar to the model
used by Wait or Rycroft, but the static friction model incorporates some new
improvements that will be discussed later.

In addition to simulation by computer, other methods of determining the
properties of granular fluids have been used. Bedenig et al. (1968) used a scale
model to experimentally determine residence spectra (the amount of time that
pebbles from a given group take to pass through a reactor) for different exit
cone angles. Kadak and Bazant (2004) used scale models and small spheres to
estimate the flow of pebbles through a full-scale pebble-bed reactor. These re-
searchers also examined the mixing that occurred between different radial zones
as the pebbles traveled downward. Bernal et al. (1960) carefully lowered steel
spheres into cylinders and shook the cylinders to determine both loose and dense
packing fractions. The packing fraction and boundary density fluctuations were
experimentally measured by Benenati and Brosilow (1962). The Benenati and
Brosilow data have been used to verify that the PEBBLES code was producing
correct boundary density fluctuations (see Figure 3.1). Many experiments were
performed in the designing and operating of the AVR reactor to determine rele-
vant properties such as residence times and optimal chute parameters (Baumer
et al., 1990). These experiments provide data for testing the implementation of
any computational model of pebble flow.

The PEBBLES simulation uses elements from a number of sources and uses
standard classical mechanics for calculating the motion of the pebbles based on
the forces calculated. The features in PEBBLES have been chosen to imple-
ment the necessary fidelity required while allowing run times small enough to
accommodate hundreds of thousands of pebbles. The next sections will discuss
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Comparison to Experimental Results from Benenati and Brosilow

0.8 T T T T T
Experimental (B & B Fig 3) —+—
runl —<¢—
0.7 run2 —x— |
run3
run4 —m—

Void Fraction

0.2 ] ] ] ] ]

Diameters from Wall

Figure 3.1. Comparison between PEBBLES outputs and Benenati and Brosilow
data.

handling static friction.

3.1 Static Friction Overview

Static friction is an important effect in the movement of pebbles and their
locations in pebble-bed reactors. This section briefly reviews static friction
and its effects in pebble-bed reactors. Static friction is a force between two
contacting bodies that counteracts relative motion between them when they are
moving sufficiently slowly (Marion and Thornton, 2004). Macroscopically, the
maximum magnitude of the force is proportional to the normal force with the
following equation:

[Fs| < plFL] (3.1)

where p is the coefficient of static friction, F is the static friction force and
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F, is the normal (load) force.

Static friction results in several effects on granular materials. Without static
friction, the angle of the slope of a pile of a material (angle of repose) would be
zero (Duran, 1999). Static friction also allows “bridges” or arches to be formed
near the outlet chute. If the outlet chute is too small, the bridging will be stable
enough to clog the chute. Static friction will also transfer force from the pebbles
to the walls. This will result in lower pressure on the walls than would occur
without static friction (Sperl, 2006; Walker, 1966).

For an elastic sphere, static friction’s counteracting force is the result of elas-
tic displacement of the contact point. Without static friction, the contact point
would slide as a result of relative motion at the surface. With static friction, the
spheres will experience local shear that distorts their shape so that the contact
point remains constant. This change will be called stuck-slip, and continues un-
til the counteracting force exceeds puF . When the counteracting force exceeds
that value, the contact point changes and slide occurs. The mechanics of this
force with elastic spheres were investigated by Mindlin and Deresiewicz (1953).
Their work created exact formulas for the force as a function of the past relative
motion and force.

3.2 Simulation of Mechanics of Granular Mate-
rial

Many simulations of granular materials incorporating static friction have been
devised. Cundall and Strack (1979) developed an early distinct element simu-
lation of granular materials that incorporated a computationally efficient static
friction approximation. Their method involved integration of the relative ve-
locity at the contact point and using the sum as a proxy for the current static
friction force. Since their method was used for simulation of 2-D circles, adap-
tation was required for 3-D granular materials. One key aspect of adaptation
is determining how the stuck-slip direction changes as a result of contacting
objects’ changing orientation.

Vu-Quoc and Zhang (1999) and Vu-Quoc et al. (2000) developed a 3-D DEM
for granular flows. This model was used for simulation of particle flow in chutes.
They used a simplification of the Mindlin and Deresiewicz model for calculating
the stuck-slip magnitude, and projected the stuck-slip onto the tangent plane
each time-step to rotate the stuck-slip force direction. This correctly rotates the
stuck-slip but requires that this rotation of the stuck-slip be done as a separate
step since it is not written in a differential form.

Silbert et al. (2001) and Landry et al. (2003) describe a 3-D differential
version of the Cundall and Strack method. The literature states that particle
wall interactions are done identically. The amount of computation of the model
is less than the Vu-Quoc, Zhang and Walton model. This model was used for
modeling pebble-bed flow (Rycroft et al., 2006a,b). This model, however, does
not specify how to apply their differential version to modeling curved walls.



Chapter 4

Mechanics Model

The PEBBLES simulation calculates the forces on each individual pebble. These
forces are then used to calculate the subsequent motion and position of the
pebbles.

4.1 Overview of Model

The PEBBLES simulation tracks each individual pebble’s velocity, position,
angular velocity, and static friction loadings. The following classical mechan-
ics differential equations are used for calculating the time derivatives of those
variables:

dv, Mg+ Zi;ﬁj Fij +Fg

dp;
dw; Zi;ﬁj FHU X T‘iflij + FHU X TiNe;
S 7 (4.3)
dsqj'
dt] = S(FLijvviaVﬁpi’pj?Sij) (44)

where

F;; = the force from pebble j on pebble i
F.; = the force of the container on pebble i
g = the gravitational acceleration constant
m; = the mass of pebble @

v; = the velocity of pebble i

11



12 CHAPTER 4. MECHANICS MODEL

p; = the position vector for pebble 4

w; = the angular velocity of pebble i

F|;; = the tangential force between pebbles i and j

F,;; = the perpendicular force between pebbles ¢ and j

r; = the radius of pebble i

I, = the moment of inertia for pebble i

F|c; = the tangential force of the container on pebble i

n.; = the unit vector normal to the container wall on pebble i

n;; = the unit vector pointing from the position of pebble i to that of pebble j
s;; = the current static friction loading between pebbles i and j

S = the function to compute the change in the static friction loading.

The static friction model contributes to the F;; term, which is also part of
the F;; term. Figure 4.1 illustrates the principal vectors with pebble i going in
the v; direction and rotating around the w; axis, and pebble j going in the v;
direction and rotating around the w; axis.

Origin
Figure 4.1. Principle vectors in the interaction of two pebbles.

The mass and moment of inertia are calculated assuming spherical symmetry
with the equations:

4
m = §7r [pcrg’ + po(rg — Tg’)] (4.5)
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I= %w [pere + polrg —12)] (4.6)
where

r. = the radius of inner (fueled) zone of the pebble

r, = the radius of whole pebble

pe = the average density of center-fueled region

po = the average density of outer non-fueled region.

The dynamic (or kinetic) friction model is based on the model described by
Wait (2001). Wait’s and the PEBBLES model calculate the dynamic friction
using a combination of the relative velocities and pressure between the pebbles,
as shown in Equations (4.7) and (4.8):

Flij = hlljfl” — CLVLija lij >0 (47)

Fojij = —min(p|F Liz], Oy [v)i1) Vs, lij > 0 (4.8)
where
C| = the tangential dash-pot constant
('} = the normal dash-pot constant
F;; = the normal force between pebbles ¢ and j
Fg);; = the tangential dynamic friction force between pebbles ¢ and j
h = the normal Hooke’s law constant
l;; = the overlap between pebbles i and j

v|;; = the component of the velocity between two pebbles perpendicular to the
line joining their centers

v1;; = the component of the velocity between two pebbles parallel to the line
joining their centers

v;; = the relative velocity between pebbles i and j
1t = the kinetic friction coefficient.

Equations (4.9-4.12) relate supplemental variables to the primary variables:

Fij = FLij + F”ij (4.9)

Vi = (vij - Dij) Ry (4.10)
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V||ij = V,‘j — Viij (411)

Vij = (Vi —l—wi X Tifli]‘) — (Vj +wj X rjﬁji) (412)

The friction force is then bounded by the friction coefficient and the normal
force to prevent it from being too great:

Fprlij = Fojjij + Fayij (4.13)

Fyij = min(u|F 1|, [F i DF g (4.14)
where
Fy)i; = the static friction force between pebbles i and j
Fgi; = the kinetic friction force between pebbles i and j
hs = the coefficient for force from slip

s;; = the slip distance perpendicular to the normal force between pebbles i and
J

Umax = the maximum velocity under which static friction is allowed to operate

1 = the static friction coefficient when the velocity is less than vy, and the
kinetic friction coefficient when the velocity is greater.

These two equations fully enforce the first requirement of a static friction
method, |F,| < u|F .

4.2 Integration

When all the position, linear velocity, angular velocity, and slips are combined
into a vector y, the whole computation can be written as a differential formu-
lation in the form:

y' =f(t,y) (4.15)
y(to) = ¥o (4.16)

This can be solved by a variety of methods, but the simplest is Euler’s
method:
y1 =Yyo+ Atf(t,y0) (4.17)

In addition, both the Runge-Kutta method and the Adams-Moulton method
can be used for solving this equation. These methods improve the accuracy of



4.3. GEOMETRY MODELING 15

the simulation. However, they do not improve the wall-clock time at the lowest
stable simulation, since the additional time required for computation negates the
advantage of being able to use somewhat longer time-steps. In addition, when
running on a cluster, more data needs to be transferred since the methods allow
non-contacting pebbles to affect each other in a single “time-step calculation.”

4.3 Geometry Modeling

For any geometry interaction, two things need to be calculated: the overlap
distance [ (or, technically, the mutual approach of distant points) and the normal
to the surface n. The input is the radius of the pebble, r and the position of
the pebble, p with components p., py, and p..

For the floor contact, this is:

(p: — ) — floor_location (4.18)

ISP
Il
N>
—
o
—_
=}
=

For cylinder contact on the inside of a cylinder, this is:

pr = /p2 + p? (4.20)

I = (pr+r)— cylinder_radius (4.21)
= _Pryy “Pug (4.22)
pr pr

For cylinder contact on the outside of a cylinder, this is:

l = cylinder_radius + r — pr (4.24)
=P Pug (4.25)
pr pr

For contact on the inside of a cone defined by the radius = mz + b:
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pr=./p2 +p: (4.26)

m(pr —b) + z
A L (a2
Te =mz.+b ( )
T = (1c/pr)Py ( )
Ye = (r¢/Pr)Pa (4.30)
C =2+ Y.l + 2.2 ( )

d=p-—-c (4.32)

l=1d|+rre<pr (4.33)

(4.34)

(4.35)

(4.36)

ﬁ:—cz,rc <pr
l

r—|d|,r. >=pr

h=d,r, >=pr

These equations are derived from minimizing the distance between the con-
tact point ¢ and the pebble position p.

For contact on a plane defined by ax + by + cz + d = 0 where the equation
has been normalized so that a® + b? + ¢ = 1, the following is used:

dp = apy + bpy + cp, + d (4.37)
l=r—dp (4.38)
n=at + by + cz (4.39)

Combinatorial geometry operations can be done. Intersections and unions
of multiple geometry types are done by calculating the overlaps and normals
for all the geometry objects in the intersection or union. For an intersection,
where there is overlap on all the geometry objects, then the smallest overlap
and associated normal are kept, which may be no overlap. For a union, the
largest overlap and its associated normal are kept.

For testing whether a geometry is correct, a simple check is to fill up the
geometry with pebbles using one of the methods described in Section 4.4, and
then make sure that linear and angular energy dissipate. Many geometry errors
will show up by artificially creating extra linear momentum. For example, if a
plane is only defined at the top, but it is possible for pebbles to leak deep into
the bottom of the plane, they will go from having no overlap to a very high
overlap, which will give the pebble a large force. This results in extra energy
being added each time a pebble encounters the poorly defined plane, which will
show up in energy tallies.
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4.4 Packing Methods

The pebbles are packed using three main methods. The simplest creates a very
loose packing with an approximately 0.15 packing fraction by randomly choosing
locations, and removing the overlapping ones. These pebbles are then allowed
to fall down to compact to a realistic packing fraction.

The second is the PRIMe method developed by J. L. Kloosterman (2005).
In this method large numbers of random positions (on the order of 100,000 more
than will fit) are generated. The random positions are sorted by height, and
starting at the bottom, the ones that fit are kept. Figure 4.2 illustrates this
process. This generates packing fractions of approximately 0.55. Then they are
allowed to fall to compact. This compaction takes less time than starting with
a 0.15 packing fraction.

Figure 4.2. PRIMe method illustration.

The last method is to automatically generate virtual chutes above the bed
where the actual inlet chutes are and then load the pebbles into the chutes.
Figure 4.3 shows this in progress. This allows locations that have piles where
the inlet chutes are but can be done quicker than a recirculation. The other two
methods generate flat surfaces at the top, which is unrealistic, since the surface
of a recirculated bed will have cones under each inlet chute.

4.5 Typical Parameters

The typical parameters used with the PEBBLES code are described in Table
4.1. Alternative numbers will be described when used.
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Virtual

Reactor

Figure 4.3. Virtual chute method.

Table 4.1. Typical constants used in simulation.

Constant Value
Gravitational Acceleration g 9.8 m/s?

radius of pebbles r 0.03 m

Mass of Pebble m 0.2071 kg
Moment of Inertia I 7.367e-05 kg m?
Hooke’s law constant h 1.0e6

Dash-pot constants €| and C'. 200.0

Kinetic Friction Coeflicient p
Static Friction Coefficient ps
Maximum static friction velocity vy,qz

0.4 or sometimes 0.25
0.65 or sometimes 0.35
0.1 m/s



Chapter 5

A New Static Friction
Model

The static friction model in PEBBLES is used to calculate the force and mag-
nitude of the static friction force. Other models have been created before to
calculate static friction, but the PEBBLES model provides the combination of
being a differential model (as opposed to one where the force is rotated as a
separate step) and being able to handle the type of geometries that exist in
pebble-bed reactors.

The static friction model has two key requirements. First, the force from
stuck-slip must be updated based on relative motion of the pebbles. Second, the
current direction of the force must be calculated since the pebbles can rotate in
space.

5.1 Static Friction Formulation

5.1.1 Use of Parallel Velocity for Slip Updating

For elastic spheres, the true method of updating the stuck-slip force is to use the
method of Mindlin and Deresiewicz (1953). This method requires computation-
ally and memory-intensive calculations to track the forces. Instead, a simpler
method is used to approximate the force. This method, described by Cundall
and Strack (1979) uses the integration of the parallel relative velocity as the
displacement. The essential idea is that the farther the pebbles have stuck-
slipped at the contact point, the greater the counteracting static friction force
needs to be. This is what happens under more accurate models such as Mindlin
and Deresiewicz. There are two approximations imposed by this assumption.
First, the amount the force changes is independent of the normal force. Sec-
ond, the true hysteretic effects that depend on details of the loading history are
ignored. For simulations where the exact dynamics of static friction are impor-
tant, these could potentially be serious errors. However, since static friction only

19
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occurs when the relative speed is low, the dynamics of the simulation usually
are unimportant. Thus, for most circumstances, the following approximation
can be used for the rate of change of the magnitude and non-rotational change
of the stuck-slip:

= vy (5.1)

5.1.2 Adjustment of Oversize Slips

The slips can build up to unrealistically large amounts, that is, greater than
w|F 1 |; Equation (5.1) places no limit on the maximum size of the slip. The
excessive slip is solved at two different locations. First, when the frictions are
added together to determine the total friction, they are limited by p|F.| in
Equation (4.14). This by itself is insufficient, because the slip is storing potential
energy that appears anytime the normal force increases. This manifests itself
by causing vibration of the pebbles to continue for long periods of time. Two
methods for fixing the hidden slip problem are available in PEBBLES. The
simplest drops any slip that exceeds the static friction threshold (or an input
parameter value somewhat above the static friction threshold so small vibrations
do not cause the slip to disappear).

The second method used in PEBBLES is to decrease the slip that is over
a threshold value. If the slip is too great, a derivative that is the opposite of
the current slip is added as an additional term in the slip-time derivative. This
occurs in the following additional term:

dSZ‘j

pra —R([sij| — ssap|F Lij])si; (5.2)

In this, R(x) is the ramp function (which is = if z > 0 and 0 otherwise)
and sgq is a constant to select how much the slip is allowed to exceed the static
friction threshold (usually 1.1 in PEBBLES). This derivative adder is used in
most PEBBLES runs since it does allow vibrational energy to decrease, yet does
not cause the pyramid benchmark to fail like complete removal of too great slips
does.

When using non-Euler integration methods, the change in slip is calculated
multiple times. Each time it is calculated, it might be set to be zeroed. In the
PEBBLES code, if any of the added up slips for a given contact were set to be
zeroed, the final slip is zeroed. This is not an ideal method, but it works well
enough.

5.1.3 Rotation of Stuck-Slip

The static friction force must also be rotated so that it is in the plane of contact
between the two pebbles. When there is a difference between the pebbles’ center
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velocities, which changes in the relative pebble center location, change in the
direction in the stuck-slip occurs. That is:

Pin+1 — Pjn+1 = Pin — Pjn + (Vin — Vjn)At (5.3)

First, let n;;,, = p;—p; and dn;j, = v;—v;. The cross product —dn;;, xn;;,
is perpendicular to both n and dn and signed to create the axis around which
s is rotated in a right-handed direction. Then, using the cross product of the
axis and s, —(dn;; X n;j,) X s;j, gives the correct direction that s should be
increased.

Next, determine the factors required to make the differential the proper
length. By cross product laws,

| — (dl’lij X nijn) X Sijnl = \dnij||nijn||sijn| sin@sinqb (54)
where 0 is the angle between njjn and dnj; and ¢ is the angle between
dl’lij X Njjn and Sijn-
The relevant vectors are shown in Figure 5.1.

A

dsAt

S

dnAt

n+dnAt

Figure 5.1. Static friction vectors.

The goal is to rotate s by angle a/ which is the “projection” into the proper
plane of the angle o that n rotates by. Since the direction has been determined,
for simplicity the figure leaves the indexes off and concentrates on determining
the lengths. In Figure 5.1, s is the old slip vector, s/ is the new slip vector, n
is the vector pointing from one pebble to another. The vector dnAt is added
to n to get the new n/, n + dnAt¢. The initial condition is that s and n are
perpendicular. The final conditions are that s/ and n/ are perpendicular, that
s and s/ are the same length, and that s/ is the closest vector to s as it can be
while satisfying the other conditions. There is no requirement that s or s/ are
coplanar with dnAt (otherwise o/ would be equal to «). From the law of sines
we have:

|dnAt|  |n]

sin « sin 6

(5.5)
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SO

_ |dnAt|sin g

sin o
n|

(5.6)

In Figure 5.2 the projection to the correct plane occurs. First, by using ¢,
the length of s is projected to the plane. Note that ¢ is the angle both to s and
to s/. So, the length of the line on the dn X n plane is |s|sin ¢, and the length of
the straight line at the end of the triangle is |s|sin ¢ sin v (note that the chord
length is |s|(sin¢)a, but as At approaches 0, the other can be used). From
these calculations, the length of the dsAt can be calculated with the following
formula:

|s| sin ¢|dnAt|sin 6

dsAt = (5.7)
n|
Since | — (dn;j; X nyjpn) X 8ijn| = |dny;||ng;,|[sijn|sin@sin ¢ the formula for
the rotation is:
d .. >< .. >< S< .
SijnJrl = — ( Nijn E;‘jn) n At + Sijn (58)
dnxn
0 s
|s|sin @ sin a
o
Islsind > |s|sin ¢

Figure 5.2. Projections to ds.

As a differential equation, this is:

dt pi — pjI?
By the vector property ax (bxc¢) = b(a-c)—c(a-b) and since (p; —p;)-s;; = 0,
this can be rewritten as the version in Silbert et al. (2001):

dsij _ [((vi—vy) x (Pi —Pj)) X 84] (5.9)

dsij _ (Pi —P;j)(sij - (Vi = V) (5.10)
dt lpi — pjI?
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5.1.4 Differential Equation for Surface Slip Rotating

It might seem that the wall interaction could be modeled the same way as the
pebble-to-pebble interaction. For sufficiently simple wall geometries, this may
be possible, but actual pebble-bed reactor geometries are more complicated and
violate some of the assumptions that underpin the derivation. For a flat surface,
there is no rotation, so the formula can be entirely dropped. For a spherical
surface, it would be possible to measure the curvature at the pebble-to-surface
contact point in the direction of relative velocity to the surface. This curvature
could then be used as an effective radius in the pebble-to-pebble formulas.

The pebble reactor walls have additional features that violate assumptions
made for the derivation. For surfaces such as a cone, the curvature is not, in
general, constant, because the path can follow elliptical curves. As well, the
curvature has discontinuities where different parts of the reactor join together
(for example, the transition from the outlet cone to the outlet chute). At these
transitions, the assumption that the slip stays parallel to the surface fails be-
cause the slip is parallel to the old surface, but the new surface has a different
normal.

Because of the complications with using the pebble-to-pebble interaction,
PEBBLES uses an approximation of the “rotation delta.” This is similar to the
Vu-Quoc and Zhang (1999) method of adjusting the slip so that it is parallel
to the surface each time. Each time when the slip is used, a temporary version
of the slip that is properly aligned to the surface is computed and used for
calculating the force. As well, a rotation to move the slip more parallel to the
surface is also computed.

The rotation is computed as follows. Let the normal direction of the wall at
the point of contact of the pebble be n, and the old stuck-slip be s. Let a be
the angle between n and s. n x s is perpendicular to both n and s and so this
cross product is the axis that needs to be rotated around. Then (n x s) X s is
perpendicular to this vector, so it is either pointing directly towards n if a is
acute or directly away from n if a is obtuse. To obtain the correct direction,
this vector is multiplied by the scalar s-n which has the correct sign from cos a.
The magnitude of (s-n)[(n x s) x s] needs to be determined for reasonableness.
We define the angle b, which is between (n x s) and s. By these definitions
the magnitude is (|s||n|cosa)[(|n||s|sina)|s|sinb]. b is a right angle since n X s
is perpendicular to s, so sinb = 1. Collecting terms gives the magnitude as
s|®|n|? cos asina, which is divided by |n x s||n||s| to give the full term the
magnitude |s| cosa. This is the length of the vector that goes from s to the
plane perpendicular to n. This produces Equation (5.11), which can be used to
ensure that the wall stuck-slip vector rotates towards the correct direction.

ds [(nxs) xs]

i (s-n) (5.11)

> s[[n][s|
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old s

Figure 5.3. Static friction vectors for wall.

5.2 Testing of Static Friction Model With Pyra-
mid Test

Static friction is an important physical feature in the implementation of mechan-
ical models of pebbles’ motion in a pebble-bed, and checking its correctness is
important. A pyramid static friction test model was devised as a simple tool
for verifying the implementation of a static friction model within the code. The
main advantages of the pyramid test are that the model test is realistic and that
it can be modeled analytically, providing an exact basis for the comparison. The
test benchmark consists of a pyramid of five spheres on a flat surface. This con-
figuration is used because the forces acting on each pebble can be calculated
simply and the physical behavior of a model with only kinetic friction is fully
predictable on physical and mathematical grounds: with only kinetic friction
and no static friction, the pyramid will quickly flatten. Even insufficient static
friction will result in the same outcome. The four bottom spheres are arranged
as closely as possible in a square, and the fifth sphere is placed on top of them,
as shown in Figure 5.4.

Top View
Side View

Figure 5.4. Sphere location diagram.

The lines connecting the centers of the spheres form a pyramid with sides

2R, as shown in Figure 5.5, where R is the radius of the spheres. The length of

a in the figure is 27%, and because b is part of a right triangle, (2R)? — (27%)2 =
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b? =4R? — % = 2R?, b has the same length as a, and thus the elevation angle
for all vertexes of the pyramid are 45° from horizontal.

{
3

Figure 5.5. Pyramid diagram.

2R

Using the projection of the pyramid summit onto the ground as the origin
of the coordinates system, the locations (coordinates) of the sphere centers are
given in Table 5.1.

Table 5.1. Sphere location table.

X | Y Z
—“R| -R R

R | -R R
~R| R R

R | R R

0 | 0 | RO+V2)

5.2.1 Derivation of Minimum Static Frictions

The initial forces on the base sphere are the force of gravity mg, and the normal
forces Tn and Fn, as shown in Figure 5.6. This causes initial stuck-slip, which
will cause F's to develop to counter the slip, and Ts to counter the rotation of
the base sphere relative to the top sphere. The top sphere will have no rotation
because the forces from the four spheres will be symmetric and counteract each
other.

The forces on the base sphere are:

Tn — Normal force from the top sphere

Ts — Static friction force from the top sphere
mg — Force of gravity on the base sphere

Fn — Normal force from floor

Fs — Static friction force from the floor
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Top Sphere

img

Base Sphere

Fs

Figure 5.6. Force diagram.

Note that Fn is larger than Tn since Tn is only a portion of the mg force
since the top sphere transmits (and splits) its force onto all four base spheres.

There are three requirements for a base sphere to be non-accelerated.

If a base sphere is not rotating, then there is no torque, so:

|Fs| = |Ts| (5.12)

The resultant of all forces must also be zero in the x and the y direction
(vector notation dropped since they are in one dimension and therefore scalars)
as follows:

—Fs—Tsx+Tnx =0 (5.13)

—mg —Tsy—Tny+ Fn=0 (5.14)

Since the angle of contact between a base sphere and the top sphere is 45°,
the following two equations hold (where T's is the magnitude of Ts and Tn is
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the magnitude of Tn):
Ts

Tsx=Tsy=— 5.15
V=5 (5.15)
Tn
Tnx =Tny = — 5.16
V=75 (5.16)
This changes FEquations (5.13) and (5.14) into:
Ts Tn
—fFs——+4+—==0 5.17
oG (5.17)
Ts Tn
-mg— —=— —=+Fn=0 5.18
I~ 5" (5.18)
Combining Fquations (5.12) and (5.17) provides:
Ts Tn
—TITs——+—7==0 5.19
5 (5.19)
Which gives the relation:
Tn="Ts(V2+1) (5.20)
By the static friction in Equation (5.1),
Ts < psphereln (5.21)

Combining Equations (5.20) and (5.21) and simplifying gives the require-
ment that

\/5 -1 < Hsphere (522)

For use with testing, the static friction program can be tested twice with
a sphere-to-sphere friction coefficient slightly above 0.41421... and one slightly
below 0.41421.... In the first case, the pyramid should be stable, and in the
second case, the top ball should fall to the floor.

Since % of the weight of the top pebble is on one of the base pebbles, the
following holds:

5
Fn = s (5.23)

Combining Equations (5.18) and (5.23) provides the following equation:

2 _ 7 9 (5.24)
Equations (5.17) and (5.24) can be added to produce

—Fs—\2Ts+ % =0 (5.25)
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Using Equations (5.12) and (5.24) and solving for Fs gives the following
value for F's:

__mg
Fs= V3 (5.26)

By the static friction Equation (3.1):

Fs < pigur faceFn. (5.27)
Substituting the values for F's and F'n gives:
mg
4(1+v?2)

Simplifying provides the following relation for the surface-to-sphere static
friction requirement:

5
S Nsurfaceimg (528)

1

5(1++/2)
This can be used similarly to the other static friction requirement by setting
the value slightly above 0.08284... and slightly below 0.08284... and making
sure that it is stable with the higher value and not stable with the lower value.
This test was inspired by an observation of lead cannon balls stacked into a
pyramid. I tried to stack used glass marbles into a five-ball pyramid, and it was
not stable. Since lead has a static friction coefficient around 0.9, and used glass
has a much lower static friction, the physics of pyramid stability were further

investigated, resulting in this benchmark test of static friction modeling.

< Hsurface- (529)

5.2.2 Use of Benchmark

The benchmark test of two critical static friction coefficients is defined by the
following equations. If both static friction coefficients are above the critical
values, the spheres will form a stable pyramid. If either or both values are
below the critical values, the pyramid will collapse.

1
Heriticalsur face = = ~ 0.08284 (530)

5(1++/2)

Heriticalsphere = \/5 —1~0.41421 (531)

To set up the test cases, the sphere locations from Table 5.1 should be
used as the initial locations of the sphere. Then, static friction coefficients for
the sphere-to-sphere contact and the sphere-to-surface contact are chosen. The
code is then run until either the center sphere falls to the surface or the pyramid
obtains a stable state. There are three test cases that are run to test the model.

1. Hsurface = Meriticalsurface +eand Hsphere = Hcriticalsphere +¢ which should
result in a stable pyramid.
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2. Msurface - ,U/criticalsurface —€ and /«Lsphere — ,Ufcriticalsphere +e€ Wthh ShOU1d
result in a fall.

3. Hsurface = Meriticalsurface +e€ and Hsphere = Mcriticalsphere — € which should
result in a fall.

For soft sphere models, there are fundamental limits to how close the model’s
results can be to the critical coefficient. Essentially, as the critical coefficients
are approached, the assumptions become less valid. For example, with soft
(elastic) spheres, the force from the center sphere will distort the contact angle,
so the actual critical value will be different. For the PEBBLES code, an € value
of 0.001 is used.

5.3 Testing of the Static Friction Model by Com-
parison with Janssen’s Formula

The pyramid static friction test is used as a simple test of the static friction
model. Another test compares the static friction model against the Janssen for-
mula’s behavior (Sperl, 2006). This formula specifies the expected wall pressure
as a function of depth. This formula only applies when the static friction is
fully loaded, that is, when Fg| = u|F |. This condition is generally not satisfied
until some recirculation has occurred. Figure 5.7 shows the normal force and
the static friction force from a pebble to the wall. With the PEBBLES code,
this is only satisfied after recirculation with lower values of the static friction
coefficient .

normal

static

Figure 5.7. Relevant forces on wall from pebble.

The equation used to calculate the pressure on the region R from the normal
force in PEBBLES is:

1
- F. . 5.32
P= gy 2 [P 6.2
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where

p = the pressure

Rj, = the height of the region
r = the radius of the cylinder.

The equation for calculating the Janssen formula pressure is

K =22, — 2ppp [ 112, + 1+ 1 (5.33)

b= fpg (5.34)
b2r ( watl K=

= 1—e = 2r 5.35

P Appant ) ( )

where

lpp = the pebble-to-pebble static friction coefficient
Lwair = the pebble to wall

f = the packing fraction

p = the density

g = the gravitational acceleration

z = the depth that the pressure is being calculated.

For Figures 5.8 and 5.9, a packing fraction of 0.61 is used and a density of
1760 kg/m? are used. There are 20,000 pebbles packed into a 0.5-meter radius
cylinder, and 1,000 are recirculated before the pressure measurement is done.

Figure 5.8 compares the Janssen model with the PEBBLES simulation for
static friction values of 0.05 and 0.15. For this case, the Janssen formula and the
simulated pressures match closely. Figure 5.9 compares these again. In this case,
the 0.25 p values only approximately match, and the 0.9 static friction pressure
values do not match at all. The static friction slip vectors were examined; they
are not perfectly vertical, and they are not fully loaded. This results in the static
friction force being less than the maximum possible, and thus the pressure is
higher since less of the force is removed by the walls.
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Figure 5.8. Comparison with 0.05 and 0.15 pu.



32

Pressure (N/m?)

30000

25000 ~

20000

15000

10000

5000

CHAPTER 5. A NEW STATIC FRICTION MODEL

Janssen Comparison 0.25 and 0.9
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Figure 5.9. Comparison with 0.25 and 0.9 pu.



Chapter 6

Unphysical Approximations

Modeling the full physical effects that occur in a pebble-bed reactor mechanics
is not computationally possible with current computer resources. In fact, even
modeling all the intermolecular forces that occur between two pebbles at suffi-
cient levels to reproduce all macroscopic behavior is probably computationally
intractable at the present time. This is partially caused by the complexity of
effects such as inter-grain boundaries and small quantities of impurities that
affect the physics and different levels between the atomic effects and the macro-
scopic world. Instead, all attempts at modeling the behavior of pebble-bed
reactor mechanics have relied on approximation to make the task computation-
ally practical. The PEBBLES simulation has as high or higher fidelity than past
efforts, but it does use multiple unphysical approximations. This chapter will
discuss the approximations so that future simulation work can be improved,
and an understanding of what limitations exist when applying PEBBLES to
different problems.

In different regions of the reactor, the radioactivity and the fission will heat
the pebbles differently, and the flow of the coolant helium will distribute this
heat around the reactor. This will change the temperature of different parts of
the reactor. Since the temperature will be different, the parameters driving the
mechanics of the pebbles will be different as well. This includes parameters such
as the static friction coefficients and the size of the pebbles, which will change
through thermal expansion. As well, parameters such as static friction can also
vary depending on the gas which they currently are in and in which they were,
since some of the gas tends to remain in and on the carbon surface. Graphite
dust produced by wear may also affect static friction in downstream portions of
the reactor.

The pebbles in a pebble-bed reactor have helium gas flowing around and
past them. PEBBLES and all other pebble-bed simulations ignore effects of
this on pebble movement. However, the gas will cause both additional friction
when the pebbles are dropping through the reactor, and the motion of gas will
cause additional forces on pebbles.

Pebble-bed mechanics simulations use soft spheres. Physically, there will
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be deflection of spheres under pressure (even the pressure of just one sphere
on the floor), but the true compression is much smaller than what is actually
modeled. In PEBBLES, the forces are chosen to keep the compression distance
at a millimeter or below. Another effect related to the physics simulation is
that force is transmitted via contact. This means the force from one end of the
reactor is transmitted at a speed related to the time-step used for the simulation,
instead of the speed of sound.

Since simulating billions of time-steps is time consuming, two approxima-
tions are made. First, instead of simulating the physical time that pebble-bed
reactors have between pebble additions (on the order of 2-5 minutes), new peb-
bles are added at a rate between a quarter second and two seconds. This may
result in somewhat unphysical simulations since some vibration that would have
dampened out with a longer time between pebble additions still exists when the
next pebble impacts the bed. Second, since full recirculation of all the pebbles
is computationally costly, for some simulations, only a partial recirculation or
no recirculation is done.

The physics models do not take into account several physical phenomena.
The physics do not handle pure spin effects, such as when two pebbles are
contacting and are spinning with an axis around the contact point. This should
result in forces on the pebbles, but the physics model does not handle this effect
since the contact velocity is calculated as zero. In addition, when the pebble is
rolling so that the contact velocity is zero because the pebble’s turning axis is
parallel to the surface and at the same rate as the pebble is moving along the
surface, there should be rolling friction, but this effect is not modeled either.
As well, the equations used assume that the pebbles are spherically symmetric,
but defects in manufacturing and slight asymmetries in the TRISO particle
distribution mean that there will be small deviations from being truly spherically
symmetric.

The physics model does not match classical Hertzian or Mindlin and Dere-
siewicz elastic sphere behavior. The static friction model is a simplification and
does not capture all the hysteretic effects of true static friction. Effectively,
this means that hg, the coefficient used to calculate the force from slip, is not
a constant. In order to fully discuss this, some features of these models will be
discussed in the following paragraphs.

Since closed-form expressions exist for elastic contact between spheres, they
will be used, instead of a more general case, which lacks closed-form expressions.
Spheres are not a perfect representation of the effect of contact between shapes
such as a cone and a sphere, but should give an approximation of the size of the
effect of curvature.

The amount of contact area and displacement of distant points for two
spheres or one sphere and one spherical hole (that is, negative curvature) for
elastic spheres can be calculated via Hertzian theory (Johnson, 1985). For two
spherical surfaces the following variables are defined:

111 -
R R, R, ’
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and

1 1—vf 1-13
Ex B E,
with R; the ith’s sphere’s radius, E; the Young’s modulus, v; the Poisson’s

ration of the material. For a concave sphere, the radius will be negative. Then,
via Hertzian theory, the contact circle radius will be:

(6.2)

3NR\'/?
a= ( 1B ) (6.3)
where N is the normal force. The mutual approach of distant points is given
by:
2 2\ /3
s (9N (6.4)
R 16 RE*2

Notice that the above differs compared to the Hooke’s Law formulation that
PEBBLES uses. The maximum pressure will be:

3N
T 271a?

So as a function of the radii R; and Rs, the circle radius of the contact will

be:
_1\ 1/3
3N 1 177!

If m is used for the multiple of negative curvature sphere of the radius of
the other, then the equation becomes:

LN 1/3
o= (XL 1 (6.7)
-\ 4F* R, mRy '

which can be rearranged to:

N 1/3 1 —1/3
o= (2N 11— — (6.8)
4B+ m

From this equation, as m increases, it has less effect on contact area, so
if Ry is much greater than R;, the contact area will tend to be dominated
by R; rather than Rs. For example, typical radii in PEBBLES might be an
18-cm outlet chute and a 3-cm pebble, which would put m at 6, so the effect
on contact-area radius would be about 33% difference compared to pebble-to-
pebble contact-area radius, or 6% compared to a flat surface.!

Po (6.5)

L Sample values of k = (1 — #)71/3: m = —1,k = 1.26 for sphere to sphere, m = 6,k =

0.94 sphere to outlet chute and m = oo, k = 1 sphere to flat plane.
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To some extent, the actual contact area is irrelevant for calculating the
maximum static friction force as long as some conditions are met. Both surfaces
need to be of a uniform material. The basic macroscopic description |Fs| <=
| N| needs to hold, so changing the area changes the pressure P = N/a, but
not the maximum static friction force. If the smaller area causes the pressure to
increase enough to cause plastic rather than elastic contact, then through that
mechanism, the contact area would cause actual differences in experimental
values. PEBBLES also does not calculate plastic contact effects.

The contact area causes an effect through another mechanism. The tangen-
tial compliance in the case of constant normal and increasing tangential force,
that is, the slope of the curve relating displacement to tangential force, is given
in Mindlin and Deresiewicz as:

2—v
8ua

(6.9)

Since the contact area radius, a, is a function of curvature, the slope of the
tangential compliance will be as well, which is another effect that PEBBLES’
constant hs does not capture.

In summary, when the static friction uses a constant coefficient for hg, causes
two different approximations. First, using the same constants for wall contact
when there are different curvatures is an approximation that will give somewhat
inconsistent results. Since the equations for spherical contact are dominated by
the smaller radius object, this effect is somewhat less but still exists. Second,
using the same constant coefficient for different loading histories is an approxi-
mation. For a higher fidelity, these effects need to be taken into account.



Chapter 7

Code Speedup and
Parallelization

Planned and existing pebble-bed reactors can have on the order of 100,000 peb-
bles. For some simulations, these pebbles need to be followed for long time
periods, which can require computing billions of time-steps. Multiplying the
time-steps required by the number of pebbles being computed over leads to the
conclusion that large numbers of computations are required. These computa-
tions should be as fast as possible and as parallel as possible, to allow relevant
calculations to be done in a reasonable amount of time. This chapter discusses
the process of speeding up the code and parallelizing it.

The PEBBLES program has three major portions of calculation. The first
is determining which pebbles are in contact with other pebbles. The second
computational part is determining the time derivatives for all the vectors for
all the pebbles. The third computational part is using the derivatives to up-
date the values. Overall, for calculation of a single time-step, the algorithm’s
computation time is linearly proportional to the number of pebbles, that is,

O(n).t

7.1 General Information about Profiling

There are four different generic parts of the complete calculation that need to
considered for determining the overall speed. The first consideration is the time
to compute arithmetic operations. Modern processors can complete arithmetic
operations in nanoseconds or fractions of nanoseconds. In the PEBBLES code,
the amount of time spent on arithmetic is practically undetectable in wall clock
changes. The second consideration is the time required for reading memory
and writing memory. For main memory accesses, this takes hundreds of central

1O(n): The algorithm scales linearly (n) with increasing input size, so if it runs with 100
pebbles, it takes roughly 10 times as long as when it runs with only 10 pebbles. Or, if it goes
from 10 pebbles to 20 pebbles, it will take twice as long to run.
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processing unit (CPU) clock cycles, so these times are on the order of fractions
of microseconds (Drepper, 2007). Because of the time required to access main
memory, all modern CPUs have on-chip caches that contain a copy of the re-
cently used data. If the memory access is in the CPU’s cache, the data can be
retrieved and written in a small number of CPU cycles. Main memory writes
are somewhat more expensive than main memory reads, since any copies of the
memory that exist in other processor’s caches need to be updated or invalidated.
So, for a typical calculation like a + b — ¢, the time spent doing the arithmetic
is trivial compared to the time spent reading in a and b and writing out c.

The third consideration is the amount of time required for parallel program-
ming constructs. Various parallel synchronization tools such as atomic opera-
tions, locks, and critical sections take time. These take an amount of time on
the same order of magnitude as memory writes. However, they typically need
a read and then a write without any other processor being able to access that
chunk of memory in between which requires additional overhead, and a possible
wait if the memory address is being used by another process. Atomic opera-
tions on x86_64 architectures are faster than using locks, and locks are generally
faster than using critical sections. The fourth consideration is network time.
Sending and receiving a value can easily take over a millisecond for the round
trip time. These four time consuming operations need to be considered when
choosing algorithms and methods of calculation.

There are a variety of methods for profiling the computer code. The simplest
method is to use the FORTRAN 95 intrinsics CPU_TIME and DATE_AND_TIME.
The CPU_TIME subroutine returns a real number of seconds of CPU time. The
DATE_AND_TIME subroutine returns the current wall clock time in the VALUES ar-
gument. With gfortran, both these times are accurate to at least a millisecond.
The difference between two different calls of these functions provides informa-
tion on both the wall clock time and the CPU time between the calls. (For the
DATE_AND_TIME subroutine, it is easiest if the days, hours, minutes, seconds, and
milliseconds are converted to real seconds past some arbitrary time.) The time
methods provide basic information and a good starting point for determining
which parts of the program are consuming time. For more detailed profiling,
the oprofile (opr, 2009) program can be used on Linux. This program can
provide data at the assembly language level that makes it possible to determine
which part of a complex function is consuming the time. Non-assembly lan-
guage profilers are difficult to accurately use on optimized code, and profiling
non-optimized code is misrepresentative.

7.2 Overview of Parallel Architectures and Cod-
ing
Parallel computers can be arranged in a variety of ways. Because of the expense

of linking shared memory to all processors, a common architecture is a cluster
of nodes with each node having multiple processors. Each node is linked to
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other nodes via a fast network connection. The processors on a single node
share memory. Figure 7.1 shows this arrangement. For this arrangement, the
code can use both the OpenMP (Open Multi-Processing) (ope, 2008) and the
MPT (Message Passing Interface) (mpi, 2009) libraries. MPI is a programming
interface for transferring data across a network to other nodes. OpenMP is a
shared memory programming interface. By using both programming interfaces,
high-speed shared memory accesses can be used on memory shared on the node,

and the code can be parallelized across multiple nodes.
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Figure 7.1. Sample cluster architecture.

7.3 Lock-less Parallel O(N) Collision Detection

For any granular material simulation, which particles are in contact must be
determined quickly and accurately for each time-step. This is called “collision
detection,” though for pebble simulations it might be more accurately labeled
“contact detection.” The simplest algorithm for collision detection is to iterate
over all the other objects and compare each one to the current object for colli-
sion. To determine all the collisions using that method, O(N?) time is required.

An improved algorithm by Cohen et al. (1995) uses six sorted lists of the
lower and upper bounds for each object. (There is one upper bound list and
one lower bound list for each dimension.) With this algorithm, to determine
the collisions for a given object, the bounds of the current objects are com-
pared to bounds in the list—only objects that overlap the bounds in all three
dimensions will potentially collide. This algorithm typically has approximately
O(N log(N)) time,? because of the sorting of the bounding lists (Cohen et al.,

1995).

A third, faster method, grid collision detection, is available if the following
requirements hold: (1) there is a maximum diameter of object, and no object
exceeds this diameter, and (2) for a given volume, there is a reasonably small,
finite, maximum number of objects that could ever be in that volume. These
two constraints are easily satisfied by pebble-bed simulations, since the pebbles
are effectively the same size (small changes in diameter occur due to wear and
thermal effects). A three-dimensional parallelepiped grid is used over the entire

2In order from slowest to fastest (for sufficiently big N): O(N?2),0(N log(N),0(N),0(1).
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range in which the pebbles are simulated. The grid spacing gs is set at the
maximum diameter of any object (twice the maximum radius for spheres).

Two key variables are initialized: grid_count(z,y, z), the number of pebbles
in grid locations x,y,z; and grid_ids(z,y, z,1), the pebble identification numbers
(ids) for each x,y,z location. The id is a unique number assigned to each pebble
in the simulation. The spacing between successive grid indexes is gs, so the
index of a given x location can be determined by |(x — Zin)/gs|, where Zpin
is the zero x index’s floor; similar formulas are used for y and z.

The grid is initialized by setting grid_count(:,:,:) = 0, and then the x,y,z
indexes are determined for each pebble. The grid_count at that location is then
atomically® incremented by one and fetched. Because OpenMP 3.0 does not
have a atomic add-and-fetch, the lock xadd x86_64 assembly language instruc-
tion is put in a function. The grid_count provides the fourth index into the
grid_ids array, so the pebble id can be stored into the ids array. The amount
of time to zero the grid_count array is a function of the volume of space, which
is proportional to the number of pebbles. The initialization iteration over 