Analyses of Two End-User Software Vulnerability Exposure Metrics

7th International Conference on Availability, Reliability, and Security

Jason L. Wright
Miles McQueen
Lawrence Wellman

August 2012

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint should not be cited or reproduced without permission of the author. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency.
Analyzes Of Two End-User Software Vulnerability Exposure Metrics

Jason L. Wright, Miles McQueen, Lawrence Wellman
Idaho National Laboratory
Idaho Falls, Idaho, USA
jlwright@ieee.org, {miles.mcqueen,lawrence.wellman}@inl.gov

Abstract

The risk due to software vulnerabilities will not be completely resolved in the near future. Instead, putting reliable vulnerability measures into the hands of end-users so that informed decisions can be made regarding the relative security exposure incurred by choosing one software package over another is of importance. To that end, we propose two new security metrics, average active vulnerabilities (AAV) and vulnerability free days (VFD). These metrics capture both the speed with which new vulnerabilities are reported to vendors and the rate at which software vendors fix them.

We then examine how the metrics are computed using currently available data sets and demonstrate their estimation in a simulation experiment using four different browsers as a case study. Finally, we discuss how the metrics may be used by the various stakeholders of software to aid usage decisions.

Index Terms

security, metrics, experimental security

1. Introduction

Every week new software vulnerabilities are discovered in many applications. Various measurements of this effect have been proposed, but comparisons between similar products from different vendors or different products with the same vendor have been difficult. We propose two new end-user focused metrics that allow for cross product or cross vendor comparison. The metrics are based on measurements of

Figure 1. Vulnerability lifetime model

the number and rate of vulnerabilities reports, and the patch development rate for individual software products. These measurements are related to events which are part of the vulnerability life cycle.

To quantitatively characterize the time between events in the vulnerability life cycle model, depicted in Fig. 1 and fully described in [1], ideally one would measure the time from discovery of a flaw until the time all end-user machines have been patched to address the issue. In practice, this has been demonstrated to be difficult since the times and dates for most events along the life cycle are not credibly and verifiably known.

For instance, it is difficult to accurately record the initial discovery of a vulnerability \((a)\), even for a discoverer because it is possible the vulnerability has been independently discovered by another party [2]. On the other end of the life cycle, it has been shown that applying security patches \((f)\) involves a half-life behavior and finally tapers off at approximately 5–10% of machines that will remain unpatched [3].

In practice, we can measure the time from when a vulnerability is reported to a vendor \((c)\) until the time when a patch is issued by that vendor \((e)\). For instance, ZDI and iDefense both buy vulnerabilities from the security research community and then report them to the appropriate vendor. In doing so, they record the time from report to patch release. Essentially, this leaves us with only two stages in the vulnerability life...
cycle that can be accurately known:

- birth: vulnerability reported to the vendor (c), and
- death: patch issued by the vendor (e).

For this paper we define vulnerability lifespan to be the time a vulnerability has spent in the vendor’s queue. This is the time between the birth and death of the vulnerability. A vulnerability is considered “active” from the time it is reported to or discovered by the vendor until a patch is supplied by the vendor. Metrics based on the number of “active” vulnerabilities in a vendor’s queue can be used to aid quantitative estimation of end-user exposure.

Simply examining the raw quantity of vulnerabilities reported for a product in databases like the National Vulnerability Database (NVD) or the Open Source Vulnerability Database (OSVDB) neglects the effect of the vendor response time to addressing vulnerabilities. Likewise, examining the lifespans of vulnerabilities from sources such as the Zero Day Initiative (ZDI) or iDefense neglects the number of vulnerabilities. New metrics which combine both quantity and lifespan of vulnerabilities for individual products would be useful.

In this paper, we propose two new metrics that capture the effect of the number and rate of new vulnerabilities being found and their lifespans. The first metric, average active vulnerabilities (AAV), is the median number of software vulnerabilities which are known to the vendor of a particular piece of software but for which patch has been publicly released by the vendor. The second metric, vulnerability free days (VFD) captures the probability that a given day has exactly zero active vulnerabilities.

1.1. Summary of contributions

We focus on the end-user software vulnerability exposure from individual products by defining two new end-user metrics and we use these two metrics in a case study of four browsers to discuss and demonstrate that:

- end-user vulnerability exposure should be considered as a combination of lifespans and vulnerability announcement rates (not lifespans alone), the proposed metrics capture both aspects;
- the two metrics may be easily estimated with reasonable accuracy, and thus are usable by end-user security practitioners and decision makers;
- individual products with the same functionality, e.g. browsers, may yield distinctly different end-user vulnerability exposure levels.

1.2. Organization of Paper

The rest of this paper is organized as follows. In Section 2 we provide an overview of vulnerability stakeholders. In Section 3 we expand on the two new end-user focused metrics and then in Section 4 we collect data on four browsers and examine the results of applying our metrics. Section 5 discusses a proposed use case for the metrics, and Section 6 describes related work in the area. Finally, Section 7 provides conclusions and areas for future work.

2. Overview of Vulnerability Stakeholders

It is important to consider the various stockholders in software vulnerabilities because each stakeholder observes different effects as vulnerabilities are discovered, reported, and then mitigated. This section discusses each stakeholder in the process.

There are three primary stakeholders in the vulnerability disclosure process:

- vendors who produce software products,
- vulnerability researchers: individuals or firms, who actively search for vulnerabilities or buy them, and then report the vulnerability to the vendor, and
- end-users: enterprises or individuals, who are confronted with the potential for loss from vulnerabilities.

Each of these three stakeholders will be discussed in the following subsections.

2.1. Software vendors

Software products have vulnerabilities. The absolute number of vulnerabilities within any given software product is currently not measurable with any degree of confidence [4, 5]. What can be determined, and what software vendors must confront, is the number of vulnerabilities being reported and how long it takes to produce a patch. The length of time it takes to produce a patch is directly under the control of the vendor and can be directly influenced by the quality and quantity of resources devoted to the task. It is a business decision, and each vendor (perhaps each vendor’s product line) has their own unique costs and benefits to consider.

The number of vulnerabilities being reported for the product is, at best, only indirectly influenced by the vendor. The vendor can adopt some form of more secure software development process such as Microsoft’s Secure Development Life Cycle [6], which
in principle would reduce the number of vulnerabilities which would have otherwise occurred. But the vendor can control neither the level of attention of nor the tools available to vulnerability researchers. As the quantity and quality of researchers looking at the deployed product increases, we would expect the number of vulnerabilities reported to also increase. As the tools available to researchers for aiding the identification of vulnerabilities improve or represent new types of attack, the number of vulnerabilities being reported would also be likely to increase.

From a business cost and end-user perspective, vendors would prefer that vulnerabilities never be announced or even found. However, they have little opportunity to control the release of vulnerability information unless they develop contracts with those researchers identifying and demonstrating vulnerabilities. While this has occurred, there are difficulties such as the fact that buying the information does not imply control; for example, other researchers may find the same vulnerability. Consequently, vendors must balance resources expended to develop and deploy patches for vulnerabilities against the potential losses of revenue due to reduced end-user choice of their product.

2.2. Vulnerability researchers

Vulnerability research firms actively search or buy vulnerabilities for some purpose. In this paper we are only addressing the researchers who intend to report vulnerabilities to the vendor. The purpose may be to gain notoriety in the hopes of increasing business volume, develop relationships which lead to increased recognition and security related business opportunities, or perhaps, altruistically, to improve the security of software products. In many cases recognition of the security firm, whether organization or individual, seems to be important.

2.3. End-users

The end-users of software products which have vulnerabilities that have been discovered but remain unpatched expose themselves or their firms to risk. Ideally, end-users could know how many vulnerabilities exist in the software products they are using, determine the probability they will be exploited, and effectively determine the potential losses. But as discussed in Section 1 this information is neither dependably available nor verifiable. So new techniques are needed to help end-users assess their risk.

Vulnerabilities which have been publicly announced help end-users make rational decisions about whether to apply a patch if available, institute a workaround such as disabling the service or reconfiguring the process, or accept the risk. Vulnerabilities which have not been privately reported to the user, publicly announced, or mitigated by a third party such as Tippingpoint supplying IDS signatures for vulnerabilities they have purchased, leave the end-user relatively blind to the particular risk from these vulnerabilities. Vulnerabilities which have been discovered and reported to the vendor but not yet fixed constitute a risk which is mostly undetermined at this time but may present opportunity for improved estimation. The end-user exposure to these software vulnerabilities are discussed in detail in Section 3.

3. Two End-User Exposure Metrics

It is useful to provide all stakeholders (vulnerability researchers, vendors, and end-users) with security metrics which support accountability and decision making. To this end, we define two vulnerability exposure metrics as proxies for a product’s contribution to an end-users level of vulnerability exposure. The first metric, Vulnerability Free Days (VFD), is the percent of days in which the vendor’s queue of reported vulnerabilities for the product is empty. The second metric, Average Active Vulnerabilities per day (AAV), is the median number of vulnerabilities per day in a vendor’s product queue.

Fig. 2 shows a hypothetical example. At the top, vulnerabilities are reported and patched as time moves from left to right. The bottom shows the running sum of active vulnerabilities. If we take each horizontal division as a day, there are 3 days with no vulnerabilities, 6 days with exactly 1 active vulnerability, 17 days with 2, and 4 days with 3. The AAV is the median number of active vulnerabilities: 2. The VFD is \(\frac{3}{30} = 10\%\).

These metrics are primarily intended for consumption by end-users, particularly those in charge of making policy decisions as to which software vendors and products should be purchased, or which should form part of an “allowed use” policy. Comparative evaluation of software products, or vendors as a whole, can be expressed by calculating and examining their AAV and VFD values. A product with a small average number of active vulnerabilities should have some preference over one with a higher average. The inverse is true with the vulnerability free days metric where a large number is preferred to a small number.

The information needed to calculate these two metrics for a product are the lifespan of each reported
vulnerability, and the number and rate of vulnerability disclosures.

While not currently easy to obtain, in principle this information would be easy to produce and verify by the vendors. The data could also be verified by the independent researchers who reported vulnerabilities, and the vendors could be induced to make the information free and easily accessible if end-user pressure is brought to bear.

4. Metrics Case Study

The proposed VFD and AAV vulnerability exposure metrics were estimated for the browsers Apple Safari, Google Chrome, Mozilla Firefox, and Microsoft Internet Explorer. To develop the metrics for each browser, data was collected in order to characterize their respective vulnerability lifespans, and number and rate of vulnerability disclosures. After, some success in characterizing this information for each browser, a simulation was written and used to estimate the metrics. The possibility for quick and easy short cuts for approximating the metrics are discussed at the end of the case study (Section 4.4).

In particular, we used several data sources to estimate the:

- arrival rate of vulnerability announcements,
- number of vulnerabilities announced, and
- lifespan of vulnerabilities.

The arrival rate of vulnerability announcements is the time between two different announcements of vulnerabilities for a given product. The number of vulnerabilities announced represents the integral number of vulnerabilities disclosed as part of a specific announcement. It is common that more than one vulnerability for a given product is announced on a given announcement day (e.g., Microsoft “patch Tuesday”). The lifespan of a vulnerability is the same as defined previously. It begins when the vulnerability is reported or discovered by the vendor, and ends when the vendor supplies a patch.

4.1. Data Sources

Data was gathered from the National Vulnerability Database (NVD) [7], iDefense Vulnerability Contributor Program (VCP) [8], and the Zero Day Initiative (ZDI) [9]. The NVD data was used to characterize the arrival rate of vulnerability announcements and the number of vulnerabilities announced per instance. The ZDI and iDefense data were used to characterize vulnerability lifespans. In all cases, descriptive statistics are provided to give an idea of the behavior of the data harvested from each source.

The NVD consists of approximately 46,000 unique vulnerabilities enumerated by an identifier called a Common Vulnerability Enumeration (CVE). The database is freely available and further breaks down vulnerabilities by vendor, product, version, etc. (Common Platform Enumeration, CPE). For our research, the XML data feed provided by NVD was downloaded and imported into an SQL database so that our desired queries could be executed. The data was used for computing the arrival rates of vulnerabilities, and determining the number of vulnerabilities disclosed at each announcement.

The National Vulnerability Database has been widely criticized for the inaccuracies it contains. For example, [10]–[12] all describe various inconsistencies in the NVD and other vulnerability databases. In this paper, we are primarily describing the concept and potential usage of our metrics, so we are less concerned with the absolute consistency of the existing sources.

To minimize the effects of the erroneous data in the NVD, the time span of analysis is limited for each product and only two fields were used: the Common Platform Enumeration (CPE) and the “first published” date. The vendor and product fields of the CPE were used to discriminate between products. Other parts of the CPE were ignored, except when making the distinction between Internet Explorer versions. The “first published” field of the NVD is used to examine the arrival rate of announcements and the number of vulnerabilities announced per day.

Limiting the dates for which we collected vulnerability data used for each product allows us to ignore the start-up effects of the NVD. As pointed out in [12], the early years of the NVD were unstable. Table 1 shows the time span considered for each product and the
Table 1. Number of points and time span for each product in NVD.

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>Time Start</th>
<th>Time End</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Internet Explorer</td>
<td>209</td>
<td>Jan 1, 2001</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>113</td>
<td>Jan 1, 2004</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>Google Chrome</td>
<td>30</td>
<td>Dec 12, 2008</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>Apple Safari</td>
<td>92</td>
<td>Jun 22, 2003</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>MS Internet Explorer 6</td>
<td>180</td>
<td>Jan 1, 2001</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>MS Internet Explorer 7</td>
<td>85</td>
<td>Jan 1, 2004</td>
<td>Jun 6, 2010</td>
</tr>
<tr>
<td>MS Internet Explorer 8</td>
<td>20</td>
<td>Jan 1, 2009</td>
<td>Jun 6, 2010</td>
</tr>
</tbody>
</table>

4.1.1. Vulnerability Announcements. Fig. 3 shows the histogram of vulnerability announcements for Microsoft Internet Explorer. The other products in this study have very similar graphs, i.e. roughly exponential in shape, though the mean and median values differ substantially. Table 2 summarizes the statistical properties of the announcement rate. If one were to choose a web browser simply by the arrival rate of new vulnerability announcements, one would choose Apple Safari because the expected time between new vulnerability announcements is slightly over 25 days (more than 3 weeks), and the other browsers are less than 3 weeks. Firefox does not fare well at all with new vulnerabilities announced about 12 days apart.

4.1.2. Number of Announcements per day. However, because arrival rate is actually an announcement of at least one vulnerability and possibly more, we examine the distribution of the number of vulnerabilities on an announcement day. The distribution for Firefox is shown in Figure 4. The other browsers in this study follow a similar shaped curve, so the graphs are omitted. Table 3 summarizes the number of vulnerabilities per announcement. Internet Explorer and Safari are close to 2 vulnerabilities per announcement on average where as Firefox averages more than 3 vulnerabilities per announcement.

4.1.3. Vulnerability Lifespans. The ZDI and iDefense databases consist of vulnerabilities for which the corresponding firm has paid a security researcher for a vulnerability. ZDI or iDefense then works with the affected vendor to responsibly disclose the vulnerability. Both companies provide free and online access to the data including the date the company reported the vulnerability to the vendor and the date

Table 2. Properties of vulnerability announcement rates (days).

<table>
<thead>
<tr>
<th>Product</th>
<th>mean</th>
<th>median</th>
<th>σ</th>
<th>min / max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Internet Explorer</td>
<td>14.95</td>
<td>9.0</td>
<td>16.3</td>
<td>1 / 98</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>12.09</td>
<td>10.0</td>
<td>10.5</td>
<td>1 / 51</td>
</tr>
<tr>
<td>Google Chrome</td>
<td>17.17</td>
<td>10.5</td>
<td>18.4</td>
<td>1 / 80</td>
</tr>
<tr>
<td>Apple Safari</td>
<td>25.47</td>
<td>15.5</td>
<td>28.5</td>
<td>1 / 125</td>
</tr>
<tr>
<td>MS Internet Explorer 6</td>
<td>17.36</td>
<td>10.0</td>
<td>18.6</td>
<td>1 / 97</td>
</tr>
<tr>
<td>MS Internet Explorer 7</td>
<td>23.14</td>
<td>13.0</td>
<td>41.7</td>
<td>1 / 365</td>
</tr>
<tr>
<td>MS Internet Explorer 8</td>
<td>21.15</td>
<td>14.0</td>
<td>16.5</td>
<td>1 / 54</td>
</tr>
</tbody>
</table>

Table 3. Properties of vulnerability announcement rates (number of announcements).

<table>
<thead>
<tr>
<th>Product</th>
<th>mean</th>
<th>median</th>
<th>σ</th>
<th>min / max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Internet Explorer</td>
<td>2.105</td>
<td>1.0</td>
<td>2.075</td>
<td>1 / 17</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>3.158</td>
<td>1.0</td>
<td>3.811</td>
<td>1 / 16</td>
</tr>
<tr>
<td>Google Chrome</td>
<td>2.871</td>
<td>1.0</td>
<td>3.667</td>
<td>1 / 19</td>
</tr>
<tr>
<td>Apple Safari</td>
<td>2.279</td>
<td>1.0</td>
<td>4.108</td>
<td>1 / 36</td>
</tr>
<tr>
<td>MS Internet Explorer 6</td>
<td>2.188</td>
<td>1.0</td>
<td>2.121</td>
<td>1 / 15</td>
</tr>
<tr>
<td>MS Internet Explorer 7</td>
<td>1.733</td>
<td>1.0</td>
<td>1.332</td>
<td>1 / 6</td>
</tr>
<tr>
<td>MS Internet Explorer 8</td>
<td>1.221</td>
<td>1.0</td>
<td>1.221</td>
<td>1 / 5</td>
</tr>
</tbody>
</table>

Figure 3. Histogram of Internet Explorer vulnerability announcement arrival.

Figure 4. Histogram of Firefox vulnerabilities announced on announcement day.
Table 4. Distribution of ZDI/iDefense lifespans for each browser.

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>mean (days)</th>
<th>σ</th>
<th>min / max (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Internet Explorer</td>
<td>33</td>
<td>182.1</td>
<td>106.9</td>
<td>47 / 489</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>20</td>
<td>91.6</td>
<td>50.7</td>
<td>11 / 184</td>
</tr>
<tr>
<td>Google Chrome</td>
<td>5</td>
<td>114.6</td>
<td>41.3</td>
<td>56 / 146</td>
</tr>
<tr>
<td>Apple Safari</td>
<td>10</td>
<td>106.8</td>
<td>55.5</td>
<td>20 / 210</td>
</tr>
</tbody>
</table>

Figure 5. Empirical cumulative distribution functions of browser lifespans.

at which the vulnerability was publicly disclosed. We use the collected data for computing the distribution of vulnerability lifespans.

Table 4 shows the descriptive statistics for the distribution of the ZDI and iDefense lifespan data. Firefox has the clear lead at 91.6 days to address vulnerabilities and Internet Explorer lags far behind with a mean of 182 days to address vulnerabilities. Fig. 5 shows a diagram of the empirical cumulative distribution functions of the lifespans for each browser. For each observed sample lifespan, the graph rises \(1/N\) at that point along the horizontal axis. A rapid vertical rise shows a clustering of observed lifespans and small slope shows few observed lifespans of that value. Fig. 5 is a more detailed examination of the distribution information in Table 4. For instance, MS Internet Explorer is shown to have an overall slower distribution of lifespans; part of this is caused by a small number of high value lifespans (> 450 days). The other three browsers have similarly positioned and shaped lifespan distributions.

4.2. Model for Simulation

To facilitate estimation of the AAV and VFD metrics, a model and corresponding simulator were constructed. We employ a simulation because the exact data are not known and a closed form solution based on the empirical distributions is not yet available (though an approximation is found and discussed in Section 4.4). To generate a single simulation run, time is set to \(t_0\) and a sample is taken from the announcement arrival rate distribution for the browser under study, \(\Delta t\). Then, at time \(t = t_0 + \Delta t\), a sample is taken from the distribution of the number of vulnerabilities announced on an announcement day. This determines how many vulnerabilities are terminated with the announcement, \(n\). For each \(i \in 1, \ldots, n\), a sample is taken from the lifetime distribution, \(l_i\).

For the discrete event simulation, two events are generated:

- a vulnerability birth at time \(t - l_i\)
- a vulnerability death at time \(t\).

Finally, \(t_0\) is set to \(t\) and event generation continues until \(t_0 > t_{\text{end}}\) where \(t_{\text{end}}\) is the simulated time.

To compute the AAV metric, the discrete number of vulnerabilities estimated to be in the vendors queue each day was put in rank order and the probability of each was computed. Finding the median is then a matter of finding number of vulnerabilities corresponding to the 50th percentile. The VFD metric is calculated by counting the number of days in the simulation with exactly zero vulnerabilities, then dividing by the simulation days to obtain the probability of no vulnerabilities. To minimize simulation warm-up and wind-down, the simulation was run for 100 different random seeds and over a simulated time of 100 years.

This simulation model is a \(G/G/\infty\) queuing model: generalized arrival process, generalized service time, and an infinite number of servers. The arrival process is complicated by the fact that multiple vulnerabilities can be announced at a single point in time. Even if the underlying data could be mathematically modeled, the authors believe that there is no closed form solution for the AAV or VFD metrics.

Various statistical models were tried for each of the different PDFs required by the simulation. Since the model parameters were not equally well characterized by the statistical models, the simulations were run using the raw data collected for each parameter as a discrete distribution function. The results of the simulations were used to calculate the VFD and AAV for each browser.

4.3. Simulation estimates of AAV and VFD

For estimating the AAV metric, the arrival rate of announcements, number of vulnerabilities disclosed per announcement, and the vulnerability lifespans are random variables distributed as described in Section 4.1.3.
The distributions were derived from the collected data. The simulation provided the results shown in Fig. 6. The horizontal axis is the number of vulnerabilities in a vendor's queue and the vertical axis is the percentage of days which had that number of vulnerabilities. The AA V metric was then calculated as the median number of active vulnerabilities.

The AA V estimate for each of the four browsers was 9.55 for Safari, 19.1 for Chrome, 23.9 for Firefox, and 23.2 for Internet Explorer (this data is summarized in Table 5). So the estimated vulnerability exposure, AA V, due to deployment of a web browser is distinctly different depending on which web browser is in use. Safari is clearly superior to the other three browsers.

However, there is a question of whether it is reasonable to group the data from Internet Explorer versions 6, 7, and 8 together since each version might have distinctly different values for the model parameters and thus different AA V metric values. So we further decomposed Internet Explorer, and recalculated the AA V for each version. Grouping the three versions together results in a higher overall AA V because the sets of vulnerabilities are not independent; a vulnerability may affect one or more major versions of the browser. This in turn affects the sampling of report rate, announcement rate, and lifespan.

Similar to Fig. 6 the simulation results for Internet Explorer versions 6, 7, and 8 are shown in Fig. 7. The AA V estimate was 20.9 for Internet Explorer version 6, 12.2 for Internet Explorer version 7, and 13.5 for Internet Explorer version 8. Internet Explorer 6 is clearly the poorest performer according to the AA V estimates. This is in line with the general security community expectations. The cause for Internet Explorer 6 showing so poorly while versions 7 and 8 are have quite similar AA V values is unknown. We speculate that the difference lies in the fact that Internet Explorer 7 and 8 have more common code than either have with version 6. Also, the Microsoft Security Development Life Cycle became a mandatory policy at Microsoft in 2004 (three years after the release of IE6, 2001, and two years before IE7, 2006) [6].

For estimating the VFD metric, the arrival rate of announcements and number of vulnerabilities announced per announcement are random variables distributed as described in Section 4.1.3. In Fig. 8 the lifespan of vulnerabilities was varied from 1 day (vulnerabilities are addressed practically as soon as they are reported) to 182 days. The lifespan is varied along the horizontal axis, and the percentage of vulnerability free days is shown on the vertical axis. Our goal was to examine the behavior of the VFD metric as the result of different vulnerability lifespans for products.

The results are provided for Safari, Chrome, Fire-
Table 6. Comparison of simplified calculation of AAV to simulated.

<table>
<thead>
<tr>
<th>Product</th>
<th>Simulated</th>
<th>Short Cut</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Internet Explorer</td>
<td>23.2</td>
<td>24.6</td>
<td>6.09%</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>23.9</td>
<td>23.9</td>
<td>0.01%</td>
</tr>
<tr>
<td>Google Chrome</td>
<td>19.1</td>
<td>19.2</td>
<td>0.34%</td>
</tr>
<tr>
<td>Apple Safari</td>
<td>9.55</td>
<td>9.56</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

fox, and Internet Explorer (versions 6, 7, and 8 are treated as an aggregate since we are examining vendor behavior). The most interesting result is that even for a vulnerability lifespan of 45 days, the percent of days which are vulnerability free are less than 20% for Safari and less than 6% for the three other browsers. Even Safari, the best performing browser as judged by this metric, does not do well. When the lifespan is the length of those we actually measured, approximately 75 days for Safari and 146 days for Internet Explorer, the VFD for all browsers is less than 10%. A poor performance by all browsers.

4.4. Simplification of Metrics Calculations

Both the AAV and VFD metrics could be used by end-users when making software product purchasing or allowed use decisions. However, to gain use, they need to be able to be quickly calculated when the proper information is available. For end-users who are unable to deploy a simulation to calculate AAV and VFD it would be useful if there were short cut calculations to make first order estimates of the metrics. We formulated two short cuts and compared the results to those from the simulation. The formulas may be found in (1) and (2).

\[
AAV = \frac{(\text{Average Lifespan})(\text{Average Reported})}{\text{Average report rate}} \quad (1)
\]

\[
VFD = (1 - e^{-1})^{AAV} \approx 0.632^{AAV} \quad (2)
\]

Table 6 shows the result of using the simulation data versus the simplified calculation using (1). The simplified version does a reasonable job of estimating the results of the simulation and is easy calculated directly from available data. The worst estimation performance from Table 6 is Internet Explorer (6% error), yet even this calculation is less than 1.5 vulnerabilities in magnitude.

The idea behind using AAV to compute VFD is from a software vendor point of view; namely, a vendor has some control over the number of developers assigned to addressing vulnerability reports. By adjusting the speed with which vulnerabilities are patched, a vendor can pick a target VFD probability and find the average lifespan needed to achieve it.

Fig. 9 displays the simulated versus estimated VFD values. Ideally, the lines for each product would follow the line \(y = x \); the departure from this is the estimation error. Generally, the curves follow a linear shape meaning that the first order effects of the simulation are captured by the estimation. The model fits well the behavior of VFD for Internet Explorer and Safari and somewhat less for Chrome and Firefox.

5. Using the Metrics

Each of the stakeholders described in Section 2 can take advantage of the metrics. The most obvious use is for end-users making software usage decisions. These metrics, along with required features, could form the basis for choosing to use one software product versus another.

Vendors could rank themselves and use the metrics as a benchmark to compare themselves against other vendors. Internally, product groups can compare themselves with other product groups within the same vendor. Just as companies doing hazardous work strive for long stretches with no safety accidents, striving for high vulnerability free days or low average active vulnerabilities could be a development goal itself.

The last group is vulnerability researchers. Their motives for finding security vulnerabilities in the first place is not well understood. However, these are the individuals that currently, and can in the future, help keep the vendors honest. The researchers know when they discovered a vulnerability and more importantly when they reported it to the vendor. They are also best positioned to determine whether a particular patch or solution fixes the problem. Currently, estimating VFD
and AAV requires no help from software vendors, but the estimates are not as precise as could be with more comprehensive data.

6. Related Work

Software life cycle metrics are a well studied aspect of development. These metrics concentrate on the rate at which defects are detected in the various stages of the life cycle of software. Less well understood are metrics for the security vulnerability life cycle.

Several approaches to understanding the life cycle of vulnerabilities have been undertaken over the past few years. The approaches fall mostly into two methods: examining one or a few software packages in detail or looking for large scale trends.

Ozment and Schechter [4], for example falls into the former category. They examined the discovery of vulnerabilities in the OpenBSD operating system across several years and versions to determine whether it is fundamentally more secure over time.

Also in this category is Schryen, who examined 17 different products (open source and closed source) [13]. This work concentrated on the question of whether open source products are more secure than closed source products. Schryen concludes that there is no empirical evidence that open source products and closed source products differ significantly. Comparing Mozilla Firefox (open source) against Internet Explorer (closed source) based on the AAV and VFD, the same conclusion might be drawn.

Frei et al. is an example of the latter category where all vulnerabilities in the NVD and other sources are examined to find global trends [10]. This work does not help, though, when considering individual products or vendors and comparing them.

In [2], Arnold, et al. examined a single product: the Linux kernel. They found a significant number of software bugs that were later discovered to be vulnerabilities. These delayed impact vulnerabilities highlight the difficulties in obtaining accurate and verifiable dates for discovery of vulnerabilities. In the case of delayed impact vulnerabilities, the discoverer either did not check whether a bug was also a vulnerability or its impact was not realized until well after the bug was reported.

More recently, Clark et al. took a new approach where the first four vulnerabilities for a particular release of a particular piece of software were examined [11]. Using this approach, they claim that extrinsic properties to software development are more indicative of vulnerability discovery than are intrinsic properties like software quality. Their approach is applied across vendors, open source versus closed source, etc.

Arora et al. examined the vulnerability life cycle by concentrating on an optimal policy for disclosure [1]. Their work provides the model used for discussion of the life cycle in Section 1. However, the approach of optimizing the disclosure policy based on economic factors relies on many variables which are simply not credibly known.

Our approach differs in that we are not wholly interested in the life cycle. Instead, we examined a method for ranking products across vendors or products within a single vendor on the basis of their raw number of vulnerabilities and the speed with which they address them. Our result thus far has been to demonstrate the applicability of the metrics against a small set of products.

As far as vulnerability metrics are concerned, several reports concentrate on the total number of vulnerabilities announced over a given time (per year or per half year) and the number of fixed vulnerabilities over the same time for example: [14], [15]. At a gross level, this information is similar to our AAV metric, but it is not as granular. A vulnerability can last for a year or a day between report and patch and the total announced minus the number fixed will stay the same using this type of counting. The AAV metric takes both the total number of announced vulnerabilities and their lifespan into account in per day units.

Finally, an interesting metric was proposed by Acer and Jackson, which attempts to combine: patch deployment, vulnerability severity, and user-installed browser plug-ins [16]. The authors gather “user-agent” strings reported by browsers visiting a site created by the authors. From this, the number of users who are not completely up to date with patches are counted, and the “best” browser is the one with the fewest number of users who are not fully patched. However, this method depends on random sampling (possibly achievable with strategically placed collectors) and only addresses software which report complete version information. For non-browser products, it is not clear how measurements could be conducted, and even for browsers, the authors found that Internet Explorer does not report all of the necessary information. Further, we examined whether vulnerability lifespan and severity (CVSS rank) were independent and we failed to reject that hypothesis (e.g. \(p = 0.12 \) for MS IE).

7. Conclusions and Future Work

Two new software vulnerability exposure metrics were proposed with the end-user in mind. Both Vulner-
ability Free Days and Average Active Vulnerabilities were demonstrated in a case study of the four browsers, Safari, Chrome, Firefox, and Internet explorer. Estimation values for the metrics were generated through simulation. Short cut estimations were shown to be practical. Based on the derived exposure metrics for each browser, there are large differences in vulnerability exposure, with Safari having the lowest exposure.

The exposure metrics are sensitive to both lifespans and the number of vulnerabilities being discovered and reported. So Firefox which produces patches quickest still has one of the worst vulnerability exposures because so many vulnerabilities are discovered and reported. It was also noted that it may not be realistic for any of the browsers to get to even 50% Vulnerability Free Days.

Characterization of the lifespans, vulnerability announcement rates, and the number of vulnerabilities per announcement is continuing as more data is collected and more sophisticated statistical methods are used. The two vulnerability exposure metrics, Vulnerability Free Days and Average Active Vulnerabilities, might be more practical for end-users in a slightly modified disclosure process.

We have begun investigation into a disclosure process which emphasizes the needs of the end-users, the diversity of end-users and software product vendors, and the value of transparency. We also intend to explore and develop a recommended disclosure process for critical infrastructure control systems based on these metrics and the unique aspects of control systems. In all of the new disclosure processes transparency is a critical element. Each process demands that the requisite data be free and easily accessible to end users. There appear to be mechanisms that make this attainable.

Acknowledgment

The authors would like to thank Debbie McQueen for her assistance in gathering the ZDI and iDefense data.

References

