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Abstract� The planned large scale deployment of smart grid 
network devices will generate a large amount of information 
exchanged over various types of communication networks. The 
implementation of these critical systems will require appropriate 
cyber-security measures. A network anomaly detection solution is 
considered in this paper. In common network architectures 
multiple communications streams are simultaneously present, 
making it difficult to build an anomaly detection solution for the 
entire system. In addition, common anomaly detection algorithms 
require specification of a sensitivity threshold, which inevitably 
leads to a tradeoff between false positives and false negatives 
rates. In order to alleviate these issues, this paper proposes a 
novel anomaly detection architecture. The designed system 
applies a previously developed network security cyber-sensor 
method to individual selected communication streams allowing 
for learning accurate normal network behavior models. In 
addition, an Interval Type-2 Fuzzy Logic System (IT2 FLS) is 
used to model human background knowledge about the network 
system and to dynamically adjust the sensitivity threshold of the 
anomaly detection algorithms. The IT2 FLS was used to model 
the linguistic uncertainty in describing the relationship between 
various network communication attributes and the possibility of 
a cyber attack. The proposed method was tested on an 
experimental smart grid system demonstrating enhanced cyber-
security.  

Keywords-� Anomaly Detection; Critical Systems, Cyber 
Sensor; Fuzzy Logic System; Domain Knowledge; Smart Grid;  

I. INTRODUCTION 
Resiliency and enhanced state-awareness are highly 

desirable properties of modern critical systems [1]. It is of 
paramount importance that critical infrastructures, such as 
energy production or energy distribution systems, are 
equipped with intelligent components for timely reporting and 
understanding of the status and behavioral trends in the system 
[2]. With the increasing amount of information being 
exchanged over various types of communication networks, 
resiliency and enhanced state-awareness cannot be achieved 
without ensuring appropriate cyber-security measures. 

In the particular case of smart grids networks a large scale 
deployment of devices will soon be prevalent. These systems 
potentially add Wireless Access Point (WAP) devices to 
existing utility networks. For instance, in a typical Advanced 
Metering Infrastructure (AMI) system 1,500 wireless sensors 
report to one or multiple WAP nodes [3]. As of April 2010, 

almost 69 million of these meters were planned for 
deployment in the United States [4]. Assuming a uniform 
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 without 
any regard for redundancy. An example deployment is the 
Pacific Northwest Smart Grid Demonstration Project. A 2011 
progress report states that utility partners are in the process of 
installing 80,000 smart grid components to consumers in five 
states [5]. This large influx of devices into a network vastly 
expands the potential network attack surface. 

To ensure the cyber-security of network system various 
approaches can be applied [6]-[14]. One of the most common 
approaches is anomaly detection. An anomaly detection 
system is trained on a set of normal network behavior. The 
extracted behavior model is then used to detect anomalous 
behavior in the newly observed testing data.  

Two possible difficulties with this approach are identified as 
follows. Firstly, building a single comprehensive normal 
behavior model for a specific network communication system 
might be difficult due to the complexity of the network and 
due to the presence of multiple diverse communication 
streams. Secondly, the performance of anomaly detection 
algorithms can be tuned by adjusting a sensitivity threshold. 
The selection of a specific threshold value inevitably results in 
a tradeoff between false negative and false positive rate. 
Hence, determining the suitable sensitivity threshold value 
constitutes an important design problem. 

This paper alleviates the above mentioned issues by 
proposing novel anomaly detection architecture. The presented 
system first identifies individual communication streams in the 
overall network traffic and then individually applies a 
previously developed network security cyber-sensor algorithm 
to selected streams [8], [15]. This approach allows for learning 
accurate normal behavior models specific to each network 
communication. In addition, an Interval Type-2 Fuzzy Logic 
System (IT2 FLS) is used to model human background 
knowledge about the network system and to dynamically 
adjust the sensitivity threshold of the anomaly detection 
algorithms. The IT2 FLS is used to model the linguistic 
uncertainty in describing the relationship between various 
network communication attributes and the possibility of a 
cyber attack. For instance, if only a small number of distinct 
communication protocols is expected to be used during the 



normal network communication, a linguistic rule can be 
created that sets a lower sensitivity threshold when a high 
number of distinct communication protocols appear in the 
network communication. Hence, the IT2 FLS is not used 
directly for detecting anomalous network traffic, but it is only 
used to utilize the provided human domain knowledge to tune 
the performance of the clustering based anomaly detection 
algorithm via adjusting the sensitivity threshold. 

The proposed anomaly detection system was implemented 
and tested on a smart grid experimental test-bed. It was 
demonstrated that the system can learn normal behavior 
models for each selected communication stream and perform 
accurate anomaly detection. In addition, it was also 
demonstrated that the availability of domain knowledge can 
significantly improve the performance of the anomaly 
detection method. 

The rest of the paper is structured as follows. Section II 
presents an overview of the previously developed network 
security cyber-sensor. Section III proposes how to model the 
domain knowledge using IT2 FL rules. Section IV describes 
the architecture of the proposed anomaly detection system. 
Finally, the system is tested in Section V and the paper is 
concluded in Section VI. 

II. PREVIOUS WORK 
This section provides a brief overview of the previously 

developed network security cyber-sensor algorithm. First, the 
network traffic feature extraction method is described. Next, 
the fuzzy rule extraction technique based on online clustering 
is explained. 

A. Feature Extraction from Packet Stream 

The anomaly detection algorithm is trained on a set of 
network traffic features extracted by a window-based 
technique. This technique is applied directly to the stream of 
packets. The inherent time series nature of the packet stream 
data is described by a vector, which captures statistical 
properties of the network traffic. 

As described in the previous work [8], a window of specified 
length is shifted over the stream of network packets. At each 
position of the window a descriptive feature vector is 
computed. As the next arriving packet is pushed into the 
window, the last packet is removed from the end. Fig. 1 
schematically depicts this feature extraction process. Table I 
summarizes the list of extracted statistical features from the 
packet window. This set of features was empirically selected 
based on the motivation to most accurately capture the time 
series nature of the packet stream. For further details and 
evaluation of the feature extraction refer to [8]. 

B. Fuzzy Logic Rule Extraction via Online Clustering 

In the previous work of the authors, a new low-cost online 
rule extraction technique was proposed to model the network 
traffic [8]. The model is composed of a set of fuzzy rules that 
are constructed based on the window-based feature vectors 
using an online version of the adapted Nearest Neighbor 
Clustering (NNC) algorithm. This adapted algorithm 

maintains additional information about the spread of data 
points associated with each cluster throughout the clustering 
process. Each cluster Pi of encountered normal network 
behavior is described by its center of gravity ic

�
, weight wi and 

a matrix of boundary parameters Mi. Hence: 
 

 L
ni

L
i

U
ni

U
i

i
n
iiiiiii cc

cc
McccMwcP

,1,

,1,1 },...,,{},,,{
�

���
���  (1) 

 
Here, i is the index of the particular cluster, j

ic is the 

attribute value in the jth dimension, U
jic , and L

jic , are the upper 
and lower bounds of the encountered values of the jth attribute 
for data points assigned to cluster Pi and n denotes the 
dimensionality of the input. The algorithm is initialized with a 
single cluster P1 positioned at the first supplied training input 
vector 1x

�
. This initial input vector is received once the shifting 

window is first filled with the incoming network packets. 
Upon acquiring a new data vector ix

�
 from the shifting 

window buffer, the set of clusters is updated according to the 
NNC algorithm. First, the Euclidean distance to all available 
clusters with respect to the new input feature vector ix

�
 is 

calculated. The nearest cluster Pa is identified. If the computed 
nearest distance is greater than the established maximum 
cluster radius parameter, a new cluster is created. Otherwise 
the nearest cluster Pa is updated according to: 
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Fig. 1 Window based feature extraction process [10]. 
 

TABLE I 
SELECTED WINDOW-BASED FEATURES 

Num. of IP addresses Num. of Flag Codes 
Min. Num. of Packets / IP Min. Num. of Packets / Flag Code 

Max. Num. of Packets / IP Max. Num. of Packets / Flag Code 

Avg. Time between Packets Num. of Packets with 0 Win. Size 

Time Length of the Window Num. of Packets with 0 Data Len. 

Data Speed Avg. Win. Size 

Num. of Protocols Avg. Data Length 

Min. Num. of Packets / Protocol Num. of Ports 

Max. Num. of Packets / Protocol  
 



The rule extraction phase of the learning process produces a 
set of clusters, which describe the normal network 
communication behavior. In the next stage, each cluster is 
converted into a fuzzy logic rule. Each fuzzy rule describes the 
belonging of a particular sub-region of the multi-dimensional 
input space to the class of normal behavior. 

Each cluster is transformed into a fuzzy rule. Each fuzzy rule 
is composed of n antecedent fuzzy sets j

iA that are modeled 
using a non-symmetric Gaussian fuzzy membership function 
with distinct left and right standard deviations. There are three 
parameters of the membership function, the mean j

im  and the 

left and the right standard deviations j
i� , j

i� , as shown in 
Fig. 2. The parameter values are extracted based on the 
computed cluster Pi in the following manner: 
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Here, symbol � denotes the fuzziness parameter, which is 

used to adjust the spread of the membership functions. This set 
of fuzzy rules is then used to calculate a similarity score 
between the input vector and the model of normal behavior 

C. Anomaly Detection Example 

The presented fuzzy logic based anomaly detection method 
assigns a real value to each window-based feature vector. This 
value expresses the likelihood that the window of packets 
contains an intrusion. The closer this value is to 1 the more 
confident the algorithm is that there is an intrusion present. 
The classification performance of this anomaly detection 
algorithm can be tuned by setting a specific sensitivity 

threshold � . This threshold adjusts the tradeoff between the 
false negative and false positive rate of the algorithm.  

As an exemplary case study, consider an illustrative output 
of the presented anomaly detection algorithm as depicted in 
Fig. 3. Here, the thin solid black line depicts the real-valued 
response of the anomaly detection algorithm, the thick solid 
red line marks the actual occurrence of an intrusion and finally 
the thin dotted line depicts three different sensitivity threshold 
levels. The classification performance in terms of correct 
classification rates and the false positive and false negative 
rates for three different constant sensitivity threshold values is 
summarized in Table II. It can be observed that lowering the 
threshold value decreases the false negative rate (i.e. 
frequency of missed intrusion attempts), however, with the 
tradeoff of increasing the false positive rate (i.e. frequency of 
falsely reported alarms). 

III. REPRESENTATING DOMAIN KNOWLEDGE USING 
LINGUISTIC FUZZY RULES 

This Section first provides a brief introduction to Interval 
Type-2 Fuzzy Logic. Next, the methodology for representing 
cyber-security domain knowledge is described. 

A. Interval Type-2 Fuzzy Logic Systems 

Type-1 Fuzzy Sets (T1 FSs) and T1 Fuzzy Logic Systems 
(FLSs) have been successfully applied in many engineering 
areas [16]-[18]. However, when modeling linguistic terms, 
which can mean different things to different people, T1 FSs 
have been shown to provide only limited design capabilities 
[18]. To address these issues, Type-2 (T2) FSs and T2 FLSs 
were originally proposed by Zadeh [19]. T2 FSs offer more 
modeling flexibility because they employ membership degrees 
that are themselves fuzzy sets [20]-[22]. 

In this paper, the Interval T2 (IT2) FSs are considered. IT2 
FSs restrict all membership grades into intervals, which result 
in significant simplification of the computational complexity 
associated with computing with IT2 FSs. An IT2 FS A

~  can be 
described by its membership function ),(~ ux

A
� , where Xx	

and xJu	  [18]: 

 
Fig. 2 Illustration of the non-symmetric input Gaussian fuzzy set j

iA . 
 

 
Fig. 3 Classification performance of the fuzzy logic based anomaly detection system with different levels of constant sensitivity threshold � . 

TABLE II 
CLASSIFICATION PERFORMANCE WITH DIFFERENT SENSITIVITY THRESHOLDS 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.9037% 0.1217% 0.0275% 
0.6 99.5504% 0.1082% 1.3753% 
0.9 99.3799% 0.1082% 2.0079% 
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Here, x and u are the primary and the secondary variables 

and Jx denotes the interval support of the secondary 
membership function. The domain of the primary 
memberships Jx defines the Footprint-Of-Uncertainty (FOU) 
of FS A

~
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The FOU of an IT2 FS can be completely described by the 

upper and lower membership functions: 
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It is this FOU that allows for modeling of linguistic 

uncertainty. As an example depicted in Fig. 4, consider two 
possibilities for modeling an arbitrary linguistic concept using 
T1 FSs A1 and A2 (e.g. two experts designed two different 
membership functions for the same concept) and the possible 
model of this concepts using IT2 FSs A

~ . It can be seen that 
the IT2 FS encapsulates the T1 FS models and it can model 
the linguistic uncertainty. This flexibility in modeling vague 
linguistic concepts was the reason for employing IT2 FSs and 
IT2 FLS for modeling the linguistic human cyber-security 
domain knowledge in the proposed system. 

Linguistic knowledge can be formulated using implicative 
IT2 fuzzy rules as follow [18]: 
 

Rule Rk: IF x1 is kA1
~

AND ��AND xn is k
nA

~
 

               THEN yk is kB
~   (10) 

 
Here, symbols k

iA
~

and kB
~ denote the ith input IT2 FS and the 

output IT2 FS of the kth rule, respectively, where n is the 
dimensionality of the input vector x

�
 and yk is the associated 

output variable.  
The set of linguistic rules together with the representation of 

the input and output IT2 FSs can be used to create an IT2 FLS. 
Due to the limited space in this paper, the technical details of 
fuzzy inferencing using IT2 FLSs have been omitted but they 
can be found in literature [18], [23]. 

B. Cyber-Security Domain Knowledge Modeling 

The IT2 fuzzy rules can be used to linguistically describe 
the relationship between various features of the network 
communication and the possibility of a cyber attack. The 
window-based feature extraction technique is used to describe 
the global features of the monitored network traffic.  

Each window-based feature is first normalized into a unit 
interval. There are different approaches to fuzzifying the input 
domain of each attribute. Because of its simplicity, the 
fuzzification scheme depicted in Fig. 5(a) was used in the 
presented work. Here, two trapezoidal and one triangular IT2 
fuzzy sets were used to fuzzify each input domain into fuzzy 

�

��Low����Medium���	���High��� 

The output IT2 FSs express the likelihood of an intrusion in 
the system and can be used to adjust the sensitivity threshold 
of each anomaly detection algorithm. As was chosen for the 
input domain, the output domain is modeled using the three 
triangular IT2 FSs: �Low����Medium���	���High�. These sets 
are depicted in Fig. 5(b). 

The provided set of linguistic fuzzy rules and the described 
input and output IT2 FSs are used to implement an IT2 FLSs, 
which calculates the specific sensitivity threshold of the 
anomaly detection. For instance, the domain knowledge can be 
encoded using IT2 FL rules 
�����
!��If number of protocols is 
high then sensitivity threshold is low�� 

IV. ANOMALY DETECTION SYSTEM USING LINGUISTIC 
RULES 

The overall architecture of the proposed anomaly detection 
system is depicted in Fig. 6. The network traffic is first 
processed by an IT2 FLS which uses a fuzzy logic rule base 
with encoded linguistic domain knowledge to calculate the 
cyber-security context of the current observed network traffic. 
This cyber-security context expresses the belief that an 
intruder is currently present in the system. 

In the next stage, the network traffic is separated into 
individual communication streams. In the current 
implementation, a specific IP address is used to identify each 
communication stream. Other features, such as port numbers 

 
Fig. 4 Interval type-2 fuzzy set A

~
. 

 
(a) 

 
(b) 

Fig. 5 Input IT2 FSs (a) and output IT2 FSs (b).  



of protocol types can also be used. Packets assigned to 
individual communication streams are then passed into 
dedicated anomaly detection algorithms. Each anomaly 
detection algorithm maintains its own buffer of incoming 
packets, which is used to extract the window-based features as 
described in Section II. The fuzzy logic based anomaly 
detection algorithm is used to assign a real value to each input 
vector, which expresses the belief that the current packet 
window contains intrusive packets. The closer this value is to 
1 the more confident the algorithm is that an intrusion is 
present. 

The final classification is performed by comparing the real-
valued output to the sensitivity threshold. When the real-
valued output is above the sensitivity threshold, a network 
anomaly is reported for the specific communication stream. 
When the output value is below the sensitivity threshold the 
network traffic is marked as normal. The actual value of the 
sensitivity threshold is dynamically computed based on the 
cyber-security context computed by the IT2 FLS. Hence, the 
IT2 FLS encoding human domain knowledge is not used 
directly for detecting anomalies, instead it is used to only tune 
the performance of the anomaly detection algorithm via 
adjusting the sensitivity threshold. 

It should be noted here that the anomaly detection algorithm 
utilizes an assumption that a representative normal behavior 
training data set has been collected. In case, that a 
representative normal behavior training data set was not 

collected, the anomalous classification of the network traffic 
might only signalize that the observed network traffic is 
normal but it has not been included in the training data set. 
This assumption is a fundamental concept underlying the use 
of anomaly detection techniques. 

V. EXPERIMENTAL RESULTS 
This Section first describes the smart grid experimental test-

bed and then presents experimental results. 

A. Experimental Test-Bed 

A small campus grid (SCG) and sensor network that 
physically exists in the Center for Advance Energy Studies in 
Idaho Falls, Idaho was used as a smart grid test platform. The 
network consists of a heterogeneous mixture of devices 
including wireless sensors monitoring environmental 
conditions in the building, wind and solar renewable 
resources, and a variety of control system devices. The SCG is 
connected to a small wind turbine, a solar power station, and a 
wireless �"#��	���

���
����$�
��
$������
. A representation 
of the sensor network and small campus grid is shown in Fig. 
7. Additionally, the network has several Windows based 
�����
��
��$�&��������
����'��*$������
���
��	��+;��	����
National Instruments PLC. 

The SCG includes a wireless sensor network consisting of 
environmental sensors from three commercial vendor systems. 
The network contains wireless systems from Emerson, 
Honeywell and Arch Rock. Each system connects wirelessly 
to the sensors via a wireless access point. As with the AMI 
deployment these WAP gateways have a wired connection on 
one side of the network and wireless interfaces to the remote 
sensors on the other side. The network capture device has 
visibility on the wired side of the connection. Each wired 
WAP connection varies in the method of network protocols 
utilized on top of Ethernet. 

B. Experimental Results 

In order to obtain suitable testing data, the Nmap [24] and 
Nessus [25] software applications were used to generate 
anomalous network traffic behavior in an attempt to simulate 
instances of cyber attacks. Nmap is a network scanning tool 
that is commonly used to identify hosts, scan ports, operating 
systems and to determine applications that are listening on 
open ports. Nessus provides auditing capabilities, vulnerability 
assessments and profiling information. The simulated 
intrusion attempts included: ARP pings, SYN stealth scans, 
port scanning, open port identification and others. Cyber 
attacks ranged from long attacks composed of many packets to 
very short intrusion sequences.  

Training and testing datasets of experimental network traffic 
were recorded. The training data set contained 100,000 
packets recorded during normal network activity. Here, the 
normal network activity refers to a common network 
communication traffic flow without any disturbances. In order 
to obtain this normal training data set, isolated network traffic 
was maintained to prevent the possibility of the presence of 
any intrusive attempts. This data set was used only during the 

 
Fig. 6 Architecture of the proposed anomaly detection system.  

 
 

Fig. 7 Diagram of the smart grid experimental test-bed.  



training phase of the algorithms. The second data set contained 
200,000 recorded packets with simulated abnormal behavior 
along with normal behavior. This data set was not used during 
the training phase. 

For this specific experimental test bed, a set of six linguistic 
fuzzy rules was used to summarize the domain knowledge as 
shown in Table III. The first three rules were derived from the 
knowledge that the expected normal network traffic features 
steady behavior with only minor variations in the rate of 
transmitted packets. The second three rules then express the 
knowledge that the present system uses only a small number 
of communication protocols and an increased number of 
different communication protocols are a likely indication of 
possible intrusive attempt. 

With three selected communication streams, the training 

phase took 4.03s seconds of wall clock time while testing was 
achieved in 15.12s. The fuzzy logic models for individual 
communication streams were composed of 19, 57 and 2 
clusters, respectively. Fig. 8 depicts the results of the anomaly 
detection for the three selected communication streams. The 
dotted line depicts the dynamically calculated sensitivity 
threshold. It can be observed that the provided linguistic 
domain knowledge encoded in form of IT2 fuzzy rules allows 
for dynamic adjustment of the sensitivity threshold.  

The classification performance of the proposed anomaly 
detection system is compared to the classification performance 
with constant sensitivity threshold in Tables IV-VI. It can be 
observed that the proposed method achieves the best tradeoff 
between the rate of false positives and false negatives. In other 
words, the experimental results demonstrate that when 
relevant domain knowledge about the specific network system 
is available, it can be utilized to improve the classification 
performance of the network anomaly detection method via 
dynamically adjusting the sensitivity threshold. 

VI. CONCLUSION 
This paper presented a novel complex anomaly detection 

architecture for critical control systems. The proposed system 
applied a previously developed network security cyber-sensor 
method to individual selected communication streams. In 

 
TABLE III 

CYBER-SECURITY LINGUISTIC DOMAIN KNOWLEDGE 
R1: If Time of Window is Low then Sensitivity Threshold is Low 
R2: If Time of Window is Medium then Sensitivity Threshold is Low 
R3: If Time of Window is High then Sensitivity Threshold is High 
R4: If Number of Protocols is Low then Sensitivity Threshold is High 
R5: If Number of Protocols is Medium then Sensitivity Threshold is High 
R6: If Number of Protocols is High then Sensitivity Threshold is Low 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Classification performance of the proposed anomaly detection system for three selected communication streams (a)-(c). 
 



addition, the developed system dynamically adjusts the 
sensitivity threshold of each anomaly detection algorithm 
based on domain knowledge about the specific network 
system. This domain knowledge was encoded using Interval 
Type-2 Fuzzy Logic rules, which linguistically describe the 
relationship between various features of the network 
communication and the possibility of a cyber attack.  

The proposed anomaly detection system was implemented 
and tested on a smart-grid experimental test-bed. It was 
demonstrated that the system can learn normal behavior 
models for individual selected communication streams and 
perform accurate anomaly detection. In addition, it was also 
demonstrated that the availability of domain knowledge can 
significantly improve the performance of the anomaly 
detection method by dynamically adjusting the sensitivity 
threshold. 
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TABLE IV 
CLASSIFICATION PERFORMANCE FOR STREAM 1 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.8539% 0.1461% 0.0000% 
0.6 99.8705% 0.1295% 0.0000% 
0.9 99.8788% 0.1212% 0.0000% 

IT2 FLS 99.8722% 0.1278% 0.0000% 
TABLE V 

CLASSIFICATION PERFORMANCE FOR STREAM 2 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.9037% 0.1217% 0.0275% 
0.6 99.5504% 0.1082% 1.3753% 
0.9 99.3799% 0.1082% 2.0079% 

IT2 FLS 99.9111% 0.1116% 0.0275% 
 TABLE VI 

CLASSIFICATION PERFORMANCE FOR STREAM 3 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.8643% 0.2953% 0.0000% 
0.6 99.8960% 0.2265% 0.0000% 
0.9 99.8960% 0.2265% 0.0000% 

IT2 FLS 99.8960% 0.2265% 0.0000% 
 


