
INL/EXT-13-29799

Multiphysics Integrated
Coupling Environment
(MICE) User Manual

August 2013

The INL is a U.S. Department of Energy National Laboratory 
operated by Battelle Energy Alliance



DISCLAIMER
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof.



INL/EXT-13-29799

Multiphysics Integrated Coupling
Environment (MICE)  

User Manual

August 2013

Idaho National Laboratory
Idaho Falls, Idaho 83415 

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Assistant Secretary for 
Environmental Management

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517





CONTENTS

ACRONYMS ................................................................................................................................................ v 

1. INTRODUCTION .............................................................................................................................. 1

2. STARTING A NEW MODEL ........................................................................................................... 3
2.1 Creating a Loop ........................................................................................................................ 4 
2.2 Adding the MATLAB Component .......................................................................................... 5 
2.3 Adding the STAR-CCM+ Component..................................................................................... 9 
2.4 Adding a Script Component  to Output MFEED, Perform Bounds Checking and 

Control Iterations ................................................................................................................... 24 
2.5 Adding a Script Component that Uploads Pictures to MICE Website................................... 28 
2.6 Linking Components Together and Setting Loop Properties ................................................. 31 
2.7 Setting up the Model to Run STAR-CCM+ on HPC ............................................................. 36 
2.8 Optimization........................................................................................................................... 41 

3. MATLAB MODEL OF COLD CAP ............................................................................................... 42
3.1 Changes Made to the Original 1D MATLAB Model ............................................................ 42 
3.2 Modified MATLAB Code ..................................................................................................... 43 
3.3 Data Dictionary for Matlab Cold Cap Model......................................................................... 52 
3.4 Equations used for Material Properties (in physical_data.m) ................................................ 54 

3.4.1 Heat Conductivity ..................................................................................................... 54 
3.4.2 Degree of Conversion (alpha) – based on TGA data ................................................ 54 
3.4.3 Mass Flows ............................................................................................................... 54 
3.4.4 Heat Capacities ......................................................................................................... 54 
3.4.5 Spatial Density .......................................................................................................... 55 
3.4.6 Calculation of QB using QU (in can7.m).................................................................. 56 

3.5 Cold Cap Model Documentation ........................................................................................... 57 

4. ACKNOWLEDGMENTS ................................................................................................................ 70

5. REFERENCES ................................................................................................................................. 70

iii



iv



ACRONYMS

GUI Graphical User Interface

HPC High Performance Computing environment 

MICE Multiphysics Integrated Coupling Environment 

ODE ordinary differential equation

v



Multiphysics Integrated Coupling Environment (MICE)
1. INTRODUCTION

The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant 
modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap 
region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated 
Coupling Environment (MICE), shown below, has been developed to create a cohesive simulation of a waste 
glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap 
uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region 
where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the 
three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D 
simulation. The two processes are linked through ModelCenter integration software using time steps that are 
specified for each process. Data is to be exchanged circularly between the two models, as the inputs and 
outputs of each model depend on the other. 

The coupling between the MATLAB and STAR-CCM+ models has been approached in two ways. The 
first approach is a programming-based approach, in which the two models exchange data over network 
sockets. The socket communications are encoded in Java, and the models are linked using Simulink, a 
graphical programming language. The second approach to the coupling is software-based: ModelCenter is 

1



used to create wrapped components for the MATLAB and STAR-CCM+ models and then link them together 
to allow for data exchange. Overall, it is clear that ModelCenter allows for significantly more functionality 
and usability than the programming approach implemented in Simulink.

In the Simulink coupling, STAR-CCM+ is represented as a Level 2 MATLAB S-function, and the 
MATLAB code for the cold cap has been included directly, as Simulink offers direct integration of MATLAB 
code. Unfortunately, however, Simulink does not support some of the functionalities offered by MATLAB. 
Therefore, the original MATLAB model for the cold cap has been amended heavily to function properly in 
this coupling. To connect the MATLAB and STAR-CCM+ models, programming is used to establish network 
sockets and a framework for how information is transmitted between the two models. Currently, after weeks 
of effort, this coupling approach is still a work in progress – it has been much more difficult than originally 
anticipated to establish a connection between the two models using Java, even with an example of a similar 
coupling at our disposal. This brings into question the sustainability of this model: model maintenance would 
require significant expertise in Simulink, MATLAB and Java and also a working knowledge of socket 
communications. Almost all manipulations to this simulation involve programming, and very little 
documentation has been found for such a coupling.

The ModelCenter coupling, on the other hand, has been quite successful. ModelCenter offers an easy-to-
use plug-in for MATLAB which can execute code externally in a MATLAB engine. Thus, unlike with the 
Simulink coupling, very few modifications have been made to the original MATLAB code for it to perform as 
needed in ModelCenter. Though no plug-in is available for STAR-CCM+, it is still relatively straightforward 
to create a component for the STAR-CCM+ model using QuickWrap, a general script-wrapping utility 
offered by ModelCenter. This utility makes use of a Java macro, which is automatically generated by 
STAR-CCM+, to run the melter simulation in batch mode. QuickWrap can also parse output files from 
STAR-CCM+ at user-specified delimiters to extract the data that is to be sent to MATLAB. In contrast to the 
Simulink coupling, linking the two models is almost trivial in ModelCenter, in which the creation of links 
between variables is easily accomplished through an intuitive, user-friendly GUI. In Simulink, linking the two 
models requires the use of tedious code that has yet to work. Additionally, ModelCenter, through the use of 
AnalysisServer, allows the various components in a model to run on different machines. This utility has been 
used in the melter model to run the computationally intensive STAR-CCM+ simulation on a high-
performance computing cluster while the rest of the model runs on a desktop. In Simulink, this kind of 
machine flexibility would not be possible without significant programming efforts. Lastly, because of its user-
friendly interface, the ModelCenter simulation is also much more maintainable than the Simulink model, as 
very few special skills are required to understand how to use ModelCenter.

The above outlined benefits of ModelCenter must be weighed against licensing costs, as our project has 
already incurred licensing costs for MATLAB and STAR-CCM+. The benefits of using ModelCenter, 
however, outweigh these costs. It is foreseeable that ModelCenter’s optimization and trade study capabilities 
will allow us to optimize melting rate and glass quality for our melter model, thus leading to savings in money 
and time for waste vitrification operations. After using ModelCenter for this waste melter model, we 
recommend the use of this powerful tool in modeling other multi-component systems.

2



2. STARTING A NEW MODEL
When a new model is created in ModelCenter, it will prompt you to select from either a process flow or a 

data flow. For the melter project, we will use a process flow, as it is easier to implement a circular model 
using a loop in the process flow.

3



2.1 Creating a Loop
The loop component will be used to drive the coupled model. To create a loop component, select 

“process”: from the Server Browser on the bottom left, and then select “Loop” from the bottom pane. Drag 
and drop the loop into the purple model screen.

After you drag and drop the loop component into the model, a pop-up should appear that asks you to set 
the loop properties. Ignore this for now by either closing the window or pressing “OK”, since loop properties 
will be set later in this tutorial.

4



2.2 Adding the MATLAB Component
To add the MATLAB model of the cold cap to the model, click on “favorites:” in the Server Browser on 

the bottom left of the screen, and drag and drop the MATLAB plug-in into the model.

As soon as you drag and drop the MATLAB component into the model, a window should pop-up, giving 
you three options for how you want to use MATLAB code. In our case, we are going to use the second 
option, “Call external M-file from the plug-in.”

5



You will then be asked to browse and select the MATLAB file that you want to run. For this project, 
navigate to the directory that contains all the cold cap model files, and select “main2D.m.” Once you have 
done so, a pop-up will show up that says “No variables were detected.” This is fine and can be ignored, since 
we will be setting variables manually. Code should now appear in the window, however, that links to your 
main2D.m file, as shown on the next page.

6



We now need to edit this code to reflect the inputs and outputs coming into and leaving from the 
MATLAB model. The MATLAB model will take in TB1, QU1 and MFEED1, and it will output QB1, TT1, 
MGAS1 and MGLASS1. Therefore, change the last line in the code (line 14) to be: [QB1, TT1, MGAS1, 
MGLASS1] = fileToExecute(TB1, QU1, MFEED1)

This is basically how a function is called in MATLAB; here you are calling the main2D function with the 
appropriate inputs and outputs. In the MATLAB file main2D.m, the function header must also have the same 
inputs and outputs.

Next, you must add all these variables in the left pane where it says <click to add variable…>. Specify 
each variable as an input or output, and also make sure the Type of each variable is what it needs to be (for 
our case it should be double for all these variables).

7



The new code and variables for the MATLAB ModelCenter component are shown below:

Once you are done making all the above changes, either press Control+S or click on the yellow arrow in 
the upper left corner to save changes to your component. Whenever you make any changes to any component, 
always remember to save!

We are done with the MATLAB component, and the component window can now be closed.

8



2.3 Adding the STAR-CCM+ Component
Because a direct plug-in is not available for STAR-CCM+ as it is for MATLAB, the general script-

wrapping utility, QuickWrap, will be used to create a component for the STAR-CCM+ melter model. This 
component will run STAR-CCM+ in batch mode (from a command window/terminal) by using the command 
“starccm+ -batch <macro file name> <simulation file name>”. Therefore, a Java 
macro is needed from the STAR-CCM+ simulation. This macro will contain all the code needed to run the 
simulation. A macro can be created in STAR-CCM+ by first loading the simulation that you will be running 
(it’s okay if you think you might use a different simulation in the future – the macro should, for the most part, 
still be the same) and then clicking on the blue circle button in the upper left, as shown below.

Once you click on the Record Macro button, you will be prompted to select a file to save the macro to. In 
this case, it is best to create a new file (let’s call it “macro.java”). Once you select the file, recording has 
begun. Do not click around too much or change anything immediately, as whatever you do from now on in 
the simulation will be recorded as code in your macro file. Note that for our coupled model, STAR-CCM+ 
needs to have some inputs and outputs. The inputs will be MGAS1, MGLASS1, QB1 and TT1, and these 
should all be defined as field functions in the STAR simulation. The outputs will be QU1, TB1 and MIN1 
(which is the same as MFEED1 later on in ModelCenter), and these should be defined as reports in the STAR 
simulation. The field and report setup is shown in the picture on the next page.

9



Once fields and reports are set in the STAR simulation, the following things need to be done when the 
macro begins recording:

1. Click on each field function (MGAS1, MGLASS1, QB1, TT1), and set its value to something. The value 
can be set to anything, as we just want to get the macro to give us the general code for setting a field to a 
certain value).

2. Under Stopping Criteria, set the maximum physical time to reflect whatever is needed. Currently, in the 
macro used for the coupling, this is set to 0.01 seconds.

3. Run the simulation. You do not have to run the simulation for its entire length; you can stop the 
simulation as soon as you want, since all we really care about is to get a line of code in our macro that 
represents the running of the simulation.

10



4. Right-click on each report and select “Run Report.”

5. Open up whatever scenes you would like to export pictures of. Right-click on the scene, select 
“Hardcopy”, and save the picture as a .png file somewhere. I will be saving scenes for temperature, 
velocity streamlines, volume fractions of air, bubbles, glass and slurry and also residuals. I will be saving 
these in a folder called “STAR Pics.”

Now you may stop recording the macro by clicking on the blue square button that is in the same area as 
the blue circle button you used to start recording the macro.

If you open “macro.java” (or view it in STAR-CCM+, as it should be displaying that file on another tab in 
the Output window), you will now see that there is code in the file for every step you performed while you 
were recording the macro. If someone were to play this macro in the STAR simulation used in the coupling, 
all the steps performed while recording will be executed automatically. The macro is what the ModelCenter 
model will be running, so now you know exactly what will be happening every time the STAR component in 
ModelCenter runs.

Now we need to make some minor changes to the macro. You can use a text editor (WordPad or 
NotePad++, for example) or a Java integrated development environment (like NetBeans or Eclipse) to edit a 
Java file. In this case, at the top of the file, with all the import statements, an “import java.io.*;” line needs to 
be added because we will be creating output files using the File class in the java.io library.

11



Next, towards the bottom of the file, the printReport statements need to be altered to print to a file, as can 
be seen in the picture. The “false” is to ensure that report files should not be appended to; that is, every report 
should clear out whatever was in the file previously.

Notice that if you ever need to change how long the simulation runs, you can simply change that value in 
this macro in line 64 as seen in the picture above. Right now, the simulation is set to run for 0.01 seconds 
(physical time), but that value can be easily changed to any other number.

12



Next, we need to take a look at the code that exports scenes as pictures. For the purposes of this manual, 
let’s focus on the macro code that deals with the temperature scene. The last line of code in the section shown 
below is what we are interested in: this line saves the scene as a picture file to a certain path. Make sure that 
the path and filename are what you want. I want to save my temperature picture to a file called 
“temperature.png” in the “Star Pics” folder on my desktop; therefore, the line of code is correct. Make sure 
the filename and path are correct for all the scenes you are exporting.

We are now done editing the macro, and we can start setting up the STAR-CCM+ component in 
ModelCenter using QuickWrap.

13



From the same pane that had the MATLAB plug-in, select QuickWrap, and drag and drop it into the 
model.

A component editor window should pop-up as soon as you drop the QuickWrap component into the 
model. 

14



Before going further, create a new folder somewhere (I made one on my Desktop and called it MC 
Stuff 2), and add to it your “macro.java” file as well as your STAR simulation file). In this folder, make a 
copy of the “macro.java” file and name this copy “macro.java.template.”

Once you are done with this, go back to the QuickWrap component editor and click on “Add one or more 
input files….” Select the macro.java file. It should ask you if you want to use the template file detected, and 
you should select “Yes.” Notice that it now displays the macro code in the window, as shown on the next 
page. Unfortunately, ModelCenter does not allow you to edit the macro code in this window, so if you ever 
have to make any changes to the macro, you must use a text editor or IDE to edit the macro, and then you 
must reload it into the QuickWrap component. In that case, you would also have to re-create the 
“macro.java.template” file and reload that into the component as well.

15



Scroll down to the lines of code that set values for field functions (such as
userFieldFunction_0.setDefinition(“42”)). You should now specify the delimiter in the upper right hand 
corner just above the code window to be a quotation mark (“). Now if you hover your mouse over the number 
between the quotes in the setDefinition, you should be able to right-click on the highlighted number and click 
on “Add Variable”. Add the appropriate variable as an input, make sure that the Type for each is specified to 
double, and specify a default value for your variable if you wish to do so.

16



Once have added the input variables, they should all appear on the left-hand pane, and it should be clear 
that they are linked to the text highlighted in green.

17



Now that we are done specifying the inputs, we will specify the output fields (QU1 and TB1). If you do 
not have copies of report files already available, the first thing you will need to do is open your command 
prompt/terminal and run your STAR simulation in batch mode using the macro. Type in the following once 
you are in the terminal, replacing the <FULL PATH TO MACRO> with the absolute pathname to 
“macro.java” and replacing the <FULL PATH TO SIM FILE> with the absolute pathname to your .sim file:

starccm+ -batch <FULL PATH TO MACRO>  <FULL PATH TO SIM FILE>

Your STAR-CCM+ model should now be running. Once it runs, you should have two output files, 
“reportQU.txt” and “reportTB.txt” in the current directory. You need to then add these two files to the folder 
that contains your macro file, macro template, and STAR simulation (in my case, this folder is MC Stuff 2).

18



Once this is done, go back to the QuickWrap component editor and click on “Add one or more output 
files….” Select “reportQU.txt” from its folder, and when the “Choose File Type” dialog comes up, the “Parse 
file as” option should be set to ASCII. Close the “Auto Import Variables” dialog that comes up – it’s 
unnecessary. The contents of “reportQU.txt” should now be displayed in the File View box.

Change the delimiter to “Whitespace,” and then select the number that is your output. Right click on the 
number, and select “Add variable.” In this case, add the variable as QU1. Set the Type to be double, and 
change the default value if you wish to do so. You should end up with something like this:

19



Now do the same for reportTB.txt. Make sure you are saving all this as you go along. You should now 
have all your output variables set up for the STAR component, as shown below.

The last few variables that we will be setting up are for the code that exports scenes as pictures. Right 
click on <click to add variable…>, and add the following variables as outputs: temperature, velStreamlines, 
volFractionAir, volFractionBubbles, volFractionGlass, volFractionSlurry and residuals. The “Type” of each 
of these variables should be changed to “file.” When you change the type to “file,” a prompt will come up, 
asking you to select the file it refers to. In this case, I navigated to the “STAR Pics” folder and selected the 
appropriate picture for each variable. Be sure to check the box labeled “binary” for each file variable.

20



You should now have all of the variables set up for the STAR component.

21



Now click on the “Execute” tab. 

For Run Command(s), type in the command you used previously to run the simulation in the terminal, 
except this time, you do not need to specify the absolute paths to the macro and .sim files. This is because we 
will specify a directory to run the component out of. So for Run Command, type in the following, replacing 
the <SIM FILE NAME> with just the name of your simulation file:

starccm+ -batch macro.java <SIM FILE NAME>

Next, check the box next to “Run in” and select the folder that contains your macro, macro template, 
simulation file, and reports.

Under “Run sharing”, add your macro template file.

Now you can generate a wrapper file and save it in the same folder you have been working out of (MC 
Stuff 2). To generate a wrapper file, click on the “Export” button in the upper left hand corner (next to save 
button). This will create a “macro.scriptWrapper” file that you can save to your working directory. You 
shouldn’t need to do anything to this file to get it to work.

22



Save changes. We are now done with wrapping the STAR-CCM+ model. You can perform a test run on
the component to see if it is working. If there is some sort of error, and it says that it was unable to run the 
starccm+ -batch command, there might be an issue with your license. In that case, try running the simulation 
in batch mode from the terminal as you did before and see if it gives you an error.

In the future, if the STAR simulation being used is changed, the “Run Command” will have to be 
changed to reflect the new name of the simulation file, and a new script wrapper will have to be generated for 
the HPC version of the model. Additionally, if any input or output variables are changed, those changes will 
obviously have to be reflected in the component variables.

23



2.4 Adding a Script Component 
to Output MFEED, Perform Bounds Checking and Control Iterations
Now we are going to add a component that will determine the value for the mass flux of slurry entering 

the cold cap, perform bounds checking on the data generated by the STAR-CCM+ model and control how 
many times the loop runs. We will now be using the “Script” option from the bottom pane. Drag and drop this 
into the model window.

A pop-up window should come up in which you can write code and add variables. Note that the script 
language is defaulted to VBScript (the scripting version of Visual Basic), but you can easily select a different 
language from the drop-down menu. For this model, we are going to use VBScript.

24



First, set up the variables that are needed for this component. Variables that are needed of type double are 
newTB, newQU, currTB, currQU, counter, and MFEED. Also add the boolean variable convergence, and add 
a boolean array (denoted as boolean[]) called conArr. After setting up these variables your editor should look 
like this: 

25



Now we can start adding code to the script. The first block of code we are going to add in the component 
editor is shown below:

This code prompts the user to specify a value for MFEED, the mass flux of slurry entering the cold cap,
on the loop’s first iteration (when counter is equal to 0). If the value is not between 0 and 0.1 kg/m2s, the user 
is prompted to reenter a valid number. If the user wants to exit the model and no longer enter a value for 
MFEED, he/she will have to halt the model itself.

In the next block of code entered into the script, shown below, the values produced by STAR-CCM+ are 
checked to ensure that they are within reasonable bounds. If TB, the temperature at the bottom of the cold 
cap, is not between 873K and 1574K, a warning message is displayed to the user, and the value of TB is 
adjusted to one within bounds. Similarly, the value of QU, the heat transfer from the plenum space to the 
slurry, is checked to see if it is between 0 and 60 kW/m2. If the value is negative, it is changed to a positive 
number, as the MATLAB model can only handle positive heat transfer values. If the value is positive but 
greater than 60 kW/m2, it is adjusted to be 25.5 kW/m2, which is reflective of a situation in which half the heat 
for evaporating and heating the slurry is supplied from the plenum space. Should the need arise, the lower and 
upper bounds used to perform bounds checking on these variables can be adjusted easily, and the same is true 
for the handling of out-of-bounds values.

26



`The next block of code in the script component, shown below, controls how many times the loop runs.

There are two ways to control the number of iterations performed by the loop: either the number of 
iterations can be specified explicitly, or the loop can be made to run as many times as it takes for the model to 
converge upon a solution. For the first method, a variable called “counter” is updated every time the loop
runs. In the Loop component’s editor, the “Repeat Until” condition can be altered to cap the value of 
“counter” at a certain point. For instance, if we want the loop to only run for three iterations, we would make 
the loop’s “Condition” look like the following:

27



This set-up will be different if you want to run the model until it converges. In this case, the model will 
run until the variable “convergence” is true, as shown below.

The script component has a very precise method of checking for convergence. The script component 
stores old values for TB and QU (currTB and currQU) that are from the previous iteration. The component 
also stores the new value for each variable (newTB and newQU) that has just been calculated by STAR-
CCM+ in the current iteration. The change between the old and new values is then calculated. If the change is 
less than 5% for both TB and QU, a boolean “true” is added to the boolean array conArr. If the model has 
been running for anywhere between 6 and 40 iterations (i.e., the length of conArr is either 5 or 39), and the 
last five elements of conArr are all “true”, then the convergence variable is changed to “true,” and the loop 
stops running. Similarly, if the loop has been running for over 40 iterations, the convergence variable is 
changed to “true” if the last 10 values in conArr are all “true.” Finally, at the end of the script, the new values 
of QU and TB are stored in currTB and currQU so that they become the old values in preparation for the next 
iteration. Note that the variable counter is also incremented by one.

2.5 Adding a Script Component that Uploads Pictures to MICE Website
We can upload the image files outputted by STAR-CCM+ to the MICE website 

(http://inlteam2010:3666/sites/GEMS/MICE). This makes use of a Windows PowerShell script 
(copyFileToSharepoint.ps1, developed by Brant Peery at INL) that can upload images to a website. 

First, go to the Start menu, and find Windows PowerShell (x86). Right-click on it, and select “Run as 
administrator.” This should bring up a blue PowerShell terminal. In this terminal, first type in the following, 
and then press enter: 

get-executionpolicy

If, after pressing enter, the terminal displays “remotesigned,” you do not need to do anything else because 
this means that you will be able to run PowerShell scripts on your computer. If, however, the terminal 
displays “restricted,” you will not be able to run PowerShell scripts. In this case, you need to manually set the 
execution policy to “remotesigned.” To do this, type the following into the terminal, and then press enter:

set-executionpolicy remotesigned

After you press enter, it should ask you to confirm whether or not you would like to change the execution 
policy. Type in “y” for yes, and press enter. Now your execution policy should be what we need.

Now we will actually create the script component in ModelCenter that will execute the PowerShell script.
Drag and drop a Script component into the model, just after the melter component in the loop. This process 
should be similar to how we created the script component in the previous section. VBScript will be used once 

28



again as the language for this script. The variables that need to be added to this script are shown below. The 
variables temperature, velStreamlines, volFractionAir, volFractionBubbles, volFractionGlass, 
volFractionSlurry, and residuals are all file variables. The variables fileOutputDir and scriptDir are both 
strings. The variable count is of type int. 

The code for this script is shown below:

29



In this script, an object is first created that represents the shell/terminal in which the PowerShell script 
will be executed. Next, all the files are uploaded one-by-one onto the MICE website. Notice that for each file, 
the absolute path to the file is specified by concatenating the fileOutputDir variable and the filename together. 
The file variable is then set to binary and saved to the absolute pathname that was just created. 

Next, the “uploadfile” method is called that executes the PowerShell script by running the string stored in 
the “cmd” variable in the “wsh” shell object. Notice that the variable “count” is used to append the iteration 
number onto the filename; this allows pictures to be distinguishable from one another on the MICE website. 
The count variable in this script component will be linked with the counter variable in the Checker script 
component.

It is also important to note that you will need to set up the values for the fileOutputDir and scriptDir
variables before you can run this component successfully. The scriptDir variable must be the full path to the 
folder that contains the “copyFileToSharepoint.ps1” script. For instance, I have this script saved to my 
Desktop, so I changed the value of scriptDir to be “c:\Users\agarv2\Desktop\”. I have set the fileOutputDir 
variable to be my temp directory (c:\temp\). You do not have to change this as long as you have a temp 
directory on your C drive. This directory is where pictures will be temporarily saved before they are uploaded 
onto the website.

Whenever this component runs, you should be able to go to the MICE website, navigate to the MICE 
Output page, and see the pictures.

30



2.6 Linking Components Together and Setting Loop Properties
Note that you can rename components to better represent what each component is.

Now we are going to link the variables in the components together. If you hover your mouse around the 
center of the Matlab component, a link symbol should appear. Click and drag that link to the STAR-CCM+ 
melter component. This should automatically link variables of the same name together. In this case, it links 
the outputs of MATLAB to the inputs of STAR-CCM+ since we set them up as having the same name. It 
should also pull up a link editor so you can see the links more clearly.

Once done, you should now have a black arrow going from the MATLAB component to the STAR 
component, and your link editor should look the way it does in the picture below.

We are also going to link the script component and the MATLAB component together. We want the 
MFEED, newQU and newTB values of the script component to flow to the MFEED1, QU1 and TB1 values 
of the MATLAB component. Because these variables do not have the same names, we cannot create the links 
using the method used before to link the MATLAB and STAR-CCM+ components. Instead, we will have to 
open the link editor by clicking on the “ ” symbol in the toolbar in the bottom left of the model window. To 
connect MFEED in the script component to MFEED1 in the MATLAB component, click on MFEED in the 
left pane and drag it to MFEED1 in the right pane. A link should then be seen between the two variables. Do 
this for the rest of the variables that are to be linked between the script component and MATLAB.

Now, using the link editor, link the counter variable in the Checker component with the count variable in 
the FileExporter component. The last few links you then need to create are between the Melter component 
and the FileExporter component: all the file variables need to be linked to each other. Therefore, the 
temperature file variable in the Melter component needs to be linked to the temperature file variable in the 
FileExporter component, and so on.

31



Once you have linked all the variables, your link editor should look like this:

32



Now we will finally set up the loop properties. Double-click on the Loop component to bring up its 
editor. Remember that you can control how many times the loop runs in different ways; in this case, let’s
explicitly specify that the loop should run 3 times. For the condition, drag the counter variable from the 
Component Tree to the condition box, and specify that the loop should repeat until the counter variable equals 
3. To do this, simply type in “==3” after the counter variable name that appeared in the box.

33



We now need the outputs of STAR-CCM+ to become inputs for the script component upon every loop 
iteration. The script component will perform bounds checking of these values and then pass them along to 
MATLAB. Therefore, we are going to drag the variables newQU and newTB in the script component over to
the “Input Variable” section.

34



Now we will set the “Feedback Variable” for these two input variables to be the outputs coming from the 
STAR component.

Save your changes. 

We are now done setting up the model. It should run as is.

35



2.7 Setting up the Model to Run STAR-CCM+ on HPC
In order to be able to run STAR-CCM+ remotely on HPC instead of on your desktop, you will need to 

have AnalysisServer installed on your HPC. Right now, this is set up in the /projects/USU/melter folder under 
the Analysis directory. (The picture below might be slightly unclear, but you should be able to navigate to the 
Analysis directory easily on HPC, since the projects/USU/melter folder is accessible to all of us).

36



Everything should already be set up, but an important file to know about is “aserver.sh.” This file can be 
used to set up the environment in which STAR-CCM+ will run. More specifically, this is where you want to 
load the module/version of STAR-CCM+ that you would like the simulation to run in. This file is located in 
the /projects/USU/melter/Analysis/ASERVER directory.

The contents of “aserver.sh” are shown below:

The two “export” commands are essentially the same as “module load starccm+/8.02.008.” They will 
ensure that version 8.02.008 of STAR-CCM+ is used. 

Now go to /projects/USU/melter/Analysis/PhoenixInt/AServer7/analyses/melter.

This folder contains a folder called “MC Stuff 2” that contains all the files associated with the STAR-
CCM+ component created before. If you want to change any of these files, use WinSCP or a similar file 
transfer program to transfer files from your desktop over to the “MC Stuff 2” folder. Make sure that in the 
scriptWrapper file used for HPC, the line that sets a run directory for the wrapper is commented out or 
deleted. Also, go through the macro and make sure that you are saving the scene pictures in a directory you 
want (currently, there is a directory called /projects/USU/melter/STAR_Pics that contains scene pictures).

Now we will go to ModelCenter and create a component from the AnalysisServer on HPC.

37



In ModelCenter, in the Server Browser on the bottom-left pane, right click on any of the plus-signs or 
click on the “Add server” button (computer with green plus sign). In the pop-up window, for “Type of 
Connection” select “External SSH Tool.” Type in “quark” for server name.

38



Now click on “Configure External Tool.” Type in your username for Default User Name. The only thing 
you need to do for the “Tools and Options” box under SSH Settings is specify the absolute path to the 
aserver.sh file on the HPC (“/projects/USU/melter/Analysis/ASERVER/aserver.sh”).

Go ahead and leave Tools and Options to whatever the Default is on your computer. Public and private 
keys generated by PuTTYGen can be used so that the user does not have to enter a password every time to 
connect to the HPC server. 

39



After clicking “OK,” click on “Add” once back in the “Add Server” dialog.

Now you should be able to see an “aserv+ssh://quark” in your Server Browser. Upon expanding this 
server’s node, you should see folders such as PiBlue2, drivers, wrappers, and most importantly, melter. 
Navigate to MC Stuff 2 under melter, and a component for your STAR simulation should show up in the 
bottom right pane.

Drag and drop this component into the model. This component will replace the QuickWrap component 
that we had previously in the non-HPC version. You can set the links the same way before, and you should 
now be able to run the coupled model.

40



2.8 Optimization
ModelCenter has extensive optimization capabilities. By going to the Tools menu and selecting 

“Optimization Tool,” the following window pops up:

For our project, we could create a variable for melting rate. We would then drag this variable into the 
“Objective” section and set the goal to be “Maximize.” Under the “Constraint” section, we would have to 
specify an acceptable range for melting rate values by assigning lower and upper bounds. Design variables 
would be variables to control in performing the optimization – for instance, the mass flux of the slurry
entering the melter (MFEED1) would be a possible design variable. After specifying variables, an algorithm 
will have to be selected from the many offered by ModelCenter. Following the specification of all the above 
information, the optimization should be able to be added to the model.

41



3. MATLAB MODEL OF COLD CAP
3.1 Changes Made to the Original 1D MATLAB Model

In order to be used in the ModelCenter coupling, several changes had to be made to the original 1D 
MATLAB model of the cold cap. These changes are listed below.

1. main2D turned into function that takes in TB1, QU1, MFEED1 and returns QB1, TT1, MGAS1,
MGLASS1. TB1 is temperature right below cold cap, QU1 is heat flux from plenum to slurry, MFEED1 is 
mass flux of slurry feed to cold cap. QB1 is heat flux from molten glass to cold cap bottom, TT1 is 
temperature at top of cold cap, MGAS1 is mass flux of gases evolved during melting from top of cold cap 
to plenum space, and MGLASS1 is mass flux of molten glass from bottom of cold cap.

2. Several global variables added to files so that main2D can share these variables with other files in model

3. Temperatures turned into Kelvin from Celsius at beginning and end of model to facilitate coupling 
(STAR-CCM+ model uses Kelvin)

4. Mass fluxes added to model to facilitate coupling with STAR-CCM+. Cold cap now uses mass influx of 
slurry feed to calculate mass outflows of molten glass and gases that leave the cold cap. This code was 
added to physical_data.m. Note that the variable jdry was added to represent the mass flow of dry 
feed (slurry without the 52.2% water). Then, jg and jdry were used to determine MGAS1 and 
MGLASS1.

5. In can7.m, the input value of QU is used to calculate QB. This makes use of H value needed to 
evaporate water and then heat the vapor to the temperature of the plenum space. H values as well as the 
heat flux to melt the dry batch (33.8 kW/m2) have been pulled from the PNL report that accompanied the 
cold cap model (http://www.pnl.gov/main/publications/external/technical_reports/PNNL-20278.pdf).

6. The rest of the files in the model are also functions.

The MATLAB files used in the coupled model can be found in the next few pages.

42



3.2 Modified MATLAB Code

main2D.m
% Main2D.m *******************************************************************
%
% Runs the simulation. Main2D was originally
% a script, but has been changed to a function that takes in TB, QU, and
% MIN and returns QB, TT, MGAS and MGLASS. Main2D also calls the ODE solver
% that solves the heat balance ODE for the cold cap.
%
% Modified by INL, August 2013
%*****************************************************************************

function [QB1, TT1, MGAS1, MGLASS1] = main2D(TB1, QU1, MFEED1)
global time yyy T  QB TT TB QU MGAS MGLASS MFEED
TB = TB1-273.15; % convert to C, since STAR passes in K, not C
QU = QU1;
MFEED = MFEED1;
Thick=0.06; %cold cap thickness
Rad=0.1; %cold cap radius
M=100; % Number of finite volumes (axially)
N=2; % Number of finite volumes (radially)
% M=param.M; % Number of finite volumes (axially)
% N=param.N; % Number of finite volumes (radially)
% js0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)

global hr qz qjz qz0 qjz0; % variables from function can7, which are necessary 
globally
yini = init_cond; % initial guessed temperature profile - linear

time = 0:.0002:.01; % 0:60:3600
OP=odeset('NormControl','on','RelTol',1e-2,'AbsTol',1e-2,'MaxStep',6); %error
tolerances, maximum step size
[tt, yy] = ode15s(@(t,y) can7(t,y), time, yini, OP);

yyy=v2array3D(yy); % simulation results yy into 3D matrix
% 1st index = axial (z)
% 2nd index = radial (r)
% 3rd index = time (t)

%=======================================================
%       postprocessing (results)
%=======================================================
T=yyy(:,:,end); % last time
TT=T(1,1); %param.TT; % slurry temperature
% TB=T(end, end); %param.TB; % bottom temperature
physical_data % distribution of final cold cap properties
QB1 = QB;
TT1 = TT + 273.15; % Convert to K, since STAR accepts K, not C
MGAS1 = MGAS;
MGLASS1 = MGLASS;

43



init_cond.m
% init_cond.m ****************************************************************
%
% Sets up the initial temperature profile of the cold cap, which is passed into 
% the ODE solver. 
%
% Modified by INL, August 2013
%*****************************************************************************

function yini = init_cond
global TT TB
TT=100; %cc top temperature
% param.TB=1100;  %cc bottom temperature
M = 100;
N = 2;
index=0;
Tini=ones(M*N,1); % initial conditions - linear temperature profile
for k=1:N

for l=1:M
index=index+1;
Tini(index)=TT+(TB-TT)/M*l;

end
end

yini=Tini;
end

44



physical_data.m
% physical_data.m*******************************************************
%
% Solves for material properties (heat conductivities, heat capacities and
% spatial densities) using the temperature profile of the cold cap. This
% file also determines mass flows of the gaseous and solid phases
% in the cold cap.
%
% Modified by INL, August 2013
%***********************************************************************

function physical_data

global TT TB T lam lamT lamB js jg cpc cpg rho MFEED MGAS MGLASS
M = 100;
N = 2;

%------------------------------------------------------
%       heat conductivity
%------------------------------------------------------
lambdaeff = zeros(N,M); % thermal conductivity
for k=1:N

for l=1:M
if ((T(k,l)) < 727) %830 instead of 1500
% ---Glass service report
lambdaeff(k,l) = 0.06571 + 0.002114*(T(k,l)+273.15);
% ---Petr Schill paper
%      lambdaeff(i) =  0.5*exp(0.00233*(T(i,1)+273.15-290));
elseif ((T(k,l)) < 800)
lambdaeff(k,l) = -4.2007 + 0.0063807*(T(k,l)+273.15);
else % foam layer at T>800C - lambda=lambda/2
lambdaeff(k,l) = (-4.2007 + 0.0063807*(T(k,l)+273.15))/2;
end

end
end
lamT= 0.06571 + 0.002114*(TT+273.15);
lamB=(-4.2007 + 0.0063807*(TB+273.15))/2;
lam=lambdaeff;

%-------------------------------------------------------
%       mass flow - solid and gaseous phase
%-------------------------------------------------------
%valid only in case of 1D (vertical) flow - no side flow
alpha = zeros(N,M); % based on TGA data
js = zeros(N,M); % mass flow of solid phase
jg = zeros(N,M); % mass flow of gas phase

% coefficients from heat conductivity paper (fitted to A0 data at 5 K/min)
a0 = 0.905;
a1 = 0.086;
aT0 = 561.8; %K
aT1 = 91.35; %K

alpha = a0 - a1.*atan(((T+273.15)-aT0)./aT1); % degree of conversion; ai is 
fraction of material reacted in ith reaction

45



jdry = MFEED*0.478; % dry batch mass flow rate, based on 52.2% mass of water in 
slurry
js = jdry*alpha;
jg = jdry*(alpha-alpha(N,M));
MGAS = jg(1,1);
% MGLASS = js(N,M);
MGLASS = jdry - MGAS;

%-------------------------------------------------------
%       heat capacity of condensed and gas phase
%-------------------------------------------------------
% cp of condensed phase - based on DSC data (Jaehun)
% - used also in the HC paper
cpc = zeros(N,M); % heat capacity condensed phase
for k=1:N

for l=1:M
if ((T(k,l)) < 600)

cpc(k,l) = 0.272720463 - 0.23842748*(T(k,l)/1000) + 0.25363843*exp(-
((T(k,l)/1000-0.243943)^2/0.0010336)) + 0.500527*exp(-((T(k,l)/1000-
0.275096)^2/0.000188)) + 0.093806*exp(-((T(k,l)/1000-0.31286)^2/0.000323)) + 
0.184088*exp(-((T(k,l)/1000-0.393729)^2/0.000697)) + 0.123335*exp(-
((T(k,l)/1000-0.4718234)^2/0.00204));

cpc(k,l) = cpc(k,l) * 10000; % in J/(kg K)
else

cpc(k,l) = 1320; % constant heat capacity for T>600°C considered (1120 
original, 1320 fitted)

end
end

end

% gas phase
cpg = zeros(N,M); % heat capacity gas
for k=1:N

for l=1:M
cpg(k,l) = 1003+0.21*(T(k,l)+273.15)-1.93e7/(T(k,l)+273.15)^2; %from

literature, Schill
end

end

%-------------------------------------------------------
%       spatial density
%-------------------------------------------------------
% the same as in 1D model - based on foaming curves and TGA
% not needed for the calculation of temperature profile
% - the temp profile is affected by mass flow js and jg
% - the density only determines the velocity: j=v*rho (mass flow = 
velocity x density)

rho = zeros(N,M); % spatial density
for k=1:N

for l=1:M

if ((T(k,l)) < 680) % foam layer temperature boundary
rho(k,l) = 970*alpha(k,l)/(-0.0000001*T(k,l)^2+0.00002*T(k,l)+1.001);
elseif((T(k,l)) < 775)
a00=245.82696587;

46



a11=-1041.06249697;
a22=1475.92823238;
a33=-697.84383143;
a44=0.00000000;
rho(k,l) = 970*alpha(k,l)/(a44*(T(k,l)/1000)^4+a33*(T(k,l)/1000)^3 ...

+a22*(T(k,l)/1000)^2+a11*(T(k,l)/1000)+a00);
elseif((T(k,l)) < 960)
a00=19.69000;
a11=-47.72000;
a22=29.88000;
a33=0.00000;
a44=0.00000;

rho(k,l) = 970*alpha(k,l)/(a44*(T(k,l)/1000)^4+a33*(T(k,l)/1000)^3 ...
+a22*(T(k,l)/1000)^2+a11*(T(k,l)/1000)+a00);

else
rho(k,l) = 541;
end

end
end

end

47



can7.m
% can7.m *********************************************************************
%
% Aids in the solution of the heat balance ODE. The output of the
% can7 function is used to determine the value of dT/dt at different values
% of T (temperature) and t (time), which is directly used by the ODE solver
% to obtain a solution.
%
% Modified by INL, August 2013
%*****************************************************************************

function [dydt] = can7(time,yvec)
%CAN7 - model equations (heat balance)
%   state variables: 2D-temperatures in vector
global T lam lamT lamB js jg cpc cpg rho 
global hr qz qjz qz0 qjz0 % variables needed globally
global QB TT TB QU MGAS MFEED MGLASS

%geometry
Len=0.06; %cold cap thickness
Rad=0.1; %cold cap radius
M=100; % Number of finite volumes (axially)
N=2; % Number of finite volumes (radially)
% js0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)
hr = Rad/(N); % dimensions of finite volume radially
hz = Len/(M); % dimensions of finite volume axially

%rho=1300;  % density - need to change
%vel=4e-5;  % velocity not used now - will be result

% TT=100; % slurry temperature
%TB=param.TB; % bottom temperature - determined by STAR model

% unpack state variables (temperature vector-->matrix)
T=zeros(N,M); % first index=radially, second index=axially
cpc=zeros(N,M);
index=0;
for k=1:N

for l=1:M
index=index+1;
T(k,l)=yvec(index);

end
end

physical_data

% Calculation of volume of each finite volume (FV) and the axial and radial
% areas between FV
r=hr*(1:N);

V=zeros(1,N);
V(1)=pi*r(1)*r(1)*hz;
for k=2:N

48



V(k)=pi*hz*(r(k)*r(k)-r(k-1)*r(k-1));
end

AR=zeros(1,N); % areas between FV radially
for k=1:N

AR(k)=2*pi*hz*r(k);
end

AZ=zeros(1,N); % areas between FV axially
AZ(1)=pi*r(1)*r(1);
for k=2:N

AZ(k)=pi*(r(k)*r(k)-r(k-1)*r(k-1));
end

% calculation of heat flows - radially
qr=zeros(N,M);
for l=1:M

qr(1,l)=-(2*lam(2,l)*lam(1,l)/(lam(2,l)+lam(1,l)))*(T(2,l)-T(1,l))/(1.5*hr);
% f

for k=2:(N-1)
qr(k,l)=-(2*lam(k+1,l)*lam(k,l)/(lam(k+1,l)+lam(k,l)))*(T(k+1,l)-

T(k,l))/hr;
end

%    qr(N,l)=-lam*(Tsurf-T(N,l))/(0.5*hr);  % flow of external KO into the area
qr(N,l)=0; % radial heat flow not considered yet (1D)

end
qjr=zeros(N,M); %radial velocity flow is neglected in 1D

% calculation of heat flows - axially
qz=zeros(N,M);
qjz=zeros(N,M);
qz0=zeros(1,N); % qz(k,0) matlab cannot use 0 in index
qjz0=zeros(1,N); % qjz(k,0) matlab cannot use 0 in index
for k=1:N

for l=1:M-1
qz(k,l)=-(2*lam(k,l+1)*lam(k,l)/(lam(k,l+1)+lam(k,l)))*(T(k,l+1)-

T(k,l))/hz;
qjz(k,l)=(js(k,l)*cpc(k,l)-jg(k,l)*cpg(k,l))*(T(k,l+1)+T(k,l))/2;

end
qz(k,M)= -(2*lamB*lam(k,M)/(lamB+lam(k,M)))*(TB-T(k,M))/(0.5*hz); % bottom 

heat flow; TB (taken from melter model) used to get this value
qjz(k,M)=(js(k,M)*cpc(k,M)-jg(k,M)*cpg(k,M))*(TB+T(k,M))/2; % bottom 

velocity flow

qz0(k) = -(2*lam(k,1)*lamT/(lam(k,1)+lamT))*(T(k,1)-TT)/(0.5*hz); % top heat 
flow - QT

qjz0(k) =(js(k,1)*cpc(k,1)-jg(k,1)*cpg(k,1))*(T(k,1)+TT)/2; % top velocity 
flow
%%%%%%% Based on PNL paper: QB = QT + 33.8; QT = Htotal - QUl %%%%%%%%%%%%%%%
% Htotal = heat flux to evaporate water and then heat the vapor to the
% temperature of the plenum space; takes into account heat flow from free
% surface of molten glass to plenum space
%
% 33.8 kW/m2 = heat flux to melt dry batch to molten glass (from DSC data)
%

jdry = 0.478*MFEED;

49



jwat = 0.522 * MFEED;
Hvap = jwat * 2.26e6;
Hpre = (jwat*4185 + jdry*1300)*(100-30);
Htotal = Hvap + Hpre;
QB = Htotal - QU + (33.8e3);
qz(k,M) = QB; 
qz0(k) = Htotal - QU; %  qz0 = QT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end

% -----------------------------------
% heat balance of each finite volume
% -----------------------------------
dTdt=zeros(N,M);

% a) inner (leftmost) FV - cylinder
k=1;

l=1;
dTdt(k,l)=(-AR(k)*qr(k,l)+AZ(k)*(qz0(k)+qjz0(k))-AZ(k)*(qz(k,l)+qjz(k,l))) / 

(V(k)*rho(k,l)*cpc(k,l));
for l=2:M

dTdt(k,l)=(-AR(k)*qr(k,l)+AZ(k)*(qz(k,l-1)+qjz(k,l-1))-
AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l));

end
%end k=1

% b) other FV ("rings")
for k=2:N

l=1;
dTdt(k,l)=(AR(k-1)*qr(k-1,l)-AR(k)*qr(k,l)+AZ(k)*(qz0(k)+qjz0(k))-

AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l)); 
for l=2:M

dTdt(k,l)=(AR(k-1)*qr(k-1,l)-AR(k)*qr(k,l)+AZ(k)*(qz(k,l-1)+qjz(k,l-1))-
AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l));

end
end

% pack state variables (matrix --> vector)
dydt=zeros(N*M,1); % column vector for integration
index=0;
for k=1:N

for l=1:M
index=index+1;
dydt(index)=dTdt(k,l);

end
end

50



v2array3D.m
% v2array3D.m ****************************************************************
%
% Compresses the solution from the ODE solver into a 3D
% matrix that represents the temperature solution for the cold cap at
% different times.
%
% Modified by INL, August 2013
%*****************************************************************************

function [yout] = v2array3D(yin)
%V2M Vector (1D) to Array (3D)
%   yin is vector
%   yout is 3d-array
M=100;
N=2;
yout = zeros(N,M,51);
dim=size(yin); % first number is the number of rows (times), the second number 
is the number of columns (temperature)

for t=1:dim(1); % for all time steps

yout(:,:,t)=zeros(N,M);
index=0;
for k=1:N

for l=1:M
index=index+1;
yout(k,l,t)=yin(t,index);

end
end

end
end

51



3.3 Data Dictionary for Matlab Cold Cap Model

Variables
M – number of finite volumes axially
N – number of finite volumes radially

alpha – NxM matrix containing mass fraction of condensed phase
AR – 1xN vector containing areas between finite volumes in radial direction
AZ – 1xN vector containing areas between finite volumes in axial direction
cpc – Heat capacity of condensed phase; NxM array
cpg – Heat capacity of gas phase; NxM array
dTdt – NxM array containing solution to right hand side of heat balance ODE (value of dT/dt)
dydt – (N*M)x1 column vector containing values from dTdt
Hpre – Heat flux needed to preheat slurry from feed temperature to temperature of boiling slurry
hr – dimension of a single finite volume in radial direction
Htotal – Sum of Hvap and Hpre
Hvap – Heat flux needed to evaporate water 
hz – dimension of a single finite volume in axial direction
jdry – Mass flux of dry batch to cold cap (based on 52.2% water content in slurry)
jg – Mass flux of gas phase; NxM array
js – Mass flux of solid phase; NxM array
jwat – Mass flux of water to cold cap in slurry (based on  52.2% water content in slurry)
lam – same as lambdaeff
lamB – thermal conductivity at bottom of cold cap
lambdaeff – NxM array containing thermal conductivity values
lamT – thermal conductivity at top of cold cap
Len – cold cap thickness
MGAS – Mass flux of gases evolved from cold cap
MGLASS – Mass flux of molten glass from cold cap
MFEED – Mass flux of slurry to cold cap
QB – Heat flux from molten glass to bottom of cold cap
qjr – NxM array containing radial velocity flow values
qjz – NxM array containing axial velocity flow values
qjz0 – 1xN vector that represents velocity flow at top of cold cap
qr – NxM array containing radial heat flow values
QU – Heat flux from plenum space to slurry
qz – NxM array containing axial heat flow values
qz0 – 1xN vector that represents heat flow at top of cold cap
Rad – cold cap radius
rho – Spatial density; NxM array
T (in can7.m) – Temperature profile of cold cap in the form of an NxM array
T (in main2D.m) - Final temperature solution at the last time value
TB – Temperature at bottom of cold cap
Thick – cold cap thickness
time – Row vector of time values, in seconds, going from 0 to 3600 in steps of 60
tt – Column vector with same time values as the variable time

52



TT – Temperature at top of cold cap
V – 1xN vector containing volume of each finite element
yini – linear temperature profile going from 110°C to 1100°C
yy – Solution array in which each row corresponds to temperature solution at the time in the corresponding 
row of tt
yyy – Solution array, in 3D form; first dimension is axial, second is radial and third is time

53



3.4 Equations used for Material Properties (in physical_data.m)
3.4.1 Heat Conductivity
For T < 727 K:
lambdaeff(T) = 0.06571 + 0.002114( + 273.15)

For T 727 K and T < 800 K: 
lambdaeff(T) =  4.2007 + 0.0063807( + 273.15)

For T 800 K (foam layer heat conductivity is approximated as half that of region just above foam layer):
lambdaeff(T) = [ 4.2007 + 0.0063807(T + 273.15)]/2

3.4.2 Degree of Conversion (alpha) – based on TGA data
a0 = 0.905
a1 = 0.086
aT0 = 561.8
aT1 = 91.35

alpha(T) = a0 atan (
(T + 273.15) aT0

aT1
)

3.4.3 Mass Flows
1. Mass flow of solid phase (js) with units of kg/m2s

js = jdry alpha

2. Mass flow of gas phase (jg) with units of kg/m2s

js = jdry (alpha alpha )

In both cases, jdry = MFEED*0.478, where MFEED is the mass flux of the slurry feed. Mass flux of gases 
from cold cap top (1st row and 1st column of jg matrix)

MGAS = jg(1,1) 

3. Mass flux of molten glass from cold cap bottom – conservation of mass used

MGLASS = jdry – MGA 

Units on jdry, js, jg, MGAS and MGLASS are kg/m2s.

3.4.4 Heat Capacities  
1. Heat capacity of gas phase (cpg) approximated by cpg for carbon dioxide:

cpg(T) = 1003 + 0.21T  
1.93x10

T
Units: cpg in J kg-1K-1, T in K and T 373 K

54



2. Heat capacity of condensed phase (cpc)

For T < 600K: cpc(T) = 1000[0.272720463 0.23842748 + 0.25363843

.
.

+

0.500527

.
.

+  0.093806

.
.

+ 0.184088

.
.

+

0.123335

.
.

] 

For T 600K: cpc = 1320

3.4.5 Spatial Density
For T < 680K:

rho(T) =  970
alpha(T)

0.0000001T + 0.0002T + 1.001

For T 680K and T < 775K:
a00=245.82696587
a11=-1041.06249697
a22=1475.92823238
a33=-697.84383143
a44=0.00000000

rho(T) = 970
alpha(T)

44 T
1000 + 33 1000 + 22 1000 + 11 1000 + 00

For T 775 K and T < 960 K:
a00=19.69000
a11=-47.72000
a22=29.88000
a33=0.00000
a44=0.00000

rho(T) = 970
alpha(T)

44 T
1000 + 33 1000 + 22 1000 + 11 1000 + 00

For T > 960 K: rho = 541

55



3.4.6 Calculation of QB using QU (in can7.m)

1. Mass flow of dry batch, based on slurry water content of 52.2% (mass percent):

jdry = 0.478*MFEED [kg/m2s] 

2. Mass flow of water from slurry, based on slurry water content of 52.2% (mass percent):

jwat = 0.522 * MFEED     [kg/m2s] 

3. Heat flux to evaporate water, using jwat and evaporation heat of water (2.26x106 W/m2):

Hvap = jwat * 2.26e6 [W/m2] 

4. Heat flux to preheat slurry from the feed temperature of 30°C to 100°C, the temperature of the boiling 
slurry; uses jwat, jdry, specific heat capacities of water and the dry batch, and difference between final 
and initial temperatures:

Hpre = (jwat*4185 + jdry*1300)*(100-30) [W/m2] 

5. Total heat to preheat slurry and then to evaporate water from slurry:

Htotal = Hvap + Hpre       [W/m2] 

6. Calculation of QB (heat flux necessary from molten glass to cold cap bottom), using a value of 33.8 
kW/m2 for heat flux necessary to melt dry batch to molten glass:

QB = Htotal - QU + (33.8e3)      [W/m2] 

**Slurry water content of 52.2%, initial and final feed temperatures, evaporation heat of water and heat 
necessary to melt dry batch all obtained from 
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-20278.pdf (Section 5.4 titled “Water 
Evaporation”).**

56



3.5 Cold Cap Model Documentation
The 1D MATLAB model of the cold cap for a slurry-fed waste glass melter, developed by Pokorny, et. al. in 
[1], consists of the following 5 files:

1. main2D.m
2. init_cond.m
3. physical_data.m
4. can7.m
5. v2array3d.m

The main simulation is contained in the file main2D.m, which is the file that must be run from the MATLAB 
command window to create the simulation. This file uses the other 4 files as helpers to aid in the creation of 
the simulation. Below is a step-by-step explanation of the code in the main2D.m file as well as the code in the 
helper files. Most of the descriptions of the scientific purpose behind the code are pulled from [1]. 

Lines 1-15 of main2D.m are as follows:

Right away, it is important to note that this file is a function and not a script (this is a change made from the 
original model). Therefore, whatever variables are declared in this file will only exist within the scope of this 
file. In order for this file to share variables with other files, global variables will have to be used. This 
function has three inputs: TB1, the temperature of the molten glass right below the cold cap, QU1, the heat 
transfer from the plenum space to the slurry and MFEED1, the mass flux of the slurry feed to the cold cap. 
The function has four outputs: QB1, the heat transfer from the molten glass to the cold cap bottom, TT1, the 
temperature at the top of the cold cap, MGAS1, the mass flux of gases evolving from the cold cap and 
MGLASS1, the mass flux of the molten glass emerging from the cold cap bottom. 

These lines of code declare variables that store the cold cap thickness (Thick) and radius (Rad) and also the 
number of finite volumes axially (M) and radially (N). Note that the input value of TB1 is converted into 
degrees C from degrees K when it is stored into the variable TB, since STAR-CCM+ produces temperatures 
in K while this model deals with temperature in degrees C.

The variables time, yyy, T, QB, TT, TB, QU, MGAS, MGLASS, MFEED, hr, qz, qjz, qz0, and qjz0 are 
declared to be global variables. This allows the main2D.m file to share the values of these variables with any 
other file that declares these variables as global.

A call is then made to init_cond.m, a helper file which will create an initial linear temperature profile for the 
cold cap. This file is discussed below.

function [QB1, TT1, MGAS1, MGLASS1] = main2D(TB1, QU1, MFEED1)
global time yyy T  QB TT TB QU MGAS MGLASS MFEED
TB = TB1-273.15; % convert to C, since STAR passes in K, not C
QU = QU1;
MFEED = MFEED1;
Thick=0.06; %cold cap thickness
Rad=0.1; %cold cap radius
M=100; % Number of finite volumes (axially)
N=2; % Number of finite volumes (radially)
% M=param.M; % Number of finite volumes (axially)
% N=param.N; % Number of finite volumes (radially)
% js0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)

global hr qz qjz qz0 qjz0; % variables from function can7, which are 
necessary globally
yini = init_cond; % initial guessed temperature profile - linear

57



Contents of init_cond.m:

Two variables are declared to be global by this file – TT, the temperature at the top of the cold cap, and TB, 
the temperature at the bottom of the cold cap. Since main2D.m also declares these variables to be global, the 
two files can share the values of these variables (if one file changes the value of either of the variables, the 
value automatically changes for the other file as well). These two temperatures, 100°C and 1100°C for the top 
and bottom of the cold cap, respectively, are boundary conditions for temperature. Based on these 
temperatures, a linear temperature profile for the cold cap is then created using for loops and the boundary 
temperatures. This temperature profile, Tini, is initially represented as a column vector of 200 rows 
containing all ones. The appropriate temperature value at each index is then iteratively calculated based on the 
boundary temperatures. Thus, the values in Tini range from 110°C to 1100°C, first from indices 1-100, and 
then again from indices 101-200. This temperature profile is then also stored in the variable yini.

Once init_cond.m runs in its entirety, main2D.m continues to run where it left off. Below are lines 17-19 of 
main2D.m.

These lines perform integration of the heat balance ODE for the cold cap. A vector of times is first created, 
containing values from 0s to 0.01s in steps of 0.0002s ([0 0.0002 0.0004 0.0006… 0.01]). For the MATLAB 
to STAR-CCM+ coupling, this line of code needs to reflect the physical time and number of time steps taken 
in the STAR-CCM+ simulation so that the MATLAB and STAR-CCM+ models remain synchronized. 

Next, the built-in MATLAB function odeset is used generate a structure, OP, which contains error tolerances 
and the maximum step size for the integration. Another built-in function, ode15s, is then used to perform the 
integration. This solver iteratively solves equations of the form y’ = f(t,y). The solver must be provided with a 
way to calculate y’ at different values of t and y; therefore, the first input to the ode15s function is a function 
handle to can7.m. A function handle is a way of accessing a function, and can7.m contains a function that 
outputs the value of y’ (i.e. the right hand side of the heat balance ODE). The other inputs of ode15s include 
time, the time vector discussed previously, yini, the initial linear temperature profile, and OP, the structure 
containing information about error tolerances and the maximum step size. The outputs of ode15s are tt and 
yy: tt is a column vector of times, and yy is a solution matrix in which each row corresponds to the solution at 
the time in the corresponding row of tt. 

As mentioned before, during the integration, can7.m is used to evaluate the value of y’. In this case, of course, 
y represents temperature and t represents time. Below are lines 1-15 of can7.m.

time = 0:.0002:.01; % 0:60:3600
OP=odeset('NormControl','on','RelTol',1e-2,'AbsTol',1e-2,'MaxStep',6);
[tt, yy] = ode15s(@(t,y) can7(t,y), time, yini, OP);

function yini = init_cond
global TT TB
TT=100; %cc top temperature
% param.TB=1100;  %cc bottom temperature
M = 100;
N = 2;
index=0;
Tini=ones(M*N,1); % initial conditions - linear temperature profile
for k=1:N

for l=1:M
index=index+1;
Tini(index)=TT+(TB-TT)/M*l;

end
end
yini=Tini;
end

58



Notice that this function shares the variables QB, TT, TB, QU, MGAS, MFEED, MGLASS, T, hr, qz, qjz, 
qz0, and qjz0 with main2D.m, as both files declare these variables as global. The cold cap thickness and 
radius and the number of finite volumes in the axial and radial directions are then defined. The dimensions of 
each FV axially and radially are then determined. The radial dimension (hr) is found by dividing the cold cap 
radius by the number of FV in the radial direction, and the axial dimension (hz) is found by dividing the cold 
cap thickness by the number of FV in the axial direction.   

Lines 24 to 35 of can7.m are as follows:

The above block of code uses nested for loops to convert the temperature vector that is passed into the 
function (yvec) into an NxM matrix called T (remember that N and M are the number of FV in the radial and 
axial directions, respectively). The first and second rows of T both contain temperature values that range from 
110°C to 1100°C. Finally, a call is made to physical_data.m, which is a function that loads material properties 
into memory. This file is analyzed below.

The first section of physical_data.m is as follows:

% unpack state variables (temperature vector-->matrix)
T=zeros(N,M); % first index=radially, second index=axially
cpc=zeros(N,M);
index=0;
for k=1:N

for l=1:M
index=index+1;
T(k,l)=yvec(index);

end
end

physical_data

function [dydt] = can7(time,yvec)
%CAN7 - model equations (heat balance)
%   state variables: 2D-temperatures in vector
global T lam lamT lamB js jg cpc cpg rho 
global hr qz qjz qz0 qjz0 % variables needed globally
global QB TT TB QU MGAS MFEED MGLASS

%geometry
Len=0.06; %cold cap thickness
Rad=0.1; %cold cap radius
M=100; % Number of finite volumes (axially)
N=2; % Number of finite volumes (radially)
% js0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)
hr = Rad/(N); % dimensions of finite volume radially
hz = Len/(M); % dimensions of finite volume axially

59



Note that physical_data.m  is a function, just like main2D.m; therefore, it uses global variables to share data 
with the other files. The above section of code calculates the values of thermal conductivity using the 
temperature matrix (T) that was created by can7.m. These values are stored in an NxM matrix called 
lambdaeff, just like the matrix T.  Initially, there is a 0 at each index in lambdaeff. Nested for loops are then 
used to iterate through T and use the temperature at each index to calculate the thermal conductivity at the 
same index in lambdaeff. The different values of temperature govern which equation is used to calculate the 
thermal conductivity, as the conductivity differs from region to region in the cold cap. Thus, in this code, the 
open porosity layer is treated differently from the foam layer. The first two equations (the equations for 
temperatures up to 800°C), used to calculate heat conductivity for the open porosity layer, are based on 
literature. The third equation governs the heat conductivity of the foam layer, which has not been calculated 
experimentally. Therefore, the thermal conductivity of the foam layer is approximated as half the heat 
conductivity of the region just above the foam layer. 

function physical_data
global TT TB T lam lamT lamB js jg cpc cpg rho MFEED MGAS MGLASS
M = 100;
N = 2;
%------------------------------------------------------
%       heat conductivity
%------------------------------------------------------
lambdaeff = zeros(N,M); % thermal conductivity
for k=1:N

for l=1:M
if ((T(k,l)) < 727) %830 instead of 1500
% ---Glass service report
lambdaeff(k,l) = 0.06571 + 0.002114*(T(k,l)+273.15);
% ---Petr Schill paper
%      lambdaeff(i) =  0.5*exp(0.00233*(T(i,1)+273.15-290));
elseif ((T(k,l)) < 800)
lambdaeff(k,l) = -4.2007 + 0.0063807*(T(k,l)+273.15);
else % foam layer at T>800C - lambda=lambda/2
lambdaeff(k,l) = (-4.2007 + 0.0063807*(T(k,l)+273.15))/2;
end

end
end
lamT= 0.06571 + 0.002114*(TT+273.15);
lamB=(-4.2007 + 0.0063807*(TB+273.15))/2;
lam=lambdaeff;

60



The next section of physical_data.m concerns the mass flux values for the solid and gaseous phases:

In this section, coefficients pulled from literature and the temperature matrix created in can7.m (T) are used to 
calculate the max flux values for the solid (js) and gaseous (jg) phases. Both js and jg initially are NxM
matrices consisting of all zeros. The temperature matrix, T, is then used to calculate alpha, the degree of feed-
to-glass conversion. The variables a0, a1, aT0 and aT1, which are also used to calculate alpha, are all based 
on thermal gravimetric analysis (TGA) data measured at a constant heating rate of 20 K/min. Notice that the 
mass flux of the dry batch, jdry, is then obtained from MFEED (the mass flux of slurry to the cold cap) based 
on a 52.2% mass water content. The value of jdry is then used in conjunction with alpha to calculate the mass 
fluxes of the solid and gaseous phases within the cold cap. The mass flux of the gas at the top of the cold cap 
is then assigned to the output variable MGAS, and the difference between the incoming dry batch mass flux, 
jdry, and MGAS is assigned to the variable MGLASS to ensure conservation of mass.

%-------------------------------------------------------
%       mass flow - solid and gaseous phase
%-------------------------------------------------------
%valid only in case of 1D (vertical) flow - no side flow
alpha = zeros(N,M); % based on TGA data
js = zeros(N,M); % mass flow of solid phase
jg = zeros(N,M); % mass flow of gas phase

% coefficients from heat conductivity paper (fitted to A0 data at 5 K/min)
a0 = 0.905;
a1 = 0.086;
aT0 = 561.8; %K
aT1 = 91.35; %K

alpha = a0 - a1.*atan(((T+273.15)-aT0)./aT1); % degree of conversion; ai 
is fraction of material reacted in ith reaction
jdry = MFEED*0.478; % dry batch mass flow rate, based on 52.2% mass of
water in slurry
js = jdry*alpha;
jg = jdry*(alpha-alpha(N,M));
MGAS = jg(1,1);
% MGLASS = js(N,M);
MGLASS = jdry - MGAS;

61



In this next section of physical_data.m, the heat capacities of the condensed and gas phases are calculated.

In this section, the heat capacity of the condensed phase (cpc) is calculated using the temperature matrix, T. 
Initially, cpc is an NxM array consisting of all zeros. Nested for loops are then used to iterate through T, 
calculate the value of the heat capacity for each temperature, and place that value in the corresponding index 
in the cpc matrix. For temperatures up to 600°C, the equation used for cpc is based on published differential 
scanning calorimetry (DSC) data. For temperatures above 600°C, the heat capacity is assumed to be a 
constant 1320 J/(kg-K). A technique similar to the one used to create the cpc matrix is used to create the 
matrix for the heat capacity of the gas phase (cpg). The equation used for calculating cpg is the equation for 
the heat capacity of carbon dioxide. 

In the last section of physical_data.m, the spatial density matrix, rho, is calculated in a manner similar to that 
of the properties calculated in the previous sections. Calculations are based on foaming curves and the results 
of TGA. The different temperature regions of the cold cap have different values for spatial density; therefore, 
in this code, the temperature value is used to determine what equation is used to calculate the spatial density.
Notice that for temperatures above 960°C, the density is treated as a constant.

%-------------------------------------------------------
%       heat capacity of condensed and gas phase
%-------------------------------------------------------
% cp of condensed phase - based on DSC data (Jaehun)
% - used also in the HC paper
cpc = zeros(N,M); % heat capacity condensed phase
for k=1:N

for l=1:M
if ((T(k,l)) < 600)

cpc(k,l) = 0.272720463 - 0.23842748*(T(k,l)/1000) + 
0.25363843*exp(-((T(k,l)/1000-0.243943)^2/0.0010336)) + 0.500527*exp(-
((T(k,l)/1000-0.275096)^2/0.000188)) + 0.093806*exp(-((T(k,l)/1000-
0.31286)^2/0.000323)) + 0.184088*exp(-((T(k,l)/1000-0.393729)^2/0.000697))
+ 0.123335*exp(-((T(k,l)/1000-0.4718234)^2/0.00204));

cpc(k,l) = cpc(k,l) * 10000; % in J/(kg K)
else

cpc(k,l) = 1320; % constant heat capacity for T>600°C considered 
(1120 original, 1320 fitted)

end
end

end

% gas phase
cpg = zeros(N,M); % heat capacity gas
for k=1:N

for l=1:M
cpg(k,l) = 1003+0.21*(T(k,l)+273.15)-1.93e7/(T(k,l)+273.15)^2; %from

literature, Schill
end

end

62



%-------------------------------------------------------
%       spatial density
%-------------------------------------------------------
% the same as in 1D model - based on foaming curves and TGA
% not needed for the calculation of temperature profile
% - the temp profile is affected by mass flow js and jg
% - the density only determines the velocity: j=v*rho (mass flow = 
velocity x density)

rho = zeros(N,M); % spatial density
for k=1:N

for l=1:M

if ((T(k,l)) < 680) % foam layer temperature boundary
rho(k,l) = 970*alpha(k,l)/(-0.0000001*T(k,l)^2+0.00002*T(k,l)+1.001);
elseif((T(k,l)) < 775)
a00=245.82696587;
a11=-1041.06249697;
a22=1475.92823238;
a33=-697.84383143;
a44=0.00000000;
rho(k,l) = 970*alpha(k,l)/(a44*(T(k,l)/1000)^4+a33*(T(k,l)/1000)^3 ...

+a22*(T(k,l)/1000)^2+a11*(T(k,l)/1000)+a00);
elseif((T(k,l)) < 960)
a00=19.69000;
a11=-47.72000;
a22=29.88000;
a33=0.00000;
a44=0.00000;

rho(k,l) = 970*alpha(k,l)/(a44*(T(k,l)/1000)^4+a33*(T(k,l)/1000)^3 ...
+a22*(T(k,l)/1000)^2+a11*(T(k,l)/1000)+a00);

else
rho(k,l) = 541;
end

end
end

63



Because physical_data.m is now finished executing, MATLAB returns to can7.m. Shown below are lines 38 
to 57 of can7.m:

In this section, volumes of FV and areas between FV are calculated. The FV themselves consist of an inner 
cylinder surrounded by cylindrical shells. Therefore, the formula for the volume of a cylinder is used to find 
the volume of each FV. The area between FV in the radial direction uses the formula for the surface area of a 
cylinder, and the area between FV in the axial direction uses the formula for the area of a circle. All of these 
computations use the axial and radial dimensions (hr and hz, respectively) of each FV that were calculated 
before. 

% calculation of area and volume of each finite volume (FV)
r=hr*(1:N);

V=zeros(1,N);
V(1)=pi*r(1)*r(1)*hz;
for k=2:N

V(k)=pi*hz*(r(k)*r(k)-r(k-1)*r(k-1));
end

AR=zeros(1,N); % areas between FV v radially
for k=1:N

AR(k)=2*pi*hz*r(k);
end

AZ=zeros(1,N); % areas between FV v axially
AZ(1)=pi*r(1)*r(1);
for k=2:N

AZ(k)=pi*(r(k)*r(k)-r(k-1)*r(k-1));
end

64



The next section of can7.m, lines 59 to 102, is shown below.

In this section, the radial and axial heat and velocity flows (qr, qz, qjr, and qjz, respectively) are calculated. 
Because this model is 1D, the radial velocity flow matrix contains all zeros, and the second row of the radial 
heat flow matrix also contains zeros. The axial heat and velocity flows, however, must be included in the 
model, so they are calculated using the appropriate equations (which take into consideration material 
properties such as thermal conductivity and heat capacities as well as FV dimensions). The heat flow 
equations are based on Fourier’s law. 

% calculation of heat flows - radially
qr=zeros(N,M);
for l=1:M

qr(1,l)=-(2*lam(2,l)*lam(1,l)/(lam(2,l)+lam(1,l)))*(T(2,l)-T(1,l))/(1.5*hr); % f
for k=2:(N-1)

qr(k,l)=-(2*lam(k+1,l)*lam(k,l)/(lam(k+1,l)+lam(k,l)))*(T(k+1,l)-T(k,l))/hr;
end

%    qr(N,l)=-lam*(Tsurf-T(N,l))/(0.5*hr);  % flow of external KO into the area
qr(N,l)=0; % radial heat flow not considered yet (1D)

end
qjr=zeros(N,M); %radial velocity flow is neglected in 1D

% calculation of heat flows - axially
qz=zeros(N,M);
qjz=zeros(N,M);
qz0=zeros(1,N); % qz(k,0) matlab cannot use 0 in index
qjz0=zeros(1,N); % qjz(k,0) matlab cannot use 0 in index
for k=1:N

for l=1:M-1
qz(k,l)=-(2*lam(k,l+1)*lam(k,l)/(lam(k,l+1)+lam(k,l)))*(T(k,l+1)-T(k,l))/hz;
qjz(k,l)=(js(k,l)*cpc(k,l)-jg(k,l)*cpg(k,l))*(T(k,l+1)+T(k,l))/2;

end
qz(k,M)= -(2*lamB*lam(k,M)/(lamB+lam(k,M)))*(TB-T(k,M))/(0.5*hz); % bottom heat flow; 

TB (taken from melter model) used to get this value
qjz(k,M)=(js(k,M)*cpc(k,M)-jg(k,M)*cpg(k,M))*(TB+T(k,M))/2; % bottom velocity flow

qz0(k) = -(2*lam(k,1)*lamT/(lam(k,1)+lamT))*(T(k,1)-TT)/(0.5*hz); % top heat flow - QT
qjz0(k) =(js(k,1)*cpc(k,1)-jg(k,1)*cpg(k,1))*(T(k,1)+TT)/2; % top velocity flow
%%%%%%% Based on PNL paper: QB = QT + 33.8; QT = Htotal - QUl %%%%%%%%%%%%%%%
% Htotal = heat flux to evaporate water and then heat the vapor to the
% temperature of the plenum space; takes into account heat flow from free
% surface of molten glass to plenum space
%
% 33.8 kW/m2 = heat flux to melt dry batch to molten glass (from DSC data)
%

jdry = 0.478*MFEED;
jwat = 0.522 * MFEED;
Hvap = jwat * 2.26e6;
Hpre = (jwat*4185 + jdry*1300)*(100-30);
Htotal = Hvap + Hpre;
QB = Htotal - QU + (33.8e3);
qz(k,M) = QB; 
qz0(k) = Htotal - QU; %  qz0 = QT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end

65



After heat and velocity flows are calculated, the value of QU (which is an input from the STAR-CCM+ 
simulation) is used to calculate QB, the heat transfer from the molten glass to the cold cap bottom. The 
variables jdry (mass flux of dry batch) and jwat (mass flux of water from slurry) are first calculated using 
MFEED and a slurry water content of 52.2%. The heat flux to evaporate water, Hvap, is then calculated using 
jwat and the evaporation heat of water (2.26x106 W/m2). The heat to preheat the slurry from the feed 
temperature of 30°C to 100°C, the temperature of the boiling slurry, is calculated as Hpre using the jwat, jdry, 
the specific heat capacities of water and the dry batch, and the difference between the final and initial 
temperatures. The sum of Hvap and Hpre is stored as Htotal, which is then used in conjunction with QU to 
find QB. QU is subtracted from Htotal to find the remaining heat that needs to be supplied from the molten 
glass to the cold cap to aid in the preheating and drying of the slurry, and then the heat necessary to melt the 
dry batch to molten glass, which is 33.8 kW/m2 (based on experimental data), is added to obtain the total heat 
necessary from the molten glass, QB. QB is then placed into the heat flow matrix qz at the indices which 
represent the cold cap bottom, and the heat transfer from the top of the cold cap to the slurry (Htotal – QU) is 
added in the appropriate indices in qz0. The constants used in these calculations (evaporation heat of water, 
initial and final temperatures of slurry, heat flux necessary to melt dry batch to molten glass), have been 
obtained from the documentation that accompanied the original cold cap model 
(http://www.pnl.gov/main/publications/external/technical_reports/PNNL-20278.pdf, section 5.4 titled “Water 
Evaporation”).

The next section of can7.m, lines 104 to 125, is as follows:

In this section, an NxM matrix called dTdt is created to hold the solution values of the right hand side of the 
heat balance ODE for each FV. The first part of this section of code finds the value of dTdt for the innermost 
(leftmost) FV, which is a cylinder. The second part of the code finds the value of dTdt for the FVs shaped like 
cylindrical rings.

% -----------------------------------
% heat balance of each finite volume
% -----------------------------------
dTdt=zeros(N,M);

% a) inner FV (cylindrical)
k=1;

l=1;
dTdt(k,l)=(-AR(k)*qr(k,l)+AZ(k)*(qz0(k)+qjz0(k))-AZ(k)*(qz(k,l)+qjz(k,l)))

/ (V(k)*rho(k,l)*cpc(k,l)); 
for l=2:M

dTdt(k,l)=(-AR(k)*qr(k,l)+AZ(k)*(qz(k,l-1)+qjz(k,l-1))-
AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l));

end
%end k=1

% b) other FV ("rings")
for k=2:N

l=1;
dTdt(k,l)=(AR(k-1)*qr(k-1,l)-AR(k)*qr(k,l)+AZ(k)*(qz0(k)+qjz0(k))-

AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l)); 
for l=2:M

dTdt(k,l)=(AR(k-1)*qr(k-1,l)-AR(k)*qr(k,l)+AZ(k)*(qz(k,l-1)+qjz(k,l-
1))-AZ(k)*(qz(k,l)+qjz(k,l))) / (V(k)*rho(k,l)*cpc(k,l));

end
end

66



The last section of can7.m is shown below.

The above code simply turns the dTdt matrix from an NxM matrix into a column vector with N*M columns. 
The column vector is stored in dydt. This is necessary because the ode15s solver requires that y’ values be 
inputted as a column vector. 

Now that can7.m is finished executing, control finally returns to main2D.m. The next section of main2D.m is 
shown below:

Keeping in mind that yy is a 2D solution matrix consisting of temperature values, this call to the v2array3D.m 
helper file is for turning yy into a 3D matrix, in which the third dimension is time. The v2array3D.m file is 
shown below:

The above code is just taking the 2D solution matrix and turning it into a 3D matrix. A 3D matrix in 
MATLAB can be thought of as layers of 2D matrices (think of it like a Rubik’s cube). In this case, there is a 
layer for each time value, and in each layer are the ODE solutions at radial and axial coordinates. 

function [yout] = v2array3D(yin)
%V2M Vector (1D) to Array (3D)
%   yin is vector
%   yout is 3d-array
M=100;
N=2;
yout = zeros(N,M,51);
dim=size(yin); % first number is the number of rows (times), the second 
number is the number of columns (temperature)

for t=1:dim(1); % for all time steps

yout(:,:,t)=zeros(N,M);
index=0;
for k=1:N

for l=1:M
index=index+1;
yout(k,l,t)=yin(t,index);

end
end

end

yyy=v2array3d(yy); % simulation results yy into 3D matrix
% 1st index = axial (z)
% 2nd index = radial (r)
% 3rd index = time (t)

% pack state variables (matrix --> vector)
dydt=zeros(N*M,1); % column vector for integration
index=0;
for k=1:N

for l=1:M
index=index+1;
dydt(index)=dTdt(k,l);

end
end

67



The next section of main2D.m, not shown in this document, focuses on graphing the temperature solution at 
different values of z (axial coordinate) and r (radial coordinate). This section can be changed to reflect 
whatever data is required from the model.

The last part of main2D.m, lines 76 to 87, is shown below.

In this code, the temperature solution at the very last time in the integration process (0.01s) is obtained and 
stored in the variable T. Then, physical_data.m is called again to obtain the new, final properties of the cold 
cap based on the final temperature values. The output variables TT1, QB1, MGAS1 and MGLASS1 are all 
updated so they can be sent to the STAR-CCM+ simulation in the coupled model.

%=======================================================
%       postprocessing (results)
%=======================================================
T=yyy(:,:,end); % last time
TT=T(1,1); %param.TT; % slurry temperature
% TB=T(end, end); %param.TB; % bottom temperature
physical_data % distribution of final cold cap properties
QB1 = QB;
TT1 = TT + 273.15; % Convert to K, since STAR accepts K, not C
MGAS1 = MGAS;
MGLASS1 = MGLASS;
end

68



Below is a flowchart outlining the interactions between the various files for the cold cap model.

main2D.m 

SETUP 
- Creation of structure that holds cold cap 
dimensions, number of finite volumes (FV) 
in axial and radial directions and mass flux to 
cold cap 
-Initial linear temperature profile obtained 

INTEGRATION OF HEAT BALANCE ODE 
- ODE solvers in MATLAB solves equations of 
the form y’ = f(t,y) 
- Heat balance ODE solved iteratively using 
ode15s, which takes in a function that is 
used to evaluate y’  
-ODE solver returns 2 things: tt, a column 
vector of time values, and yy, a 2D solution 
matrix in which each row corresponds to the 
solution at the time in tt in the same row 
-2D solution matrix turned into a 3D matrix, 
in which 1st dimension is axial, 2nd is radial, 
and 3rd is time 
 

DISPLAYING DATA 
Creates various plots of temperature at 
different values of z (axial coordinate) and r 
(radial coordinate) 

POSTPROCESSING 
- Obtains the temperature solution at the 
last time value (3600s) 
- Recalculates physical data based on final 
temperature profile to get final cold cap 
properties 

init_cond.m 
Creates linear temperature profile; temperatures 
range from 100°C (temperature at top of cold cap) 
to 1100°C (temperature at bottom of cold cap) 

can7.m  
- Obtains physical data 
- Calculates areas and 
volumes for FVs 
- Calculates radial and 
axial heat flows 
- Uses all of the above to 
solve for T’ (which is the 
same as y’ in general form 
y’ = f(t, y)) 

physical_data.m 
Calculates, based on 
temperature: 
- heat conductivity 
- mass fluxes of solid 
and gaseous states 
- heat capacities of 
condensed and gas 
phases 
- spatial density 

v2array3D.m 
Incorporates time 
values into 2D solution 
matrix by making the 
solution matrix 3D; 3rd 
dimension of matrix 
becomes time 

69



4. ACKNOWLEDGMENTS
The authors gratefully acknowledge that this work was supported by the Department of Energy’s Waste 

Treatment & Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger. Brant 
Peery and Sam Alessi are also thanked for guidance on the use of ModelCenter and SharePoint websites. Eric
Volpenhein of CD-adapco graciously provided STAR-CCM+ licenses for the students’ use.

5. REFERENCES
[1] R. Pokorny and P.R. Hrma, “Mathematical Model of Cold Cap – Preliminary One-Dimensional Model 
Development,” Pacific Northwest National Laboratory PNNL-20278, March 2011.

70


