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Multiphysics Integrated Coupling Environment (MICE)
1. INTRODUCTION

The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant
modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap
region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated
Coupling Environment (MICE), shown below, has been developed to create a cohesive simulation of a waste
glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap
uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region
where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the
three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D
simulation. The two processes are linked through ModelCenter integration software using time steps that are
specified for each process. Data is to be exchanged circularly between the two models, as the inputs and
outputs of each model depend on the other.
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The coupling between the MATLAB and STAR-CCM+ models has been approached in two ways. The
first approach is a programming-based approach, in which the two models exchange data over network
sockets. The socket communications are encoded in Java, and the models are linked using Simulink, a
graphical programming language. The second approach to the coupling is software-based: ModelCenter is



used to create wrapped components for the MATLAB and STAR-CCM+ models and then link them together
to allow for data exchange. Overall, it is clear that ModelCenter allows for significantly more functionality
and usability than the programming approach implemented in Simulink.

In the Simulink coupling, STAR-CCM+ is represented as a Level 2 MATLAB S-function, and the
MATLAB code for the cold cap has been included directly, as Simulink offers direct integration of MATLAB
code. Unfortunately, however, Simulink does not support some of the functionalities offered by MATLAB.
Therefore, the original MATLAB model for the cold cap has been amended heavily to function properly in
this coupling. To connect the MATLAB and STAR-CCM+ models, programming is used to establish network
sockets and a framework for how information is transmitted between the two models. Currently, after weeks
of effort, this coupling approach is still a work in progress — it has been much more difficult than originally
anticipated to establish a connection between the two models using Java, even with an example of a similar
coupling at our disposal. This brings into question the sustainability of this model: model maintenance would
require significant expertise in Simulink, MATLAB and Java and also a working knowledge of socket
communications. Almost all manipulations to this simulation involve programming, and very little
documentation has been found for such a coupling.

The ModelCenter coupling, on the other hand, has been quite successful. ModelCenter offers an easy-to-
use plug-in for MATLAB which can execute code externally in a MATLAB engine. Thus, unlike with the
Simulink coupling, very few modifications have been made to the original MATLAB code for it to perform as
needed in ModelCenter. Though no plug-in is available for STAR-CCMH+, it is still relatively straightforward
to create a component for the STAR-CCM+ model using QuickWrap, a general script-wrapping utility
offered by ModelCenter. This utility makes use of a Java macro, which is automatically generated by
STAR-CCM+, to run the melter simulation in batch mode. QuickWrap can also parse output files from
STAR-CCM+ at user-specified delimiters to extract the data that is to be sent to MATLAB. In contrast to the
Simulink coupling, linking the two models is almost trivial in ModelCenter, in which the creation of links
between variables is easily accomplished through an intuitive, user-friendly GUI In Simulink, linking the two
models requires the use of tedious code that has yet to work. Additionally, ModelCenter, through the use of
AnalysisServer, allows the various components in a model to run on different machines. This utility has been
used in the melter model to run the computationally intensive STAR-CCM+ simulation on a high-
performance computing cluster while the rest of the model runs on a desktop. In Simulink, this kind of
machine flexibility would not be possible without significant programming efforts. Lastly, because of its user-
friendly interface, the ModelCenter simulation is also much more maintainable than the Simulink model, as
very few special skills are required to understand how to use ModelCenter.

The above outlined benefits of ModelCenter must be weighed against licensing costs, as our project has
already incurred licensing costs for MATLAB and STAR-CCM+. The benefits of using ModelCenter,
however, outweigh these costs. It is foreseeable that ModelCenter’s optimization and trade study capabilities
will allow us to optimize melting rate and glass quality for our melter model, thus leading to savings in money
and time for waste vitrification operations. After using ModelCenter for this waste melter model, we
recommend the use of this powerful tool in modeling other multi-component systems.



2. STARTING A NEW MODEL

When a new model is created in ModelCenter, it will prompt you to select from either a process flow or a
data flow. For the melter project, we will use a process flow, as it is easier to implement a circular model
using a loop in the process flow.
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21 Creating a Loop

The loop component will be used to drive the coupled model. To create a loop component, select
“process”: from the Server Browser on the bottom left, and then select “Loop” from the bottom pane. Drag
and drop the loop into the purple model screen.

P Phoenix Integration ModeCenter 10.2- [new Modef] - [Model (Analysis View)] SN S il . S R o e woe T _ =l i
(BIETE

=2 File Edit View Tools Component Project Window Help
DUH. =P B e|kE@EL.

ModelLoop  component phag-in C:AProgram Files (+8€)\Phoen Integration‘ModelCenter 10.24Plug-Ins\Loop

Name Value
3 Model

diaH 3o

Q Loop
~favortes st --

Select Loop Type

Repeatliti v
Basic Setup
Condition: g varable from Companent Tree

The Input Variable is set equal to the Initial Value and then to the Feedback Variable after each run

Input Vanable Intial Value. Feedback Vanable
Dhag inpu variable from Componen... <Use Curent Value> Diag variable from Companent Tiee

o

e T e e e et e e et e

-

# | Project Tree | (] Component Tree

Pinitives I -c
H
" Gomponent phugin Parallel  Sequence Empty Data User Task

Schedul..

o-E-8-A

3 fgm

PBlueZ
diivers
(=4 meler

B MOSwf 2 o

@ solution archive:
-2 asevesshidfquak

After you drag and drop the loop component into the model, a pop-up should appear that asks you to set
the loop properties. Ignore this for now by either closing the window or pressing “OK”, since loop properties
will be set later in this tutorial.



2.2 Adding the MATLAB Component

To add the MATLAB model of the cold cap to the model, click on “favorites:” in the Server Browser on
the bottom left of the screen, and drag and drop the MATLAB plug-in into the model.

¥ E £
ETTE| |

TMatlab

As soon as you drag and drop the MATLAB component into the model, a window should pop-up, giving
you three options for how you want to use MATLAB code. In our case, we are going to use the second

option, “Call external M-file from the plug-in.”



4\ Matlab Plug-In 1.7.1: Matlab I = |
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You will then be asked to browse and select the MATLAB file that you want to run. For this project,
navigate to the directory that contains all the cold cap model files, and select “main2D.m.” Once you have
done so, a pop-up will show up that says “No variables were detected.” This is fine and can be ignored, since
we will be setting variables manually. Code should now appear in the window, however, that links to your
main2D.m file, as shown on the next page.



4\ Matlab Plug-In 1.7.1: Matlab
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We now need to edit this code to reflect the inputs and outputs coming into and leaving from the
MATLAB model. The MATLAB model will take in TB1, QU1 and MFEED1, and it will output QB1, TT1,
MGAS1 and MGLASSI. Therefore, change the last line in the code (line 14) to be: [QB1, TT1, MGASI1,
MGLASS1] = fileToExecute (TB1, QUl1l, MFEEDI1)

This is basically how a function is called in MATLAB; here you are calling the main2D function with the
appropriate inputs and outputs. In the MATLAB file main2D.m, the function header must also have the same
inputs and outputs.

Next, you must add all these variables in the left pane where it says <click to add variable...>. Specify
each variable as an input or output, and also make sure the Type of each variable is what it needs to be (for
our case it should be double for all these variables).



The new code and variables for the MATLAB ModelCenter component are shown below:
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Once you are done making all the above changes, either press Control+S or click on the yellow arrow in
the upper left corner to save changes to your component. Whenever you make any changes to any component,
always remember to save!

We are done with the MATLAB component, and the component window can now be closed.



2.3 Adding the STAR-CCM+ Component

Because a direct plug-in is not available for STAR-CCM+ as it is for MATLAB, the general script-
wrapping utility, QuickWrap, will be used to create a component for the STAR-CCM+ melter model. This
component will run STAR-CCM+ in batch mode (from a command window/terminal) by using the command
“starccm+ -batch <macro file name> <simulation file name>”. Therefore, a Java
macro is needed from the STAR-CCM+ simulation. This macro will contain all the code needed to run the
simulation. A macro can be created in STAR-CCM+ by first loading the simulation that you will be running
(it’s okay if you think you might use a different simulation in the future — the macro should, for the most part,
still be the same) and then clicking on the blue circle button in the upper left, as shown below.
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Once you click on the Record Macro button, you will be prompted to select a file to save the macro to. In
this case, it is best to create a new file (let’s call it “macro.java”). Once you select the file, recording has
begun. Do not click around too much or change anything immediately, as whatever you do from now on in
the simulation will be recorded as code in your macro file. Note that for our coupled model, STAR-CCM+
needs to have some inputs and outputs. The inputs will be MGAS1, MGLASSI1, QB1 and TT1, and these
should all be defined as field functions in the STAR simulation. The outputs will be QU1, TB1 and MIN1
(which is the same as MFEED1 later on in ModelCenter), and these should be defined as reports in the STAR
simulation. The field and report setup is shown in the picture on the next page.
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Once fields and reports are set in the STAR simulation, the following things need to be done when the
macro begins recording:

1. Click on each field function (MGAS1, MGLASS1, QBI1, TT1), and set its value to something. The value
can be set to anything, as we just want to get the macro to give us the general code for setting a field to a
certain value).

2. Under Stopping Criteria, set the maximum physical time to reflect whatever is needed. Currently, in the
macro used for the coupling, this is set to 0.01 seconds.

3. Run the simulation. You do not have to run the simulation for its entire length; you can stop the
simulation as soon as you want, since all we really care about is to get a line of code in our macro that
represents the running of the simulation.
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4. Right-click on each report and select “Run Report.”

5. Open up whatever scenes you would like to export pictures of. Right-click on the scene, select
“Hardcopy”, and save the picture as a .png file somewhere. I will be saving scenes for temperature,
velocity streamlines, volume fractions of air, bubbles, glass and slurry and also residuals. I will be saving
these in a folder called “STAR Pics.”

Now you may stop recording the macro by clicking on the blue square button that is in the same area as
the blue circle button you used to start recording the macro.

If you open “macro.java” (or view it in STAR-CCM+, as it should be displaying that file on another tab in
the Output window), you will now see that there is code in the file for every step you performed while you
were recording the macro. If someone were to play this macro in the STAR simulation used in the coupling,
all the steps performed while recording will be executed automatically. The macro is what the ModelCenter
model will be running, so now you know exactly what will be happening every time the STAR component in
ModelCenter runs.

Now we need to make some minor changes to the macro. You can use a text editor (WordPad or
NotePad++, for example) or a Java integrated development environment (like NetBeans or Eclipse) to edit a
Java file. In this case, at the top of the file, with all the import statements, an “import java.io.*;” line needs to
be added because we will be creating output files using the File class in the java.io library.

ES] macrao.java m|

TSowee ) Hestory [[@ -0 -|Q @ S0 ¢ & S0 0 0| &

1 £ STAR-CCHM+ m

package macro;

fu
fu

El import java.util.=®;
import java.io.®;
import star.common.®;

import star.base.report.®;

import SCAr.posSt.®;

2

3

&

5

Y

[T import star.base.neo.®;
las

Y

@ " import star.vis.*;

]

1
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Next, towards the bottom of the file, the printReport statements need to be altered to print to a file, as can
be seen in the picture. The “false” is to ensure that report files should not be appended to; that is, every report
should clear out whatever was in the file previously.

46
47
48
W
s
51
52
53
[T
fes)
56
57

k==

physicalTimeStnppingCriterian_D.getMEximumTimetj.setVEluetD.Dl};
simulation 0O.getSimulationIterator().run():

ExEressiOHReEort expressionReport 0 =

((Exgressionﬁegort] simulation 0.getReportManager () .getReport("0U1")):
expressinnRepnrt_D.printﬂeport:new File("reportQU.cxt"), false):

ArcadveragesReport arealverageReport 0 =

((ArcadverageReport) simulation 0.getReportManager () .getReport("IEL")):
areaﬁverageﬂepurt_ﬂ.printReport:new File("reportTE.txt"), false):

Notice that if you ever need to change how long the simulation runs, you can simply change that value in
this macro in line 64 as seen in the picture above. Right now, the simulation is set to run for 0.01 seconds
(physical time), but that value can be easily changed to any other number.
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Next, we need to take a look at the code that exports scenes as pictures. For the purposes of this manual,
let’s focus on the macro code that deals with the temperature scene. The last line of code in the section shown
below is what we are interested in: this line saves the scene as a picture file to a certain path. Make sure that
the path and filename are what you want. [ want to save my temperature picture to a file called
“temperature.png” in the “Star Pics” folder on my desktop; therefore, the line of code is correct. Make sure
the filename and path are correct for all the scenes you are exporting.

@ macro.java

[Sore | ristory | [@ [0 - Bl - | @ @ & (D) =20 H|&
54
55 areanverageﬁeport_o.printReport(new File ("reportIB.txt"), false):
56
57 // EXPCRT TEMPERATURE PICTURE***# & & daaddddddd dd dA 0 A AR AR A AR A AR AR AR AR AR AR AR AR AR
[*] Sgene scene 0 =
59 simulation 0.getScensManager().getScene ("Temperature™);
(1}
6l scene 0.initislizedndWait():
62
[T PartDisglaxer partDisplayer 1 =
[T ({PartDisplayer) scene 0.getlreatorDisplaver()):
65
&6 partDisplayer l.initialize();
a7
(7] PartDisElaxer partDisplayer 0 =
[T ({PartDisplayer) scene_0.getDisplaverManager|().getDisplayer("Cutline 17));
70
71 partDisplayver 0.initialize();
72
(7] ScalarDisgiazer scalarDisplayer 0 =
(7] [ tScalarDisEIaxerJ scene_0 .getDisplayerManager () .getDisplayer ("Scalar 1"));
75
Té scalarDisplayer O.initialize():
77
78 scene 0.open (true);
79
(7] PartDisElaxer partDisplayer 2 =
[T ({PartDisplayer) =scene_0.getHighlightDisplayer()):
g2
B3 partDisplayver 2.initialize();
54
(v} CurrentView currentView 0 =
g6 scene_0. getCurrentView () ;
&7
[T currentView 0.setInput(new DoubleVector (new double[] {0.05424697444486035, 0.2077876351107233, 0.369351806&t
e}
(7] currentView 0.sstInput(new DoubleVector (new double[] {0.09424697444486035, 0.2077876351107233, 0.369351806¢
91
[T scene 0.printAndWait(resclveFath ("C:\\Users\\agarv2\\Desktop\\5TAR Pics\\temperature.png"), 1, 1163, 593):
3

We are now done editing the macro, and we can start setting up the STAR-CCM+ component in
ModelCenter using QuickWrap.

13



From the same pane that had the MATLAB plug-in, select QuickWrap, and drag and drop it into the
model.

: -
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s 2B
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Bhd
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A component editor window should pop-up as soon as you drop the QuickWrap component into the
model.

14
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Before going further, create a new folder somewhere (I made one on my Desktop and called it MC
Stuff 2), and add to it your “macro.java” file as well as your STAR simulation file). In this folder, make a
copy of the “macro.java” file and name this copy “macro.java.template.”

Once you are done with this, go back to the QuickWrap component editor and click on “Add one or more
input files....” Select the macro.java file. It should ask you if you want to use the template file detected, and
you should select “Yes.” Notice that it now displays the macro code in the window, as shown on the next
page. Unfortunately, ModelCenter does not allow you to edit the macro code in this window, so if you ever
have to make any changes to the macro, you must use a text editor or IDE to edit the macro, and then you
must reload it into the QuickWrap component. In that case, you would also have to re-create the
“macro.java.template” file and reload that into the component as well.
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Template File: |C:\Users\agarv2\Desktop\MC Stuff 2\macro.java.template

File to Generate: C:\Users\agary2'\Desktop\MC Stuff 2\macro.java

Encoding: | UTF-8 -

File View | [F7] Table View | [3 Data View|

e

=|[7] %]

Delnters:

1// STAR-CCM+ macro: macro.java
Zpackage macro;

3

dimport java.util_*;

Simport jawva.io.*;

fimport star.common.*;

Timport star_base_neo.*;
8import star_base_report.¥*;

Simport star.post_*;

10

llpublic class macro extends StarMacro {
1z

13 public wvoid execute() {

14 executel();

15 }

16

17 private void execute0() {
ie

i Simulation simulation 0 =
20 getActiveSimulation();
21

-

m

Fortran: |
Format: Edit....

| || |
Range:| | ‘ Pick.... ‘

Row:

Field:

& Vrapper view |54 Script View

Scroll down to the lines of code that set values for field functions (such as
userFieldFunction_0.setDefinition(“42”")). You should now specify the delimiter in the upper right hand
corner just above the code window to be a quotation mark (“‘). Now if you hover your mouse over the number
between the quotes in the setDefinition, you should be able to right-click on the highlighted number and click
on “Add Variable”. Add the appropriate variable as an input, make sure that the Type for each is specified to
double, and specify a default value for your variable if you wish to do so.
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Quick Start... [ %]

3
@ Add one or more input files... Equmo«ewmtﬂesm Specifvap(ogamtoruﬂm ’ TestRun...

Template File:| C:\Jsers'\agarv2\Desktop MC Stuff 2ynacro.java. template ®) ]
File to Generate: |C:\Users\agarv2\Desktop\MC Stuff 2\macro.java |

File View | [7T] Table View | 3 Data view|

. 7% (omesi

41 =
42 UserFieldFunction userFieldFunction D =
43 ((UserFieldFunction) simulstion_0.getFieldFuncti e on("QBL™)) 7
42
45 FieldFunction 0 tion("8&717.3083614™);
4
47  UserFieldFunction usexFieldFunction 1 =
48 {({UserFieldFunction) simulation_0.getFieldFunctionManager () .ge: B Add Variable | b ‘
43 —
Variable Name:|TT1 ) |
50  userFieldFunesion_1.setDefinition ("EGERE] Relatue To: 1 ]
elative To: -
51 lj Range: |macro_javaltoplr50c2[\] ]
click
52 UserFieldFunesion userFieldFunction 2 = w
53 {(UserFieldFunction) similation_0.getFieldFuncti ) oge —
54
55 userFieldFunction_2.setDefinition("0.00376684484660533");
56
57  UserFisldFunction userFieldFunction 3 =
s8 { (UsexFieldFunction) lation_0.getFisldFunct W ("MGLASS1™)) ;
—_ 7
60  userFisldFuncrion_3.szetDefinition("0.0135151551531847");
61 PhysicalTi ngCriterion physicalTimeStoppingCriterion 0 =
:l 62 ( (Physicall terion)
simulaticn 0.getSo. teri 1) .ge terion("Maximum Physical Time"));
&3 14
Row: Field:

3 Wrapper View | |54 Saript WEwl

a|lm
z| 2

Once have added the input variables, they should all appear on the left-hand pane, and it should be clear
that they are linked to the text highlighted in green.
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Fd QuickWrap 3.1
File View Wrapper Help

© &|E P

Quick Start...

‘ @ Add one or more input files... ‘ B Add one or more output files... ‘ E Spedify a program

Template File: C:\Wsers\agarv2\Desktop\MC Stuff 2imacro.java. template

s MGAST
~=#1 MGLASS1
+---<Click to add variable

File to Generate: |C:\Users\agarv2\Desktop\MC Stuff 2\macro.java

Encoding: [UTF-8 -
File View | 7] Table View | (3 Data View
™
§
a1

4z UserFieldFunction userFieldFunction_ 0 =

4z {{UserFieldFunction) simulation_0.getFieldFunctionManager () .getFunction{"CB1"));
44

45 userFieldFunction 0 _setDeflnlt:_u@ ") :

48

47 UserFieldFunction userFieldFunection_ 1 =

48 {{UserFieldFunction) simulation_0.getFieldFunctionManager () .getFunction{"TT1"));
49

50 userFieldF\mcciun_i_setDefiniciuni‘@.'

51

5z UserFieldFunction userFieldFunction 2 =

532 {{UserFieldFunction) simulation_0O.getFieldFuncticnManager () .getFunction ("MEASL™));
54

55 usErFiElr_‘lF\mctiun_E,sEtDEfinitiun) B

56

57 UserFieldFunction userFieldFunction_3 =

Type: |double w | linput - ) {{UserFieldFunction) simulation_0.getFieldFuncticonManager{) .getFunction{"MELASS1"));
Units;
53
Description:
Defadlt: |84717.3083614 &0 usernemn.mc:mnj_se:Defmnan:
e s &1 PhysicelTimeStoppingCriterion physicalTimeStoppingCriserion 0 =
Upper Bound:
€z {{PhysicalTimeStoppingCriterion)
EErEs simulation_0.getSclverStoppingCriterionManager () .getSclverStoppingCriterion(™Maximum Physical Time™));
Enum Aliases: &3
Fortran:
Range: |To_java|top|r45c2[\] Pick... Wrapper View | | =7 Saript \ﬂew|
—_—

Now that we are done specifying the inputs, we will specify the output fields (QU1 and TB1). If you do
not have copies of report files already available, the first thing you will need to do is open your command
prompt/terminal and run your STAR simulation in batch mode using the macro. Type in the following once
you are in the terminal, replacing the <FULL PATH TO MACRO> with the absolute pathname to
“macro.java” and replacing the <FULL PATH TO SIM FILE> with the absolute pathname to your .sim file:

starccm+ -batch <FULL PATH TO MACRO> <FULL PATH TO SIM FILE>

Your STAR-CCM+ model should now be running. Once it runs, you should have two output files,
“reportQU.txt” and “reportTB.txt” in the current directory. You need to then add these two files to the folder
that contains your macro file, macro template, and STAR simulation (in my case, this folder is MC Stuff 2).
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Once this is done, go back to the QuickWrap component editor and click on “Add one or more output
files....” Select “reportQU.txt” from its folder, and when the “Choose File Type” dialog comes up, the “Parse
file as” option should be set to ASCIIL. Close the “Auto Import Variables” dialog that comes up —it’s
unnecessary. The contents of “reportQU.txt” should now be displayed in the File View box.

Change the delimiter to “Whitespace,” and then select the number that is your output. Right click on the
number, and select “Add variable.” In this case, add the variable as QU1. Set the Type to be double, and
change the default value if you wish to do so. You should end up with something like this:

%?}ukk\h’rﬂp 3.a* | = | B ‘ P ‘
File View Wrapper Help

° s lEp

T et Quick Start... g
+uTT1

42 MGAS1 Add one or more Add one or more Specify a program to Test Run
1 MGLASS1 input files... output files... run...

".-<Click to add varizble >

| General | P Beate | 4z macro.java | B repartQU. txt |

File to Parse: | C:\Users\agarv2'\Desktop\MC Stuff 2yeportQU.tut |[®] E]
Encoding: |UTF-8 v

File View ‘ [ Table view | |9 Data V’lew|

I3 { - \, x Delimiters: |Whitespace  ~ "

3 -
20.03* (3Temp_InletReport - $Temp_ColdCapTopReport) -2.165817e—0 W/m~Z)

Type: |dDuh\E .-| |gn:|up -

Units: |

Description: |

Default: |

Upper Bound: |

Enum Values: |

Enum Alizses: |

|
|
|
|
Lower Bound: | |
|
|
|
|

Fortran: |

Format: | Edit...
Range: | | @ wirapper view | |54 Seript View

Row: Field:
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Now do the same for reportTB.txt. Make sure you are saving all this as you go along. You should now
have all your output variables set up for the STAR component, as shown below.

- -
Fd QuickWrap 3.1 |= @] =
File View Wrapper Help

Quick Start... (%]
Add one or more Add one or more Spedfy a program to
‘ @ input files... B output files... ‘ E run... st
<Click to add variable —
| General | B Execute | 4Z] macro.java [B reportQU.th| [B reportTB.txt | ]
File to Parse: 'C:i.I.Jsers\agarvz\DeskmpWC Smﬁ’.z\reportTB‘b(t E]
Encoding: | UTF-8 =
File View | [F] Table View | |3 Data \ﬁew|
2| =] Falt Delimiters: |Automatic -
! J "
N ~
2 Surface Average of Temperature on Volume Mesh
3
4Part Value (K}
€Tank.Cold Cap Bottom 1.038302e+03
g
8 Total:
Type: [double 'g(uup [
Units:
Description: |
Default:
Lower Bound:
Upper Bound: |
Enum Values:
Enum Aliases: il
Fortran:
Format: Edit...
Range: Pick... 3 Wrapper View |54 Seript view

The last few variables that we will be setting up are for the code that exports scenes as pictures. Right
click on <click to add variable...>, and add the following variables as outputs: temperature, velStreamlines,
volFractionAir, volFractionBubbles, volFractionGlass, volFractionSlurry and residuals. The “Type” of each
of these variables should be changed to “file.” When you change the type to “file,” a prompt will come up,
asking you to select the file it refers to. In this case, I navigated to the “STAR Pics” folder and selected the
appropriate picture for each variable. Be sure to check the box labeled “binary” for each file variable.
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-
Fd QuickWrap 3.1 & |

File View Wrapper Help

®2EBP

__| wrapper

..... [EJtemperature

----- [ velstreamlines
----- [% volFractionair

----- [ volFractionBubbles
----- B- volFractionGlass
----- [ volFractionSlurry
----- [ residuals

=l QB 1

- TT1

ol MGASL

-0 MGLASS 1

Type: |file - U v

Description: | |

File: |Pics‘|,tempera1ure.png| [ ]
[¥] binary

You should now have all of the variables set up for the STAR component.
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Now click on the “Execute” tab.

For Run Command(s), type in the command you used previously to run the simulation in the terminal,

except this time, you do not need to specify the absolute paths to the macro and .sim files. This is because we
will specify a directory to run the component out of. So for Run Command, type in the following, replacing

the <SIM FILE NAME> with just the name of your simulation file:

starccm+ -batch macro.java <SIM FILE NAME>

Next, check the box next to “Run in” and select the folder that contains your macro, macro template,
simulation file, and reports.

Under “Run sharing”, add your macro template file.

= b
Quick Start... [x]
‘ @ Add ane or more input files... ‘ B Add one or more output files... ‘ E Specify a program to run... ‘ $ TestRun...
I Exccute | S5 macro.java | [Z reportTB. bt | E repormuut|
Run Command(s)
‘starcmw “batch macro.java 07. 18_glassmelter_Ready4Simulink_HeatMaterials.sim |$ E]
Runin | C:\WUserslagary2\Desktop\MC Stuff 2 —
Run Sharing
Handle parallel runs by: Run in a local folder, queue parallel execution reguests =l
Files: |C:\Users\agarv2\Desktop\MC Stuff 2ymacro java. template Add...
Edit...
Remove
[ Use Relative Paths (Relative To: <C:\Users\agary2\DesktopMC Stuff 23)
Advanced
[ 1gnare Run Errors Backup Output Files Before Each Run
Auto Delete: |False

Now you can generate a wrapper file and save it in the same folder you have been working out of (MC

Stuft 2). To generate a wrapper file, click on the “Export” button in the upper left hand corner (next to save

button). This will create a “macro.scriptWrapper” file that you can save to your working directory. You
shouldn’t need to do anything to this file to get it to work.
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Save changes. We are now done with wrapping the STAR-CCM+ model. You can perform a test run on
the component to see if it is working. If there is some sort of error, and it says that it was unable to run the
starccm+ -batch command, there might be an issue with your license. In that case, try running the simulation
in batch mode from the terminal as you did before and see if it gives you an error.

In the future, if the STAR simulation being used is changed, the “Run Command” will have to be
changed to reflect the new name of the simulation file, and a new script wrapper will have to be generated for
the HPC version of the model. Additionally, if any input or output variables are changed, those changes will
obviously have to be reflected in the component variables.
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2.4 Adding a Script Component
to Output MFEED, Perform Bounds Checking and Control Iterations

Now we are going to add a component that will determine the value for the mass flux of slurry entering
the cold cap, perform bounds checking on the data generated by the STAR-CCM+ model and control how

many times the loop runs. We will now be using the “Script” option from the bottom pane. Drag and drop this
into the model window.

I Ghenges :I E.Jr:i.c::\por-!ﬂ!--gi:m-, f-H;lp
Canter Vaisbie: Soipt
¥ Sopl A= sub cun
U celick in add vorinble :I
3 end s
4 e
Script
- i m I ]
[t = Sulil Grouoe: [Viewa =] sopiTineow

¥ Project Tree | &7} Component Tree |

= MASD B L
- ¥ s 5 Mathead Matlsb  MSCHasan [ HorHautran Doig&m

A pop-up window should come up in which you can write code and add variables. Note that the script
language is defaulted to VBScript (the scripting version of Visual Basic), but you can easily select a different
language from the drop-down menu. For this model, we are going to use VBScript.
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First, set up the variables that are needed for this component. Variables that are needed of type double are
newTB, newQU, currTB, currQU, counter, and MFEED. Also add the boolean variable convergence, and add

a boolean array (denoted as boolean[]) called conArr. After setting up these variables your editor should look
like this:

L —

File Edit Component

= Apply Changes b Run Caormponent 82 Options... 7 Help
ModelCenter Variables Script
(= %] Checker 1i-lsub run
i COUNkEr 2
-+ cunTB 3i-end sub

-+ curU

i newTB

- newll

-1 COnvergence

-1 cond]

i MFEED

b crlick to add variable.. >

Properties

Edlt Variables... |

Tope [double | group -]

Class Location: | |

Class: | " Select... |

|
[

Urits:

Description:

Lower Bound:

Erwm ¥ aluies:

Enum Aliases:

|
|
|
Upper Bound: |
|
|
|

Format: ” Edit Farmat. | | Ln 2, Col1
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Now we can start adding code to the script. The first block of code we are going to add in the component
editor is shown below:

000 S0 b te 2 b

sub run
Vi g e ify mass flux of slurry to cold eap, MFEED (Ro/wtZs) 00 UUUUUUIUIU DU
if counter=0 Then

NFEED = InputBox{"Enter walue for mass flux of slurry, MFEED (units of kg/wm*2s3)", "MFEED Specification')
While Hot (MFEED>0 find MFEED<O.1)
MFEED = InputBox ("Invalid wvalus., WNFEED must he a number between 0 and 0.1 kg/m*2s. Please enter a valid wvalue.”, "MNFEED Specification™)
Wend
end if

This code prompts the user to specify a value for MFEED, the mass flux of slurry entering the cold cap,
on the loop’s first iteration (when counter is equal to 0). If the value is not between 0 and 0.1 kg/m’s, the user
is prompted to reenter a valid number. If the user wants to exit the model and no longer enter a value for
MFEED, he/she will have to halt the model itself.

In the next block of code entered into the script, shown below, the values produced by STAR-CCM+ are
checked to ensure that they are within reasonable bounds. If TB, the temperature at the bottom of the cold
cap, is not between 873K and 1574K, a warning message is displayed to the user, and the value of TB is
adjusted to one within bounds. Similarly, the value of QU, the heat transfer from the plenum space to the
slurry, is checked to see if it is between 0 and 60 kW/m’. If the value is negative, it is changed to a positive
number, as the MATLAB model can only handle positive heat transfer values. If the value is positive but
greater than 60 kW/m?, it is adjusted to be 25.5 kW/m®, which is reflective of a situation in which half the heat
for evaporating and heating the slurry is supplied from the plenum space. Should the need arise, the lower and
upper bounds used to perform bounds checking on these variables can be adjusted easily, and the same is true
for the handling of out-of-bounds values.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIRMGE CHECKINGIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
if Hot (newTE>=573 And newTE<=1574) Then

MegBox ("Warning: TE wvalus out of range. Now adjusting to a value within range.'™)

if newTE<S73 Then

newTE = 873.15

Else

newTE = 1573.15

End If

End If

' make sure negative QU is turned into positive walue for MATLAE
if newQU<0 Then

newin = —1*%newon

End If

if Hot (newQU<=60000) Then

MegBox ("Warning: QU waluse out of rahge. Now adjusting to a value within range. ™)

' then just assume that half the heat for ewvaporating and heating slurry is supplied from plenum space
newdd = 25500

End If
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
538
59
a0
61
62
63
a4
65
6a
a7
63
=]
70
71
a2
73
74

"The next block of code in the script component, shown below, controls how many times the loop runs.

P e PERGENCE TESTING! PP P i i i i i i i i i i i i i

' zheck new wvalues against current wvaluss
TEchange = ibs (newTE-currTE)l /currTE
QUchange = ibs (newlU-currQl) fourrQll

conlirr.length = counter+l
'Dim condrr ()
'Relim Preserwve conlrr (counter)

if TEchange<=.05 And QUchange<=.05 Then ' 1if difference between new and current wvalues 15 minimal, a true in
ConArr (counter) = true

Elze

conldrr (counter) = false

End If

' CHECE FOR CONVERGEMNCE

COnVErgence = true

if conkrr.length<=4 Then ' for 5 or fewer loop iterations, convergence false (too few iterations, should do
convergence = false

Elself conbrr.length>=5 hnd conlrr.length<=39 Then ' for 6 to 40 loop iterations, convergence true if last 5

For i = (conlrr.length-5) to conlrr.length-1

if Hot (conldrr(i)) Then

convergence = false

End If

Hext

Else ' for owver 40 loop iterations, convergence true if last 10 elements in condrr are true
For i = (conlirr.length-10) to conlrr.length-1

if Hot (conldrr(i)) Then

convergence = false

End If

Hext

End If ' if by now, convergence 13 sStill true, that means that the overall model should ke converging, and

' Store new walues into current walues for next iteration
currTE = newTHB

currQl = newQll

Counter = counter + 1

—end sub

There are two ways to control the number of iterations performed by the loop: either the number of
iterations can be specified explicitly, or the loop can be made to run as many times as it takes for the model to
converge upon a solution. For the first method, a variable called “counter” is updated every time the loop
runs. In the Loop component’s editor, the “Repeat Until” condition can be altered to cap the value of
“counter” at a certain point. For instance, if we want the loop to only run for three iterations, we would make
the loop’s “Condition” look like the following:

-
©

--hvoﬂeshﬁ--

Select Loop Type

Repeat Ut ~ Loop tterates until a condition becomes true. The condition is checked after each teration.
Basic Setup
Condition: | MetterMode! Loop.Checker.counter==3 o)

The Input Vaniable is set equal to the Initial Value and then to the Feedback Vanable after each run

| Inout Variable Initial Value Feedbazd’{7‘u’ariable



This set-up will be different if you want to run the model until it converges. In this case, the model will
run until the variable “convergence” is true, as shown below.

cur R

- -favortes list - - ~ g K
Select Loop Type
Repeat Urti » Loopiterastes until 3 condition becomes true. The condition is checked after each teration
i
Basic Setup
Condition:  MelterModel Loop Checker convergence E]
I The Inout Varniable is set eousl to the Initial Value and then to the Feedback Vaniable after each run |

The script component has a very precise method of checking for convergence. The script component
stores old values for TB and QU (currTB and currQU) that are from the previous iteration. The component
also stores the new value for each variable (newTB and newQU) that has just been calculated by STAR-
CCM+ in the current iteration. The change between the old and new values is then calculated. If the change is
less than 5% for both TB and QU, a boolean “true” is added to the boolean array conArr. If the model has
been running for anywhere between 6 and 40 iterations (i.e., the length of conArr is either 5 or 39), and the
last five elements of conArr are all “true”, then the convergence variable is changed to “true,” and the loop
stops running. Similarly, if the loop has been running for over 40 iterations, the convergence variable is
changed to “true” if the last 10 values in conArr are all “true.” Finally, at the end of the script, the new values
of QU and TB are stored in currTB and currQU so that they become the old values in preparation for the next
iteration. Note that the variable counter is also incremented by one.

2.5 Adding a Script Component that Uploads Pictures to MICE Website

We can upload the image files outputted by STAR-CCM+ to the MICE website
(http://inlteam2010:3666/sites/ GEMS/MICE). This makes use of a Windows PowerShell script
(copyFileToSharepoint.ps1, developed by Brant Peery at INL) that can upload images to a website.

First, go to the Start menu, and find Windows PowerShell (x86). Right-click on it, and select “Run as
administrator.” This should bring up a blue PowerShell terminal. In this terminal, first type in the following,
and then press enter:

get-executionpolicy

If, after pressing enter, the terminal displays “remotesigned,” you do not need to do anything else because
this means that you will be able to run PowerShell scripts on your computer. If, however, the terminal
displays “restricted,” you will not be able to run PowerShell scripts. In this case, you need to manually set the
execution policy to “remotesigned.” To do this, type the following into the terminal, and then press enter:

set-executionpolicy remotesigned

After you press enter, it should ask you to confirm whether or not you would like to change the execution
policy. Type in “y” for yes, and press enter. Now your execution policy should be what we need.

Now we will actually create the script component in ModelCenter that will execute the PowerShell script.
Drag and drop a Script component into the model, just after the melter component in the loop. This process
should be similar to how we created the script component in the previous section. VBScript will be used once
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again as the language for this script. The variables that need to be added to this script are shown below. The

variables temperature, velStreamlines, volFractionAir, volFractionBubbles, volFractionGlass,

volFractionSlurry, and residuals are all file variables. The variables fileOutputDir and scriptDir are both

strings. The variable count is of type int.

[=- %¥| FileExporter
termperature
velStreamlings
volFractiondir
volFractionBubbles
volFractionGlazs
volFractionSiury
fileQ utpLtDir
reziduals

count

zerptDin

<click to add warniable, >

The code for this script is shown below:
Option Explicit

dim wsh
Set wsh = CreateChbject ("Uscript.shell"™)

sub run
dim filename
filename = filefutputDir & "temperature.png™
temperature.isBinary = true
temperature,.toFile (filename)
uploadfile filename, "temperature® & count & ".png"

filename = filefutputlir & "velStreamlines.png™
velStreamlines.isBinary = true

welZtreamlines.toFile (filensme)

uploadfile filename, "wvel3treawlines" & count & ".png™

filenswme = fileCutputDir & "wvolFractionlir.png™
wolFractionliir.isBinary = true

volFractionkir.toFile (filename)

uploadfile filename, "wvolFractionliir' £ count & ".png™

filename = filefutputDir & "volFractionBubbles.png™
wvolFractionBubbles.isBinary = true

wolFractionBubkbles.coFile (filename)

uploadfile filename, "wolFractionBukbbles="™ £ count & ".png™

filename = filefutputlir & "volFractionGlass.png™
volFractionGlas=s.isEinary = true

wolFractionGlass.toFile (filensme)

uploadfile filename, "volFractionGlass"™ & count & ".png™

filensme = fileCutputDir & "wolFractionZlurry.png®
wvolFractionZSlurry.isBinary = true

volFractionZlurry.coFile(filename)

uploadfile filename, "wvolFractionZlurry"™ & count & ".png"

filename = filefutputDir & "residual=s.png™
residusls. isBinary = true

residuals.toFile (filename)

uploadfile filename, "residuals" & count & ".png™

end sub

sub uploadFile (filePath, rensmme)
dim sharepointURL, scriptPath, cmd
sharepointURL = "http:/ /inlteamiz0l0:3666/3ites/GEMS/ NICE/ MICEXZ00utpue™
scriptPath = scriptlir £ "copyFileToSharepoint.psi™

cd = "powershell -NonInteractiwve -file ™ & scriptPath & " -FilePath " & filePath & " -SharepointURL
crd = cmd £ " -rensme " £ rensme

"magbox cmd
wsh.run cmd, O
end sub
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In this script, an object is first created that represents the shell/terminal in which the PowerShell script
will be executed. Next, all the files are uploaded one-by-one onto the MICE website. Notice that for each file,
the absolute path to the file is specified by concatenating the fileOutputDir variable and the filename together.
The file variable is then set to binary and saved to the absolute pathname that was just created.

Next, the “uploadfile” method is called that executes the PowerShell script by running the string stored in
the “cmd” variable in the “wsh” shell object. Notice that the variable “count” is used to append the iteration
number onto the filename; this allows pictures to be distinguishable from one another on the MICE website.
The count variable in this script component will be linked with the counter variable in the Checker script
component.

It is also important to note that you will need to set up the values for the fileOutputDir and scriptDir
variables before you can run this component successfully. The scriptDir variable must be the full path to the
folder that contains the “copyFileToSharepoint.ps1” script. For instance, I have this script saved to my
Desktop, so I changed the value of scriptDir to be “c:\Users\agarv2\Desktop\”. I have set the fileOutputDir
variable to be my temp directory (c:\temp\). You do not have to change this as long as you have a temp
directory on your C drive. This directory is where pictures will be temporarily saved before they are uploaded
onto the website.

Whenever this component runs, you should be able to go to the MICE website, navigate to the MICE
Output page, and see the pictures.
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2.6 Linking Components Together and Setting Loop Properties
Note that you can rename components to better represent what each component is.

Now we are going to link the variables in the components together. If you hover your mouse around the
center of the Matlab component, a link symbol should appear. Click and drag that link to the STAR-CCM+
melter component. This should automatically link variables of the same name together. In this case, it links
the outputs of MATLAB to the inputs of STAR-CCM+ since we set them up as having the same name. It
should also pull up a link editor so you can see the links more clearly.

Once done, you should now have a black arrow going from the MATLAB component to the STAR
component, and your link editor should look the way it does in the picture below.

cmponent T 7
lame &
B o
e
2
H
Y
e
—
7
.
L
i@ Meker
+ showDataExplorer
¥ condition & counter
& courter - ¥ responseVanzbles((
¥ responseVarables|t i repeatUntiMode
-+ repeatlntiMode 2 validateCondiion/t!
+= validateCondion/t!
B e SR .~ QFSCES VR
4 L8 L3
¥ Project Tree | & Component Tree |

We are also going to link the script component and the MATLAB component together. We want the
MFEED, newQU and newTB values of the script component to flow to the MFEED1, QU1 and TB1 values
of the MATLAB component. Because these variables do not have the same names, we cannot create the links
using the method used before to link the MATLAB and STAR-CCM+ components. Instead, we will have to
open the link editor by clicking on the “o0” symbol in the toolbar in the bottom left of the model window. To
connect MFEED in the script component to MFEED1 in the MATLAB component, click on MFEED in the
left pane and drag it to MFEEDI in the right pane. A link should then be seen between the two variables. Do
this for the rest of the variables that are to be linked between the script component and MATLAB.

Now, using the link editor, link the counter variable in the Checker component with the count variable in
the FileExporter component. The last few links you then need to create are between the Melter component
and the FileExporter component: all the file variables need to be linked to each other. Therefore, the
temperature file variable in the Melter component needs to be linked to the temperature file variable in the
FileExporter component, and so on.
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Once you have linked all the variables, your link editor should look like this:

) Link Editor o Sl B o i W | . T

H

¥ o i -+
oD oD (== o0

[

=

“wire Yiew | T able View I Query Viewl

N
=

Link: |

Loop

5| Checker

- mew 1B
o newal
- curTB
. curQU
- MFEED
s+ CONVENgENCE
-+ conAm(d]
- counter

=<\ ColdCap

. QB
. TT1
e MGAST
- MGLASST
..o TB1
.o+ QU
..+ MFEED1

=-[E Mefter

- [ temperature

- [ velStreamlines
- @ volFractionfir
- @ volFractionBubbles
- [ wolFractionGlass
- wolFractionSlumy
- [ residuals

..o QB1

o TT1

—.cov MGAST

-.co» MGLASST
% QUI

- TBI

- iff Geominfo

i Geominfo

El* File Exporter

- iff Geomirfo

- temperature
i velStreamlines
- wolFractionAir
i volFractionBubbles
i volFractionGlass
-3 wolFractionSlumy
- residuals

- count

- fileOutput Dir
i geript Dir

% inputVariables[2]

¥ inttialValues[2]

¥ feedbackVariables[2]
. maxterations

-4 Geominfo
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| Checker
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= Meter

----- F temperature
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Now we will finally set up the loop properties. Double-click on the Loop component to bring up its
editor. Remember that you can control how many times the loop runs in different ways; in this case, let’s
explicitly specify that the loop should run 3 times. For the condition, drag the counter variable from the
Component Tree to the condition box, and specify that the loop should repeat until the counter variable equals
3. To do this, simply type in “==3" after the counter variable name that appeared in the box.

‘ Component Tree
Mame | Yalue I &
= 5 Model
= (¥ Loop B
=[] Checker a
] cointer 0
- MFEED1 1] 2
v pawil 0 =i
#u newTE 1]
i cunU 1]
. cunTB il # Repeat Until + Loop iterates until 3 condition becomes true. The condtion is checked after each teration
- condnfl] <edit. > -~
o CONVEIgence false e Basic Setup
= ColdCap
e TB1 1] Conditi Model.Loop.Checker.counter==3
i QU il
-l MFEED1 1] The Input Variable is set equal to the Initial Value and then to the Feedback Variable after each run
e QBT 1]
e TT1 i] Input Variable Intial Value Feedback Variable
i mgﬁ;m E Drag input varisble fiom Component Tree  <Use Curent Vabie> Drag varisble fom Componant Tree
=-F@ Melter
e TT 373987
-l MGAST 0.00377
g MGLASST 0033z
e QBT 847173
& TE1 1]
e QU 1]
i showD ataE xplorer false
condition
counter
responset ariables[0] SVIBWL. >
e repeatntiMode trug
. validateConditiondtStart  false
inputy ariables[0] SVIBW.. ¥
initialv slues[0] <WIBW.. >
feedbackV ariables[0] <WIBW.. >
- marlterations 1000
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We now need the outputs of STAR-CCM+ to become inputs for the script component upon every loop
iteration. The script component will perform bounds checking of these values and then pass them along to
MATLAB. Therefore, we are going to drag the variables newQU and newTB in the script component over to

the “Input Variable” section.

Name alue
=3 Modsl
EC\ Loop
== Checker
o counter 1]
1]
1]
0
e cunQu il
e cun TR ]
e condar[0] <ol >
e CONYENgENGE false
=\ ColdCap
e TB1 1]
e O il
e MFEED1 il
e OB1 il
e TT1 il
e MGAST 1]
e MGLASST 1]
- Fd Melter
e TT1 er=R:
e MGAST 000377
e MGLASET 001332
e 0B1 847173
- TB1 1]
- QU1 1]
i showD ataE splorer false
T condtion
‘ counter
, rezpaonzet aniables(0] Cuie >
e repeatUntibMode true
o validateConditionatStat  false
<o b inpubyariables(0] Cwliew
5 initiahalues[0] <WIEWLL
T feedbackWariables(0] Cview.
e mavterations 1000

O AL EPPD FH

Repeat il + Loop iterates untl a condition becomes true. The condtion is checked after each iteration.

Basic Setup

Condition:  Model.Loop Checker counter==3

The Input Variable is set equal to the Initial Value and then to the Feedback Variable after each run

Feedback Variable

Drag vanable from Component Tree
Model Loop Checker.newTB Drag varable from Component Tree
Lrag input varable from Component Tree Liag varable from Component Tree
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Now we will set the “Feedback Variable” for these two input variables to be the outputs coming from the
STAR component.

I ame Walue

=3 Model
=% Loop
[l [ Checker

e codnter 1}

-~ MFEEDT 0

e newdl 1}

-+ hewTB 0
1}
1}
<

Select Loop Type
+a cunfl
wowd cunTB
e condr0]
e CONYEIQENCE false
=« ColdCap
G TBA i]
e QU1 ]
- MFEED1 [t}
- QBT 1]
0
0
i]

Repeat Urtil + Loop iterates until a condition becomes true. The condition is checked after each iteration.

Basic Setup
Condition:  Model Loop Checker counter==3 (]

The Input Varizble is set equal to the Initial Value and then to the Feedback Variable after each run

- TT1 Input Variable Initial Value Feedback Variable
e MGAST
e MGLASST

" <Use Curent Value> Model.Loop.Melter QU1 6\
= ‘ Meler Model .Loop.CheckernewTB <Lise Curent Value> Model Loop.Melter TE1
- TT1 379.997 A 2 E
e MEAST i Drag input vanable from Component Tree  <Use Curent Values LDrag vanable from Component Tree
- MGLASST 0.01392
e QBT 84717.3
e TB1 -
23 0
vt ghowD ataE wplarer
caondition
counter
responseY ariables[0] Lvigw,
+u repeatUntiMade true
0 validateConditionAtStart  false
inputy ariables[0] <wiem,
initial alues[0] <wiem,
- feedbacky arables[0] Lwiew,
1 marlterations 1000

AH-=24¢0C & 20 HOPH® - [&

Show More

Advanced Options 0K ][ Run ][ Help ]

Save your changes.

We are now done setting up the model. It should run as is.
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2.7 Setting up the Model to Run STAR-CCM+ on HPC

In order to be able to run STAR-CCM+ remotely on HPC instead of on your desktop, you will need to
have AnalysisServer installed on your HPC. Right now, this is set up in the /projects/USU/melter folder under
the Analysis directory. (The picture below might be slightly unclear, but you should be able to navigate to the
Analysis directory easily on HPC, since the projects/USU/melter folder is accessible to all of us).

«int - bash

Phosni

Settings  Help

File Edt ‘ew Boskmaks
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Everything should already be set up, but an important file to know about is “aserver.sh.” This file can be
used to set up the environment in which STAR-CCM+ will run. More specifically, this is where you want to
load the module/version of STAR-CCM+ that you would like the simulation to run in. This file is located in
the /projects/USU/melter/Analysis/ASERVER directory.

The contents of “aserver.sh” are shown below:

7 _! - aserver.sh (fprojectsUSLimeter/Analysis/ASERVER) - gedit

r

&
F

File  Edit ‘wiew  Search  Tools  Documents  Help

Q Hﬂpen W HSE\I‘E Unda s F “ w
E® aserver.sh m

#1 /bin/sh
JAVE_HOME= /projects/USU/melter/Analysis/ ASERVER/jre/bin/java

gsub -I -X -lwalltime=6:0:0 -lselect=lincpus=1l2

export FATH= ‘hpc-common/apps/local /cd-adapco/star-com+/starcem+2. 02, 008/STAR-View+E, 02, 008: /hpc -common,
apps/Llocal focd-adapco/star-com+/starcom+8. 02, 002 /STAR-CCM+E. 02, 008 /'star/bin: $FATH

export LM _LICENSE FILE=40008@hpclml, 40008@hpclm2, 40008Qhpclm3: $LM LICENSE FILE

cd /projects/USU/meltar/Analysis/ASERVER

PATH=" cat javaBin :$PATH

LO_LIERARY_PATH=$LD_LIEBRARY_PATH:. /libs; export LD_LIBRARY_PATH

FYTHONHOME= . /Python: export PYTHOWNHOME

PYTHOMPATH=. /libs: $PYTHONPATH: export PYTHONPATH

#LD PRELOAD=. /libs/phxPython. so; export LD_PRELOAD

jre=" cat javaCommand’

eche $% > pid. txt

exec $]re -jar aserver.jar §*

[IE

The two “export” commands are essentially the same as “module load starccm+/8.02.008.” They will
ensure that version 8.02.008 of STAR-CCM+ is used.

Now go to /projects/USU/melter/Analysis/PhoenixInt/AServer7/analyses/melter.

This folder contains a folder called “MC Stuff 2” that contains all the files associated with the STAR-
CCM+ component created before. If you want to change any of these files, use WinSCP or a similar file
transfer program to transfer files from your desktop over to the “MC Stuff 2” folder. Make sure that in the
scriptWrapper file used for HPC, the line that sets a run directory for the wrapper is commented out or
deleted. Also, go through the macro and make sure that you are saving the scene pictures in a directory you
want (currently, there is a directory called /projects/USU/melter/STAR_Pics that contains scene pictures).

Now we will go to ModelCenter and create a component from the AnalysisServer on HPC.
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In ModelCenter, in the Server Browser on the bottom-left pane, right click on any of the plus-signs or
click on the “Add server” button (computer with green plus sign). In the pop-up window, for “Type of
Connection” select “External SSH Tool.” Type in “quark” for server name.

Type of Connectior: [E:-:ternal S5H Toal v] [ Configure Extemnal Tool

Server Mame: quark,

Part: |

Connect &g

JRL: | azerv+azhi s quark,

Available Servers:

H Cancel H Help
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Now click on “Configure External Tool.” Type in your username for Default User Name. The only thing
you need to do for the “Tools and Options” box under SSH Settings is specify the absolute path to the
aserver.sh file on the HPC (“/projects/USU/melter/Analysis/ASERVER/aserver.sh”).

=N W

| Trade Studies | Script Libraries | Java Plug-Ins
General Sefings | Auiolink | Logging

General Preferences

Show welcome wizard during startup

I MNew Model Type Preference
) Process Model
i (") Data Model
@) Always ask
File Varable Settings

Save outputs with model and trade studies by default

[| Direct transfer between Analysis Servers by defautt
55H Settings i
Default User Mame:  agarv?

Tools and Options:  TortoisePlink exe 4 %l 4 "CA\Users\agary

Autosave
[] Enable autosave every |10 minute(s)
]
Language |
[\"H“lnduws Standards and Formats Setting v]
|
Companent Link Pasting

(7 Paste links to the component i available

() Dont paste links to the component
@ Always ask

OK || Cancel || Help |

e -

Go ahead and leave Tools and Options to whatever the Default is on your computer. Public and private
keys generated by PuTTYGen can be used so that the user does not have to enter a password every time to
connect to the HPC server.
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¥ | Project Tree l 2| Cormponent Tree

@

| Server Browser

EN - 7 favorites:
i E| ﬂ COMMaH;
#= | lf_'| Functions MMaCTo
r‘_'| Crrivers
: r‘_'| Frimitives
- ¥ process:
~h companent plug-in:
H-() solution archive:
S ! azerv+zsh/quark
lf_‘| FiBluez
r‘_‘| drivers
EI ﬁj relter
- tfﬁ' MC Stuff 2
=t ]5;‘.? C:
: [ Users
[ wrappers

H
- &-&- &

After clicking “OK,” click on “Add” once back in the “Add Server” dialog.

Now you should be able to see an “aserv-+ssh://quark” in your Server Browser. Upon expanding this
server’s node, you should see folders such as PiBlue2, drivers, wrappers, and most importantly, melter.
Navigate to MC Stuff 2 under melter, and a component for your STAR simulation should show up in the
bottom right pane.

Drag and drop this component into the model. This component will replace the QuickWrap component
that we had previously in the non-HPC version. You can set the links the same way before, and you should
now be able to run the coupled model.
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2.8 Optimization

ModelCenter has extensive optimization capabilities. By going to the Tools menu and selecting
“Optimization Tool,” the following window pops up:

|52 Optimization Tool 1.2.0 a

- -favorites list - -
Objective Definition

*= | Objective
-

Drrag objective variables from Component Tree on left.

-
o
g

Constraint Value Lower Bound Upper Bound
Drag constrained variables from Component Tree on left.

Design Variables

= Start Value
Design Varable Type Value (Explicit Lower Bound Upper Bound  Edit
value)
Drag input variables from Component Tree on left. C]

Algorithm
Select an Algorithm... -
Status

Add to Model.. . e | optons.. <] Hep. -]

For our project, we could create a variable for melting rate. We would then drag this variable into the
“Objective” section and set the goal to be “Maximize.” Under the “Constraint” section, we would have to
specify an acceptable range for melting rate values by assigning lower and upper bounds. Design variables
would be variables to control in performing the optimization — for instance, the mass flux of the slurry
entering the melter (MFEED1) would be a possible design variable. After specifying variables, an algorithm
will have to be selected from the many offered by ModelCenter. Following the specification of all the above
information, the optimization should be able to be added to the model.
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3. MATLAB MODEL OF COLD CAP
3.1 Changes Made to the Original 1D MATLAB Model

In order to be used in the ModelCenter coupling, several changes had to be made to the original 1D

MATLAB model of the cold cap. These changes are listed below.

1.

main2D turned into function that takes in TB1, QU1, MFEED1 and returns QB1, TT1, MGAS1,
MGLASS1. TB1 is temperature right below cold cap, QU1 is heat flux from plenum to slurry, MFEED1 is
mass flux of slurry feed to cold cap. QB1 is heat flux from molten glass to cold cap bottom, TT1 is
temperature at top of cold cap, MGAS1 is mass flux of gases evolved during melting from top of cold cap
to plenum space, and MGLASS1 is mass flux of molten glass from bottom of cold cap.

Several global variables added to files so that main2D can share these variables with other files in model

Temperatures turned into Kelvin from Celsius at beginning and end of model to facilitate coupling
(STAR-CCM+ model uses Kelvin)

Mass fluxes added to model to facilitate coupling with STAR-CCM+. Cold cap now uses mass influx of
slurry feed to calculate mass outflows of molten glass and gases that leave the cold cap. This code was
added to physical data.m. Note that the variable jdry was added to represent the mass flow of dry
feed (slurry without the 52.2% water). Then, jg and jdry were used to determine MGAS1 and
MGLASSI.

In can7.m, the input value of QU is used to calculate OB. This makes use of AH value needed to
evaporate water and then heat the vapor to the temperature of the plenum space. AH values as well as the
heat flux to melt the dry batch (33.8 kW/m?) have been pulled from the PNL report that accompanied the
cold cap model (http://www.pnl.gov/main/publications/external/technical reports/PNNL-20278.pdf).

The rest of the files in the model are also functions.

The MATLAB files used in the coupled model can be found in the next few pages.
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3.2 Modified MATLAB Code

main2D.m

o\

Maj_n2D m AR KA AR A AR A AR A AR A A A A AR AR A AR A AR A A AR A AR AR A AR A AR A AR A A A A A A A A A A kA Ak k K

oe

oo

Runs the simulation. Main2D was originally

a script, but has been changed to a function that takes in TB, QU, and
MIN and returns QB, TT, MGAS and MGLASS. Main2D also calls the ODE solver
that solves the heat balance ODE for the cold cap.

o 0P o° o°

o

Modified by INL, August 2013

R R R i I I I I b I b b b b b b b S b b S b b I IR Sb I S b b I IR S I 2 S I e b I I I b b b I 2 b b b b b I dh b b dh b b db ah (b b 4

o

function [QBl, TT1l, MGAS1, MGLASS1] = main2D(TBl, QUl, MFEED1)
global time yyy T OB TT TB QU MGAS MGLASS MFEED

TB = TB1-273.15; % convert to C, since STAR passes in K, not C
QU = QUl;

MFEED = MFEEDI1;

Thick=0.06; %cold cap thickness

Rad=0.1; %cold cap radius

M=100; % Number of finite volumes (axially)

=2; % Number of finite volumes (radially)

param.M; % Number of finite volumes (axially)

param.N; % Number of finite volumes (radially)
s0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)

o° o0 oo H

M
N
J
global hr gz gjz gz0 gjz0; % variables from function can”7, which are necessary

globally
yini = init cond; % initial guessed temperature profile - linear

time = 0:.0002:.01; % 0:60:3600

OP=odeset ('NormControl', 'on', '"RelTol"',1le-2, 'AbsTol"',le-2, "MaxStep',6); %error
tolerances, maximum step size

[tt, yy] = odelbs(@(t,y) can7(t,y), time, yini, OP);

yyy=v2array3D(yy); % simulation results yy into 3D matrix

% 1lst index = axial (z)

% 2nd index = radial (r)

% 3rd index = time (t)

postprocessing (results)

[o)

T=yyy(:,:,end); % last time

TT=T(1l,1); %param.TT; % slurry temperature

% TB=T (end, end); S%param.TB; % bottom temperature

physical data % distribution of final cold cap properties

OBl = 0OB;

TT1l = TT + 273.15; % Convert to K, since STAR accepts K, not C
MGAS1 = MGAS;

MGLASS1 = MGLASS;
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init cond.m

lnlt Cond m AR KA AR A AR A AR A AR A A A A AR AR A AR A AR A A AR AR AA AR A AR A AR AR A A A A A A AR A A A Ak kK

Sets up the initial temperature profile of the cold cap, which is passed into
the ODE solver.

Modified by INL, August 2013

R R R i I I I I e b I b b I I b b db b b I S b S b b I IR Sh b I b I e IR S I I S I I b I I b b e b I b b b b b b I ah b b dh b b db 2h (b b 4

A 0P o° 0° o° od° o

function yini = init cond
global TT TB
TT=100; %cc top temperature
% param.TB=1100; %cc bottom temperature
M = 100;
N = 2;
index=0;
Tini=ones (M*N,1); % initial conditions - linear temperature profile
for k=1:N
for 1=1:M
index=index+1;
Tini (index) =TT+ (TB-TT) /M*1;
end
end

yini=Tini;
end
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physical data.m

o\

physical data m*******************************************************

oe

oo

Solves for material properties (heat conductivities, heat capacities and
spatial densities) using the temperature profile of the cold cap. This
file also determines mass flows of the gaseous and solid phases

in the cold cap.

o 0P o° o°

o

Modified by INL, August 2013

%***********************************************************************

function physical data

global TT TB T lam lamT lamB js jg cpc cpg rho MFEED MGAS MGLASS
M = 100;

N = 2;
% heat conductivity
lambdaeff = zeros(N,M); % thermal conductivity
for k=1:N
for 1=1:M
if ((T(k,1)) < 727) %830 instead of 1500
% —---Glass service report
lambdaeff (k,1) = 0.06571 + 0.002114*(T(k,1)+273.15);
% —-—--Petr Schill paper
% lambdaeff (i) = 0.5%exp(0.00233*(T(1,1)+273.15-290));
elseif ((T(k,1l)) < 800)
lambdaeff (k,1) = -4.2007 + 0.0063807* (T (k,1)+273.15);
else % foam layer at T>800C - lambda=lambda/2
lambdaeff (k,1) = (-4.2007 + 0.0063807*(T(k,1)+273.15))/2;
end
end
end

lamT= 0.06571 + 0.002114* (TT+273.15);
lamB=(-4.2007 + 0.0063807* (TB+273.15))/2;
lam=lambdaeff;

%valid only in case of 1D (vertical) flow - no side flow
alpha = zeros(N,M); % based on TGA data

js = zeros(N,M); % mass flow of solid phase

jg = zeros(N,M); $ mass flow of gas phase

% coefficients from heat conductivity paper (fitted to A0 data at 5 K/min)
a0 = 0.905;

al = 0.086;
aT0 = 561.8; %K

aTl = 91.35; %K

alpha = a0 - al.*atan(((T+273.15)-aT0)./aTl); % degree of conversion; ai is
fraction of material reacted in ith reaction
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jdry = MFEED*0.478; % dry batch mass flow rate, based on 52.2% mass of water in
slurry
js = jdry*alpha;
jg = jdry* (alpha-alpha (N,M));
MGAS = jg(1,1);
$ MGLASS = Jjs(N,M);
MGLASS = jdry - MGAS;
% heat capacity of condensed and gas phase
% cp of condensed phase - based on DSC data (Jaehun)
% - used also in the HC paper
cpc = zeros(N,M); % heat capacity condensed phase
for k=1:N
for 1=1:M
if ((T(k,1)) < 600)
cpc(k,1l) = 0.272720463 - 0.23842748* (T(k,1)/1000) + 0.25363843*exp (-
((T(k,1)/1000-0.243943)72/0.0010336)) + 0.500527*exp (- ((T(k,1)/1000-
0.275096)72/0.000188)) + 0.093806*exp (- ((T(k,1)/1000-0.31286)"2/0.000323)) +
0.184088*exp (- ((T(k,1)/1000-0.393729)72/0.000697)) + 0.123335*exp (-
((T(k,1)/1000-0.4718234)72/0.00204)) ;
cpc(k,1l) = cpc(k,1) * 10000; % in J/ (kg K)
else
cpc(k,1l) = 1320; % constant heat capacity for T>600°C considered (1120
original, 1320 fitted)
end
end
end
% gas phase
cpg = zeros (N,M); % heat capacity gas
for k=1:N
for 1=1:M
cpg(k,l) = 1003+0.21*(T(k,1)+273.15)-1.93e7/(T(k,1)+273.15)"2; %from
literature, Schill
end
end
% spatial density
% the same as in 1D model - based on foaming curves and TGA
% not needed for the calculation of temperature profile
% - the temp profile is affected by mass flow Js and Jjg
% - the density only determines the velocity: j=v*rho (mass flow =
velocity x density)
rho = zeros(N,M); % spatial density
for k=1:N
for 1=1:M
if ((T(k,1l)) < 680) % foam layer temperature boundary
rho(k,1) = 970*alpha(k,1)/(-0.0000001*T(k,1)"2+0.00002*T(k,1)+1.001);

elseif ((T(k,1)) < 775)
a00=245.82696587;
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end

end

end

all=-1041.06249697;
a22=1475.92823238;
a33=-697.84383143;
a44=0.00000000;

rho(k,1) = 970*alpha(k, 1)/ (ad4* (T
+a22* (T (k,1)/1000)"2+all* (T (k

elseif ((T(k,1)) < 960)
a00=19.69000;
all=-47.72000;
a22=29.88000;
a33=0.00000;
a44=0.00000;

rho(k,1l) = 970*alpha(k,1l)/ (ad44* (T
+a22* (T (k,1)/1000)"2+all* (T (k,

else
rho(k,1l) = 541;
end

47

(k,1)/1000) "4+a33* (T
,1)/1000)+a00) ;

(k,1)/1000) "4+a33* (T

1)/1000)+a00) ;

(k,1)/1000) "3

(k,1)/1000) "3



can7.m
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Aids in the solution of the heat balance ODE. The output of the

can7 function is used to determine the value of dT/dt at different values
of T (temperature) and t (time), which is directly used by the ODE solver
to obtain a solution.
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Modified by INL, August 2013
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function [dydt] = can7(time,yvec)

%$CAN7 - model equations (heat balance)

% state variables: 2D-temperatures in vector
global T lam lamT lamB js jg cpc cpg rho

global hr gz gjz gz0 gjz0 % variables needed globally
global QB TT TB QU MGAS MFEED MGLASS

%geometry

Len=0.06; %cold cap thickness

Rad=0.1; %cold cap radius

M=100; % Number of finite volumes (axially)

N=2; % Number of finite volumes (radially)

% 3s0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)
hr = Rad/ (N); % dimensions of finite volume radially

hz Len/ (M) ; % dimensions of finite volume axially

%rho=1300; % density - need to change
svel=4e-5; % velocity not used now - will be result

% TT=100; % slurry temperature

$TB=param.TB; % bottom temperature - determined by STAR model
% unpack state variables (temperature vector-->matrix)
T=zeros (N,M); % first index=radially, second index=axially
cpc=zeros (N, M) ;

index=0;
for k=1:N
for 1=1:M
index=index+1;
T (k,1l)=yvec (index) ;
end
end

physical data

% Calculation of volume of each finite volume (FV) and the axial and radial
% areas between FV
r=hr* (1:N) ;

V=zeros (1,N) ;

V(l)=pi*r(l)*r (1) *hz;
for k=2:N
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V(k)=pi*hz* (r (k) *r(k)-r(k-1)*r(k-1));
end

AR=zeros (1l,N); % areas between FV radially
for k=1:N

AR (k)=2*pi*hz*r (k) ;
end

AZ=zeros (1,N);

% areas between FV axially
AZ (1)=pi*r(1)*r(l);

for k=2:N

AZ (k)=pi* (r(k)*r(k)-r(k-1)*r(k-1));
end
% calculation of heat flows - radially
qr=zeros (N, M) ;
for 1=1:M

qgr(l,1l)=-(2*lam(2,1)*lam(1,1)/ (lam(2,1)+lam(1l,1)))*(T(2,1)-T(1,1))/(1.5*%hr);
% f
for k=2:(N-1)

qr(k,l)=-(2*lam(k+1,1) *lam(k, 1)/ (lam(k+1,1)+lam(k,1)))* (T (k+1,1) -
T(k,1))/hr;
end
% qr (N, 1l)=-lam* (Tsurf-T(N,1))/(0.5*hr); % flow of external KO into the area
gr (N,1)=0; % radial heat flow not considered yet (1D)

end
gjr=zeros (N,M); %radial velocity flow is neglected in 1D
% calculation of heat flows - axially
gz=zeros (N, M) ;
gjz=zeros (N,M) ;
gz0=zeros (1,N); % gz (k,0) matlab cannot use 0 in index
djz0=zeros(1,N); % gjz(k,0) matlab cannot use 0 in index
for k=1:N
for 1=1:M-1
qz (k,1)=-(2*lam(k, 1+1)*lam(k, 1)/ (lam(k,1+1)+lam(k,1)))* (T (k,1+1) -
T(k,1))/hz;
ajz(k,1)=(3s(k,1) *cpc(k,1)-jg(k, 1) *cpg (k, 1)) * (T (k, 1+1)+T (k, 1)) /2;
end
gz (k,M)= - (2*lamB*lam(k,M)/ (lamB+lam(k,M)))* (TB-T (k,M))/ (0.5*hz); % bottom
heat flow; TB (taken from melter model) used to get this value
ajz (k,M)=(3s (k,M) *cpc (k,M) -3g (k, M) *cpg (k,M) ) * (TB+T (k,M)) /2; % bottom
velocity flow

qgz0 (k) = -(2*lam(k,1)*lamT/ (lam(k,1)+1lamT))* (T(k,1)-TT)/(0.5*hz); % top heat
qjz0 (k) =(js(k,1)*cpc(k,1)-jg(k,1)*cpg(k,1))*(T(k,1)+TT)/2; % top velocity
%%%%%%% Based on PNL paper: QOB = QT + 33.8; QT = Htotal - QUl $%%%%%%%%%%%%%%
% Htotal = heat flux to evaporate water and then heat the wvapor to the
% temperature of the plenum space; takes into account heat flow from free
% surface of molten glass to plenum space

% 33.8 kW/m2 = heat flux to melt dry batch to molten glass (from DSC data)

jdry = 0.478*MFEED;
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jwat = 0.522 * MFEED;

Hvap = jwat * 2.26e6;

Hpre = (jwat*4185 + jdry*1300)*(100-30);
Htotal = Hvap + Hpre;

OB = Htotal - QU + (33.8e3);

% heat balance of each finite volume

det zeros (N, M) ;
) inner (leftmost) FV - cylinder

1=1;

dTdt (k, 1) =(-AR (k) *qr (k, 1) +AZ (k) * (gqz0 (k) +gjz0 (k) ) -AZ (k) * (gz (k, 1) +qjz (k,1))) /
(V(k) *rho (k, 1) *cpc(k, 1))

for 1=2:M

dTdt (k, 1) = (-AR (k) *qr (k, 1) +AZ (k) * (gz (k, 1-1) +qjz (k, 1-1) ) -

AZ(k)*(qz(k,l)+qu( 1))) / (V(k)*rho(k,1)*cpc(k,1));

end
%$end k=1

% b) other FV ("rings")

for k=2:N

1=1;

dTdt (k, 1) = (AR (k-1) *qr (k-1,1) -AR (k) *qr (k, 1) +AZ (k) * (qz0 (k) +gjz0 (k) ) -
AZ (k) * (g ( y)+giz(k,1))) / (V (k)*rhO(k,l)*CpC(k,l));

for 1=2:M

dTdt (k,1)=(AR(k-1) *qr (k-1,1)-AR (k) *qr (k, 1) +AZ (k) * (gz (k,1-1)+gjz (k,1-1)) -

AZ (k) *(gz (k,1)+gjz (k,1))) / (V(k)*rho(k,1)*cpc(k,1));

end
end

% pack state variables (matrix --> vector)
dydt=zeros (N*M,1); % column vector for integration
index=0;
for k=1:N
for 1=1:M
index=index+1;
dydt (index)=dTdt (k, 1) ;
end
end
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Compresses the solution from the ODE solver into a 3D
matrix that represents the temperature solution for the cold cap at
different times.

Modified by INL, August 2013
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function [yout] = v2Zarray3D(yin)
%V2M Vector (1D) to Array (3D)

% yin is vector

% yout is 3d-array

M=100;

N=2;

yout = zeros(N,M,51);
dim=size(yin); % first number is the number of rows (times), the second number
is the number of columns (temperature)

for t=1:dim(1l); % for all time steps

yout (:,:,t)=zeros (N,M);
index=0;
for k=1:N
for 1=1:M
index=index+1;
yout (k,1,t)=yin(t, index) ;
end
end
end
end
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3.3 Data Dictionary for Matlab Cold Cap Model

Variables
M — number of finite volumes axially
N — number of finite volumes radially

alpha — NxM matrix containing mass fraction of condensed phase

AR — 1xN vector containing areas between finite volumes in radial direction

AZ — 1xN vector containing areas between finite volumes in axial direction

cpc — Heat capacity of condensed phase; NxM array

cpg — Heat capacity of gas phase; NxM array

dTdt — NxM array containing solution to right hand side of heat balance ODE (value of dT/dt)
dydt - (N*M)x1 column vector containing values from dTdt

Hpre — Heat flux needed to preheat slurry from feed temperature to temperature of boiling slurry
hr — dimension of a single finite volume in radial direction

Htotal — Sum of Hvap and Hpre

Hvap — Heat flux needed to evaporate water

hz — dimension of a single finite volume in axial direction

jdry — Mass flux of dry batch to cold cap (based on 52.2% water content in slurry)
jg —Mass flux of gas phase; NxM array

j s —Mass flux of solid phase; NxM array

jwat — Mass flux of water to cold cap in slurry (based on 52.2% water content in slurry)
lam—same as lambdaeff

1lamB — thermal conductivity at bottom of cold cap

lambdaef f — NxM array containing thermal conductivity values

lamT — thermal conductivity at top of cold cap

Len — cold cap thickness

MGAS — Mass flux of gases evolved from cold cap

MGLASS — Mass flux of molten glass from cold cap

MFEED — Mass flux of slurry to cold cap

OB — Heat flux from molten glass to bottom of cold cap

gjr — NxM array containing radial velocity flow values

gj z — NxM array containing axial velocity flow values

qjz0 — 1xN vector that represents velocity flow at top of cold cap

qr — NxM array containing radial heat flow values

QU — Heat flux from plenum space to slurry

gz — NxM array containing axial heat flow values

gz 0 — 1xN vector that represents heat flow at top of cold cap

Rad — cold cap radius

rho — Spatial density; NxM array

T (in can7.m) — Temperature profile of cold cap in the form of an NxM array

T (in main2D.m) - Final temperature solution at the last time value

TB — Temperature at bottom of cold cap

Thick —cold cap thickness

time — Row vector of time values, in seconds, going from 0 to 3600 in steps of 60
tt — Column vector with same time values as the variable t ime
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TT — Temperature at top of cold cap

V — 1xN vector containing volume of each finite element

yini — linear temperature profile going from 110°C to 1100°C

vy — Solution array in which each row corresponds to temperature solution at the time in the corresponding
row of tt

yvyy — Solution array, in 3D form; first dimension is axial, second is radial and third is time
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3.4 Equations used for Material Properties (in physical_data.m)
3.41 Heat Conductivity
For T <727 K.
lambdaeff(T) = 0.06571 + 0.002114(T + 273.15)

ForT > 727K and T <800 K:
lambdaeff(T) = —4.2007 4+ 0.0063807(T + 273.15)

For T > 800 K (foam layer heat conductivity is approximated as half that of region just above foam layer):
lambdaeff(T) = [—4.2007 + 0.0063807(T + 273.15)]/2

3.4.2 Degree of Conversion (alpha) — based on TGA data

a0 = 0.905

al = 0.086

aT0 = 561.8

aT1=91.35

(T + 273.15) — aTO)

alpha(T) = a0 * atan ( T

3.4.3 Mass Flows

1. Mass flow of solid phase (js) with units of kg/m’s
js = jdry * alpha

2. Mass flow of gas phase (jg) with units of kg/m’s
js = jdry * (alpha — alphapsttomorcoldcap)

In both cases, jdry = MFEED*0.478, where MFEED is the mass flux of the slurry feed. Mass flux of gases
from cold cap top (1¥ row and 1* column of § g matrix)

MGAS =jg(1,1)
3. Mass flux of molten glass from cold cap bottom — conservation of mass used

MGLASS = jdry - MGA

Units on jdry, js, jg, MGAS and MGLASS are kg/m’s.

3.4.4 Heat Capacities
1. Heat capacity of gas phase (cpg) approximated by cpg for carbon dioxide:

1.93x107
cpg(T) = 1003 + 0.21T — ———

Units: cpg in J kg'K, T in K and T>373 K
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2. Heat capacity of condensed phase (cpc)

0.0010336

_((1000—0.24—394—3)2>
For T < 600K: cpc(T) = 1000[0.272720463 — 0.23842748 (ﬁ) + 0.25363843e +

L—0.275096 L—0.31286

2
_((1000 ) ) _((1000 ) ) _((m—°-393729) >
0.000188 0.000323 0.000697
0.500527¢ + 0.093806¢ + 0.184088e +
(ﬁ—o.z}nszm)z

- 0.00204
0.123335¢ ]
For T > 600K: cpc = 1320

3.4.5 Spatial Density
For T < 680K:

rho(T) = 970 x alpha(T)

—0.0000001T2 + 0.0002T + 1.001

For T > 680K and T < 775K:
a00=245.82696587
al1=-1041.06249697
a22=1475.92823238
a33=-697.84383143
a44=0.00000000

alpha(T)
3 2

4
a44 (ﬁ) +a33 (ﬁ) +a22 (ﬁ) +all (10%) +a00

ForT > 775K and T <960 K:
a00=19.69000

al1=-47.72000

a22=29.88000

a33=0.00000

a44=0.00000

rho(T) =970 =

alpha(T)
3 2

4
a4 (ﬁ) +a33 (ﬁ) +a22 (ﬁ) +all (10%) +a00

For T > 960 K: rho = 541

rho(T) =970 =

55



3.4.6 Calculation of QB using QU (in can7.m)
1. Mass flow of dry batch, based on slurry water content of 52.2% (mass percent):
jdry = 0.478*MFEED [kg/m?2s]

2. Mass flow of water from slurry, based on slurry water content of 52.2% (mass percent):

jwat = 0.522 * MFEED [kg/m2s]

3. Heat flux to evaporate water, using jwat and evaporation heat of water (2.26x10° W/m?):

Hvap = jwat * 2.26e6 [W/m?2]

4. Heat flux to preheat slurry from the feed temperature of 30°C to 100°C, the temperature of the boiling
slurry; uses jwat, jdry, specific heat capacities of water and the dry batch, and difference between final
and initial temperatures:

Hpre = (jwat*4185 + jdry*1300)*(100-30) [W/m?]

5. Total heat to preheat slurry and then to evaporate water from slurry:

Htotal = Hvap + Hpre = [W/m?]

6. Calculation of QB (heat flux necessary from molten glass to cold cap bottom), using a value of 33.8
kW/m? for heat flux necessary to melt dry batch to molten glass:

QB = Htotal - QU + (33.8e3) [W/mZ?]

**Slurry water content of 52.2%, initial and final feed temperatures, evaporation heat of water and heat
necessary to melt dry batch all obtained from

http://www.pnl.gov/main/publications/external/technical reports/PNNL-20278.pdf (Section 5.4 titled “Water
Evaporation”).**
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3.5 Cold Cap Model Documentation

The 1D MATLAB model of the cold cap for a slurry-fed waste glass melter, developed by Pokorny, et. al. in
[1], consists of the following 5 files:

1. main2D.m

2. init cond.m

3. physical data.m
4. can7.m

5. v2array3d.m

The main simulation is contained in the file main2D.m, which is the file that must be run from the MATLAB
command window to create the simulation. This file uses the other 4 files as helpers to aid in the creation of
the simulation. Below is a step-by-step explanation of the code in the main2D.m file as well as the code in the
helper files. Most of the descriptions of the scientific purpose behind the code are pulled from [1].

Lines 1-15 of main2D.m are as follows:

function [QB1l, TT1, MGAS1, MGLASS1] = main2D(TBl, QUl, MFEED1)
global time yyy T OB TT TB QU MGAS MGLASS MFEED

TB = TB1-273.15; % convert to C, since STAR passes in K, not C
QU = QU1;

MFEED = MFEEDI1;

Thick=0.06; %cold cap thickness

Rad=0.1; %cold cap radius

M=100; % Number of finite volumes (axially)

=2; % Number of finite volumes (radially)

=param.M; % Number of finite volumes (axially)

=param.N; % Number of finite volumes (radially)
s0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)

o° o0 oo =H

M
N
J

o)

global hr gz gjz gz0 gjz0; % variables from function can?7, which are
necessary globally
yini = init cond; % initial guessed temperature profile - linear

Right away, it is important to note that this file is a function and not a script (this is a change made from the
original model). Therefore, whatever variables are declared in this file will only exist within the scope of this
file. In order for this file to share variables with other files, global variables will have to be used. This
function has three inputs: TB1, the temperature of the molten glass right below the cold cap, QU1, the heat
transfer from the plenum space to the slurry and MFEED1, the mass flux of the slurry feed to the cold cap.
The function has four outputs: QB1, the heat transfer from the molten glass to the cold cap bottom, TT1, the
temperature at the top of the cold cap, MGASI, the mass flux of gases evolving from the cold cap and
MGLASSI, the mass flux of the molten glass emerging from the cold cap bottom.

These lines of code declare variables that store the cold cap thickness (Thick) and radius (Rad) and also the
number of finite volumes axially (M) and radially (N). Note that the input value of TB1 is converted into
degrees C from degrees K when it is stored into the variable TB, since STAR-CCM+ produces temperatures
in K while this model deals with temperature in degrees C.

The variables time, yyy, T, QB, TT, TB, QU, MGAS, MGLASS, MFEED, hr, qz, qjz, qz0, and qjz0 are
declared to be global variables. This allows the main2D.m file to share the values of these variables with any
other file that declares these variables as global.

A call is then made to init cond.m, a helper file which will create an initial linear temperature profile for the
cold cap. This file is discussed below.
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Contents of init_cond.m:

function yini = init cond
global TT TB
TT=100; scc top temperature

% param.TB=1100; %cc bottom temperature
M = 100;
N = 2;
index=0;
Tini=ones (M*N,1l); % initial conditions - linear temperature profile
for k=1:N
for 1=1:M

index=index+1;
Tini (index) =TT+ (TB-TT) /M*1;

end
end
yini=Tini;
end

Two variables are declared to be global by this file — TT, the temperature at the top of the cold cap, and TB,
the temperature at the bottom of the cold cap. Since main2D.m also declares these variables to be global, the
two files can share the values of these variables (if one file changes the value of either of the variables, the
value automatically changes for the other file as well). These two temperatures, 100°C and 1100°C for the top
and bottom of the cold cap, respectively, are boundary conditions for temperature. Based on these
temperatures, a linear temperature profile for the cold cap is then created using for loops and the boundary
temperatures. This temperature profile, Tini, is initially represented as a column vector of 200 rows
containing all ones. The appropriate temperature value at each index is then iteratively calculated based on the
boundary temperatures. Thus, the values in Tini range from 110°C to 1100°C, first from indices 1-100, and
then again from indices 101-200. This temperature profile is then also stored in the variable yini.

Once init_cond.m runs in its entirety, main2D.m continues to run where it left off. Below are lines 17-19 of
main2D.m.

time = 0:.0002:.01; % 0:60:3600
OP=odeset ('NormControl', 'on', '"RelTol"',le-2, 'AbsTol"',le-2, "MaxStep', 6);
[tt, yy] = odelbs(@(t,y) can7(t,y), time, yini, OP);

These lines perform integration of the heat balance ODE for the cold cap. A vector of times is first created,
containing values from 0Os to 0.01s in steps of 0.0002s ([0 0.0002 0.0004 0.0006... 0.01]). For the MATLAB
to STAR-CCM-+ coupling, this line of code needs to reflect the physical time and number of time steps taken
in the STAR-CCM+ simulation so that the MATLAB and STAR-CCM+ models remain synchronized.

Next, the built-in MATLAB function odeset is used generate a structure, OP, which contains error tolerances
and the maximum step size for the integration. Another built-in function, odel35s, is then used to perform the
integration. This solver iteratively solves equations of the form y’ = f(t,y). The solver must be provided with a
way to calculate y’ at different values of t and y; therefore, the first input to the ode15s function is a function
handle to can7.m. A function handle is a way of accessing a function, and can7.m contains a function that
outputs the value of y’ (i.e. the right hand side of the heat balance ODE). The other inputs of odel5s include
time, the time vector discussed previously, yini, the initial linear temperature profile, and OP, the structure
containing information about error tolerances and the maximum step size. The outputs of odel5s are tt and
yy: tt is a column vector of times, and yy is a solution matrix in which each row corresponds to the solution at
the time in the corresponding row of tt.

As mentioned before, during the integration, can7.m is used to evaluate the value of y’. In this case, of course,
y represents temperature and t represents time. Below are lines 1-15 of can7.m.
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function [dydt] = can7 (time, yvec)

$CAN7 - model equations (heat balance)

% state variables: 2D-temperatures in vector

global T lam lamT lamB js Jjg cpc cpg rho

global hr gz gjz gz0 gjz0 % variables needed globally
global OB TT TB QU MGAS MFEED MGLASS

%geometry

Len=0.06; %cold cap thickness

Rad=0.1; %cold cap radius

M=100; % Number of finite volumes (axially)

N=2; % Number of finite volumes (radially)

% 3s0=0.0222*0.8; % mass flow to cold cap (based on 1D paper for now)
hr = Rad/ (N); % dimensions of finite volume radially

hz = Len/ (M) ; % dimensions of finite volume axially

Notice that this function shares the variables QB, TT, TB, QU, MGAS, MFEED, MGLASS, T, hr, qz, qjz,
qz0, and qjz0 with main2D.m, as both files declare these variables as global. The cold cap thickness and
radius and the number of finite volumes in the axial and radial directions are then defined. The dimensions of
cach FV axially and radially are then determined. The radial dimension (hr) is found by dividing the cold cap
radius by the number of FV in the radial direction, and the axial dimension (hz) is found by dividing the cold
cap thickness by the number of FV in the axial direction.

Lines 24 to 35 of can7.m are as follows:

% unpack state variables (temperature vector-->matrix)
T=zeros (N,M); % first index=radially, second index=axially
cpc=zeros (N, M) ;
index=0;
for k=1:N
for 1=1:M
index=index+1;
T (k,1l)=yvec (index) ;
end
end

physical data

The above block of code uses nested for loops to convert the temperature vector that is passed into the
function (yvec) into an NxM matrix called T (remember that N and M are the number of FV in the radial and
axial directions, respectively). The first and second rows of T both contain temperature values that range from
110°C to 1100°C. Finally, a call is made to physical data.m, which is a function that loads material properties
into memory. This file is analyzed below.

The first section of physical data.m is as follows:
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function physical data
global TT TB T lam lamT lamB js jg cpc cpg rho MFEED MGAS MGLASS
M = 100;
N = 2;
% heat conductivity
lambdaeff = zeros(N,M); % thermal conductivity
for k=1:N
for 1=1:M
if ((T(k,1l)) < 727) %830 instead of 1500
% —-—-Glass service report
lambdaeff (k,1) = 0.06571 + 0.002114*(T(k,1)+273.15);
% —---Petr Schill paper
% lambdaeff (i) = 0.5%exp(0.00233*(T(1,1)+273.15-290));
elseif ((T(k,1)) < 800)
lambdaeff (k,1) = -4.2007 + 0.0063807*(T(k,1)+273.15);
else % foam layer at T>800C - lambda=lambda/2
lambdaeff(k,1) = (-4.2007 + 0.0063807*(T(k,1)+273.15))/2;
end
end
end
lamT= 0.06571 + 0.002114* (TT+273.15);
lamB=(-4.2007 + 0.0063807* (TB+273.15))/2;
lam=lambdaeff;

Note that physical data.m is a function, just like main2D.m; therefore, it uses global variables to share data
with the other files. The above section of code calculates the values of thermal conductivity using the
temperature matrix (T) that was created by can7.m. These values are stored in an NxM matrix called
lambdaeff, just like the matrix T. Initially, there is a 0 at each index in lambdaeff. Nested for loops are then
used to iterate through T and use the temperature at each index to calculate the thermal conductivity at the
same index in lambdaeff. The different values of temperature govern which equation is used to calculate the
thermal conductivity, as the conductivity differs from region to region in the cold cap. Thus, in this code, the
open porosity layer is treated differently from the foam layer. The first two equations (the equations for
temperatures up to 800°C), used to calculate heat conductivity for the open porosity layer, are based on
literature. The third equation governs the heat conductivity of the foam layer, which has not been calculated
experimentally. Therefore, the thermal conductivity of the foam layer is approximated as half the heat
conductivity of the region just above the foam layer.
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The next section of physical data.m concerns the mass flux values for the solid and gaseous phases:

%valid only in case of 1D (vertical) flow - no side flow
alpha = zeros(N,M); % based on TGA data

Jjs = zeros(N,M); % mass flow of solid phase

jg = zeros(N,M); % mass flow of gas phase

% coefficients from heat conductivity paper (fitted to A0 data at 5 K/min)
a0 = 0.905;

al = 0.086;

aT0 = 561.8; %K

aTl = 91.35; %K

alpha = a0 - al.*atan(((T+273.15)-aT0)./aTl); % degree of conversion; ai
is fraction of material reacted in ith reaction

jdry = MFEED*0.478; % dry batch mass flow rate, based on 52.2% mass of
water in slurry

js = jdry*alpha;

jg = jdry* (alpha-alpha(N,M));

MGAS = jg(1,1);

% MGLASS = s (N,M);

MGLASS = jdry - MGAS;

In this section, coefficients pulled from literature and the temperature matrix created in can7.m (T) are used to
calculate the max flux values for the solid (js) and gaseous (jg) phases. Both js and jg initially are NxM
matrices consisting of all zeros. The temperature matrix, T, is then used to calculate alpha, the degree of feed-
to-glass conversion. The variables a0, al, aTO and aT1, which are also used to calculate alpha, are all based
on thermal gravimetric analysis (TGA) data measured at a constant heating rate of 20 K/min. Notice that the
mass flux of the dry batch, jdry, is then obtained from MFEED (the mass flux of slurry to the cold cap) based
on a 52.2% mass water content. The value of jdry is then used in conjunction with alpha to calculate the mass
fluxes of the solid and gaseous phases within the cold cap. The mass flux of the gas at the top of the cold cap
is then assigned to the output variable MGAS, and the difference between the incoming dry batch mass flux,
jdry, and MGAS is assigned to the variable MGLASS to ensure conservation of mass.
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In this next section of physical data.m, the heat capacities of the condensed and gas phases are calculated.

% cp of condensed phase - based on DSC data (Jaehun)

% - used also in the HC paper
cpc = zeros(N,M); % heat capacity condensed phase
for k=1:N
for 1=1:M
if ((T(k,1)) < 600)
cpc(k,l) = 0.272720463 - 0.23842748* (T (k,1)/1000) +

0.25363843*%exp (- ((T(k,1)/1000-0.243943)72/0.0010336)) + 0.500527*exp (-
((T(k,1)/1000-0.275096)72/0.000188)) + 0.093806*exp (- ((T(k,1)/1000-
0.31286)72/0.000323)) + 0.184088*exp(-((T(k,1)/1000-0.393729)72/0.000697))
+ 0.123335*exp (- ((T(k,1)/1000-0.4718234)72/0.00204)) ;

cpc(k,1l) = cpc(k,1l) * 10000; % in J/ (kg K)
else
cpc(k,1l) = 1320; % constant heat capacity for T>600°C considered
(1120 original, 1320 fitted)
end
end

end

[

% gas phase

cpg = zeros (N,M); % heat capacity gas
for k=1:N
for 1=1:M
cpg(k,1l) = 1003+0.21*(T(k,1)+273.15)-1.93e7/(T(k,1)+273.15)"2; Sfrom
literature, Schill
end
end

In this section, the heat capacity of the condensed phase (cpc) is calculated using the temperature matrix, T.
Initially, cpc is an NxM array consisting of all zeros. Nested for loops are then used to iterate through T,
calculate the value of the heat capacity for each temperature, and place that value in the corresponding index
in the cpc matrix. For temperatures up to 600°C, the equation used for cpc is based on published differential
scanning calorimetry (DSC) data. For temperatures above 600°C, the heat capacity is assumed to be a
constant 1320 J/(kg-K). A technique similar to the one used to create the cpc matrix is used to create the
matrix for the heat capacity of the gas phase (cpg). The equation used for calculating cpg is the equation for
the heat capacity of carbon dioxide.

In the last section of physical data.m, the spatial density matrix, rho, is calculated in a manner similar to that
of the properties calculated in the previous sections. Calculations are based on foaming curves and the results
of TGA. The different temperature regions of the cold cap have different values for spatial density; therefore,
in this code, the temperature value is used to determine what equation is used to calculate the spatial density.
Notice that for temperatures above 960°C, the density is treated as a constant.
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% the same as in 1D model - based on foaming curves and TGA
% not needed for the calculation of temperature profile

- the temp profile is affected by mass flow js and jg
- the density only determines the velocity: j=v*rho (mass flow =

velocity x density)

Q

rho = zeros(N,M); % spatial density
for k=1:N

for

end
end

1=1:M

if ((T(k,1)) < 680) % foam layer temperature boundary

rho(k,1) = 970*alpha(k,1)/(-0.0000001*T(k,1)"2+0.00002*T (k,1)+1.001);

elseif ((T(k,1)) < 775)

a00=245.82696587;

all=-1041.06249697;

a22=1475.92823238;

al33=-697.84383143;

a44=0.00000000;

rho(k,1) = 970*alpha(k,1)/ (a44* (T (k,1)/1000)"~4+a33* (T (k,1)/1000)"3
+a22*(T(k,1)/1000)"24all*(T(k,1)/1000)+a00) ;

elseif ((T(k,1)) < 960)

a00=19.69000;

all=-47.72000;

a22=29.88000;

a33=0.00000;

a44=0.00000;

rho(k,1) = 970*alpha(k,1)/ (a44* (T (k,1)/1000)"~4+a33* (T (k,1)/1000)"3
+a22* (T (k,1)/1000)"2+all*(T(k,1)/1000)+a00) ;

else

rho(k,1l) = 541;

end
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Because physical data.m is now finished executing, MATLAB returns to can7.m. Shown below are lines 38
to 57 of can7.m:

% calculation of area and volume of each finite volume (FV)
r=hr* (1:N);

V=zeros (1,N);

V(1)=pi*r(1l)*r (1) *hz;

for k=2:N
V(k)=pi*hz* (r (k) *r(k)-r(k-1)*r(k-1));

end

AR=zeros (1l,N); % areas between FV v radially
for k=1:N

AR (k) =2*pi*hz*r (k) ;
end

AZ=zeros (1,N); % areas between FV v axially
AZ (1)=pi*r (1) *r(l);
for k=2:N
AZ (k)=pi*(r (k) *r(k)-r(k-1)*r(k-1));
end

In this section, volumes of FV and areas between FV are calculated. The FV themselves consist of an inner
cylinder surrounded by cylindrical shells. Therefore, the formula for the volume of a cylinder is used to find
the volume of each FV. The area between FV in the radial direction uses the formula for the surface area of a
cylinder, and the area between FV in the axial direction uses the formula for the area of a circle. All of these
computations use the axial and radial dimensions (hr and hz, respectively) of each FV that were calculated
before.
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The next section of can7.m, lines 59 to 102, is shown below.

% calculation of heat flows - radially

gr=zeros (N, M) ;

for 1=1:M
qr(l,1)=-(2*lam(2,1)*lam(1,1)/(lam(2,1)+lam(1l,1)))*(T(2,1)-T(1,1))/(1.5*%hr); % f
for k=2: (N-1)

qr (k,1)=-(2*lam(k+1,1)*lam(k, 1)/ (lam(k+1,1)+lam(k,1)))*(T(k+1,1)-T(k,1)) /hr;

end

% qr (N, 1)=-lam* (Tsurf-T(N, 1))/ (0.5*hr); % flow of external KO into the area
gr (N,1)=0; % radial heat flow not considered yet (1D)

end

gjr=zeros (N,M); %radial velocity flow is neglected in 1D

[)

% calculation of heat flows - axially
qz=zeros (N, M) ;
gjz=zeros (N, M) ;

gz0=zeros (1,N); % gz(k,0) matlab cannot use 0 in index
gjz0=zeros (1,N); % gjz(k,0) matlab cannot use 0 in index
for k=1:N
for 1=1:M-1
gz (k,1)=-(2*lam(k, 1+1) *lam(k, 1)/ (lam(k,1+1)+lam(k,1)))*(T(k,1+1)-T(k,1)) /hz;
ajz(k,1)=(3s(k,1) *cpc(k,1)-3g(k,1) *cpg (k, 1)) * (T (k, 1+1) +T (k, 1)) /2;
end
qz (k,M)= - (2*lamB*lam(k,M)/ (lamB+lam(k,M)))* (TB-T(k,M))/ (0.5*hz); % bottom heat flow;

TB (taken from melter model) used to get this value
qjz(k,M)=(js (k,M) *cpc(k,M)-jg(k,M) *cpg (k,M)) * (TB+T (k,M) ) /2; % bottom velocity flow

gqz0 (k) = -(2*lam(k,1)*lamT/ (lam(k,1)+lamT))*(T(k,1)-TT)/(0.5*hz); % top heat flow - QT
qjz0(k) =(js(k,1)*cpc(k,1)-Jg(k,1)*cpg(k,1))*(T(k,1)+TT)/2; % top velocity flow
$%%%%%% Based on PNL paper: QOB = QT + 33.8; QT = Htotal - QUL $%%%%%%%%%%%%%%

% Htotal = heat flux to evaporate water and then heat the vapor to the

% temperature of the plenum space; takes into account heat flow from free
% surface of molten glass to plenum space

% 33.8 kW/m2 = heat flux to melt dry batch to molten glass (from DSC data)

jdry = 0.478*MFEED;

jwat = 0.522 * MFEED;

Hvap = jwat * 2.26e6;

Hpre = (jwat*4185 + jdry*1300)*(100-30);
Htotal = Hvap + Hpre;

QOB = Htotal - QU + (33.8e3);

end

In this section, the radial and axial heat and velocity flows (qr, qz, qjr, and qjz, respectively) are calculated.
Because this model is 1D, the radial velocity flow matrix contains all zeros, and the second row of the radial
heat flow matrix also contains zeros. The axial heat and velocity flows, however, must be included in the
model, so they are calculated using the appropriate equations (which take into consideration material
properties such as thermal conductivity and heat capacities as well as FV dimensions). The heat flow
equations are based on Fourier’s law.
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After heat and velocity flows are calculated, the value of QU (which is an input from the STAR-CCM+
simulation) is used to calculate QB, the heat transfer from the molten glass to the cold cap bottom. The
variables jdry (mass flux of dry batch) and jwat (mass flux of water from slurry) are first calculated using
MFEED and a slurry water content of 52.2%. The heat flux to evaporate water, Hvap, is then calculated using
jwat and the evaporation heat of water (2.26x10° W/m®). The heat to preheat the slurry from the feed
temperature of 30°C to 100°C, the temperature of the boiling slurry, is calculated as Hpre using the jwat, jdry,
the specific heat capacities of water and the dry batch, and the difference between the final and initial
temperatures. The sum of Hvap and Hpre is stored as Htotal, which is then used in conjunction with QU to
find QB. QU is subtracted from Htotal to find the remaining heat that needs to be supplied from the molten
glass to the cold cap to aid in the preheating and drying of the slurry, and then the heat necessary to melt the
dry batch to molten glass, which is 33.8 kW/m® (based on experimental data), is added to obtain the total heat
necessary from the molten glass, QB. QB is then placed into the heat flow matrix qz at the indices which
represent the cold cap bottom, and the heat transfer from the top of the cold cap to the slurry (Htotal — QU) is
added in the appropriate indices in qz0. The constants used in these calculations (evaporation heat of water,
initial and final temperatures of slurry, heat flux necessary to melt dry batch to molten glass), have been
obtained from the documentation that accompanied the original cold cap model
(http://www.pnl.gov/main/publications/external/technical reports/PNNL-20278.pdf, section 5.4 titled “Water
Evaporation”).

The next section of can7.m, lines 104 to 125, is as follows:

dTdt=zeros (N, M) ;

% a) inner FV (cylindrical)
k=1;

1=1;

dTdt (k, 1) =(-AR (k) *qr (k, 1) +AZ (k) * (gz0 (k) +gjz0 (k) ) -AZ (k) * (qz (k, 1) +gjz (k, 1) ))
/ (V(k)*rho(k,1)*cpc(k,1));

for 1=2:M

dTdt (k,1)=(-AR (k) *qr (k, 1) +AZ (k) * (qz (k, 1-1) +qjz (k, 1-1) ) -

AZ (k) *(gz (k,1)+gjz(k,1))) / (V(k) rho (k,1) *cpc(k,1));

end
%end k=1

% b) other FV ("rings")

for k=2:N
1=1;
dTdt (k

AZ (k) * (gz (

;1) R (k) *qr (k, 1) +AZ (k) * (qz0 (k) +qjz0 (k) ) -
k,1
for 1=2:M
dat (
(gz

(k 1) *gr(k-1,1)-
/ (V(k)* rho(k 1) *cpc(k,1));

=(A
)+ajz(k,1)))

dT
1))-AzZ (k) *
end

R (k) *qr (k, 1) +AZ (k) * (gz (k, 1-1) +qiz (k, 1-

k, AR (k-1) *qr (k-1,1) -
(k / (V(k)* rho(k,l)*cpc(k,l));

1)=(
1) tgjz(k,1)))

end

In this section, an NxM matrix called dTdt is created to hold the solution values of the right hand side of the
heat balance ODE for each FV. The first part of this section of code finds the value of dTdt for the innermost
(leftmost) FV, which is a cylinder. The second part of the code finds the value of dTdt for the FVs shaped like
cylindrical rings.
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The last section of can7.m 1s shown below.

% pack state variables (matrix --> vector)
dydt=zeros (N*M,1); % column vector for integration
index=0;
for k=1:N

for 1=1:M

index=index+1;
dydt (index)=dTdt (k, 1) ;
end
end

The above code simply turns the dTdt matrix from an NxM matrix into a column vector with N*M columns.
The column vector is stored in dydt. This is necessary because the ode15s solver requires that y’ values be

inputted as a column vector.

Now that can7.m is finished executing, control finally returns to main2D.m. The next section of main2D.m is

shown below:

yyy=v2array3d(yy); % simulation results yy into 3D matrix
% 1lst index = axial (z)

2nd index = radial (r)

3rd index time (t)

o

o°

Keeping in mind that yy is a 2D solution matrix consisting of temperature values, this call to the v2array3D.m
helper file is for turning yy into a 3D matrix, in which the third dimension is time. The v2array3D.m file is

shown below:

function [yout] = v2array3D(yin)

%V2M Vector (1D) to Array (3D)

yin is wvector

% yout is 3d-array

M=100;

N=2;

yout = zeros(N,M,51);

dim=size(yin); % first number is the number of rows (times), the second
number is the number of columns (temperature)

o\

for t=1:dim(1l); % for all time steps

yout(:,:,t)=zeros(N,M);
index=0;
for k=1:N
for 1=1:M
index=index+1;
yout (k,1,t)=yin(t,index);
end
end
end

The above code is just taking the 2D solution matrix and turning it into a 3D matrix. A 3D matrix in

MATLAB can be thought of as layers of 2D matrices (think of it like a Rubik’s cube). In this case, there is a

layer for each time value, and in each layer are the ODE solutions at radial and axial coordinates.
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The next section of main2D.m, not shown in this document, focuses on graphing the temperature solution at
different values of z (axial coordinate) and r (radial coordinate). This section can be changed to reflect

whatever data is required from the model.

The last part of main2D.m, lines 76 to 87, is shown below.

5 postprocessing (results)
T=yyy(:,:,end); % last time

TT=T(1l,1); %param.TT; % slurry temperature

% TB=T (end, end); %param.TB; % bottom temperature

physical data % distribution of final cold cap properties

0Bl = 0B;

TT1l = TT + 273.15; % Convert to K, since STAR accepts K, not C
MGAS1 = MGAS;

MGLASS1 = MGLASS;

end

In this code, the temperature solution at the very last time in the integration process (0.01s) is obtained and
stored in the variable T. Then, physical data.m is called again to obtain the new, final properties of the cold
cap based on the final temperature values. The output variables TT1, QB1, MGAS1 and MGLASSI are all
updated so they can be sent to the STAR-CCM+ simulation in the coupled model.
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Below is a flowchart outlining the interactions between the various files for the cold cap model.

SETUP

- Creation of structure that holds cold cap
dimensions, number of finite volumes (FV)

in axial and radial directions and mass flux to
cold cap

-Initial linear temperature profile obtained

INTEGRATION OF HEAT BALANCE ODE

- ODE solvers in MATLAB solves equations of
the formy’ = f(t,y)

- Heat balance ODE solved iteratively using
odel5s, which takes in a function that is
used to evaluate y’ €

init_cond.m

Creates linear temperature profile; temperatures
range from 100°C (temperature at top of cold cap)
to 1100°C (temperature at bottom of cold cap)

-ODE solver returns 2 things: tt, a column
vector of time values, and yy, a 2D solution
matrix in which each row corresponds to the
solution at the time in tt in the same row
-2D solution matrix turned into a 3D matrix,
in which 1% dimension is axial, 2" is radial,
and 3" is time

DISPLAYING DATA

Creates various plots of temperature at
different values of z (axial coordinate) and r
(radial coordinate)

POSTPROCESSING

- Obtains the temperature solution at the
last time value (3600s)

- Recalculates physical data based on final
temperature profile to get final cold cap
properties

can7.m
- Obtains physical data €
- Calculates areas and
volumes for FVs

- Calculates radial and
axial heat flows

- Uses all of the above to
solve for T (which is the
same as Yy’ in general form

y =f(t,y))

physical_data.m
Calculates, based on
temperature:

- heat conductivity

- mass fluxes of solid
and gaseous states

- heat capacities of
condensed and gas
phases

- spatial density

v2array3D.m
Incorporates time
values into 2D solution
matrix by making the
solution matrix 3D; 3™
dimension of matrix
becomes time

A
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