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Memory Optimization for Phase-field Simulations 
 

1. INTRODUCTION 
Phase-field simulations are computationally and memory intensive applications.  Many of the phase-field 
simulations being conducted in support of NEAMS were not capable of running on “normal clusters” 
with 2-4GB of RAM per core, and instead required specialized “big-memory” clusters with 64GB per 
core.  To address this issue, the MOOSE team developed a new Python-based utility called 
MemoryLogger, and applied it to locate, diagnose, and eradicate memory bottlenecks within the MOOSE 
framework. 

MemoryLogger allows for a better understanding of the memory usage of an application being run in 
parallel across a cluster.  Memory usage information is captured for every individual process in a parallel 
job, and communicated to the head node of the cluster.  Console text output from the application itself is 
automatically matched with this memory usage information to produce a detailed picture of memory 
usage over time, making it straightforward to identify the subroutines which contribute most to the 
application’s peak memory usage. The information produced by the MemoryLogger quickly and 
effectively narrows the search for memory optimizations to the most data-intensive parts of the 
simulation. 

2. OPTIMIZATIONS 
The first memory optimization study conducted in support of phase-field simulations investigated the 
memory usage of the Metis mesh partitioning library which is called from MOOSE.  Fig. 1 shows the 
output from MemoryLogger for a two processor run with a 2003 mesh of hexahedral elements.  In this 
case, the application simply read a mesh and partitioned it using the Metis interface in MOOSE, but this 
particular example is relevant to actual phase-field simulations because they also employ large hexahedral 
grids on “cube-like” computational domains. 

The green line in Fig. 1 depicts memory consumption vs. simulation time prior to the implementation of 
any memory optimizations.  The red line shows the effect of an initial memory optimization which 
replaced a data structure based on the C++ std::map container with a more memory-efficient data 
structure based on std::vector.  The cyan line shows the memory usage after replacing code that was 
initially run (duplicated) on all processors with code executed on a single processor followed by a 
broadcast of the results to the other processors. Finally, the dark blue line shows the memory usage after a 
final optimization in which a dense two-dimensional data structure used to pass information to the 
partitioner was replaced with a sparse compressed row storage data structure.  The cumulative effect of 
these memory optimizations was a nearly 2GB decrease in the total peak memory consumed across all 
processors, and a 10% decrease in execution time for this particular example.   
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Figure 1:  Stages of memory optimization for the Metis partitioner used within MOOSE. 

The next memory peak we identified and ameliorated with MemoryLogger was related to serialization of 
data structures during solution output.  The “solution” of a MOOSE-based application is a vector 
containing floating point numbers representing the value of each variable at every physical point within 
the domain.  Phase-field simulations require many variables: generally 15-20 for a two-dimensional 
calculation while a three-dimensional calculation may need 40 or more.  The need for many variables 
places a heavy burden on the memory system of a cluster. 

Using MemoryLogger, we were able to identify large increases in peak memory usage during the output 
of solution vectors.  Further investigation discovered that the solution vector, which is normally 
distributed across all processors in a parallel job, was being “serialized” (i.e. gathered) to every processor 
during the output phase of all MOOSE-based phase-field simulations.  During serialization, a full copy of 
the entire solution vector is created on every processor.  The memory required by this serialization step 
would often cause phase-field jobs to run out of memory and crash, even though the spike in memory 
itself was transient. 

Since solution output is a serial process in this particular case, the serialization step is completely 
unnecessary.  Therefore, an obvious memory optimization is to communicate the solution vector to a 
single processor, and subsequently have that processor write the solution to file.  For example, if the 
solution vector is 4GB in size and the simulation is using four processors, each processor will require 
approximately 1GB of memory to store its “local” part of the vector.  Each processor would then receive 
an additional full copy of the solution vector during the output phase, increasing memory utilization to 
5GB per processor (20GB total).  If all four theoretical processes in this example were running on a 
compute node with, say, 4GB of RAM available per core, then the simulation would crash with an out of 
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memory error.  On the other hand, bringing a full copy of the solution vector to only one processor means 
that the total memory being consumed by all four processes is only 8GB; well under the 16GB assumed 
in this example. 

Figure 2 demonstrates the effectiveness of this optimization for a problem with a solution vector with two 
million entries (approximately 16GB) distributed across 800 processors.  The green line represents the 
memory log before the memory optimization just discussed, and the blue line after.  In the beginning of 
the simulation, both versions of the code consume a similar amount of memory.  In the pre-optimized 
version of the code, there is a prodigious spike in memory consumption while writing out the initial 
solution.  The memory consumption in the two cases is once again comparable until the next solution 
output step is reached, at which point the green line jumps again.  Note that MemoryLogger has annotated 
the lines with the console output from the application, allowing the developer to see what code was being 
executed during the memory spikes.  In this case, the spikes are between “Beginning Exodus Write” and 
“Ending Exodus Write”.  Here, “Exodus” is the name of the output file format used in the simulation.

 
Figure 2: Aggregate memory usage plots for before (master.log) and after (branch.log) optimization of 
solution output. 

In this particular example, the total memory usage was reduced from over 550GB to less than 
20GB.  This memory savings also scales directly with the number of processors used, allowing larger 
phase-field simulations to be run than were previously possible.  In addition, avoiding the solution vector 
serialization step actually results in a shorter overall simulation time because the communication 
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overhead from serialization has been eliminated.  In this case, the new code ran nearly twice as fast as the 
old code, as much less time was spent in writing the solution to file. 

3. CONCLUSION 
Creation of the new MemoryLogger utility allowed the MOOSE team to identify and abrogate several 
memory bottlenecks.  The changes discussed in this report allow for much larger phase-field simulations, 
which are both more reliable and faster to execute.  In the future, the MOOSE team will continue to work 
with application domain scientists to identify and address memory issues, and the MemoryLogger will be 
an invaluable tool for accomplishing this task. 

  


