INL/EXT-15-34246

Off-diagonal Jacobian
support for Nodal BCs

John W. Peterson, David Andrs
Derek R. Gaston, Cody J. Permann
Andrew E. Slaughter

January 2015

.

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

ldaho National
Laboratory



INL/EXT-15-34246

Off-diagonal Jacobian
support for Nodal BCs

John W. Peterson, David Andrs
Derek R. Gaston, Cody J. Permann
Andrew E. Slaughter

January 2015

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-051D14517



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.




Off-diagonal Jacobian support for Nodal BCs

John W. Peterson David Andrs Derek R. Gaston
Cody J. Permann Andrew E. Slaughter

January 30, 2015

1 Introduction

In this brief note, we describe the implementation of off-diagonal Jacobian computations
for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment
(MOOSE) [1] framework. There are presently a number of applications [2-5] based on the
MOOSE framework that solve complicated physical systems of partial differential equations
whose boundary conditions are often highly nonlinear. Accurately computing the on- and
off-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for
enabling efficient numerical solvers in these applications.

Two key ingredients are required for properly specifying the Jacobian contributions of
nonlinear nodal boundary conditions in MOOSE and finite element codes in general:

1. The ability to zero out entire Jacobian matrix rows after “normal” assembly has taken
place, and efficiently replace the contents of those rows with the contributions associ-
ated to the nodal boundary conditions.

2. An interface for allowing users to specify both the residual and Jacobian contributions
associated to their nonlinear boundary condition.

Prior to this work, MOOSE partially implemented item 1 and completely lacked item 2. By
“partially,” we mean that while MOOSE was indeed capable of zeroing the relevant Jacobian
rows, it subsequently placed a 1 on the matrix diagonal by default. This approach is sufficient
for implementing nodal boundary conditions of the form u = g, where ¢ is a (possibly time
and space-varying) constant, but not generalized conditions of the form f(u) = 0, where f
is a nonlinear function of u and possibly other coupled variables.

In this report, we briefly discuss the definition of a simple model problem with a nonlinear
nodal boundary condition, and discuss the performance of MOOSE on said application both
before and after the proper nodal boundary condition Jacobian contributions were imple-
mented. For details of the implementation, including the code and surrounding discussion
by the MOOSE developers, see GitHub Pull Request #4570, Once this code is merged into
MOOSE, it will close long-standing Issue #6562.

'https://github.com/idaholab/moose/pull/4570
’https://github.com/idaholab/moose/issues/656



2 Model Problem

Let 2 = [0, 1] be the unit square, and consider the problem of finding u and v such that

—V*u—-v=0 (1)
~V2 =0 (2)

in 2, combined with the boundary conditions

u = up on left (3)

v = v, on left (4)

au+u® +v* =b on right (5)
g_:: =0 on right (6)

Z—Z = g—z =0 on top and bottom (7)

where a, b, uy, and v, are given constants whose values are constrained by several factors
which we now describe in some detail.

The on- and off-diagonal Jacobian contributions associated with the coupled, nonlinear
boundary condition (5) are given by

kij = 2v (9)
respectively, where ¢ is the degree-of-freedom index associated to variable u for a given node

on the right side of €2, and j is the degree of freedom index associated to variable v on the
same node. The Jacobian matrix row associated to row ¢ is therefore given by

0,...,a+2u,...,2‘v,...,0 (10)
i j

If @ = 0, and an initial guess of u = v = 0 is passed to the nonlinear solver (as is done
by default in MOOSE), the entire row in (10) will be zero, and the resulting matrix will be
singular. We therefore require that a # 0 in (5), while noting that this restriction obviously
does not guarantee a + 2u # 0 for all possible values of u. It is nevertheless sufficient for our
purposes here, and clearly illustrates that care must be taken in defining nonlinear boundary
conditions, even in relatively simple toy problems.

Since Eqn. (2) is not coupled to u, € is a simple domain, and the boundary conditions
for v are trivial, the solution to (2), v = vy, is also trivial. This further implies that the value
of u on the right side of €2 is given by

) :—ai\/a2—4(v§—b) (11)
" 2




In order to have a real-valued solution, we therefore also require that
a®> >4 (v; —b) (12)

a further constraint on the constants in (3)—(5), which is relatively simple to enforce in
practice by choosing b > 0 large enough.

Finally, we note that there are two possible solutions to (1), one each for the positive
and negative roots in (11). That is, despite the fact that the differential equations (1)—(2)
are linear, the nonlinear character of the boundary condition makes it possible for multiple
solutions to exist, a basic characteristic of nonlinear problems in general. The numerical so-
lution which is actually obtained depends on the initial guess, and the convergence behavior
of the nonlinear solver (MOOSE employs the inexact Newton method with either precon-
ditioned Jacobian-free Newton-Krylov or traditional matrix-vector products) is affected by
the presence of multiple roots. In the following section, we discuss the numerical results,
particularly the nonlinear convergence behavior, for solving this model problem with the old
and new nodal boundary condition Jacobian implementations in MOOSE.

3 Results

Let ug =1, v, =2,a =1, and b = 9 for the constants in (3)—(5). This yields the two possible
values

—-1++v21

Uy = 5

~ 1.79,—2.79 (13)
for u on the right side of €2. In the course of our investigation of the model problem, it was
determined that an initial guess of u = v = 0 causes the Newton iterations to converge to
the positive root in (13). The numerical solution for these constants on a 10 x 10 grid is
shown in Fig. 1.
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Figure 1: Computed solution to the model problem with the constants described in this
section. Ten equally-spaced contours between 1 and 2 are drawn on the u plot to highlight
the quadratic character of the solution.



We computed numerical solutions to the model problem with both the “original” (as de-
scribed in the introduction, i.e. incorrect) and corrected Jacobian terms implemented. Here,
we only present results for the “traditional” inexact Newton method (where the Jacobian ma-
trix is explicitly assembled) as the existence of incorrect nodal boundary condition Jacobian
terms does not seem to strongly affect the convergence rate of the PJFNK solution method
on this model problem?. We also attempted solves both with and without the “linesearch”
feature of PETSc enabled. The “linesearch” algorithm prevents the nonlinear residual norm
from increasing at each Newton step, but does not guarantee convergence for poor initial
guesses.

The results of these computations, plotted as the log of the nonlinear residual norm, || R||,
vs. the number of Newton iterations, are shown in Fig. 2. Under the original code path, the
Newton solver quickly diverges when linesearch is disabled, and stagnates when it is enabled.
In a real code, stagnation of the nonlinear residual is typically just as unacceptable as outright
divergence, and also has the negative side effect of requiring many more CPU cycles before
reporting failure. In the corrected code, the Newton solver converges with linesearch either
on or off. When linesearch is off, we observe an initial small increase in the residual norm,
followed by a rate of decrease similar to the case where linesearch is on. The case with
linesearch enabled converges one iteration sooner than the case with linesearch disabled, the
latter case obtains a correspondingly smaller final norm. In both cases, the convergence rate
in the final Newton iteration is nearly quadratic, which is a characteristic of the inexact
Newton method when the Jacobian is correctly implemented.

4 Conclusions and Future Work

The newly-implemented nodal boundary condition Jacobian terms were shown to perform
well on a model problem when the traditional inexact Newton method was employed as
the solver. Through the definition of a model problem, we observed that nonlinear nodal
boundary conditions can easily lead to ill-posed problems if they are not formulated carefully,
and that they induce the full characteristics of general nonlinear equations, including the
existence of multiple solutions. Finally, we showed conclusively that, for the inexact Newton
solver method, implementing the correct nodal boundary condition Jacobian terms may be
essential for preventing divergence of the nonlinear iterations.

Solvers based on the PJFNK method were found to be largely unaffected by the improved
accuracy of the preconditioning matrix, which is a secondary result of this project. We
believe that more realistic applications than the model problem considered here will possibly
recognize more significant improvements in preconditioning for the PJFNK method. More
importantly, developers who previously could not rely on the traditional inexact Newton
solution method due to the inability to specify nodal boundary condition Jacobian terms
now have the option to explore its potential benefits in their applications.

In the initial GitHub Pull Request where the nodal boundary condition Jacobian terms
were implemented, some approaches for optimizing and improving the new capability were

3Considering that the action of the Jacobian was already correct under the “original” code path—only
the preconditioning matrix was wrong for the rows associated to the nodal boundary condition degrees of
freedom—the lack of effect on PJFNK makes sense.
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Figure 2: Newton solver convergence for both the “original” and “corrected” nodal boundary
condition Jacobian contributions for the model problem defined by (1)—(7).

discussed. The primary optimization involves caching the nodal boundary condition Jacobian
information in a threaded region, then “joining” the resulting data onto a single thread before
the terms are finally inserted in the Jacobian or preconditioning matrix. This optimization
will be beneficial in applications whose boundary condition Jacobian terms are especially
costly to compute; one can envision scenarios in which a small simulation or a loosely-
coupled external application is required for computing residual and Jacobian terms on the
boundary. A secondary optimization involves the manner in which values are actually set in
the parallel Jacobian matrix data structure: we currently make N function calls to set these
values, where N is the number of nodes with nodal boundary conditions, but the PETSc
library provides routines which would allow us to make only a single function call regardless
of the number of boundary conditions. Both this and the threading optimization mentioned
above will be conducted as future work.
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