Reuse Permit I-161-02 Quality Assurance Project Plan (QAPP) for Required Environmental and Process Monitoring

Idaho National Laboratory Advanced Test Reactor (ATR) Complex Cold Waste Ponds

May 2015

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

INL/EXT-15-34919 Revision 0

Reuse Permit I-161-02 Quality Assurance Project Plan (QAPP) for Required Environmental and Process Monitoring

Idaho National Laboratory Advanced Test Reactor (ATR) Complex Cold Waste Ponds

May 2015

Idaho National Laboratory Idaho Falls, Idaho 83415

Prepared for the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Reuse Permit I-161-02

Quality Assurance Project Plan (QAPP) for Required

Environmental and Process Monitoring

Idaho National Laboratory Advanced Test Reactor (ATR) Complex Cold Waste Ponds

INL/EXT-15-34919 Revision Number: 0

Date: May 2015

ATR Complex Program Environmental Lead

JOHN D. GELEFIN Name

gnature

Manager, Regulatory and Monitoring Services

Scot

Name

Liquid Effluent Sampling Lead

David Frederick

Name

ATR Complex Quality Officer/Engineer

Hatha lerry Name

Quality Assurance Management System Lead

Jensen)aren

Signature

5/11

Date

-11-2015

5/11/15

This blank page is for double-sided printing.

Table of Contents

ACRON	YMS, ABBREVIATIONS, AND DEFINITIONS	iii
NOMEN	ICLATURE	. X
1. PRO	DJECT MANAGEMENT	. 1
1.1.	Introduction	. 1
1.2.	Distribution List	. 1
1.3.	Project/Task Organization	. 2
1.4.	Purpose and Intended Use of Data	. 3
1.4.	1. Purpose	. 3
	2. Intended Use of Data	
1.5.	Environmental/Process Monitoring and Sample Analyses Description	
	 General Overview	
1.5.		
1.0. 1.7.	Data Quality Objectives (DQOs)	
	Training Requirements and Certification Documentation and Records	
1.8.		
2. DA'	TA GENERATION AND ACQUISITION	
2.1.	Sampling Locations	. 7
2.2.	Sampling Methods	. 7
2.3.	Sample Handling and Custody Procedures	. 7
2.4.	Analytical Methods Requirements	. 7
2.5.	Instrument/Equipment Testing, Inspection, and Maintenance Requirements	. 8
2.6.	Instrument Calibration and Frequency	. 8
2.7.	Inspection/Acceptance Requirements for Supplies and Consumables	. 8
2.8.	Data Acquisition Requirements	. 8
2.9.	Data Management	. 9
3. ASS	SESSMENT AND OVERSIGHT	.9
3.1.	Assessment and Response Actions	. 9
3.2.	Reports	
4. DA'	TA VALIDATION AND USABILITY	10
4.1.	Data Review, Verification, and Validation	
4.2.	Data Validation and Verification Methods	
4.3.	Reconciliation with Data Quality Objectives	
5. ME	DIA-SPECIFIC MONITORING	11
5.1.	Recycled Water Monitoring	11

6. REFERENCES	
5.5. Hydraulic Management Unit Calculations and Reporting	
5.4. Plant Tissue and Crop Monitoring	
5.3. Soil Monitoring	
5.2.5. Decontamination Procedures	
5.2.4. Ground Water Sample Collection Procedures	
5.2.3. Typical Sampling Equipment	
5.2.2. Analytical Methods	
5.2.1. Monitoring	
5.2. Ground Water Monitoring	
5.1.5. Decontamination Procedures	
5.1.4. Recycled Water Sampling Procedures	
5.1.3. Typical Sampling Equipment	
5.1.2. Analytical Methods	
5.1.1. Monitoring	

List of Tables

Table 1. Distribution list for this QAPP	1
Table 2. Project personnel, titles, and responsibilities.	2
Table 3. Permit I-161-02 required media to be monitored.	3
Table 4. Reporting timetable	4
Table 5. Project staff and training requirements.	4
Table 6. Document management.	5
Table 7. Instrument/equipment testing, inspection, and maintenance requirements	8
Table 8. Instrument calibration and frequency.	8
Table 9. Data review, verification, and validation tasks.	10
Table 10. Recycled water monitoring requirements.	11
Table 11. Typical wastewater analytical methods.	13
Table 12. Ground water monitoring point descriptions.	14
Table 13. Ground water monitoring requirements.	15
Table 14. Typical ground water analytical methods.	16
Table 15. Hydraulic management unit descriptions.	17
Table 16. Hydraulic management unit calculations and reporting.	17

ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

ATR	Advanced Test Reactor
CA	prefix for compliance activity number
CFR	U.S. Code of Federal Regulations
COC	chain of custody
CWP	Cold Waste Pond(s)
DEQ	Idaho Department of Environmental Quality
DQO	data quality objective
DRSC	Document and Records Service Center
EDMS	Electronic Document Management System
EDW	Environmental Data Warehouse
EPA	U.S. Environmental Protection Agency
FI	prefix for flow indicator/instrument number
FM	prefix for flow measurement or monitoring description or identifier number
FR	prefix for flow recorder number
GDE	prefix for guide number
GW	prefix for ground water reporting serial number
HMU	hydraulic management unit
INL	Idaho National Laboratory
ISRC	INL Site Records Center
LI	prefix for laboratory instruction number
L&V	Limitations and Validation
LWP	prefix for laboratory wide procedure number
MCP	prefix for management control procedure number
MU	prefix for management unit reporting environmental serial number
NA	not applicable
PLN	prefix for plan number
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
SFL	satellite file location
RMS	Regulatory and Monitoring Services
TRA	prefix for ground water reporting (well) common designation number
USGS	prefix for ground water reporting (well) common designation number

- WCAC Work Control Administration Center
- WW prefix for wastewater reporting serial number

NOMENCLATURE

Al	aluminum
Cl	chloride
Cr	chromium
°C	degrees Celsius
EC	electrical conductivity
Fe	iron
gal/day	gallons per day
HNO3	nitric acid
H2SO4	sulfuric acid
µS/cm	microseimens per centimeter
Mn	manganese
mg/L	milligrams per liter
MG/day	million gallons per day
Ν	nitrogen
NNN	nitrate and nitrite (as N)
pН	negative logarithm of the hydrogen ion concentration
s.u.	standard units for pH
SO4	sulfate
SWL	static water level
TDS	total dissolved solids or total filterable residue
TKN	total Kjeldahl Nitrogen (as N)

This page left blank for double-sided printing.

1. PROJECT MANAGEMENT

1.1. Introduction

The Department of Environmental Quality (DEQ) issued Reuse Permit No. I-161-02 (hereafter permit) for the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) Complex Cold Waste Ponds (CWP) on November 20, 2014. Permit Section 3 compliance activity (CA), CA-161-02, requires the permittee to prepare and implement a Quality Assurance Project Plan (QAPP) within 6 months of permit issuance. This QAPP is prepared in accordance with CA-161-02 using a template provided by DEQ.

1.2. Distribution List

Names and addresses of those receiving copies of this QAPP are provided in Table 1.

Title	Name and Address
ATR Complex Program Environmental Lead	John Griffin Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-7128
Manager, Regulatory and Monitoring Services	Scott Lee Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-3405
Liquid Effluent Reporting Lead	Michael Lewis Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-3405
Liquid Effluent Sampling Lead	David Frederick Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-3405
Director, Analytical and Environmental Chemistry Department, Southwest Research Institute	Michael Dammann Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510
DEQ Wastewater Engineering Manager	Chas Ariss, P.E. Department of Environmental Quality 1410 N. Hilton Boise, ID 83706
DEQ Regional Engineering Manager	Gregory Eager, P.E. Department of Environmental Quality 900 N. Skyline Drive, Suite B Idaho Falls, ID 83402

Table 1. Distribution list for this QAPP.

1.3. Project/Task Organization

Table 2 lists key project personnel and their corresponding responsibilities.

Name and Title	Contact Information	Responsibility
Robert Boston Responsible Official	U.S. Department of Energy Idaho Operations Office 1955 N. Fremont Ave. Idaho Falls, ID 83415	Responsible official for the reuse permit.
Timothy Miller Authorized Representative	Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415	Authorized representative for the reuse permit.
John Griffin Program Environmental Lead	Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415	Responsible for oversight of environmental regulatory activities for the ATR Complex Cold Waste Ponds.
Scott Lee Manager, Regulatory and Monitoring Services (RMS) Michael Lewis Liquid Effluent Reporting Lead David Frederick Liquid Effluent Sampling Lead	Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415	Responsible for all environmental monitoring and reporting at the INL Site. Completes final review and sign-off on annual report. Reports to the Authorized Representative . Wastewater reporting lead for INL. Responsible for preparing annual reports for reuse permits at INL. Reports to the RMS Manager . Responsible for conducting all permit-required wastewater sampling at INL. Creates and maintains monitoring documentation and compiles documentation for preparation of the annual report. Reviews and approves laboratory data and requests data validation. Reports to the RMS Manager .
Michael Dammann Director, Analytical and Environmental Chemistry Department, Southwest Research Institute	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228- 0510	Responsible for chemical and physical analyses of environmental samples performed by Southwest Research Institute. Responsible for implementing all laboratory QA/QC requirements and ensuring equipment is maintained and calibrated. Responsible for addressing all contract issues and questions.

Table 2. Project personnel, titles, and responsibilities.

1.4. Purpose and Intended Use of Data

1.4.1. Purpose

This QAPP describes the technical requirements and quality assurance (QA) activities of the environmental data collection/analyses operations to be performed under the permit. The scope of monitoring, the organization and individuals involved, data quality objectives, monitoring procedures, and the specific quality control (QC) measures to be employed are described. All QAPP activities are implemented to determine whether the results of the sampling and monitoring performed are the right type, quantity, and quality to satisfy the requirements of Section 5 of the permit.

This QAPP will be updated as necessary to reflect significant changes.

1.4.2. Intended Use of Data

The data collected as required in the permit, Section 5, are compared to threshold criteria in either the permit or applicable regulations to determine compliance. Data are also collected to perform required calculations as specified in the permit, Section 6.1.2, such as loading rate calculations. Data and derivative calculations are used both by DEQ and the permittee to determine whether the facility is in compliance with the permit and applicable rules and regulations pertaining to environmental quality, public health, and safety. These data are also used by the facility for management purposes. Submittal of required monitoring data and calculations is specified in the permit, Section 6.

1.5. Environmental/Process Monitoring and Sample Analyses Description

1.5.1. General Overview

The permit, Section 5, requires specific media to be monitored and identifies requisite frequencies. These requirements are summarized in Table 3. Specific parameters, equipment, and procedures are provided in Section 5 for the different media being monitored.

Monitored Media	Frequency	See the Following QAPP Reference
Recycled Water Chemistry	Monthly	Section 5.1
	Record Daily; Compile	
Recycled Water Flow	Monthly; Each HMU ¹	Section 5.1
Ground Water Chemistry (monitoring	Semi-annual; April/May and	
wells)	September/October	Section 5.2
Notes:		
1. HMU – hydraulic management unit.		

1.5.2. Monitoring and Reporting Timetable

Monitoring, sampling, and analyses are required at prescribed frequencies according to the parameter and media. All monitoring, sampling, and analyses are required by the permit, Section 5, to be completed, compiled, and submitted to DEQ in an annual report. See further discussion of annual reporting in Section 3.2. The required timetable is shown in Table 4.

Table 4. Reporting timetable.		
Activity	Date	
Beginning of Reporting Year	November 1	
End of Reporting Year	October 31 of the calendar year following the beginning of the reporting year	
Annual Report Submittal Date	March 1 of the calendar year following the end of the reporting year	

Table 4. Reporting timetable.

1.6. Data Quality Objectives (DQOs)

Data quality objectives (DQOs) and procedures to assess data precision, accuracy, and completeness are in PLN-8540, "Idaho National Laboratory Liquid Effluent Monitoring Plan."

1.7. Training Requirements and Certification

Training requirements for different staff positions are shown in Table 5. Table 6 shows the location of documentation for required staff training.

Position Title / Responsibility	Training and Training Requirements
Manager, Regulatory and Monitoring Services	Trained by education and on-the-job in the design and implementation of environmental monitoring programs, quality control and quality assurance, project management, and environmental regulatory requirements and permit requirements.
Program Environmental Lead	Trained by education and on-the-job in the design and implementation of environmental monitoring programs, quality control and quality assurance, and environmental regulatory requirements and permit requirements.
Liquid Effluent Sampling Lead	Trained by education and on-the-job on monitoring and sampling protocols, use and calibration of sampling equipment, and environmental regulatory requirements and permit requirements.
Liquid Effluent Reporting Lead	Trained by education and on-the-job in environmental reporting, and environmental regulatory requirements and permit requirements.
Sampling and Monitoring Staff	Trained in-house by previously trained staff on all monitoring and sampling protocols, use and calibration of sampling equipment, and regulatory and permit requirements.
Contract Laboratories	Contract laboratories participate in the Department of Energy Consolidated Audit Program and are typically certified through the National Environmental Laboratory Accreditation Program and the International Organization for Standardization.

Table 5. Project staff and training requirements.

1.8. Documentation and Records

Documentation for all permit-required monitoring, sampling, and analyses conducted according to this QAPP is summarized in Table 6. The generated documentation consists of field notes, chain of custody records (COCs), laboratory analyses reports, vendor certifications, daily log sheets, an annual report summarizing the sampling events and results, and this QAPP (which includes sampling procedures in Section 5). This documentation is available to, and reviewed by, project personnel for quality control.

Permit related documents are managed and maintained in approved storage locations following the guidelines in LWP-8101, "Environmental Correspondence" and PLN-4653, "INL Records Management Plan." In-process working documents or files are located in the field, the ATR Complex Utility Area Supervisor Office in TRA-609, TRA-608, and/or the Work Control Administrative Center (WCAC). Completed in-process documents (active documents that are referenced often and/or used for daily activities, but not archived) are maintained in one or more of the following locations; the Electronic Document Management System (EDMS), ATR Complex satellite file locations (SFLs), and/or the ATR Complex Document and Records Service Center (DRSC). The EDMS is a searchable document database available to all INL employees. Electronic versions of documents, typically as Adobe Acrobat pdf files, are stored in EDMS. Inactive documents (archived documents) are maintained in EDMS and/or the INL Site Records Center (ISRC).

Analytical data generated at INL is also maintained in the Environmental Data Warehouse (EDW), a searchable database accessible via the intranet at INL.

Monitoring and/or Sample Analyses/ Other	Documentation	Disposition of Documentation
Recycled Water Chemistry	COC for each sampling event. Analytical results. Sampling field notes.	In-process documents in the field. Active documents to EDMS; data to EDW. Inactive documents to EDMS and/or ISRC.
Recycled Water Flow – Daily	Flow totalizer records; FM-16101 V-notch weir flow meter in TRA-764 (instrument FI-22-7) is recorded daily on a log sheet RP-1710 by operator. Flow chart records; FM-16101 V-notch weir flow meter in TRA-764 (instrument FR-22-6) continuously records instantaneous flow on a weekly circle chart.	In-process RP-1710 to TRA-608 and/or ATR Complex utility area supervisor office. Active RP-1710 to SLF, DRSC, and/or EDMS. Inactive RP-1710 to EDMS and/or ISRC. RP-1710 copied to Liquid Effluent Reporting Lead annually for inclusion in annual report. In-process circle chart TRA-764, TRA-608, and/or ATR Complex utility area supervisor office. Active circle charts to SLF, DRSC, and/or EDMS. Inactive charts to EDMS and/or ISRC.

Table 6. Document management.

Table 6. (continued).Monitoring and/or		
Sample Analyses/ Other	Decumentation	Dispessition of Desumantation
Recycled Water Flow – Monthly	Documentation RP-1710 log sheet data is compiled monthly in utility report RP-2234 Excel workbook file by Utility Area Supervisor.	Disposition of Documentation Monthly RP-2234 Excel workbook file on ATR Complex Utility Area Supervisor Computer, copy to Liquid Effluent Reporting Lead for inclusion in annual report. Active RP-2234 to SLF, DRSC, and/or EDMS. Inactive RP-2234 to EDMS and/or ISRC.
Flow Meter Calibration	ATR Complex maintenance organization calibration of FI-22-7.	In-process work order in the field and/or WCAC. Active work order to SLF, DRSC, and/or EDMS. Inactive work order to EDMS and/or ISRC.
Backflow Testing (if applicable)	Report of testing date(s) and results of the test (pass or fail). For failed tests, report the date of repair or replacement of backflow prevention device, and if the repaired/replaced device is operating correctly. Note: Cross-connection(s) with the CWP do not currently exist and there are no backflow prevention devices in the system.	In-process work order in the field and/or WCAC. Active documents to EDMS. Inactive documents to EDMS and/or ISRC.
Ground Water Chemistry (monitoring wells)	COC record for each sampling event. Analytical results. Sampling field notes.	In-process documents in the field. Active documents to EDMS; data to EDW. Inactive documents to EDMS and/or ISRC.
Data Validation	Limitations and Validation (L&V) Reports.	In-process documents at work location of assigned validator. Active documents to EDMS; data qualifiers uploaded to EDW. Inactive documents to EDMS and/or ISRC.
Field Equipment Calibration, Inspection, and Maintenance	Records person and date of field equipment calibration.	In-process documents in the field. Active documents to EDMS. Inactive documents to EDMS and/or ISRC.
Staff Training	Documentation of necessary training.	Training records maintained by INL Training Services and accessible on the intranet.
Other	Unit process log book (Utility Area Operator narrative log book).	In-process log book in TRA-608. Active log book to SLF and/or DRSC. Inactive log book to ISRC.

Table 6. (continued).

2. DATA GENERATION AND ACQUISITION

2.1. Sampling Locations

Sampling locations are listed in Table 10 for recycled water and Table 12 for ground water. Locations were chosen (in coordination with DEQ) to reflect practical and logical points for monitoring and sampling for the recycled water land treatment process. For selected environmental media, accessibility and likelihood of yielding representative samples were also considerations when choosing locations.

2.2. Sampling Methods

Sample collection procedures and parameter requirements are in Table 10 (Section 5.1) for recycled water; and Table 13 (Section 5.2) for ground water.

2.3. Sample Handling and Custody Procedures

Samples are collected by monitoring staff under the supervision of the Liquid Effluent Sampling Lead or Designee. Samples are properly labeled, preserved, and packed as specified in LI-8540, "Liquid Effluent Sampling" and MCP-8523, "Managing Hazardous and Non-Hazardous Samples."

The field logbook (Appendix A) is used to document information pertaining to sampling events for each media monitored. The packing of samples prior to shipment to the laboratory is described in MCP-8523.

- 1. Transport time is minimized to ensure that samples reach the laboratory without exceeding holding times and to reduce the chances of being exposed to temperature variations. Samples are typically shipped to contract laboratories on the same day as the sampling event.
- 2. Sample delivery is coordinated in advance with the laboratory. Samples are delivered to the laboratory at the time(s) specified on scheduled days. All instructions provided by the laboratory are followed.

When samples are shipped, a COC form (Appendix B) for each sample is completed. The COC form:

- Accompanies the sample throughout the duration of the shipping process. Custody control procedures are in MCP-8523
- Is checked for a signature at the receiving laboratory.

2.4. Analytical Methods Requirements

Analytical method requirements are listed in Table 11 for wastewater and Table 14 for ground water.

Page 8 of 22

2.5. Instrument/Equipment Testing, Inspection, and Maintenance Requirements

Requirements for instrument and equipment testing, inspection, and maintenance are listed in Table 7.

Equipment Type	Inspection Frequency	Type of Inspection
Composite Sampler for Recycled Water Sampling	Before each use	Visual inspection to check for leaks and cracks. Ensure pump is operational and sampler is in communication with the flow meter.
Field pH/Conductivity Meters	Before each use	Check for adequate charge on batteries. Replace probes as necessary.
Water Level Sensor (etape) for Monitoring Wells	Before each use	Check batteries.

 Table 7. Instrument/equipment testing, inspection, and maintenance requirements.

2.6. Instrument Calibration and Frequency

Requirements for instrument calibration, including calibration frequencies, are listed in Table 8.

Equipment Type	Calibration Frequency	Standard or Calibration Instrument Used
Laboratory Analytical Equipment	Determined by laboratory	Determined by laboratory
	personnel	personnel.
Composite Sampler for	Determined by manufacturer	Determined by manufacturer
Recycled Water Sampling	and sampling personnel (see	and sampling personnel (see
	manual)	manual).
Field Parameter Meters	Determined by manufacturer	Determined by manufacturer
	and sampling personnel (see	and sampling personnel (see
	manual)	manual).
Flow Meter	Annually	Determined by manufacturer
		and engineering personnel (see
		manual).

 Table 8. Instrument calibration and frequency.

2.7. Inspection/Acceptance Requirements for Supplies and Consumables

The equipment and supplies generally used for sampling are listed in LI-8540 and LI-330, "Groundwater Monitoring for the Advanced Test Reactor Complex Cold Waste Pond Industrial Wastewater Reuse Permit." Sample containers are obtained through approved vendors. Necessary reagents and calibration standards of appropriate grade and unexpired shelf-life are used.

2.8. Data Acquisition Requirements

Pre-existing data, both active and inactive, related to this facility are stored in one or more of the following approved storage locations; SFLs, the ATR Complex DRSC, EDMS, EDW, and/or the ISRC. These data serve generally to compare with recently collected data, to determine trends, confirm general acceptable ranges of data, and corroborate possible instances of outliers and otherwise spurious data. See further discussion on data evaluation in Section 4.

2.9. Data Management

The Liquid Effluent Sampling Lead reviews the data before it is loaded into EDW and EDMS for permanent storage. EDW and EDMS are backed up periodically.

3. ASSESSMENT AND OVERSIGHT

3.1. Assessment and Response Actions

Project staff assesses the effectiveness of QAPP implementation by reviewing all associated documentation (see Table 6). Any errors or inconsistencies identified in documentation are addressed and corrected to ensure the integrity of this plan. For more about validation and use of the data, see Section 4. Environmental monitoring at INL is subject to periodic internal and external assessments.

3.2. Reports

Once sampling is complete and sample results received, project personnel (typically the Liquid Effluent Reporting Lead) prepare the final annual report summarizing the sampling results according to the permit (Section 6), then request review by the project and facility personnel. The reports are certified and signed prior to submittal to DEQ as specified in Section 6 of the permit.

4. DATA VALIDATION AND USABILITY

4.1. Data Review, Verification, and Validation

The data are reviewed for quality by the Liquid Effluent Sampling Lead, project personnel, and/or data validators, who periodically perform the tasks listed in Table 9.

Table 9. Data	review.	verification.	and	validation tasks.	
Table 7. Data	1011010,	ver meanon,	anu	vanuation tasks	•

Program Activity	Review Tasks				
Sampling Protocol	Verify ¹ sampling strategy conforms to the reuse permit and QAPP.				
	Verify ¹ selection of sampling locations matches the reuse permit.				
Field Sampling	Verify ¹ prescribed procedures and equipment are used.				
	Verify ¹ proper containers and preservatives (including proper pH adjustment) are				
	used.				
	Verify ¹ all samples are properly stored and at appropriate temperatures.				
Field	Verify ¹ proper data entry procedures are used for any field data sheets or				
Documentation	notebooks.				
	COC forms: Verify ¹ Forms are properly completed, signed, and dated during				
	transfer. Verify ¹ samples are assigned identification numbers and accounted for.				
	Verify ¹ samples are properly packaged.				
Field Analytical	Verify ¹ field instruments are properly calibrated.				
Testing Data	Verify ¹ calculations, transcriptions, and reporting units for field measurements				
	recorded on any data sheets or notebooks.				
Laboratory	Verify ¹ requested data is reported, and is in compliance with contract analytical specifications and methods.				
	Verify ¹ COC documentation from laboratory is correct.				
	Verify ¹ sample temperatures are <10°C upon receipt at laboratory and				
	refrigerated.				
	Verify ¹ holding times are not exceeded from time of collection to time of analysis.				
	Verify ¹ QC samples (e.g., spikes) are analyzed.				
Record Storage	Verify the EDMS and/or EDW contain all field and laboratory data, and other				
	records, pertinent to this QAPP.				
Verify active records as identified in Table 6 are maintained at an approved					
	storage location in a SFL, DRCS, and/or EDMS.				
Notes:					
1. Verify in this cont	ext means to ensure the respective task(s) is performed.				

4.2. Data Validation and Verification Methods

The Liquid Effluent Sampling Lead and data validation personnel review respective data for completeness, errors, and inconsistencies per MCP-8540 and PLN-8540. The Liquid Effluent Sampling Lead also examines data in light of historic data for trends, and performs outlier checks as necessary. The data validators apply data qualifiers as necessary per criteria in GDE-8511, "Inorganic Analyses Data Validation for INL."

The Liquid Effluent Sampling Lead is responsible for advising project personnel of any appropriate actions that may be needed, such as re-sampling. If data do not meet data quality objectives (DQOs) specified in PLN-8540 project personnel (typically the Liquid Effluent Sampling Lead) document objectives that are not met with the respective data. Project personnel develop recommendations for correcting the deficiencies and work with management to implement the recommendations.

4.3. Reconciliation with Data Quality Objectives

The Liquid Effluent Sampling Lead is responsible for reconciling the results from the monitoring program described in this QAPP with the DQOs and other requirements per PLN-8540 and the reuse permit. The Liquid Effluent Sampling Lead:

- Reviews the L&V reports from the data validators
- Considers how well the data represent conditions at the sampling location.

The Liquid Effluent Sampling Lead reviews the data to determine if there are permit or regulatory exceedances, and if re-sampling is necessary for any permit required constituent, confirmatory sampling, or mandated reporting to DEQ, and resolves those needs.

5. MEDIA-SPECIFIC MONITORING

5.1. Recycled Water Monitoring

This section discusses recycled water monitoring, analytical methods used, sampling equipment used, sampling procedures, sample collection, and decontamination procedures.

5.1.1. Monitoring

Recycled water monitoring including identification, description, and location of monitoring points, assigned serial numbers, sample types and frequencies, and parameters are shown in Table 10. Recycled water monitoring, excluding flow measurement, is discussed in more detail in LI-8540.

Monitoring Point Serial No./Location	Sample Description	Sample Type/ Frequency	Parameters
WW-16101 Cold waste sample pit (TRA-764)	Recycled water to MU-16101 and MU-16102	Composite/monthly	 pH (s.u.) Aluminum, filtered Chloride Chromium, total Chromium, filtered Electrical Conductivity Iron, filtered Manganese, filtered Nitrate+Nitrite Nitrogen, as N Total Kjeldahl Nitrogen, as N Total Nitrogen, as N Sulfate Total Dissolved Solids
FM-16101 (instrument FI-22-7)	V-notch weir overflow	Daily meter reading Monthly compilation of data	 Daily volume (gal/day) Monthly volume (MG/month)

Table 10. Recycled water monitoring requirements.

5.1.2. Analytical Methods

Analytical methods typically used for recycled water including preservative requirements and holding time requirements are shown in Table 11. Analytical methods specified in 40 CFR 141, "National Primary Drinking Water Regulations"; 40 CFR 143, "National Secondary Drinking Water Regulations," 40 CFR 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants," or those approved by DEQ are typically used.

Table 11. Typical wastewater analytical m	nethods.
---	----------

					Typical		Maximum
				Standard	Detectio		Holding
Parameter	Abbreviation	Units ¹	EPA ²	Methods ³	n Limit⁴	Preservative	Time
рН	_	s.u.	150.1	4500-H ⁺	>1, <12	None required	Analyze immediately in field; <48 hours for laboratory analysis
Electrical Conductivity	EC	µS/cm	120.1	2510 B	2 μS/cm	None required for field analysis. Cool, 4°C for laboratory analysis.	Analyze immediately in field; 28 days for laboratory analysis
Total Dissolved Solids (or Total Filterable Residue)	TDS	mg/L	160.2	2540 C	10 mg/L	Cool, 4°C	7 days
Total Kjeldahl Nitrogen (as N)	TKN	mg/L	351.2	4500-Norg	0.1 mg/L	Cool, 4°C H ₂ SO ₄ to pH<2	28 days
Nitrate+Nitrite (as N)	NNN	mg/L	300.0	4110	0.05 mg/L	Cool, 4°C	48 hours
Aluminum, filtered	AI	mg/L	200.7	3120 B	0.025 mg/L	HNO₃ to pH<2	6 months
Chromium, total and filtered	Cr	mg/L	200.7	3120 B	0.0025 mg/L	HNO₃ to pH<2	6 months
Iron, filtered	Fe	mg/L	200.7	3120 B	0.025 mg/L	HNO₃ to pH<2	6 months
Manganese, filtered	Mn	mg/L	200.7	3120 B	0.0025 mg/L	HNO₃ to pH<2	6 months
Sulfate	SO ₄	mg/L	300.0	4110 B or C	0.1 mg/L	Cool, 4°C	28 days
Chloride	CI	mg/L	300.0	4110 B or C	0.1 mg/L	Cool, 4°C	28 days
Notoo	•	•	•	•	•	•	•

Notes:

 Unit abbreviations: s.u. – standard units; mg/L – milligrams per liter; μS/cm – microseimens per centimeter.

 EPA Methods and Guidance for the Analysis of Water, Version 2.0. EPA 821/C-99-004. June 1999. For further approved methods, see US Code of Federal Regulations, CFR 40 § 136.3, Tables 1A and 1B, CFR 40 § 141, and CFR 40 § 143.

3. Eaton, A.D., and others (eds), 2005, Standard Methods for the Examination of Water and Wastewater – 21st Edition.

4. The typical detection limits are sample-specific.

5.1.3. Typical Sampling Equipment

The equipment and supplies generally used for sampling recycled water are listed in LI-8540.

5.1.4. Recycled Water Sampling Procedures

Sampling procedures are described in LI-8540.

5.1.5. Decontamination Procedures

Decontamination procedures are described in LI-8540 and LI-359, "Cleaning of Environmental Monitoring Services Sampling Equipment."

5.2. Ground Water Monitoring

This section addresses analytical methods, sampling equipment, sampling point purging procedures, sample collection procedures, and decontamination procedures for ground water monitoring.

5.2.1. Monitoring

Information for identification, description, and location of monitoring points, assigned serial numbers, sample types and frequencies, and parameters, are in Table 12 and Table 13. Ground water monitoring is discussed in more detail in LI-330.

Monitoring Point Serial Number	Common Designation	Well Type	Gradient Location
GW-016101	USGS-098	Monitoring well	Upgradient
GW-016102	USGS-065	Monitoring well	Downgradient
GW-016104	USGS-076	Monitoring well	Down/cross-gradient
GW-016105	TRA-08	Monitoring well	Downgradient
GW-016106	Middle-1823	Monitoring well	Downgradient
GW-016107	USGS-058	Monitoring well	Downgradient
Note: Monitoring wel	I TRA-07 (GW-016103) is not	required under this p	permit.

Table 12. Ground water monitoring point descriptions.

Monitoring Point Serial Number(s)	Sampling Point Description	Sample Type/Frequency	Parameters ¹
GW-016101 GW-016102 GW-016104 GW-016105 GW-016106	Monitoring wells	Unfiltered grab sample (unless otherwise specified), twice annually: April/May and September/October	 Water table elevation (feet) Water table depth (feet) pH (s.u.) Aluminum, filtered Chloride Chromium, total Chromium, filtered Electrical Conductivity Iron, filtered Manganese, filtered Nitrate+Nitrite Nitrogen, as N Total Kjeldahl Nitrogen, as N Sulfate Total Dissolved Solids
GW-016107	Monitoring well USGS-058	Unfiltered grab sample (unless otherwise specified), twice annually: April/May and September/October	 Water table elevation (feet) Water table depth (feet) Total Dissolved Solids Sulfate
	. 58.01.11 400.05, "Site-Speci nium, under this permit, shall		' compliance with the Primary Constituent

Table 13. Groun	d water	monitoring	requirements.
Manifarina			

5.2.2. Analytical Methods

Analytical methods for preservative requirements and holding time requirements used for ground water (Table 14) are approved by DEQ, and include 40 CFR 141, 40 CFR 143, and 40 CFR 136.

	Table 14	Typical	ground water	[.] analytical	methods.
--	----------	----------------	--------------	-------------------------	----------

Parameter	Abbreviations	Units ¹	EPA ²	Standard Methods ³	Typical Detection Limit ⁴	Preservative	Holding Time
рН		s.u.	150.1	4500-H [*]	>1, <12	None required	Analyze immediately in field; <48 hours for laboratory analysis
Electrical Conductivity	EC	μS/cm	120.1	2510 B	2 μS/cm	None required for field analysis. Cool, 4°C for laboratory analysis.	Analyze immediately in field; 28 days for laboratory analysis
Total Dissolved Solids (or Total Filterable Residue)	TDS	mg/L	160.2	2540 C	10 mg/L	Cool, 4°C	7 days
Static Water Level	SWL	Feet	NA⁵	steel tape, electric tape or other	0.01 ft		_
Total Kjeldahl Nitrogen (as N)	TKN	mg/L	351.2	4500-Norg	0.1 mg/L	Cool, 4°C H₂SO₄ to pH<2	28 days
Nitrate+Nitrite (as N)	NNN	mg/L	300.0	4110	0.05 mg/L	Cool, 4°C	48 hours
Aluminum, filtered	AI	mg/L	200.7	3120 B	0.025 mg/L	HNO ₃ to pH<2	6 months
Chromium, total and filtered	Cr	mg/L	200.7	3120 B	0.0025 mg/L	HNO_3 to pH<2	6 months
Iron, filtered	Fe	mg/L	200.7	3120 B	0.025 mg/L	HNO ₃ to pH<2	6 months
Manganese, filtered	Mn	mg/L	200.7	3120 B	0.0025 mg/L	HNO ₃ to pH<2	6 months
Sulfate	SO ₄	mg/L	300.0	4110 B or C	0.1 mg/L	Cool, 4°C	28 days
Chloride	Cl	mg/L	300.0	4110 B or C	0.1 mg/L	Cool, 4°C	28 days

Notes:

Unit abbreviations: mg/L – milligrams per liter; s.u. – standard units; μS/cm – microseimens per centimeter.
 EPA Methods and Guidance for the Analysis of Water, Version 2.0. EPA 821/C-99-004. June 1999. For further approved methods, see US Code of Federal Regulations, CFR 40 § 136.3, Tables 1A and 1B, CFR 40 § 141, and CFR 40 § 143.

3. 4. Eaton, A.D., and others (eds), 2005. Standard Methods for the Examination of Water and Wastewater – 21st Edition. The minimum detection limits are sample-specific.

5. NA - not applicable.

5.2.3. Typical Sampling Equipment

The equipment and supplies used for sampling ground water are listed in LI-330.

5.2.4. Ground Water Sample Collection Procedures

Ground water sampling procedures are in LI-330.

5.2.5. Decontamination Procedures

Decontamination procedures are described in LI-330 and LI-359.

5.3. Soil Monitoring

The permit does not require soil monitoring.

5.4. Plant Tissue and Crop Monitoring

The permit does not require plant tissue and crop monitoring.

5.5. Hydraulic Management Unit Calculations and Reporting

This section provides descriptions of hydraulic management units (HMUs) and discusses hydraulic loading rates and calculations. Hydraulic loading limits, including calculation of a 5-yr moving annual average, are discussed in Section 4.2 of the permit.

The HMUs for the permit are listed in Table 15 and the required loading rate measurements related to them are listed in Table 16.

Table 15. Hydraulic management unit descriptions.

Serial Number	Description	Surface Area (Acres)
MU-16101	North Basin	1.78
MU-16102	South Basin	1.78
Total Surface Area		3.55

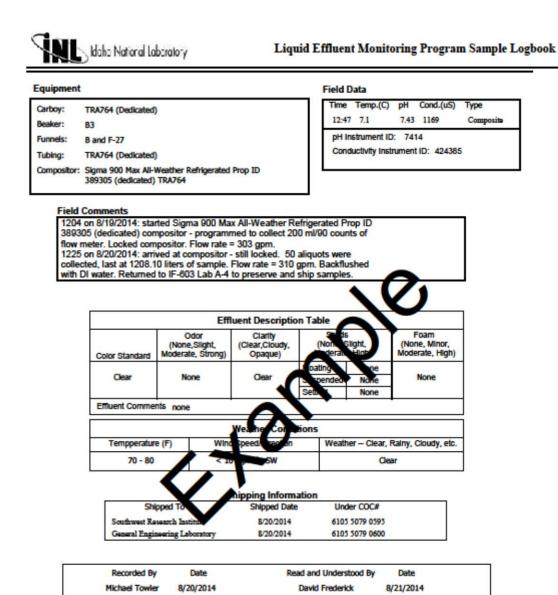
Table 16. Hydraulic management unit calculations and reporting.

Monitoring Point Serial Numbers	Parameter (calculate for each HMU)	Units
MU-16101 MU-16102	Recycled water loading rate	Gallons/day (0 gal/day) Million gallons/month (0.00 MG/month)

Other Reporting Requirements:

 The permittee agrees to provide DEQ the results of ground water radiological monitoring with respect to the INL ATR Complex Cold Waste Ponds that is performed to fulfill Department of Energy Requirements under the Atomic Energy Act. The permittee agrees to provide the results with the annual report. Radiological monitoring is not required by the permit and is not subject to this QAPP.

6. REFERENCES


- 40 CFR 136, 2014, "Guidelines Establishing Test Procedures for the Analysis of Pollutants," *Code of Federal Regulations*, Office of the Federal Register, July 2014.
- 40 CFR 141, 2014, "National Primary Drinking Water Regulations," *Code of Federal Regulations*, Office of the Federal Register, July 2014.
- 40 CFR 143, 2014, "National Secondary Drinking Water Regulations," *Code of Federal Regulations*, Office of the Federal Register, July 2014.
- Eaton, A.D., L.S. Clesceri, E.W. Rice, and A.E. Greenberg, 2005, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Assoc., Washington, D.C.
- EPA, 1999, EPA Methods and Guidance for the Analysis of Water, Version 2.0, CD ROM, EPA 821/C-99-004.
- GDE-8511, "Inorganic Analyses Data Validation for INL."
- IDAPA 58.01.11, 400.05, "Site-Specific Ground Water Quality Levels," Idaho Department of Environmental Quality.
- LI-330, "Groundwater Monitoring for the Advanced Test Reactor Complex Cold Waste Pond Industrial Wastewater Reuse Permit."
- LI-359, "Cleaning of Environmental Monitoring Services Sampling Equipment."
- LI-8540, "Liquid Effluent Sampling."
- LWP-8101, "Environmental Correspondence."
- MCP-8523, "Managing Hazardous and Non-Hazardous Samples."
- MCP-8540, "Reporting Requirements for Liquid Effluent and Wastewater Reuse Permit Monitoring."
- PER-132 (Reuse Permit No. I-161-02), "Idaho Department of Environmental Quality Reuse Permit I-161-02 – Idaho National Laboratory Advanced Test Reactor Complex Cold Waste Ponds," Rev. 2, Department of Environmental Quality, November 20, 2014.
- PLN-4653, "INL Records Management Plan."
- PLN-8540, "Idaho National Laboratory Liquid Effluent Monitoring Plan."
- RP-1710, "ATR Programs Utility Area Weekly Data Sheet (1)."
- RP-2234, "ATR Complex Utility Area Monthly Report for Date: From / / To / /."

Appendix A — Example Logbook

Samplers: Michael Towler David Frederick			ation: TRA-764 Effluent to Cold Was ple Date: 8/20/2014	te Pond	
Pre-Job B	riefing:	David Frederick & Michael Towle	r reviewed hazards and sampling plan	L.	
Sample Co	ollectio	n: Samples collected per LI-8540			
		Analysis/Preservative	Container/Lot Number	Sample Notes/Comments	Skipped
BEA037747	12:30	Metals at TRA-764 HNO3 to pH<2	1 L HDPE 00058568		
BEA037748	12:30	CI, F, SO4, NNN cool to 4 C	250 mL HDPE 038646		
BEA037749	12:30	count)	00 minute 4 L cubitainer	•	
BEA037750	12:30	HNO3 to pH<2 Total Dissolved Solids 4 C	250 mL HDPE 038646	6	
BEA037751	12:30	Total Suspended Solids 4 C	500 mL HDPE 023992	1	
BEA037752	12:30	Total Kjeldahl Nitrogen COOL, H2SO4 to pH < 2	1 L HDP 00058 58		
		$\langle \nabla \rangle$	tall		

Thursday, September 04, 2014

Page 1 of 2

Thursday, September 04, 2014

Page 2 of 2

Appendix B — Chain of Custody Record

Contact: Rador Phone: 210-5 INL Contact: Peggy	ntonio, TX ma Spies 22-3242 7 Scherbinske	Phone: 208-533-	Address: 6220 Culebra F San Antonio T 7144	
Sample Number BEA037747_TRA764	Sample Details Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	TRA-764 Effluent to Cold V Metals at TRA-764 \ IMET- ALSb,As,Ba,Be,Cd,Co,Cr,C 8/20/2014 12:30:00 PM TOS-S4028, REV. 1 Hg 28 days, others 180 day WASTE WATER	A-018 b \ bu,Fe,Pb,Mn,Ni,Se,Ag,Na, Container Qty - Type: Filtered?	
BEA037748_TRA764	Analysis:	TRA-764 Effluent to Cold V CL, F, SO4, NNN \ Suite 32 8/20/2014 12:30:00 PM TOS-54028, REV. 1 48 hours WASTE WATER.		cool to 4 C
BEA037750_TRA764	Analysis:	TRA-764 Effluent to Cold V Total Dissolved Solids \ WC 8/20/2014 12:30:00 PM TOS-S4028, REV. 1 7 days WASTE WATE		1 - 250 mL HDPE N 4 C
BEA037751_TRA764	Location: Analysis: Sample Date Contract: Hold Th Matrix:		Vaste Pond (TRA764) CH-A-034 \ SM2540 D Container Qty - Type: Filtered? Preservative:	1 - 500 mL HDPE N 4 C
BEA037752_TRA764	Analysis:	Total Kjeldahl Nitrogen \ W 8/20/2014 12:30:00 PM TOS-54028, REV. 1 28 days WASTE WATER	Vaste Pond (TRA764) (CH-A-039 \ EPA 351.1, 3 Container Qty - Type: Filtered? Preservative:	

Thursday, September 04, 2014

Relinquished By:	Date:	Time:	Received By:	Date:	Time:
omments:					

Ctample

Thursday, September 04, 2014

Page 2 of 2