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Abstract 
 
MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear 
Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary 
of MARMOT, its capabilities, and its current state of validation.  The purpose of MARMOT is to pre- 
dict the coevolution of microstructure and material properties of nuclear fuel and cladding due to stress, 
temperature, and irradiation  damage. It accomplishes this using the phase field method coupled to solid 
mechanics and heat conduction.   MARMOT is based on the Multiphysics  Object-Oriented Simulation 
Environment (MOOSE),  and much of its basic capability in the areas of the phase field method, mechan- 
ics, and heat conduction come directly  from MOOSE modules. While some validation  of MARMOT 
has been completed in the areas of fission gas behavior and grain growth, much more validation  needs 
to be conducted. However, new mesoscale data is required in order to complete this validation. 
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1 Introduction 
 

 
 

1.1 Mechanistic Material Model Development 
 

Fuel and cladding materials undergo significant microstructure evolution during reactor operation. This 
evolution  also changes the fuel properties, directly impacting fuel performance and safety. Traditional 
fuel performance codes account for these changes in properties using materials models that are empirical 
fits to experimental  data and are correlated  to burn-up and temperature.  However,  these models can 
only be interpolated within conditions where the tests were conducted and cannot be trusted when the 
irradiation conditions change, because burn-up  is not a unique measure of the history of the fuel material. 
The Fuels Product Line (FPL) in the Nuclear Energy Advanced Modeling  and Simulation  (NEAMS) 
program is developing new materials models that are mechanistic  and are based on microstructure rather 
than burn-up. 

In this microstructure  based approach, the current state of the microstructure is defined by a set of 
microstructure  variables, e.g. average grain size, grain boundary coverage, and intragranular  gas bubble 
porosity. These variables  are evolved  with time using mechanistic equations defining the physics of 
the phenomena.  In turn, the material properties are functions  of these variables  as defined  by other 
mechanistic equations.  Thus, this set of variables and mechanistic models describes the interplay  of 
the various microstructure  changes that take place within the fuel during irradiation  and predicts the 
resultant degradation in material performance. This approach is illustrated in Fig. 1.1. 

 

 
 

Figure 1.1: Schematic showing the NEAMS  FPL plan to develop materials models for fuel performance 
codes based on microstructure rather than burn-up. Note that the variables and models listed 
in the figure are not a complete list. 

 
While experimental data informs  the development of these new materials  models as much as pos- 

sible, much of the required data is unavailable  and would be very difficult and expensive to obtain. 
Therefore, NEAMS is using a multiscale modeling and simulation approach to supplement the difficult 
to obtain experimental data. In this approach, first principles  calculations are used to investigate basic 
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mechanisms that take place within the bulk of the material, and to quantify material properties defined 
by these mechanisms.  Molecular  dynamics simulations  are used to investigate phenomena involving 
lattice defects such as interfaces in the materials and the corresponding  properties, as well as dynamic 
properties  such as mobilities.  The information regarding the critical mechanisms and material property 
values is then used to develop mesoscale models that predict the coevolution  of the microstructure and 
the effective  macroscale material properties.  These data are used to inform the development of the var- 
ious mechanistic models required to complete the microstructure-based  set of materials models.  This 
approach is summarized in Fig. 1.2. 
 

 
 
Figure 1.2: Schematic illustrating  the multiscale approach being taken by the NEAMS FPL to develop 

materials models for fuel performance  codes based on microstructure rather than burn-up. 
 
 

 
1.2 MARMOT Development 
 
While powerful numerical tools for first principles density functional theory and MD simulations  are 
available and have been successfully applied to model nuclear fuel, a robust numerical  tool for mesoscale 
modeling of fuel performance did not exist. Therefore, the NEAMS  FPL developed the MARMOT code 
to predict the coevolution of microstructure  and properties in fuel and cladding materials.  MARMOT 
accomplishes this using the phase field method coupled with finite strain mechanics and heat conduc- 
tion. MARMOT is based on the open source Multiphysics  Object-Oriented Simulation  Environment 
(MOOSE) [1] and solves the coupled partial differential  equations defining the physics using the finite 
element method [2]. MARMOT is being developed in order to facilitate the development of improved 
materials models for fuel performance, but it is also being developed as a powerful  tool in and of itself 
for the simulation of mesoscale fuel performance. 

While the goal of the MARMOT tool is focused on investigating fuel and cladding materials, many 
of the capabilities employed by the code could also be applied to other materials and applications. 
Therefore, the general capabilities for the phase field method, solid mechanics, and heat conduction 
are contained  in physics modules that are distributed  with the MOOSE framework. Any user that 
downloads  MOOSE  can instantly  use these tools to rapidly develop multiphysics  mesoscale simula- 
tion tools for a wide range of different  applications.  These are the phase field, tensor mechanics, 
and heat conduction modules.  MARMOT builds on these modules and adds specific materials and 
models for fuel and cladding materials, as illustrated  in Fig. 1.3. 

 
 

1.3 Report Overview 
 
In this report, we assess the current capabilities of the MARMOT tool, sumarizing capabilities, veri- 
fication, and validation. We start in Sections 2 and 3 discussing the phase field and tensor mechanics 
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Figure 1.3: Schematic  showing the relationship between MOOSE, the MOOSE modules, and 

MARMOT. 
 
 
modules, respectively.   We then discuss the capabilities of MARMOT in Section 4.  Section 5 sum- 
marizes the approach used in MARMOT for uncertainty quantification  and verification,  and discusses 
MARMOT validation. 



8 

i

j

 

 
 
 
 

2 Phase Field Module 
 
 

The phase field method has emerged as a powerful  and flexible tool for quantitative modeling of the 
coevolution of microstructure and physical properties at the mesoscale. In the phase field method, the 
microstructure is described by a system of continuous variables, where the microstructure interfaces have 
a finite width over which the variables exhibit smooth transitions. The evolution of the microstructure 
is defined in terms of the free energy of the system, and can be coupled to other physics to provide  a 
complete view of the material  behavior.  Phase field simulations range from hundreds of nanometers to 
hundreds of microns and evolve at diffusive time scales [3]. 

The phase field module in MOOSE contains the necessary tools to solve the partial differential 
equations for the phase field method that define the microstructure variable evolution to minimize the 
overall free energy. The evolution of non-conserved order parameters ηi (representing  phase regions and 
grains) is governed by the Allen-Cahn  equation (2.1) and conserved order parameters ci (representing 
concentrations) are evolved using the Cahn-Hilliard equation (2.2). 

 
 

∂η j  δF 

∂t  
= ­L j 

δη 
(2.1) 

∂ci δF 

∂t 
= ∇ · Mi∇ 

δc (2.2) 

 
2.1 Free Energy based model development 

 
F is the total free energy of the modeled system as a function  of the phase field variables, which can be 
formulated  as a volume  integral 

 

F = 
  

floc( c, η) + fgr(∇ c, ∇ η) + Ed
 
dV, (2.3) 

Ω 

over multiple free energy density contributions, where Ω is the simulation domain, floc is the local free 
energy density, fgr is the gradient energy contribution,  and Ed is the contribution  of other sources of 
energy. The c, η and ∇ c, ∇ η indicate a functional  dependence on all conserved and non-conserved order 
parameters in the domain and their gradients, respectively. Executing the variational derivatives in (2.1) 
and (2.2) yields terms containing the derivatives of the local free energy density floc with respect to all 
order parameters. 

The thermodynamic properties of the modeled system are determined by the thermodynamic potential 
in floc. The gradient contribution  fgr is the reason the phase field model represents interfaces with a 
diffuse width, and only contributes to the interfacial energy. floc is therefore the primary  input needed to 
formulate  a new phase field material model. In the phase field module, the residuals for the generic 
phase field equations are provided  as kernels, while the free energy and its derivatives are supplied by 
material objects. We use a special material  interface  to provide material properties for all necessary 
derivatives of the free energy. In general, users use the provided kernels without modification, and only 
create material objects defining different  free energies. 

The standard MOOSE solver uses the preconditioned Jacobian-free Newton Krylov method (PJFNK), 
provided by the PETSc library [4]. To improve the convergence of the solve, the chosen preconditioning 
matrix should  be as close as possible  to the actual Jacobian of the problem. Computing  the Jacobian 
matrix entries effectively means providing  the derivatives of the residual vector with respect to all non- 
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Figure 2.1: Schematic example of the tree representing the mathematical expression x2(y + 5).  The 
nodes N1 and N3 represent the multiplication operator and the sum operator with two argu- 
ments each, the internal node N2 represents a square function  with one argument, and the 
leaf nodes N4-N6  represent the variables x, y, and the constant 5. 

 
 

linear variables of the problem, thus requiring additional derivatives (including cross-derivatives) of the 
free energy functional. 

 

 
2.1.1  Parsed functions and automatic differentiation 

 

To create a material object that defines the free energy for a phase field model, code must be written 
that defines the thermodynamic free energy expression, but also its derivatives. For non-conserved order 
parameters, the 2nd derivatives  are needed and for conserved order parameters, up to the 3rd derivatives 
could be required. This is complicated even more when a free energy is a function  of multiple variables, 
because all cross derivatives are also required. To avoid having to take and implement all the derivatives, 
we have implemented automatic differentiation,  where the thermodynamic free energy is only required 
to be entered in the input file. 

To allow user defined thermodynamic  free energy functions  to be supplied via input files, without 
having to recompile  the application  code, MOOSE  uses the Function  Parser library that is included  as 
a third-party  plugin in the underlying libMesh finite element library [5]. The Function Parser Library 
accepts a mathematical function definition given as a plain text string. This string is lexically parsed into 
an intermediate  tree representation and then transformed into a stack machine bytecode. This bytecode 
can then be executed by the function  parser bytecode interpreter module as often as necessary without 
further transformations. 

This intermediate  tree representation of the function  parser expressions lends itself to algorithmic 
transformations, such as an automatic differentiation  procedure.  In this tree structure, leaf nodes can 
correspond to constants or variables, and internal nodes correspond to mathematical operators and func- 
tions with the arguments contained in the respective child nodes or subtrees. The derivative of the leaf 
nodes yields 0 for all nodes that do not represent the variable the derivative  is taken with respect to, 
and 1 for all nodes that do represent the variable.  The derivatives of the internal nodes are constructed 
recursively according to a set of elementary derivative rules. 

Construction of the derivative starts at the root node of the expression tree. For the example expression 
tree in fig. 2.1, which represents the expression x2(y + 5), the root node holds the multiplication  N1 = 
N2 · N3. To obtain the derivative with respect to x of the given expression we need to calculate the 
derivative of the root node dxN1. We set dxN1  = dxN2 · N3 + N2 · dxN3 according to the product rule. 
This expression contains derivatives of the nodes N2 and N3, which are recursively constructed, until the 
leaf nodes are reached which  have a trivial vanishing 0 derivative in all cases except the dxN4, which 
evaluates to 1. The full derivative expression that is constructed this way is (2x · 1) · (y + 5) + x2(0 + 0). 

The function parser library provides a comprehensive algebraic optimizer  that groups, reorders, and 
transforms the function expression into an equivalent but faster to evaluate form. This optimization stage 
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Figure 2.2: Performance comparison for the parsed functions showing the speed-up gained by the just- 

in-time compilation (JIT) and the algebraic optimization (FPOptimizer).  Various compilers 
were compared on the INL HPC system and on a desktop computer. The combination of JIT 
and algebraic optimization can yield speed-ups of up to about a factor of twenty. 

 
 
delivers  a speedup of a factor of two, on average. The algebraic simplifications  are essential to remove 
the trivial leaf node derivatives which may lead to evaluation errors such as divisions  by zero, that can 
be avoided by simple term cancellations. In the above example, the simplifications  reduce the derivative 
expression to 2x(y + 5). 

 

 
2.1.2  Just-in-time compilation 

 

To further improve the performance of the parsed and runtime interpreted functions,  we have developed 
a just-in-time  (JIT) compilation module. At runtime,  the generated bytecode sequences are automati- 
cally transformed into small C source code files. A compiler is dispatched to compile each function  file 
into a dynamically linkable library, which then is loaded on the fly using the dlopen POSIX system call. 
If at any stage the JIT compilation fails the function evaluation falls back on the bytecode interpreter, 
otherwise the generated machine code is called. The time overhead of the additional compilation  step is 
on average of the order of 0.1s per function  expression or below, depending on the system the simula- 
tion is executed on. This is further mitigated by a caching system. A unique hash is computed from the 
function  bytecode and the compiled  functions  are stored permanently using the hash as a filename.  Re- 
compilation will only occur if the bytecode, and thus the function  expression, changes. Trivial function 
changes, namely the modification of constants, will in most cases not trigger  a recompilation. 

In Fig. 2.2 the performance of unoptimized interpreted function  parser evaluations is compared to 
combinations of optimized and JIT compiled function evaluations for a variety of compilers under Linux 
and MacOS. Two function sets were used for the comparison. The left data labeled no AD were obtained 
using a set of mathematical  expressions as they appear in free energy models. The right bar sets labeled 
AD were obtained by applying the automatic differentiation  to the former functions. Two conclusions 
can be drawn from this comparison, firstly the JIT compilation alone delivers speedups up to a factor of 
10. The algebraic optimizer can deliver speedups up to a factor of two on certain functions. The efficacy 
of the optimizer is largest on the AD function set, which contains lots of trivial terms from the leaf node 
derivatives,  such as entire sub terms that end up being multiplied  by 0. 

Through this automatic differentiation  system we achieve a significant  reduction  in developer time 
and remove a source of developer errors that are difficult to track down and debug. The resulting models 
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Figure 2.3: Snapshot of a phase field simulation of spinodal decomposition and formation of chromium 

rich precipitates in an iron chromium alloy obtained using a runtime parsed and automat- 
ically differentiated free energy expression.   The line scan plotted  in the inset shows the 
precipitate and matrix concentrations. 

 
 
offer optimal convergence properties due to the complete implementation of the full Jacobian matrix. 

 

 
2.1.3  Dealing with entropy terms 
 
Free energies that contain a term for the configurational entropy derived from the random solution model 
will contain terms of the form c ln c + (1 ­ c) ln(1 ­ c), where c is a conserved order parameter.  As the 
natural logarithm is only defined for strictly positive numbers, this expression restricts the domain of 
the free energy to numbers on the interval (0, 1).  This poses numerical  challenges for systems with 
equilibrium  concentrations close to the edges of this domain. 

To improve the convergence behavior,  we developed a smoothly  extrapolated logarithm  surrogate 
function in which for arguments below a limit ε we evaluate a Taylor  expansion of the logarithm around 
ε instead.  For all arguments at and above ε we evaluate the logarithm  as before.  The function  defined 
in this way extends to negative arguments, is continuous and differentiable  to the 2nd order. In the 
resulting free energy expressions the extension to negative arguments manifests as a free energy penalty 
which drives the solve back to physical concentrations without  incurring  numerical errors. Care has to 
be taken to choose ε small enough to not impact the thermodynamic properties of the simulated system. 
In particular, large values of ε can change the phase diagram by moving the common tangent points to 
larger concentrations. 

 

 
2.1.4  Example 

 

In [6], the free energy surface of an iron chromium binary alloy as a function of chromium concentration 
and temperature was determined.  We entered the full free energy expression from this publication into 
a MOOSE  input file using a parsed function  material with automatic differentiation.  A running  phase 
field model was obtained in a matter of minutes. Figure 2.3 shows a simulation  snapshot obtained using 
this free energy.  The system is in the particle coarsening stage having previously undergone spinodal 
decomposition.  A line scan was performed  on the center precipitate and its results are plotted in the 
inset. In agreement with the published free energy surface and resulting  phase diagram we observe 
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ε

2

practically no solubility of iron in the chromium precipitates, while the chromium solubility in the iron 
matrix is at around 6.7% at the simulation  temperature of 500 K. 

Apart from the free energy, the user has to provide  a mobility model, which for this example we 
inferred from experimental chromium tracer diffusivity in iron. For the chosen simulation  length scale 
and mesh size an appropriate interfacial  energy parameter κ has to be chosen. An initial choice is 
trivial, as the order of magnitude of kappa rarely changes at a given length scale, as common  excess free 
energies are of similar magnitude for many alloy systems. Further refinement of the κ value may require 
a few simulation trial runs, which on one dimensional test systems only take seconds. 

 
 

2.2 Multiphase models 
 

Multiphase model development requires the construction of a global free energy functional spanning the 
entire  phase space of the system.  One common approach is utilizing a linear combination  of the free 
energies Fj of each phase in the system. 

 

 

F (c, η) = 
r 1 

∑h(η j )Fj (c) 
j 

 

 

+ W g(η)  (2.4) 

 

A switching function h(η) smoothly  changes from 0 to 1 as η goes from 0 to 1. The total weight of all 
phase free energy contributions  at each point in the simulation volume is exactly unity, which translates 
to the need to enforce the constraint k(η) = 0 for 

  r 1 
k(η) = ∑h(η j ) 

j 
­ 1. (2.5) 

 
2.2.1  Constraint enforcement 
Two phase systems can easily be modeled using a single order parameter η1 and the explicit constraint 
η2 = 1 ­ η1, which, for a symmetric switching function with h(η) = 1 ­ h(1 ­ η), satisfies the constraint 
k. For n-phase systems with n > 2 it becomes advantageous to use n order parameters. In this case the 
constraint k is not automatically satisfied and needs to be enforced by other means. In the MOOSE phase 
field module we offer two methods to enforce the switching function sum constraint, a hard constraint 
utilizing the Lagrange multiplier  technique and a soft constraint through a penalty term added to the free 
energy. 

The hard constraint is applied by introducing  a Lagrange multiplier λ as a field variable. With 
a j (η, c, v) being the weak form (Allen-Cahn)  residual for the jth non-conserved order parameter, we 
need to find (η, λ) satisfying the boundary conditions such that 

 

a j (η, c, v) + ∂k 
λ 

Ω   ∂η j 

 

v dx =  0 (2.6) 

q 
∂(λk) 

Ω ∂λ 

 

dx =  0 (2.7) 
 

holds for every test function v and q. We note that these equations alter the character of the Jacobian 
matrix of the non-linear problem substantially by introducing  a zero block on the Jacobian diagonal. 
This can complicate the solve substantially. By replacing the constraint k with a modified  constraint 

 

k̄(η, λ) = k(η) ­ 
2 

λ,  (2.8) 
 

the Jacobian fill term ε λ introduces  a small λ dependence in the constraint  through an ε (which  defaults 
to 10­9). This results in an on-diagonal Jacobian value of ­ε in the kernel of Eq. (2.7), while it drops 
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out in the residual of Eq. (2.6). This is necessary to force a Jacobian matrix with full rank, avoiding 
Zero pivot PETSc-Errors, and greatly improves convergence. This approach results in a violation  of the 
constraint by about ε, though this violation  can be kept small by using an ε as small as possible. 

As an alternative we implemented  a soft constraint by constructing a penalty contribution   f p to the 
free energy as 

 

f p = χ 
 

where χ is a configurable  penalty factor. 

r 12 

1 ­ ∑h(η j ) 
j 

 
, (2.9) 

 

 

2.2.2  Kim-Kim-Suzuki model 
 

An additional multiphase model implemented in the phase field module is the Kim-Kim-Suzuki 
(KKS) multiphase model [7].  KKS addresses the issue of systems with large phase free energy dif- 
ferences in the interfacial  regions.  One relevant example is the Xenon gas bubble problem shown in 
the capabilities chapter in Fig. 4.3. Here the gas solubility in the solid UO2 matrix is very low, with 
large free energy penalties for large gas concentrations.   In the bubble phase the equilibrium  gas con- 
centration is near unity. In the bubble matrix interfacial  region both the order parameter as well as the 
concentration change from the bubble equilibrium  values to the matrix equilibrium  values over a finite 
distance due to the soft interface approximation. In that interfacial region the phase free energy of both 
phases is computed  for the intermediate concentration range, which results in large free energy densities 
from the solid phase contribution.   This effectively increases the interfacial  free energy of the bubbles 
significantly to an unphysical value. 

The KKS model solves this by introducing the concept of phase concentrations,  which  are effectively 
the fractions of the total concentration held in a given  phase.  In this model the gas concentration  is 
largely shifted to the gas phase to avoid the free energy penalty. Solving for these added variables 
requires additional differential  equations.  In the KKS model  these are given by mass conservation 
equations and a constraint that requires the chemical potentials of each component to be pointwise  equal 
across all phases. 

The phase field module currently implements a two-phase version of the KKS model in the form 
of kernels implementing  the phase field equations  as well as the KKS constraint equations.  The free 
energy is supplied to those kernels using the derivative material system outlined above. 

 

 
2.2.3  Example 

 

Figure 2.4 demonstrates an immiscible  three phase system consisting of a matrix  phase (grey) and two 
precipitate  phases with anisotropic  Eigenstrains,  where the white phase has a 1% expansion along the x 
direction  and the black phase has a 1% expansion along the y direction. The stiffness of the precipitate 
phases was chosen larger than the stiffness of the matrix. Periodic boundary conditions are applied for 
the phase field variables and the displacements. The mesh displacement is plotted with an amplification 
factor of 20. 

The recent developments in the phase field module constitute a substantial capability  expansion 
which was not singularly driven by immediate program needs, but the long term plan to position the 
MOOSE phase field module  as a state of the phase field research platform. 
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Figure 2.4: Three phase precipitation  problem with phase field - mechanics coupling  and anisotropic 
Eigenstrains.  Displacements are exaggerated by a factor of 20. 
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3 Tensor Mechanics Module 
 
 

The tensor mechanics module in MOOSE  has been developed to solve the weak form of the stress 
equilibrium equation for the kinematically  admissible displacement fields where the second and fourth 
order tensors are treated as 3×3 and 3×3×3×3  systems, respectively.  This representation, instead of the 
Voigt notation, can be particularly  useful if the stress tensor becomes asymmetric  due to the presence 
of micro-moments or if the time integration of asymmetric rank two tensors needs to be incorporated. 
The full representation of the tensors also facilities easy and error-free  code development,  with little 
overhead on the computation time. The tensor mechanics module follows the MOOSE architecture 
and currently  has the kernels,  materials,  bcs,  auxkernels,  actions and userobjects blocks. 
Several functions for rank two and rank four tensor algebraic operations have also been implemented as 
utilities (utils). Though the general framework has been developed for fully anisotropic tensors, utility 
functions  have also been implemented  for tensors with specific symmetries (isotropic, cubic, etc.) to 
minimize FLOPS and storage. An overview of the different blocks in the tensor mechanics module is 
provided in the following section. 

 
 

3.1 Blocks in tensor   
mechanics 

 
3.1.1  Kernels 

 

The kernels block sets up the contribution  to the weak form from the stress divergence component 
Eq. (3.1b) of the equilibrium  equation Eq. (3.1a). Capabilities already exist in MOOSE to handle the 
inertial, body force and traction boundary terms. 

 

D2u 
ρ = ∇.σ + b (3.1a) 

Dt2    

δu.∇σdΩ = ­ 
Ω 

∇δu.σdΩ + 
Ω 

δu.tdΓ = 0 (3.1b) 
Γ 

 

In the above equation,  u is the displacement vector, ρ is the density,  b is the body force vector,  σ is 
the Cauchy stress tensor, t is the applied traction vector and δu is the vector of test functions. For finite 
deformation, an updated Lagrangian formulation  is utilized to solve for the displacement variables.  In 
Eq. (3.1b) the stress tensor can be a non-linear  function  of the displacements and is calculated in the 
materials block. 

 

 
3.1.2  Materials 

 

The Material block supports both small strain and finite deformation to obtain the Cauchy stress. In 
finite deformation, both hypo and hyper elasticity  based time integration  schemes have been imple- 
mented. For hypo elasticity, an incrementally  objective stress integration algorithm  is used. In the 
algorithm, the incremental strain is obtained from a polar decomposition  of the incremental deforma- 
tion gradient tensor and the Cauchy stress is updated using a co-rotational formulation.  The workability 
of the incrementally  objective stress integration  algorithm  is demonstrated in sub-section 3.2.1. In the 
hyper elastic formulation, the logarithmic strain in the undeformed or intermediate configuration is cal- 
culated from the deformation gradient. The 2nd Piola-Kirchhoff stress is then evaluated and pushed 
forward to the current configuration to obtain  the Cauchy stress. For both the cases, the B-bar method 
has been implemented  to avoid volumetric locking. 
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Some of the non-linear materials models currently available in the tensor mechanics module are 
hypo-elasticity  based J2  plasticity  with both rate independent  and dependent versions;  multi-surface 
plasticity,  weak plane shear and hyper-elasticity  based crystal plasticity. All these models can be ex- 
tended quite easily to incorporate new flow rules, plastic potentials and state variables by inheriting from 
the corresponding  base classes. Some of the models have also been verified with ABAQUS. A compar- 
ison of the necking deformation using rate independent J2 plasticity between MOOSE and ABAQUS is 
described in sub-section 3.2.2. 

The base classes defining the kinetics and kinematics in the materials block have been implemented 
separately.  This facilitates easy swapping between small and finite deformation.  Also different strain 
measures can be used for the same consistent stress measure and integration  scheme. Stress-free strains 
have also been incorporated  as a general feature in the materials block. The stress-free strain can be 
effectively used to apply misfit strains in phase-field simulations and thermal strains in coupled thermo- 
mechanics problems. 

 

 
3.1.3  Auxkernels 

 

The specific operations implemented in this block are for generating output of components of the tensors 
and scalar measures such as Von-mises stress, equivalent strain, norm, etc. of rank two tensors. 

 

 
3.1.4  UserObjects 

 

The UserObjects block currently consists of a number of plasticity  routines and hardening laws that can 
be used interchangeably  in the input file. The UserObjects format of defining multi-surface plasticity 
also facilitates the simultaneous  use of various associative and non-associative flow rules with little or 
no extra coding. 

 
 

3.2 Verification 
 

3.2.1  Example of the Stress Integration Algorithm 
 

In this example,  a square box is stretched along the x-direction  and then rotated by 90o along the z- 
axis as shown in Fig. 3.1(a).  The normal and shear components of the stress tensor are plotted on the 
Mohr’s circle in Fig. 3.1(b). As can be observed from Fig. 3.1(b), the objectivity of the stress tensor is 
maintained with the superposed rigid body rotation. 

 

 
3.2.2  Verification of the J2 plasticity material model 

 

The necking of a 3D unit cube is simulated and compared with ABAQUS to demonstrate the workability 
of the ”StressDivergence”  kernel and rate independent J2 plasticity material class. An offset of 0.05 mm 
is provided to introduce necking deformation and is shown in Fig. 3.2(a). Comparisons of the load- 
displacement curves, and the contours of equivalent  plastic  strain and stress are shown in Fig. 3.2(b) 
and 3.3, respectively.  As can be observed from the figures, the results agree very well.  The slight 
mismatch in the contours is due to the different  averaging schemes used for plotting between ABAQUS 
and MOOSE. 

 
 

3.3 Examples 
 

3.3.1  Crystal Plasticity based material model 
 

An example of heterogeneous deformation  in a representative volume element (RVE) of polycrystalline 
microstructure obtained using the crystal plasticity material class in tensor mechanics is demonstrated 
here. The initial microstructure is generated using an utils function that performs Voronoi tessellation 



17 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

 
Figure 3.1: (a) Geometry of the large deformation finite element problem solved in MOOSE to test 

incremental objectivity. OABC is the original geometry stretched by δ along x to OA’B’C 
and then rotated by 90o along z to the final configuration OA”B”C”.  (b) Stress components 
on the Mohr circle at various rotation angles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 

 
Figure 3.2: (a) Geometry of the necking problem solved in ABAQUS and MOOSE to test the accuracy 

of the rate independent J2 plasticity  model. δ = 0.05 mm is the offset value to introduce 
necking. (b) Comparison of the load-displacement evolution. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
Figure 3.3: Comparison of (a) Von-Mises  stress and (b) Equivalent plastic strain distribution in the 

necked specimen. 
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of rectangular 2D and 3D geometries, and is shown in Fig. 3.4(a). The RVE is subjected to uniaxial 
tensile strain and the engineering stress-strain evolution  is shown in Fig. 3.4(b). The distribution of 
stress and plastic deformation  gradient components along the loading  direction  in the microstructure at 
the final timestep is shown in Fig. 3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
Figure 3.4: (a) Geometry of the 2D polycrystalline microstructure. (b) Engineering stress-strain evolu- 

tion under uniaxial tension. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
Figure 3.5: Distribution of, (a) Plastic Deformation  and (b) Stress component along the loading direc- 

tion, in the microstructure at the last time step. The units of stress are in 106 MPa. 
 
 
 

3.3.2  Coupling of tensor mechanics and PhaseField for modeling fracture 
 

A phase-field fracture  model  has been developed under MARMOT to capture the complicated mi- 
crostructure  scale crack propagation  and is now available in the phase field module in MOOSE. 
The model couples the Allen-Cahn  and stress divergence equations to evolve  a damage variable  (c) 
non-locally that degrades the material  and causes failure. The model is described in detail in [8]. The 
model  has been assessed by simulating  typical fracture mechanics specimens, such as single edge notch 
(SENT) specimen (Fig. 3.6). In the rate independent sharp crack limit, the model  performance  has 
been compared with linear elastic fracture mechanics results. Currently the model is being extended to 
elasto-plastic  fracture as well. 
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(a) (b) 

 

 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
 
Figure 3.6: Simulation of brittle Mode I crack propagation in single edge notch (SENT) specimen using 

phase-field based fracture  model: (a) Specimen geometry and boundary conditions. The 
displacements u and v are along the directions X and Y respectively; (b) Final configuration; 
(c) Stress-Strain along the loading direction; (d) Variation of damage variable, c, along line 
A-B shown in (b). Taken from [8]. 
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4 MARMOT Capabilities 
 
 
MARMOT builds on the capabilities from the phase field and tensor mechanics modules, along 
with the basic heat conduction capability  from the heat conduction module, to model the coevolution 
of microstructure and properties in fuel and cladding materials. While the modules are open source and 
openly accessible using Github, MARMOT access is not open. There is no license or cost associated 
with MARMOT access; users simply have to contact a member of the MARMOT development team 
and request access. 

The capability  development of the modules  has been general,  to supply general tools to a broad 
user-base, but the capability  development in MARMOT has been driven by the development of the 
microstructure-based materials models for fuel performance tools. Thus, the development has been fo- 
cused on high impact  areas of light water reactor fuel. Recently,  development  has begun on models 
of zirconium  cladding as well as alternative  fuel types other than UO2. In this section we summarize 
the work that has been conducted using MARMOT and give the references for interested readers to get 
more detail. We begin with the microstructure evolution models and then summarize how we predict the 
changes in material properties. 

 
 

4.1 Microstructure Evolution 
 
Many microstructural  changes take place with fuel and cladding  materials during reactor operation, 
including  creep, grain growth, fracture, and fission gas migration  and release. For the fuel, the changes 
that most significantly impact the fuel performance are fission gas behavior and fracture.  However, the 
current grain size impacts both fracture and fission gas. Thus, we have focused our initial MARMOT 
development efforts on modeling  fission gas behavior, cracking, and grain growth in UO2. 

 

 
4.1.1  Fission Gas Behavior in UO2 

 

Gaseous fission products are produced as a product of the fissioning taking place within the fuel. There 
are various constituents to the fission gas, though the largest concentration is Xenon (Xe).  The gas 
atoms migrate through the fuel until they are trapped in small intragranular bubbles or in larger grain 
boundary (GB) bubbles. The intragranular  bubbles are kept small (with radii on the order of 5 nm) 
due to resolution  caused by fission fragments, but the GB bubbles get to be much larger. These large 
GB bubbles contribute significantly  to swelling of the material,  and also interconnect to form open 
channels for fission gas release. Completed work in MARMOT has focused on fission gas transport and 
segregation to GBs, and general bubble growth behavior.  Current development is coupling  these two 
areas to model the GB bubble growth and interconnection in polycrystalline materials. 

 

 
Xenon Transport and Grain Boundary Segregation 

 

To accurately predict the swelling  and fission  gas release in UO2 fuel, we must first understand the 
diffusion of fission gas atoms through grains and interaction  with grain boundaries. Based on the mech- 
anisms established from earlier density functional theory (DFT) and empirical potential calculations [9], 
diffusion models for Xe, uranium (U) vacancies and U interstitials in UO2 have been derived for both 
intrinsic (no irradiation) and irradiation conditions (for more detail  on this work,  please see the original 
paper [10]). These atomistically  determined properties were used to develop an in-depth model of Xe 
diffusion in MARMOT, accounting for various defect clusters and the reactions between clusters. The 
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MARMOT simulations  were used to predict the effective diffusivity under different irradiation condi- 
tions and they were compared to experimental  results, as shown in Fig. 4.1(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
Figure 4.1: Simulation results using MARMOT to model Xe transport in UO2. The diffusivity under 

irradiation  conditions compared to the intrinsic diffusivity (Calc., MARMOT), the corre- 
sponding analytical expressions and experimental data are shown in (a). Xe distribution for 
a microstructure  composed of random, Σ5 tilt and Σ5 twist grain boundaries is shown in (b). 
The domain size is 75 × 65 nm and the initial state was a homogeneous distribution  of Xe 
(cX e = 0.001). Taken from [10]. 

 

 
Segregation of Xe to grain boundaries was described by combining the bulk diffusion model with a 

model for the interaction between Xe atoms and three different  grain boundaries in UO2 (Σ5 tilt, Σ5 
twist and a high angle random boundary),  as derived from atomistic calculations.  The model does not 
attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries, though a model 
that does model bubbles nucleation and growth is under development.  The point defect and Xe diffusion 
and segregation models were implemented in MARMOT to simulate Xe redistribution for a few simple 
microstructures, as shown in Fig. 4.1(b). 

 

 
Intragranular Bubble Growth 

 

Fission gas bubble growth is the dominate driver for fuel swelling. Thus, it is essential that MARMOT 
be able to accurately model this phenomena. To validate the MARMOT bubble growth model, we used 
it to simulate the post-irradiation annealing of UO2 described in the experimental work by Kashibe et al., 
1993 [11]. The simulations were carried out in 2-D and 3-D using MARMOT. We employed a simple 
model in which  only the Xe gas atoms are modeled, and all other defects are assumed to exist in sufficient 
quantities and to migrate fast enough that the Xe diffusion  dominates the growth (for more details,  see the 
original  proceedings paper [12]). Mesh adaptivity was employed to reduce the computational expense, 
(see Fig. 4.2(a) for an image of the initial adapted mesh).  The 2-D results compared fairly well with 
the experiments, in spite of the assumptions made in the model.  The 3-D results compared even more 
favorably to experiments, indicating that diffusion in all three directions must be considered to accurately 
represent the bubble growth,  as shown in Fig. 4.2(b). These results validate the model, but also indicate 
the importance of 3-D simulations. 

 

 
Advanced Fission Gas Model 

 

While the simple bubble growth model was sufficient to simulation post-irradiation  annealing, fission gas 
bubble behavior under irradiation conditions is more complicated. Specifically, the bubble pressure has a 
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Figure 4.2: MARMOT simulations of post irradiation  annealing, where (a) shows the initial adapted 

mesh of a 2-D simulation  and (b) shows the predicted bubble density versus mean bubble 
diameter and the experimental fit. The 3-D results shown excellent agreement with the ex- 
periments. Taken from [12]. 

 
 
large impact on the gas behavior and on swelling.  Therefore, we are currently implementing  an advanced 
fission gas model in MARMOT taken from [13]. This model currently predicts the evolution of Uranium 
vacancies and gas atoms, though Uranium  interstitials  will also be added. The model is implemented 
using the KKS approach,  as discussed in Section 2. Because the Xe and vacancies concentrations  are 
tracked separately, we can add a pressure within the bubbles that is a function  of the two concentrations. 
Figure 4.3 shows a simple demonstration of the model currently under development. This model will 
eventually be combined with the fission  gas transport and segregation work from [10] to predict the 
growth and interconnection of fission gas bubbles in polycrystalline UO2. 

 

 
 
Figure 4.3: Example of bubble formation  modeled with the KKS UO2 fission  gas model,  where the 

vacancy concentration is shown on the left and the Xe concentration is shown on the right. 
 
 
 
4.1.2  Grain Growth in UO2 

 

GBs migrate to reduce the overall free energy of the system.  This reduction could be due to various 
sources of energy, including reduction in grain boundary energy, elastic energy, or defect energy. The 
velocity at which the GBs migrate is a function of the magnitude of the respective driving  forces and the 
GB mobility. The GB mobility is temperature dependent, so the higher the temperature, the faster the 
GBs migrate. 

In UO2 fuel during LWR operation, a large temperature gradient forms across the radius of the fuel 
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pellet, with the center temperature on the order of 1800 K and the edge temperature 800 K. These high 
temperatures and temperature gradients result in grain growth in the hotter portions of the fuel and thus 
a gradient  in the average grain size across the pellet radius.  The average grain size of the fuel directly 
impacts fission gas release, swelling, creep, thermal conductivity,  and cracking within the fuel. Thus, it 
is very important to understand the grain growth within the fuel, which requires a detailed understanding 
of the various driving forces. In this section, we will summarize the work we have done with MARMOT 
investigating the importance of the temperature gradient driving  force and on pinning of the GBs due to 
GB bubbles with a distribution  of bubble radii. 

 

 
Temperature Gradient Driving Force 

 

Grain boundaries (GBs) are driven to migrate up a temperature gradient. While this driving  force is often 
neglected because temperature gradients are small in most applications, the large temperature gradients 
that form in UO2 fuel may make this driving force significant. We used MARMOT simulations to 
investigate the impact of temperature gradients on isotropic grain growth in LWR fuel pellets (Details 
about these simulations  are available in [14]). GB motion in 2-D UO2 polycrystals was predicted under 
increasing temperature gradients, as shown in Fig. 4.4. We found that the temperature gradient does not 
significantly impact the average grain growth  behavior, because the curvature driving force is dominant 
(see Fig. 4.5). However,  it does cause significant local migration of the individual grains. In addition, the 
temperature dependence of the GB mobility results in larger grains in the hot portion of the polycrystal. 

 
 
 
 
 
 
 
 
 

 
(a) (b) 

 

 
 

(c) 
 

Figure 4.4: Polycrystal simulation domain, where the initial grain configuration showing the adapted 
mesh is shown in (a). The constant temperature gradient is also shown. Note that the values 
for Tmin and Tmax vary for the different gradients, ranging from Tmin = Tmax = 2050 K for 
no gradient to Tmin = 1950 K and Tmax = 2150 K for ∇T = 0.8 K/µm. The centroid position 
with time is recorded for the grains labeled A and B. The final grain configuration after 
2000 minutes is shown in (b) with no temperature gradient and in (c) with a gradient of 0.8 
K/µm, where grain B has disappeared. Note that with the temperature gradient, the grains 
are smaller on the cold side and larger on the hot side. Taken from [14]. 

 
 
 

Pinning by Bubbles with a Distribution of Bubble Radii 
 

While the mobility of a GB is an intrinsic  property, the actual GB migration is severely influenced by 
impurities  and defects [15, 16]. For example, particles and pores resist GB motion, slowing and even 
halting grain growth [17, 18]. The earliest treatment of GB pinning was by Zener [19]. Zener determined 
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Figure 4.5: Plots of the impact of the temperature gradient on the grain growth behavior, where (a) 

shows the impact of the temperature gradient on the centroid position of grain A and (b) 
shows the average grain size for various temperature gradients. Note that the average grain 
size is independent of the temperature gradient and compares well with the analytical model 
for curvature driven grain growth. Taken from [14]. 

 
 
the resistive pressure for a given volume fraction of spherical, incoherent, immobile, and rigid particles. 
Zener was able to derive a simple expression for the pinning  pressure by making several simplifying 
assumptions; he assumed that the GBs were flat, the particles were randomly distributed, only particles 
within one radius influence the GBs, and that all particles exert the maximum pinning force throughout 
the interaction.  We have expanded on Zener’s work to consider fission gas bubbles aligned on a GB and 
to also account for a distribution  of particle  sizes (see [20] for the details of this work). We began by 
developing  a phase field model that describes GB and pore interactions, and verified  it by comparing 
to molecular dynamics simulations  (see Section 5 for more detail). We then developed an analytical 
pinning model that is a function  of the GB fractional  coverage, the percentage of the GB covered by gas 
bubbles. The model also considers the impact of the bubble size distribution,  in terms of the mean and 
standard deviation of the bubble radius. The analytical model was verified by comparing to MARMOT 
simulation  results and those from a simple Monte Carlo model (see Fig. 4.6). A significant finding from 
the model is that the mean value of the resistive  pressure decreases with increasing standard deviation 
of the bubble radius. 

 

 
Grain Growth Model Validation 

 

In order to validate the grain growth model, it is not sufficient to only compare the average grain size to 
experimental data, but it is also important to compare the topology.  In order to validate the grain growth 
model for UO2,  we need access to data that characterizes the microstructure before and after annealing, 
to allow direct comparison between the simulation results and the data. In addition, the best comparison 
would be with 3-D data. However,  most approaches for characterizing 3-D microstructures destroy the 
samples.  We have been working with Don Brown from Los Alamos National Laboratory (LANL) to 
use UO2 data collected using High Energy X-Ray Diffraction Microscopy (HEDM) for validating the 
grain growth model in MARMOT. Don and collaborators  used HEDM to collect 3-D data on a sample of 
UO2 and then annealed the same sample. However, they have not completed the processing of the data 
from the annealed sample. We have reconstructed the sample in MARMOT and simulated the annealing 
process. Once the data from LANL is available, we will begin the comparison to validate the predictions. 
See Fig. 4.7 for an example of the microstructure before and after annealing, as predicted  by MARMOT. 
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Figure 4.6: Verification of our resistive pressure model that is a function  of the GB fractional coverage 

and considers bubble size distributions.  An example of a phase field simulation with bubble 
radii following a normal distribution  with a mean radius of r̄ = 11 nm and standard deviation 
of σr = 2 nm is shown in (a), a comparison of the analytical model, Monte Carlo results and 
the phase field simulations for r̄ = 11 nm and σr = 2 nm is shown in (b), and the analyti- 
cal model shows excellent agreement with the phase field simulations and the Monte Carlo 
model. The variation of the resistive pressure with standard deviation  for two mean radii 
is shown in (c), where the line shows the analytical model and the symbols show the mean 
values from the Monte Carlo simulations. Taken from [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 
Figure 4.7: MARMOT grain growth simulation of a reconstructed  microstructure  taken from HEDM 

  data of UO2, where the initial microstructure is shown in (a) and the final, after 200 minutes 
of annealing at 2000◦C, is shown in (b). 600 of the original  1620 grains are present after the 
annealing. 
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4.1.3  Fuel Cracking 
 

UO2 cracks during  reactor operation, because it is a brittle material. It initially cracks radially during 
reactor start up, but it also cracks during  reactor operation and shutdown.  These cracks significantly 
impact the fuel behavior,  reducing the stress, providing  avenues for fission  gas release, and reducing 
the thermal conductivity  (primarily circumferential cracks). Cracking within the fuel primarily occurs 
along GBs, thus as the GBs get covered with fission gas bubbles, their fracture stress will be significantly 
reduced.  To predict this reduction in fracture stress, we have developed  a phase field fracture model 
that couples the phase field equations with solid mechanics, as discussed in Section 3. The simulation 
used a different  fracture toughness for the grain interiors and the GB, with the values taken from MD 
simulations [21]. Increasing numbers of bubbles were placed on the grain boundaries and the cracking 
behavior was predicted using MARMOT. The crack propagation in a typical  UO2 RVE subjected to a 
strain controlled loading with ratio ε2/ε1=0.7 is shown in Fig. 4.8. The porosity dependent stress-strain 
evolution  and a comparison with experiment is shown in Fig. 4.9. The deviation from the experiments 
are likely due to difference between the perfect crystals modeled by MD and the physical materials with 
defects and impurities  in the experiment. In addition, it could be due to our conducting the simulations 
in 2-D. 3-D simulations will be conducted in the future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

 
Figure 4.8: (a) Geometry of the 2-D representative volume element. (b) Phase-field based brittle crack 

propagation under strain controlled loading with ε2/ε1=0.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

Figure 4.9: (a) Stress-strain evolution obtained from phase-field based fracture simulations of RVEs with 
varying porosity. (b) Variation of fracture strength with porosity. 
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4.1.4  Other Fuel Types 
 

While the NEAMS program has been focused on modeling of UO2, we are beginning  to apply MAR- 
MOT to model other fuel materials. As part of the Accident Tolerant Fuel High Impact Problem, we will 
begin developing models of Uranium Silicide (U-Si) phases in MARMOT. However, our initial develop- 
ment efforts are focused on developing an empirical potential for U-Si and has not involved  MARMOT 
development up to now. 

Other DOE NE programs are also beginning  to fund development work using MARMOT to model 
metallic fuels. The Advanced Fuel Cycle program is funding some development  work on Uranium 
Zirconium (U-Zr), focusing on modeling constituent redistribution in a temperature gradient. This work 
will be validated by directly comparing to diffusion  couple data that has been collected by the campaign. 
The NNSA RERTR program has also begun to fund the development of MARMOT to model Uranium 
Molybdenum (U-Mo). Initial development efforts have been focusing on implementing  a simple model 
of fission gas swelling  in U-Mo, as shown in Fig. 4.10. This model only tracks the fission gas and can’t 
account for bubble pressure. Future work will develop an improved model of fission gas behavior using 
the KKS model and will investigate the impact of phase separation on swelling. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
 

Figure 4.10: Fission gas bubble formation in U-Mo using a simple model only tracking fission gas ir- 
radiated to a fission density of 17 × 1027 fissions/m3.  Simulation  results with an average 
grain size of 2.4 µm are shown in (a) and 1.2 µm in (b). 

 
 
 

4.1.5  Cladding Materials 
 

Under the NEAMS program, the MARMOT code has not been funded to develop models of the LWR 
zircaloy cladding. However, using internal INL funding, we are implementing  a multiphase  model 
that predicts the formation of the δ-hydride  phase in the cladding.  This model accounts for the lattice 
mismatch between the α-Zr phase and the δ-hydride   phase using  a stress free strain coupled to the 
phase field variables. The model currently predicts the phase growth  but needs to be coupled to a robust 
nucleation model to account for the hydride nucleation. Simulations with this model will investigate the 
impact of applied stress on the hydride orientation under irradiation. 



28 

4.2 Effective Material Properties 
 
As the microstructure evolves, the effective material properties of the material also change. For example, 
irradiated  fuel has a much lower thermal conductivity  than fresh fuel due to the formation of gas bubbles, 
solid fission products, and point defects. MARMOT can be used to quantify the effective properties of 
a given microstructure  by locally changing the properties as a function  of the microstructure. Then, the 
local properties are homogenized across the structure to determine the effective results. This approach 
can be used to determine effective thermal conductivities,  elastic constants, diffusivity, or even fracture 
strength. Here, we summarize the approaches used for homogenization in MARMOT, and give several 
examples of how MARMOT has been applied to determine the effective thermal conductivity of various 
microstructures. 

 

 
4.2.1  Approach 

 

It requires more than just a spatial  average to accurately homogenize local properties to obtain the 
effective  property across the domain. One approach is to simulate a given physical phenomenon and then 
to determine the effective properties from the material response. For example, to determine the effective 
thermal conductivity, the steady state heat conduction  equation can be solved across the microstructure 
with an applied heat flux on one side and a fixed temperature on the other. However, an alternative 
approach is to use the asymptotic expansion homogenization (AEH) technique that has shown to be 
less sensitive  to boundary conditions  and can be used for a large range of different properties. AEH 
has been implemented  in MARMOT to determine effective thermal conductivities and elastic constants, 
as discussed  in detail in [22]. Fig. 4.11 demonstrates the approach for effective thermal conductivity, 
showing more consistent results when using AEH than directly applying a temperature gradient. 

 

 
4.2.2  Fuel Thermal Conductivity 

 

The fuel thermal conductivity is one of the most dominant properties influencing  fuel performance. 
Thus, it is critical to understand how the microstructure within the fuel impacts the thermal conduc- 
tivity.  For this reason, we have conducted a significant  amount of research looking at the impact of 
microstructure on thermal conductivity. 

 

 
Impact of GB Bubbles on Thermal Conductivity 

 

GB bubbles were shown to have a larger impact on the thermal conductivity  than randomly distributed 
bubbles [23]. Thus, we have conducted  a series of simulations to quantify their impact  as a function 
of the percentage of the GB covered by fission gas.  In [24] we ran 2-D simulations of various grain 
structures with increasing concentrations of fission  gas bubbles on the GB and different  GB thermal 
resistances Rk , as shown  in Fig. 4.12. 3-D bicrystal simulations were also conducted [25] to develop 
a robust  set of data to quantify the impact of GB bubbles.  These data are playing  an essential role to 
inform the development of an analytical model of the impact of GB bubbles on thermal conductivity. 

 

 
Thermal Conductivity in Reconstructed Irradiated Microstructures 

 

The current understanding of fuel microstructure has been limited by the difficulty in studying the struc- 
ture and chemistry of irradiated fuel samples at the mesoscale. We took advantage of recent advances 
in experimental capabilities to characterize the microstructure of irradiated mixed oxide (MOX) fuel in 
3-D taken from two radial positions in the fuel pellet. We reconstructed these microstructures  using 
MARMOT and calculated the impact of microstructure heterogeneities on the effective thermal conduc- 
tivity using mesoscale heat conduction simulations,  as shown in Fig. 4.13. See [26] for more detail. The 
predicted thermal conductivities of both samples were higher than the bulk MOX thermal conductivity 
due to the formation of metallic  precipitates and because we do not currently  consider phonon scatter- 
ing due to defects smaller than the experimental resolution.  We also used the results to investigate the 
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Figure 4.11: Homogenized thermal conductivity for the direct and AEH methods in the x and y direc- 

tions, where (a) shows the 2-D microstructures  and (b) gives values of the homogenized 
thermal conductivity using AEH and the direct approach.  The direct method gives a sig- 
nificantly lower thermal conductivity in the x direction for the case of 20 bubbles due to a 
bubble on the domain boundary. Taken from [22]. 
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Figure 4.12: Mesoscale heat conduction simulations, where (a) shows example microstructures for the 

bicrystal, four grain hexagonal polycrystal  and the seven grain polycrystal  shaded by ther- 
mal conductivity  and (b) and (c) are the effective  GB thermal resistance vs GB coverage 
for bicyrstals and polycrystals, respectively.  Note that the effect of the GB coverage on 
the thermal resistance is significantly smaller for the bicrystal simulations than for the two 
polycrystal  simulations.  The mechanistic model predictions are shown (dashed lines) with 
the corresponding  mesoscale simulation  data for the bicrystal  and the two polycrystals. 
Taken from [24]. 

 
 
accuracy of simple thermal conductivity  approximations and equations to convert 2-D thermal conduc- 
tivities to 3-D. It was found that these approximations struggle to predict the complex thermal transport 
interactions between metal precipitates and voids (see Table 4.1). 
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Sample 1 kx (W/mK) ky (W/mK)
2-D simulation
3-D simulation 
Parallel Appr. 
Series Appr. 
Converted 3-D 

2.57
2.64 
3.68 
1.59 
2.61 

2.55
2.67 
3.68 
1.59 
2.56 

Sample 2    
2-D simulation
3-D simulation 
Parallel Appr. 
Series Appr. 
Converted 3-D 

2.49
2.48 
2.60 
2.47 
2.44 

2.49
2.48 
2.60 
2.47 
2.44 

e f f e f f

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.13: The calculated temperature profile across the Sample 1 microstructure, showing the 2-D 

(left) and 3-D (right) results. The large metallic precipitates are shown in grey, the voids in 
black, and the temperature contours are shaded by the temperature value. 

 
 
 
 
 
 
 
 

 
Table 4.1: Effective  thermal conductivities  calculated across the reconstructed 2-D and 3-D microstruc- 

tures, where kx and ky are the thermal conductivities  in the x- and y-directions,  respec- 
tively. Approximations  assuming parallel and series arrangement are also shown, along with 
approximate 3-D values converted from the 2-D values using expressions from [27]. Note 
that the parallel and series approximations  are isotropic  and so give the same values in the x- 
and y-directions. 

 

 
e f f e f f 
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5 Quality Assurance, Verification, and Validation 
 
 
Critical aspects of developing MARMOT as a robust  tool for mesoscale fuel performance modeling are 
quality  assurance (QA), verification, and validation. Excellent quality assurance practices are necessary 
to ensure that the MARMOT tool produces consistent high quality results  even as new features and 
capabilities  are added to the tool. It also essential that rigorous verification  takes place, ensuring that 
the equations are correctly implemented and are being accurately solved. Finally,  the materials models 
must be validated by comparing to experimental data. In this Chapter we provide an overview of the 
QA practices used in the development of the MARMOT code base, summarize the verification approach 
used with the tool, and discuss the validation  of MARMOT. 

 
 

5.1 QA Practices 
 
The MARMOT tool follows the same QA approach taken by the MOOSE framework, which is Nuclear 
Quality Assurance grade one (NQA-1) certified. The MARMOT code base uses the Git version control 
system, which allows for collaborative  code development by researchers located at various locations. 
The code is hosted on an internal INL server using the Gitlab software (see about.gitlab.com for more 
information), which provides easy to use tools that facilitate the QA approach taken for MARMOT. The 
QA approach employs issue tracking, merge requests, automated testing, and collaborative  code review 
to facilitate collaborative development while ensuring that the code quality does not drop. 

 

 
5.1.1  Issue Tracking 

 

Whenever changes need to be made to the MARMOT code base, whether to add a feature or fix a bug, 
an issue must be submitted on the MARMOT Gitlab  repository.  Issues are submitted by the MARMOT 
development  team as well as by any user that has access to the MARMOT repository.  When an issue is 
submitted, the submitter provides a title, description,  and can select labels and a milestone that the issue 
applies to. Then, the head of the MARMOT development team assigns the issue to either a developer or 
the person that submitted the issue. An example of the list of issues for MARMOT is shown in Fig. 5.1. 

Once an issue is submitted, it is tracked in the system until it is closed. Some issues may be closed 
by a single  set of changes to the code while others may be long standing and cover changes made for 
longer periods of time. Closed issues are still saved in the system, providing  an automatic record of the 
history of the code. 

 

 
5.1.2  Merge Requests 

 

When  a researcher has made changes to the code that address an existing  issue, they can request that 
the changes be merged into the MARMOT code base by submitting  a merge request on the MARMOT 
Gitlab website.  When the merge request is made, it must be linked to an existing  issue on the Gitlab 
website. The changes to the code go through basic checks once the merge request is submitted to ensure 
that the new code meets basic code standards. These include details like no trailing white space in the 
code. Once these basic checks are completed, the automated testing system is launched. The changes are 
merged with the code once the merge request is accepted by one of the primary MARMOT developers. 



33 

 

 
 

Figure 5.1: Example of the list of issues on the INL MARMOT Gitlab repository website. 
 
 
5.1.3  Automated Testing 

 

Over one hundred and fifty tests have been created to ensure that the MARMOT code base continues 
to give consistent predictions. The goal is to have every file within MARMOT be tested. Each of these 
tests are small simulations  that can run in two seconds or less on a single processor. Every time a merge 
request is made, all the tests are rerun to ensure that the changes do not change the solutions in any 
unexpected ways. When new additions are added to the code, new tests must be added as well. Once a 
merge request is made, all the tests must pass before the changes will be merged into the code. If any 
tests fail, the researcher must make additional  changes and resubmit the merge request. 

 

 
5.1.4  Collaborative Code Review 

 

Once all the tests pass, the changes to the code are reviewed by members of the MOOSE development 
team other than the one that submitted the merge request on the Gitlab repository website. On the 
website,  comments can be made on the lines of the code that were changed, suggesting alternative 
approaches that could be taken or problems with the syntax.  See Fig. 5.2 for an example of comments 
on a merge request. This collaborative review of the code ensures optimal  quality  and consistency of the 
entire code base. Once all the comments have been addressed and all developers are satisfied with the 
changes to the code, the merge request can be accepted and the issue closed. 

 
 

5.2 Tool Verification 
 
MARMOT models the coevolution of microstructure and material properties in irradiated fuel and 
cladding materials by solving  the coupled phase field, solid mechanics, and heat conduction equations. 
To solve the equations, we use the finite element method (FEM), which approximates the field vari- 
ables using shape functions  across elements in a discretized  domain. This solution  approach, as with 
all numerical  methods, has some error associated with it. In addition, mistakes in the code can lead to 
additional error. Therefore, it is essential to verify that every file implemented in MARMOT can be 
solved accurately and does not have errors. Verification  in MARMOT is conducted in three ways: com- 
parison against manufactured solutions, comparison against analytical models, and comparison against 
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Figure 5.2: Example of collaborative  code review on the MARMOT Gitlab repository for a merge 

request. 
 
 
atomistic simulation results. 

 

 
5.2.1  Manufactured Solutions 

 

The method of manufactured solutions is used to verify the discretized solution of a partial differential 
equation (PDE) or system of PDEs [28]. In the method, a closed analytic form of the solution is selected 
for a PDE test problem.  Then, the analytic solution is substituted into the base PDEs to generate new 
or modified  source terms in the equations.  Finally, initial and boundary conditions  are obtained by 
evaluating the selected solution form at zero time and at the boundaries.  These source terms, initial, 
and boundary conditions  are used in the numerical solution of the PDE and the error in the solution is 
determined by comparing to the analytical solution. Thus, the error can be calculated exactly, providing 
a robust means of evaluated the solution approach. 

The Cahn-Hilliard (CH) equation is a time-dependent fourth-order partial differential  equation that is 
used to solve for the evolution of conserved concentrations in the phase field method.  When solving  the 
CH equation via FEM in MARMOT, the domain is discretized by C1-continuous basis functions or the 
equation is split into a pair of second-order PDEs, and discretized via C0-continuous basis functions.  In 
[29], a quantitative  comparison between C1 Hermite and C0 Lagrange elements was carried out using 
MARMOT. The different  discretizations were evaluated using the method of manufactured solutions 
solved with Newton’s method and Jacobian-Free Newton Krylov (JFNK). It was found that the use of 
linear Lagrange elements provided the fastest computation time for a given number of elements, while 
the use of cubic Hermite elements provided the lowest error. When both computational time and accu- 
racy were considered, the cubic Hermite elements achieved the lowest error per unit of computational 
time in 2D, while in 3D the Hermite elements and the quadratic Lagrange elements were more closely 
matched in this metric, as shown in Fig. 5.3. 

 

 
5.2.2  Analytical Models 

 

MARMOT solves systems of coupled equations across 2D and 3D domains to predict material behavior. 
However, often the same material behavior can be modeled analytically  for much simpler systems and 
using simplifying assumptions.  Therefore, MARMOT predictions can also be verified  by comparing 
predictions for simple domains to the analytical solutions. While this approach can never prove that the 
predictions  are accurate for all conditions, it does provide  another means of evaluating the error in the 
solution approach used to solve the PDEs. 

 

 
Grain Boundary Migration 

 

A well-established analytical model exists defining grain boundary (GB) migration due to the curvature 
driving force. The MARMOT grain growth  model has been compared to this analytical  model, verifying 
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Figure 5.3: Computational  efficiency (computation time  vs. L2-error) comparison  of the three ap- 
proaches in 2D using Newton’s method and JFNK ((a) and (b), respectively),  and in 3D 
using Newton’s method and JFNK ((c) and (d), respectively).  The computation time re- 
ported is the total wall time for one time step, not including  the startup time. Taken from 
[29]. 
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that we are accurately solving  the phase field grain growth equations, as shown in Fig. 5.4. Results that 
have been verified against the analytical model have been checked into the testing system as the correct 
solution, ensuring that the code always maintains a good comparison with the analytical model. Both the 
analytical  model and the phase field simulations require the GB energy and the GB mobility as material 
properties for a given material. 
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Figure 5.4: Verification  of the MARMOT grain growth model for a circular  grain (left) and half loop 

grain (right). 
 
 
 
Fission Gas Migration 

 

Analytical models exist to predict behavior related to fission gas. The fission gas transport at low con- 
centrations can be verified by comparing to the solution of the diffusion equation. Both solutions should 
give very similar results, and all the fission gas transport models have been verified  using this compar- 
ison. For the growth of a fission gas bubble, there exists an analytical  1D growth model that predicts 
the rate of growth given the bulk gas concentration  and the diffusivity. Rate theory equations can also 
be used to verify the code and ensure that it is predicting the correct behavior. As with the grain growth 
model, verified  results from the fission gas models have been used as the standard in the testing system. 

 

 
5.2.3  Atomistic Simulation Results 

 

Strictly speaking, verification ensures the accuracy with which the equations are being discretized and 
solved. Validation ensures the accuracy of the model by comparing to experimental data. However, there 
is another approach to investigate the accuracy of MARMOT that lies somewhere in between verification 
and validation,  and that is comparing to higher fidelity models. Molecular dynamics (MD) simulations 
describe the microstructure  evolution  at small length and time scales by describing the interactions be- 
tween individual  atoms. Therefore, the accuracy of MARMOT simulations  can be evaluated by directly 
comparing to MD simulations results. We have employed this approach to investigate the accuracy of 
the MARMOT models for grain growth, GB and bubble interaction, and fracture.  Often these compar- 
isons must be conducted using simpler materials systems for which MD empirical potentials exist in the 
literature. 

 

 
Grain Growth 

 

To compare the MARMOT and MD predictions of grain growth, we modeled the grain evolution in 
a bicrystal  system with a circular  grain embedded in a larger  matrix grain. The MARMOT and MD 
simulations  used the same simulation  conditions  and domain size (see [30] for a detailed description 
of this work). We took advantage of the mesh adaptivity  capability  in MARMOT to use a small  GB 
width in the simulations (wb = 0.5 nm) without  requiring  a large computational  expense. The largest 
element size used in the simulations is 7.4 nm, while the smallest is 0.23 nm. The MARMOT predictions 
compared very well with the MD simulation results, as shown in Fig. 5.5 
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Figure 5.5: MD and MARMOT results for the embedded-circle bicrystal. The projected  area of the 

embedded crystal  as functions  of time is shown on the left and the reduced mobility as a 
function of inverse temperature is shown on the right. In the left figure, the circles represent 
the MD data and the diamonds represent the PF data. The slope of fits to the data in the left 
figure are the values plotted in the right figure. The dashed line in the right figure is a liner 
fit to the MD data, which takes the form M∗ = 2.1526 × 10­5 exp(­0.4788/kbT ) m2/s. Note 
the excellent agreement between the MARMOT and MD simulation results. Taken from 
[30]. 

 

 
GB and Bubble Interaction 

 

Accurately predicting the interaction between GBs and bubbles is essential to understand grain growth 
in UO2 fuel and fission gas behavior.  Thus, it is essential to ensure that the model in MARMOT can 
accurately represent this behavior.  Therefore, to verify that the MARMOT model accurately captures 
the interaction  between pores and GBs, we compared the MARMOT results to MD simulation results 
representing identical molybdenum (Mo) systems containing helium (He) bubbles (for more detail see 
[20]). The reduction in volume of a circular grain with an initial radius of 20 nm was predicted by both 
simulation  approaches, with ten bubbles randomly distributed along the GB. The 3D domain was 64.4 
nm × 64.4 nm × 1.93 nm with periodic boundary conditions and the center axis of the circular grain 
was parallel with the z-axis.  The ten He bubbles had a radius of 0.3 nm (ten He atoms were used to 
represent the bubbles in the MD simulations).  The simulations were carried out at a temperature of 2700 
K. Three simulations were run with different random initial positions of the ten He bubbles using both 
approaches. The phase field simulations  employed a GB width of lGB = 0.2 nm. Examples of the phase 
field and MD domains are shown in Fig. 5.6(a). 

Both approaches predicted an initially slow reduction in the grain volume (see Fig. 5.6(b)), while all 
ten bubbles are in contact with the GB. However,  the rate increases as the GB releases from more and 
more of the ten bubbles until the final rate of reduction is defined by the intrinsic GB mobility, as no 
bubbles are in contact with the GB. The comparison between these two distinct methods is reasonably 
good, though the phase field simulations  seem to predict  somewhat slower  decrease in the grain size 
at the early stages of the volume reduction. Thus, the GB and bubble interaction model in MARMOT 
appears to accurately capture the behavior. 

 

 
Fracture 

 

In order to model the fracture behavior in UO2, it is important to ensure that correct  fracture  stresses are 
predicted by the MARMOT simulations.  Therefore, we compared phase field simulations of fracture 
along UO2 GBs using MARMOT to results from MD simulations (more details can be found in [8]). 
The fracture strength from the MD simulations [21] was used as an input parameter for the MARMOT 
simulations  and the comparison ensured that that the two methods produce consistent results. The system 
dimensions are 30.5 × 36.0 × 3.2 nm, with an elliptical hole of size 8 × 2 nm along the grain boundary 
in the middle. The loading is applied by adjusting the y-coordinate of each atom by 10­4 for every 1 
ps, corresponding  to a nominal engineering strain rate of 108/s. To evaluate the atomistic  stresses, the 
Virial stress formulation is utilized to obtain the stress-strain curve.  The nominal  stress is represented by 
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Figure 5.6: Verification  of the phase field model by comparing to MD results.  A shrinking Mo cir- 

cular grain with ten He bubbles distributed along the grain boundary is modeled by both 
approaches, where examples of the phase field (left) and MD (right) simulation domains are 
shown in (a). The volume of the shrinking grain versus time predicted by both methods is 
shown in (b). Note that points from three different simulations for each approach with differ- 
ent initial bubbles positions are shown in the plot. The MARMOT phase field results show 
reasonably good agreement with the MD results. Taken from [20]. 

 
 
the average of the atomistic stresses over the entire volume.  An identical domain was considered in the 
phase-field MARMOT simulations  as shown in Fig. 5.7(b). Symmetry boundary conditions are applied 
to the RVE as opposed to periodicity in MD. In the simulations,  a good agreement is obtained  as shown 
in Fig. 5.7(c). The final configuration of the volume element is shown in Fig. 5.7(e). 

 
 

5.3 MARMOT Validation 
 
Before any MARMOT model can be used with confidence, the model predictions must be validated 
by comparing to robust experimental data. However, validating MARMOT requires unique data sets, 
because both the average microstructure  evolution,  e.g. average grain size, and the local microstructure 
changes must be validated.   In addition, many of the material properties used by MARMOT to make 
material specific models have been calculated via atomistic simulations and must also be validated ex- 
perimentally.   Some validation  has been completed and was discussed in Section 4. In this section, we 
discuss the unique aspects of validating spatially resolved microstructure simulations, and summarize 
many of the validation  data that are needed in order to fully validate the MARMOT tool. 

 

 
5.3.1  Microstructure Validation 

 

MARMOT predicts microstructure evolution in 2D and 3D, and spatially  resolves the individual mi- 
crostructural features. In addition, we often compute average properties across the spatially  resolved 
microstructure,  e.g. average grain size, porosity, to characterize some attributes of the microstructure. 
To validate a simulation  tool that spatially resolves the microstructure, four critical points must be con- 
sidered: average validation  data is not sufficient, the simulations should be conducted in 3D, both initial 
and final microstructure characterization is needed, and simulations  must accurately describe the valida- 
tion experiment. 

 

 
Average Data is Not Sufficient 

 

Often, microstructure data available in the literature comes in the form of average microstructural prop- 
erties over time or burn-up.  However, when we compare properties averaged across the simulated mi- 
crostructure to these measured properties averaged across an experimental microstructure, the local pre- 
dictions of the model are not validated even if the average properties compare well. This is because 
significant local phenomena may not even be apparent in the averaged microstructure  properties.  For 
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Figure 5.7: Comparison between MD and MARMOT simulations of fracture in UO2, where (a) is the 

simulation cell used in MD, (b) is a schematic  of the MARMOT domain, (c) compares the 
stress-strain evolution between MARMOT and MD simulations, (d) is the final configuration 
of the MD simulation  and (e) is the final configuration of the MARMOT simulation.  The 
MARMOT and MD simulation results show good agreement. Taken from [8]. 
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example, in our MARMOT simulations of temperature gradient driven grain growth (see Fig. 4.4), the 
average grain size showed no dependence on temperature gradient. However, there was significant  tem- 
perature gradient dependence in the local behavior of the individual grains. The MARMOT models 
can only be fully validated by directly comparing microstructure characterization data to the predicted 
microstructures.  This can be accomplished  by directly  comparing the experimental and the predicted 
microstructures, or by comparing statistical descriptors of the microstructures  such as grain size distri- 
butions, average disorientation  angles, etc. 

 

 
Simulations Should be Conducted in 3D 

 

Material behavior in nature is always  a 3D phenomena (with a very few exceptions),  therefore  a 2D 
simulation is always an approximation  of the real material behavior. For this reason, simulations should 
be run in 3D whenever possible when comparing to data. Most microstructure characterization methods 
are surface methods and produce a 2D image of the surface microstructure.  However, the microstruc- 
ture evolution  below the surface will significantly  impact the surface microstructure.   So, even when 
comparing to 2D surface characterization, the simulations should be run in 3D. 3D characterization data 
will provide the best comparison to the 3D simulation  results, however 3D characterization data is often 
difficult to obtain and the methods are often destructive. 

 

 
Both Initial and Final Microstructure Characterization is Needed 

 

While MARMOT predicts the evolution of the microstructure, the final microstructures that result from 
this evolution will be highly sensitive to the initial condition of the microstructure.   Therefore, mi- 
crostructure characterization data after the experiment (e.g., annealing, mechanical deformation, or irra- 
diation) is conducted, is not sufficient to validate the model. We must also have the same characterization 
data for the initial microstructure in order to correctly reconstruct the initial condition for the simulations. 
The best results are obtained when the microstructure  is characterized before and after the experiment 
in the same region  of the sample, though this is only possible when non-destructive characterization 
approaches are employed. When destructive characterization is used on the initial microstructure,   a 
batch of samples (with similar  microstructural  features) can be employed, where different  samples are 
characterized before and after the experiments. 

 

 
Simulations Must Accurately Describe the Validation Experiment 

 

Validation  experiments are conducted to obtain the necessary data required to fully validate a specific 
model of interest. Due to procedural, technical, or financial constraints, if may be impossible to collect 
the necessary data using typical application conditions.  For example, it may be difficult to obtain the 
required data from a fuel sample in a commercial  LWR so a test reactor may be used for the irradiation 
instead.  When conducting the simulation  that will be compared to the validation  data, it is essential 
that the simulation capture the conditions of the validation  experiment rather than the conditions of the 
typical application,  e.g. the simulation  should use the test reactor conditions  rather than typical LWR 
conditions. At times the differences between the validation experiment and the application may be quite 
drastic. For example, an experiment  designed to validate a grain growth model in MARMOT uses an 
annealed sample and does not involve irradiation at all. 

 

 
5.3.2  Validation Data Needs 

 

Though some validation  has been conducted on MARMOT models, there is still a significant amount 
of validation that needs to be conducted.  The most common limitations  with existing  data from the 
literature for this validation  are that there is very little initial characterization of the microstructure and 
often only averaged microstructure  properties are reported. Therefore, a significant amount of new data 
needs to be collected  to validate  MARMOT simulation results and the atomistically-determined material 
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properties. In this section we summarize the data needs organized by the physical phenomena. All of 
the data needs are applicable  to UO2 but also to other fuel materials. 

 

 
Fission Gas Behavior 

• Fission gas behavior in fabricated samples with gas atoms already present (no irradiation) 

– Fission gas transport in single crystals 
– Fission gas transport and bubble migration  in a temperature  gradient 
– Quantification of fission gas segregation for different GB types 
– Bubble nucleation, growth, and interconnection for different GB types 

• Fission gas behavior in irradiated samples 

– Characterization of 3D percolated bubble structures in polycrystalline samples 
– Impact of point defect concentration on fission gas transport 

 

 
Grain Growth 

• Bicrystal experiments to obtain properties of individual GBs 

– Measurement of GB mobility 
– Impact of irradiation on GB mobility 
– Interaction of single GB with impurities/bubbles 

• Polycrystal experiments 

– Annealing of well characterized microstructures in very pure, fully dense material 
– Annealing with various pore densities and well characterized microstructures 
– Grain growth under irradiation 
– Grain growth under high temperature gradients 

 

 
Fuel Cracking 

• In situ nano-indentation 

– Single crystal or large grains 
– Nanocrystalline material 
– Irradiated material (neutron or ion) 

• Micro-indentation 

– Well-characterized fully dense polycrystals 
– Well-characterized microstructures with GB bubbles and/or irradiation 

 

 
Effective Material Properties 

• Measurement of GB thermal resistance 

• Local characterization of local properties of different microstructural features 

• Measurement of effective material properties of characterized microstructures 

• Fundamental measurement of intrinsic properties 

• Impact of externally applied fields on property values 
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6 Conclusions 
 
 
The MARMOT tool being developed by the NEAMS FPL predicts the coevolution of microstructure 
and material properties in fuel and cladding materials due to temperature, stress, and irradiation  dam- 
age.  MARMOT is built using the capabilities available in the phase field, tensor mechanics, and 
heat conduction modules in the open source MOOSE framework.  Though MARMOT is being devel- 
oped as a mesoscale fuel performance tool, it is also being used to inform the development of materials 
models that are based on microstructure rather than burn-up for fuel performance codes. 

MARMOT has been funded by the NEAMS program to develop models for UO2. Up to now, this 
development has been focused on models of fission gas behavior, grain growth, cracking, and effective 
material property calculation. Starting in fiscal year 2015, MARMOT is also being funded to develop 
models of U-Si fuel, though this efforts are waiting on the development of a U-Si inter-atomic poten- 
tial.  In FY 2015, the Advanced Fuel Cycle program  and the RERTR  program are also funding the 
development of metal fuels models in MARMOT. 

The MARMOT code base undergoes rigorous  quality  assurance and verification throughout its devel- 
opment, and the models are also being validated when data is available. MARMOT is developed by a 
community of users and the code base is managed with the Git version control system. It is hosted on 
an internal INL Gitlab repository which has automated tools for issue tracking, automated testing, and 
collaborative code review. The code is verified using the method of manufactured solution, comparison 
to analytical models, and comparison to molecular dynamics simulations.  Because MARMOT spatially 
resolves the microstructure, average validation data is not sufficient,  the simulations  should be conducted 
in 3D, both initial and final microstructure characterization is needed, and simulations must accurately 
describe the validation experiment. A list of data needed for validation of MARMOT is given in Section 
5. 
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