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EXECUTIVE SUMMARY 

Part of the U.S. Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) 
Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops 
approaches to estimating and managing safety margins. RISMC simulations pair deterministic 
plant physics models with probabilistic risk models. As human interactions are an essential 
element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. 
In this report, we review simulation-based and non-simulation-based human reliability 
assessment (HRA) methods. This report summarizes the foundational information needed to 
develop a feasible approach to modeling human interactions in RISMC simulations:  

• Chapter 1 reviews the goals of RISMC and establishes the importance of incorporating 
human operator modeling through HRA. 

• Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods 
target static Probabilistic Risk Assessments for Level 1 events. These methods would 
require significant modification for use in dynamic simulation of Level 2 and Level 3 
events.  

• Chapter 3 is a review of human performance models. A variety of methods and models 
simulate dynamic human performance; however, most of these human performance 
models were developed outside the risk domain and have not been used for HRA. The 
exception is the ADS-IDAC model, which can be thought of as a virtual operator 
program. This model is resource-intensive but provides a detailed model of every 
operator action in a given scenario, along with models of numerous factors that can 
influence operator performance.  

• Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This 
chapter is an example of one of the critical gaps between existing HRA methods and the 
needs of dynamic HRA.  

• Finally, in Chapter 5, we discuss next steps toward integrating a simulation based HRA 
approach into the RISMC framework. 
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Simulation and Non-Simulation Based 
Human Reliability Analysis Approaches 

 

1. INTRODUCTION 

1.1 Importance of Human Reliability Analysis (HRA) to Risk-
Informed Safety Margin Characterization (RISMC) 

1.1.1 RISMC Approach: An Overview 

The Risk-Informed Safety Margin Characterization (RISMC) Pathway within the United States (U.S.) 
Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program develops and 
delivers approaches to manage safety margins [1]- [2]. This important information supports the nuclear 
power plant owner/operator decision-making associated with near and long-term operation. The RISMC 
approach can optimize plant safety and performance by incorporating a novel interaction between 
probabilistic risk simulation and mechanistic codes for plant-level physics. The new functionality allows 
the risk simulation module to serve as a “scenario generator” that feeds information to the mechanistic 
codes. The effort fits with the goals of the RISMC Pathway, which are twofold:  

 
1. Develop and demonstrate a risk-assessment method coupled to safety margin quantification, and 
2. Create an advanced RISMC toolkit which would enable users to have a more accurate representation 

of nuclear power plant safety margins and its associated influences on operations and economics. 
 

When evaluating the safety margin, what we want to understand is not just the frequency of an event like 
core damage, but how close we are (or are not) to key safety-related events and how might we increase 
our safety margin. In general terms, a “margin” is usually characterized in one of two ways:  

 
1. A deterministic margin, typically defined by the ratio (or, alternatively, the difference) of a capacity 

(i.e., strength) over the load, and  
2. A probabilistic margin, defined by the probability that the load exceeds the capacity. A probabilistic 

safety margin is a numerical value quantifying the probability that a safety metric (e.g., an important 
process observable such as clad temperature) will be exceeded under accident scenario conditions. 

 
The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety. 
As part of the quantification, we use both probabilistic (via risk simulation) and mechanistic (via physics 
models) approaches, as represented in Figure 1. Safety margin and uncertainty quantification rely on plant 
physics (e.g., thermal-hydraulics and reactor kinetics) coupled with probabilistic risk simulation. The 
coupling takes place through the interchange of physical parameters (e.g., node pressure) and operational 
or accident scenarios. 

 



2 

 
Figure 1 - The approach used to support RISMC analysis. 

In order to perform advanced safety analysis, the RISMC project has a toolkit that was developed 
internally at Idaho National Laboratory (INL) using the Multiphysics Object Oriented Simulation 
Environment (MOOSE) [3] as the underlying numerical solver framework. This toolkit consists of the 
several software tools, which include: 

• Reactor Excursion and Leak Analysis Program (RELAP)-7 [4] : the code responsible for simulating 
the thermal-hydraulic dynamics of the plant. 

• Reactor Analysis and Virtual Control Environment (RAVEN) [5]: it has two main functions: 1) act 
as a controller of the RELAP-7 simulation and 2) generate multiple scenarios (i.e., a sampler) by 
stochastically changing the order and/or timing of events. 

1.1.2 HRA Modeling Within RISMC 

In the past RISMC studies, human interactions have been modeled in a simplified manner. We used the 
method shown in [6] to model human related actions, which are based on the Standardized Plant Analysis 
Risk-Human Reliability Analysis (SPAR-H) model [7] contained in Systems Analysis Programs for 
Hands-on Integrated Reliability Evaluations (SAPHIRE). The SPAR-H model characterizes each operator 
action through eight parameters called performance shaping factors (PSFs) that are used to compute the 
probability that an action will happen or not (Bernoulli distribution); the probability values are then 
inserted into the fault and event trees that contain such events.  

However, from a simulation point of view we are not seeking to determine if an action is performed but 
rather when such action is performed. Thus, we need a probability distribution function (pdf) that defines 
the probability that a human related action occurs as a function of time. 

In the past studies [6] we focused on just two of the eight SPAR-H PSFs: complexity and stress/stressors. 
We chose lognormal distributions to represent the uncertainties related to when human related action is 
performed. The lognormal characteristic parameters (i.e.,  and ) are calculated from the two factors 
listed above (stress/stressors and complexity levels); we used Table 1 to convert the possible values of the 
two factors into numerical values for  and . 
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Table 1 - Correspondence table between complexity and stress/stressor level and time values. 

Complexity  𝜇 (min)  Stress/stressors 𝜎 (min) 
High 45  Extreme 30 

Moderate 15  High 15 
Nominal 5  Nominal 5 

 

The method described above models very simple interactions between humans and the accident evolution. 
Note in fact the following: 
 
• The obtained pdfs define when the action is performed and not if the action is performed 
• There is no direct coupling between accident evolution and the human model 
• The parameters complexity and stress/stressor are assumed to be constant throughout the simulation 
• Errors of omission or commission are not included. 

 
This report aims to reduce the limitations listed above in order to increase the fidelity of simulated 
accident scenarios. 
 

1.2 Importance of HRA Simulation Approachesa 

 
Cacciabue [8] and others (e.g., [9]) have outlined the importance of simulation and modeling of human 
performance for the field of HRA. Specifically, simulation and modeling address the dynamic nature of 
human performance in a way that has not been found in most HRA methods. Concurrent to the emergence 
of simulation and modeling, several authors (e.g., [10] and [11]) have posited the need for dynamic HRA 
and have begun developing new HRA methods or modifying existing HRA methods to account for the 
dynamic progression of human behavior leading up to and following human failure events (HFEs). 
Currently, there is interest in the fusion of simulation and modeling with HRA (e.g., [12], [13], [14], [15], 
and [16]). 
 

 
Figure 2 – The uses of simulation and modeling in HRA. 

 
As depicted in Figure 2, simulation and modeling may be used in three ways to capture and generate data 
that are meaningful to HRA.  
 

                                                        
a Portions of this section are excerpted from [70]. This report significantly builds on the earlier ideas introduced in that paper. 
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1. The simulation runs produce logs, which may be analyzed by subject matter experts and used to 
inform an estimate of the likelihood of human error. This approach builds heavily on expert 
estimation techniques that are commonly used in HRA. By providing a data basis for the HRA, 
the simulation allows the expert to over-come common shortcomings in expert estimation such as 
a failure to draw on performance data [17]. However, the expert estimation is still subject to 
estimation process biases that may not have been controlled for in the method. Nor is an expert 
estimate guaranteed to be a valid estimate. 

2. The simulation may be used to produce estimates of PSFs, which can be quantified to produce 
human error probabilities (HEPs) based on specific HRA methods. The challenge of such an 
approach is to find a mapping of available performance measures from the simulation to the 
specific PSFs required by a method. For example, Boring [15] postulated a mapping of 
performance measures produced by the Man-Machine Integration Design and Analysis System 
(MIDAS) simulation system [18] to the eight PSFs utilized by the SPAR-H HRA method [7]. 
This mapping was complicated by the facts that MIDAS did not produce performance measures 
that were analogs of all SPAR-H PSFs and that SPAR-H was not designed to model the con-
tinuous stream of event data provided by MIDAS. Notwithstanding these difficulties, the 
technique successfully produces a method-specific HEP for those PSFs that are encompassed in 
MIDAS modeling. 

3. A final approach is to set specific performance criteria by which the virtual performers in the 
simulation are able to succeed or fail at given tasks. A common performance criterion is time to 
complete a task, whereby failure to complete the task within a prescribed limit is considered 
unsatisfactory performance. Through iterations of the task that systematically explore the range of 
human performance, it is possible to arrive at a frequency of failure (or success). This number 
may be used as a frequentist approximation of an HEP.  

 
It is important to note a key distinction here between simulation and simulator data. Simulations use 
virtual environments and virtual performers to model the tasks of interest. In contrast, simulators use 
virtual environments with human performers [19]. In most cases and as noted in Figure 2, simulations and 
simulators may both be used to model dynamic human performance and reliability, as both produce a log 
of performance over time and tasks. Because simulators use real humans, it is possible to capture the full 
spectrum of human PSFs for a given task, whereas simulations must rely on those PSFs that can be 
modeled virtually. However, simulations afford the opportunity to perform a wider spectrum of modeling 
and typically allow easier and more cost effective repeated trials than those tasks involving humans. A 
large number of trials involving humans is possible but typically requires seeding or forcing an error 
likely situation in the simulator runs, which may prevent a high level of scenario realism. 
 
In the remainder of this report, we will explore the uses of conventional and simulation based HRA and 
provide a case study of how different methods address one factor in human performance that is frequently 
neglected in conventional HRA methods: timing of operator actions. The goal of this exploration is to 
identify the appropriate HRA approach or approaches for future inclusion in RISMC modeling. 
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2. Brief Review of Non-Simulation HRA Methods 

 
This section provides a short summary of the history of HRA and provides a brief characterization and 
review of most of the non-simulation HRA methods used in the nuclear industry. Swain [20], Hollnagel 
[21], and Boring [22] all state that the practice of HRA started in the 1950s, with the first symposiums 
meeting in the 1960s, and that the development of formal HRA engineering methods started in the 
ensuing years when it was applied to modeling human performance in the construction of nuclear 
weapons and nuclear power reactors. The seminal HRA method for nuclear energy, a Technique for 
Human Error Rate Prediction (THERP) [23] was developed during this time, and its final version was 
developed partly as a response to the accident at Three Mile Island. Since the 1980s, there has been a 
proliferation of HRA methods, which have attempted to improve various aspects of early methods. Which 
aspects of the early methods were addressed depended greatly on the developers of the new method, and 
the issue or issues they were trying to address. For some of the newer methods, the primary developers 
were experts with a background in engineering, while experts with a background in psychology 
developed other methods. Some methods were developed with a specific application or special context for 
its use in mind, while others were developed as an extension, enhancement, and/or simplification of 
earlier methods. Still other methods were created because the developers believed there were important 
theoretical and technical shortcomings with previous methods. 
 
There are multiple ways to categorize or group non-simulation HRA methods. Boring et al. [24] 
summarized past attempts to compare and categorize HRA methods, and noted that many of those 
attempts ended up with complex and non-orthogonal schemes due to the number and variety of published 
HRA methods. One example of a fairly complex summary is Chandler et al. [25], which thoroughly 
compared many HRA methods across multiple dimensions, including the methods’:  
 

• Features and capabilities, 
• Source (i.e., technical basis and/or data basis), approach, and treatment of dependencies and 

recovery, 
• Error identification and HEP estimation approach,  
• Resource requirements, and  
• Cost and availability of method, tools, and data.  

 
NUREG-1842 [26], and more recently NUREG-2127 [27] also provide comprehensive comparative 
summaries of HRA methods used by the nuclear industry. The reader is encouraged to review these 
categorization schemes to understand the various approaches to grouping and comparing HRA methods, 
but it also needs to be pointed out that these schemes are not particularly useful to this RISMC project 
given the project’s purpose and goals. 
 
Rather, simpler categorization schemes are more helpful. For example, Boring [28] developed a 
classification of HRA methods by funding source. Figure 3 depicts a simplified history of some major 
HRA methods according to sponsorship of the development of the methods. This depiction suggests three 
parallel developments—one group of methods emerging through the U.S. Nuclear Regulatory 
Commission (NRC), a parallel group emerging through sponsorship through the Electrical Power 
Research Institute (EPRI), and yet another group emerging through non-US sponsors. THERP produced 
direct, simplified descendants in the form of the Accident Sequence Evaluation Program (ASEP), 
developed by Swain [29], and later by the SPAR-H method developed by Gertman et al. [30]. In parallel, 
variations of the Success Likelihood Index Method (SLIM) and its failure-centric FLIM counterpart, were 
developed by Embrey et al. [31]. More recently, A Technique for Human Error Analysis (ATHEANA) 
has been developed within the U.S. NRC [32] to address perceived shortcomings of THERP and its 
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descendants. EPRI developed a series of HRA methods to address industry needs, including the Human 
Cognitive Reliability/Operator Reliability Experiments (HCR/ORE) [33] and the Cause Based Decision 
Trees (CBDT) [33], as well as the standardized framework for incorporating HRA into probabilistic risk 
assessment, entitled Systematic Human Action Reliability Procedure (SHARP) [34]. Most of the EPRI 
and US NRC methods have been implemented in software as the EPRI HRA Calculator [35]. 
 

 
 

Figure 3 - Parallel HRA method developments. 

Another simple way HRA methods can be categorized is by generation. In fact, for a number of years, 
there has existed a distinction between first and second-generation HRA methods. Grouping by 
generation roughly corresponds to the era in which the methods were developed, and can sometimes 
provide information about the lineage of the method. However, the criteria for classifying a particular 
method as first or second generation have not been entirely consistent. Boring [36] explicated this 
categorization dilemma by identifying four different criteria: 1) chronology, 2) cognition, 3) context, and 
4) commission that have been used, more or less independently of one another, to delineate first and 
second-generation HRA methods. Chronology simply refers to the era in which the method was 
developed. Cognition refers to whether or not the HRA method captures what the human was thinking 
about during the task. Context refers to whether or not the HRA method considered the environment or 
situation (i.e., context) in which humans made errors, and commission refers to the relative emphasis the 
HRA method put on modeling and understanding errors of commission versus errors of omission. Thus, 
as a general rule (which is far from perfect), first generation (1G) HRA methods are older in chronology, 

ACRONYM	  LIST	  
	  

ATHEANA:	  A	  Technique	  for	  Human	  
Error	  Analysis	  

ASEP:	  Accident	  Sequence	  
Evaluation	  Program	  

CAHR:	  Connectionist	  Assessment	  of	  
Human	  Reliability	  

CARA:	  Controller	  Action	  Reliability	  
Assessment	  

CBDT:	  Cause	  Based	  Decision	  Tree	  

CREAM:	  Cognitive	  Reliability	  Error	  
Analysis	  Method	  

HCR/ORE:	  Human	  Cognitive	  
Reliability/Operator	  Reliability	  
Experiments	  

HEART:	  Human	  Error	  Assessment	  
and	  Reduction	  Technique	  

MERMOS:	  Method	  d'Evaluation	  de	  
la	  Realisation	  des	  Missions	  
Operateur	  pour	  la	  Surete	  

NARA:	  Nuclear	  Action	  Reliability	  
Assessment	  

SHARP:	  Systematic	  Human	  Action	  
Reliability	  Procedure	  

SLIM:	  Success	  Likelihood	  Index	  
Method	  

SPAR-‐H:	  Standardized	  Plant	  
Analysis	  Risk-‐Human	  

THERP:	  Technique	  for	  Human	  Error	  
Rate	  Prediction	  



7 

and tend not to model cognition, context, and/or errors of commission. Second generation (2G) methods 
are chronologically newer, and generally include models of cognition, context, and/or errors of 
commission. Figure 4 depicts a rough timeline of the development and lineage of HRA methods, 
including a third generation (3G) emerging now for simulation based methods.

Figure 4 - Timeline of HRA Methods Development 

As Hollnagel [21] pointed out, however, all of these non-simulation based HRA methods are essentially 
modeled after traditional probabilistic reliability assessment (PRA). That is, these methods use the same 
basic approach PRA uses to model equipment reliability, with two key exceptions. The first is that the 
modeling of equipment failures is replaced by modeling human failures at tasks and/or activities. The 
second exception is that wider uncertainty bands are used to account for the increased variability in 
human performance relative to equipment performance, which is often attributed to individual differences 
between people, the time-dependent nature of many human tasks, and the non-orthogonality of factors 
that influence human performance. Inherent to this approach, given the assumptions about how these 
HRA methods conceive of and model human performance, is the goal of calculating the probability of a 
human error or erroneous action. This probability of erroneous action is typically based on a nominal 
human error probability (NHEP) that is either modified or determined by various, differentially weighted 
PSFs such as the work context, the nature of the task, and the individual abilities of the person. Given this 
thinking and general approach, there are a number of issues with using these HRA methods in their 
current form in simulation frameworks such as MOOSE. 

For example, one primary shortfall with non-simulation HRA methods is the assumption that PSFs do not 
influence one another, when in fact there is clear psychological evidence that PSFs frequently interact. 
For example, a limited amount of time to perform the task (i.e., time pressure) affects the person’s stress 
level when performing the task. Both time pressure and stress are commonly identified as separate PSFs 
in many HRA methods, which are used individually to directly modify the nominal HEP in an additive 
fashion. Simply adding PSFs together simplifies the method, but it also eliminates any mathematical 
accounting for their potential interaction or influence upon one another. If these HRA methods are 
included in a simulation framework with this erroneous assumption that PSFs are independent and 
additive, the propagation of this error will lead to inaccurate HEP estimates. 

This PSF example is just one of many issues with non-simulation based HRA methods. Others, including 
Swain [20] and Dougherty [37] have expounded on a range of issues with non-simulation based HRA 
methods that can greatly affect their ability to be effectively incorporated into simulation frameworks. 
Broadly speaking, issues include: 

1. The accuracy of HRA’s HEP predictions has not been satisfactorily demonstrated, and  
2. The time-dependence of human actions (i.e., dependency) is not effectively modeled for purposes of 

quantifying HEPs. 
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These issues, among others, need to be addressed with simulation based HRA methods in order for them 
to be effectively included into simulation frameworks. 
 
2.1.1 Improving Existing HRA Methods: Simulator Data and Bayesian Analysis 

The weaknesses in existing HRA methods are likely to be challenges in developing an approach to 
dynamic HRA. Recent work (for example, [38] and [39]) has focused on improving the accuracy and 
validity of HRA methods. Most of this work emphasizes the use of data collected in full-scope NPP 
control room simulators such as the Human Systems Simulation Laboratory (HSSL) at INL (see [40] and 
[41]). Bayesian methods allow analysts to use small data sets to test and refine the HEP values specified 
in an HRA method. Analysts adjust a prior probability distribution taken from the HRA method using 
data collected in a simulator study to calculate a posterior probability distribution—that is, an error 
probability distribution function that accounts for the observed data. Although these methods have been 
used to improve existing HRA methods, Bayesian analysis and simulator studies may be invaluable 
stepping stones for simulator based HRA.  
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3. SIMULATION BASED HRA 

3.1 Introduction 

In the face of any unresolved debate over first and second generation HRA methods (among other 
classificatory differences between methods), what advantage can be had by positing a new—possibly a 
third generation—of methods? In this section, we wish to highlight significant recent developments that 
render the distinction between first and second generation HRA methods largely moot. There exist 
developments—namely in human performance modeling—that do not fit the classification of first or 
second generation HRA methods. Human performance modeling utilizes virtual scenarios, virtual 
environments, and virtual humans to mimic the performance of humans in actual scenarios and 
environments. What sets this form of HRA apart is that it provides a dynamic basis for HRA modeling 
and quantification. First and second generation methods, by any definition, have featured largely static 
task analyses of operating events as the underlying basis of performance modeling. These methods have 
also relied on performance estimations mapped to similar previous performance derived through 
empirical data or expert opinion. Simulation based HRA differs from its antecedents in that it is a 
dynamic modeling system that reproduces human decisions and actions as the basis for its performance 
estimation. Simulation based HRA may use a frequentist approach for calculating HEPs, in which 
varieties of human behaviors are modeled across a series of Monte Carlo style replications, thus 
producing an error rate over a denominator of repeated trials. Simulation based HRA may also augment 
previous HRA methods by dynamically computing PSF levels to arrive at HEPs for any given point in 
time. More importantly, simulation based HRA may present the decision points that operators make while 
engaging with the plant. These decision points are crucial anchors to plant performance, and no plant 
model can claim to model performance accurately without accounting for the nuances of human 
operations that determine the evolution of events. 

 

3.2 Non-HRA Human Performance Modeling 

Meister [42] suggests that HRA filled an important void early in the evolution of human factors by 
centering on prediction. Much of classic human factors has centered on the collection of data on the 
interaction of humans with designed systems. The purpose of such data is to improve the design of the 
system, ultimately to optimize human performance in terms of criteria such as usability, efficiency, or 
safety. HRA has instead attempted to predict human performance, specifically human errors, that can 
occur in such human-machine interactions. The purpose of HRA is therefore not typically to improve the 
design of the system so much as to determine what factors impact the safe human operation of that 
system. Over time, HRA has been joined by another predictive tool, namely human performance 
modeling.  

Human performance modeling is an umbrella term used to describe systems that simulate human decision 
making and actions. Human performance modeling is largely synonymous with cognitive simulation and 
artificial intelligence, although it has in practice applied to unified systems that attempt to account for a 
broad range of human cognitive. In contrast, variants of cognitive simulation or artificial intelligence may 
focus on modeling specific cognitive mechanisms instead of providing integrated models of multiple 
cognitive mechanisms. This distinction is analogous to the differences found in hardware component vs. 
system models, respectively. Young [43] suggests that human performance models vary on a number of 
dimensions, including:  
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• The psychological theories underpinning the modeling. Human performance models take 
different approaches to applying psychological theories and may use different theories to account 
for similar phenomenon. The use of different theories reflects the fact that psychological science 
has not yet reached a stable point of having a single, unified theory of human cognition. Human 
performance models mix and match psychological findings to arrive at an overall account of 
human performance. Psychological theories may provide different or even contradictory 
predictions when implemented in human performance models.  

• The complexity of the human activity. Some human activities present a single, optimal solution. 
Such activities may be considered cognitively simple. For example, activating a toggle switch 
represents a simple decision outcome. Other activities present decision branches with multiple 
possible paths and outcomes. Simple solution sets require less complex modeling of decision 
making, while complex sets require more comprehensive modeling. Those activities that may 
readily be guided by procedures require less extensive decision modeling than those with open-
ended outcomes. Complex decision sets require creating models of operator goals beyond simple 
procedural adherence. 

• Models vs. simulations. While a model may imply an explicit mathematical formalism in 
engineering, the term model may instead refer to a descriptive but not formalized framework of 
cognitive processes in human performance modeling. A simulation involves applying the model 
to a scenario and requires that the model be implemented into a form that may be executed, 
typically as software. A model may be implemented as different simulations. For example, a 
model of memory decay may be simulated as a mathematical function, logic software, or a neural 
network. 

• The use of actual vs. conjectured human behavior. Many human performance models are not 
representations of actual observed human behavior but rather expert judgment on human 
activities based on operating procedures. This category of modeling is conjectured. This is 
especially a useful tool for the design of novel systems in which observational data are not yet 
available. Ideally, such conjectured models are later validated against actual human performance.  

There are numerous human performance modeling systems available. For example, [44] reviews human 
performance modeling systems that they have been applied to aerospace at the National Aeronautics and 
Space Administration (NASA), including the following systems:  

• Adaptive Control of Thought-Rational (ACT-R 5.0), 

• Air Man-machine Integration Design and Analysis System (Air MIDAS), which is a variant of 
MIDAS,  

• Distributed Operator Model Architecture (D-OMAR), and  

• Attention-Situation Awareness (A-SA) systems.  

A recent review by Pew [45] for the golden anniversary issue of the journal Human Factors chronicles 
other human performance modeling systems, including: 

• various versions of the Micro Saint task modeling system,  

• the General Problem Solver,  
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• the State, Operator, and Result (SOAR or Soar) system,  

• the Goals, Operators, Methods, and Selection Rules (GOMS) approach,  

• the Executive-Process Interactive Control (EPIC) system,  

• ACT-R, and  

• MIDAS.  

Recalling the distinction between models and simulations, all of these systems offer models of cognition, 
but only Micro Saint, Soar, ACT-R, MIDAS, and EPIC are fully implemented simulation systems.  

As noted, a defining characteristic of human performance modeling systems is that they mimic human 
decision making. Russell and Norvig [46] identify two general types of decision making used in human 
performance modeling systems. The first, historically speaking, is the deductive artificial intelligence 
approach, which consists of software systems that make simple deductive conclusions given coded 
representations. Two famous implementations include systems to prove logical theorems such as the 
General Problem Solver and logical programming languages such as PROLOG. The second logical 
reasoning type is the inductive system. Such a system, commonly called a production system, is capable 
of inferring from given contextual representations to produce new representations.b The human 
performance modeling systems already described in [44] and [45] mostly fit within this latter type of 
decision making. The advantages of inductive over deductive systems are striking: inductive systems can 
learn given minimal information, whereas deductive systems must avail preprogrammed information. 
Both, nonetheless, have their uses: the deductive General Problem Solver, for example, is quite effective 
at solving mathematical theorems, a domain that is certainly cognitive yet often falls outside the capacity 
of human cognition. The inductive logic production systems such as ACT-R, Soar, and Micro Saint, are 
more humanlike in their approach, making them suitable for simulating human performance realistically. 

3.3 HRA and Human Performance Modeling 

Gore and Smith [47] point out that despite a common focus on human performance, HRA and human 
performance modeling have not been well integrated. Human performance modeling systems have not 
been used to model those human behavioral contexts that lead to human error, nor to predict the rates of 
unsuccessful human performance. Yet, such an extension of human performance modeling is a logical 
bridge to HRA. Infusing HRA concepts like human error and HEPs into human performance modeling 
increases the utility of such systems. Importantly for the present purposes, human performance modeling 
takes HRA out of the static models that are the mainstay of current Level 1 PRA applications.c While 
current HRA methods have proven robust in their application to Level 1 PRA, the methods are optimized 
for heavily proceduralized activities within the control room. Level 2 and 3 PRA require analyses of less 
proceduralized activities involving the dynamic interplay of control room and balance-of-plant and 
responder personnel. Current HRA methods are not validated for such applications. Human performance 

                                                        
b Note that a representation refers to any external state of the environment as well as internal, cognitive states of the simulated 
operator. External representations may include object recognition and situational awareness, while internal representations may 
include goals, memory, and knowledge. The advantage of the inductive systems is that they may formulate conclusions about 
such representations beyond what is hard-coded into the system. These “insights” more readily mimic human intelligence and 
decision making. 
c A Level 1 PRA concerns potential core damage; Level 2 PRA concerns potential release of radioactivity (i.e., a severe 
accident); Level 3 PRA concerns potential consequences of a severe accident in terms of health and environment. 
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modeling affords the opportunity to extend current HRA approaches to novel domains by simulating 
Level 2 and 3 scenarios and the human activities within those scenarios.  

There have been efforts to implement human performance modeling for HRA: 

• A framework for using NASA’s MIDAS system for HRA has been laid out [48] but has not been 
implemented to date. 

• ACT-R has been extended to model errors in the Human Error Modeling Architecture (HEMA) 
[49] in research funded by the Office of Naval Research. While the conceptual design was 
published in 2005, an implementation of the system has not been made public to date. 

• A production system inspired by ACT-R and Soar has been developed in conjunction with the 
University of Oldenburg to model errors by pilots and drivers [50]. This system helps identify 
sources of errors but does not predict their frequency. 

• A demonstration model in Micro Saint has mapped workload from the NASA Taskload Index 
(TLX) to the ATHEANA and SPAR-H HRA methods [51]. This research stops short of using the 
methods’ performance shaping factors to quantify human error. Its primary purpose in its current 
inception is to provide a mapping of existing workload simulation data to a format that is 
compatible with HRA methods. 

• The Accident Dynamics Simulator-Information Decision and Action in Crew (ADS-IDAC) 
system [52] was developed specifically for HRA applications, tying together a cognitive model, a 
decision making engine, performance shaping factors, and a dynamic event simulator. This 
implementation was further extended in [53] and [54] to include a crew response model for 
emergency operations and severe accidents in nuclear power plants. 

3.3.1 HRA and Human Performance Modelling of Severe Accidents 

While other human performance modeling systems have achieved an otherwise adequate level of 
maturation in their domains, only the ADS-IDAC system requires minimal extensions to be used for 
HRA. Extending other human performance modeling systems to include HRA would require costly and 
time-consuming extensions of the preliminary efforts in [48] - [51].  

In fact, ADS-IDAC recently was integrated with Methods for Estimation of Leakages and 
Consequences of Releases (MELCOR) code to evaluate a station blackout (SBO) at a pressurized water 
reactor (PWR) [55]. The project encountered significant technical difficulties, including challenges in the 
integration of ADS-IDAC with MELCOR. Instead of fully integrating the two programs, the authors 
suggest using an external script to jointly execute the two programs and manage interfacing data. 
RISMC’s toolkit is well-suited to this approach.  

However, coding ADS-IDAC scenarios requires significant resources. As with other HRA methods, 
ADS-IDAC was developed for Level 1 analysis. As such, the method is built around written procedures, 
with every procedure step and sub-step explicitly coded. Scenarios without written procedures are coded 
using “mental procedures” that can be activated when certain parameters or conditions are met. The level 
of detail in this model (and the associated resources required to implement it) may be too specific for the 
human reliability modeling desired in the RISMC framework. Initial work in [54] 
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In any case, ADS-IDAC offers the most mature HRA-based human performance modeling currently 
developed. This model can be seen as the starting point for incorporating human actions into dynamic, 
simulation based risk assessment. 
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4. CASE STUDY: MODELING TIME OF OPERATOR ACTIONS IN HRA 

Previous HRA simulation in RISMC used a simple model of the timing of human actions that is loosely 
based on the SPAR-H method. In this section, we discuss how timing is treated in conventional and 
simulation based HRA methods. Although timing of operator actions is a vital element of dynamic HRA, 
most existing HRA models are concerned with timing only insofar as timing can impact failure 
probabilities for human actions. Early HRA models address the question of success or failure, but do not 
assess when that success (or failure) may occur. This review of the treatment of timing of operator actions 
in HRA models is an example of the gap between existing HRA methods and the needs of dynamic HRA. 
We also examine models of operator actions from both within and outside the nuclear industry as a first 
step towards bridging this gap. 
 

4.1 Timing in Traditional HRA methods 

Time-based HRA models compute the human failure probability from the time available and the time 
needed to complete a task. As examples, consider how timing is incorporated into the classic HRA 
method, THERP, and the HRA method based primarily on timing, the Human Cognitive Reliability 
(HCR) method. 
 
4.1.1 Timing in the Technique for Human Error Rate Prediction (THERP) 

In THERP, timing is used to predict the probability that an operator will successfully diagnose an 
abnormal event. The probability of success increases as time increases; immediately following the event, 
the probability of success is zero, but with infinite time available, the probability of successfully 
diagnosing the accident is one. Other factors (such as operator expertise) are not addressed in the model 
for the failure probability for diagnosis [56]. 

 
Figure 5: THERP failure probability curves (Figure 12-4 in [56]) 

Figure 5 shows the failure probability curves for diagnosis as a function of time. The failure probability 
decreases as the time from the event increases. The failure timing model is based on the Nuclear 
Reliability Evaluation Program (NREP) procedures guide, [57]. Probability of failure to diagnose an 
abnormal event is assumed to be lognormal over time, generally decreasing as time from the event 
increases. For multiple abnormal events, a ten minute constant is added to the distribution for diagnosing 
the second event. Timing estimates are based entirely on expert consensus and are therefore “highly 
speculative,” with no data behind the model [58]. 
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If we were to attempt to update THERP for dynamic HRA, a distribution for the time required for an 
operator to successfully diagnose the abnormal event could be inferred from the failure probability curve; 
however, as these curves have a limited basis, there would be substantial uncertainty associated with the 
timing estimates obtained.  
 
4.1.2 Timing in Human Cognitive Reliability (HCR) 

The HCR method developed by EPRI improves on THERP’s treatment of timing in two significant ways. 
First, HCR includes timing considerations in all human failure events (not only diagnosis). Second, HCR 
is built on data from the Operator Reliability Experiments (ORE) conducted in the 1980s, meaning that 
the time reliability curves employed in HCR are based on experimental data rather that expert judgment.  
As with THERP’s diagnosis failure probabilities, HCR estimates the probability of failure of any human 
interaction (HI) using the time available and the time required. The method estimates the probability of 
non-response, i.e. the probability that an operator will not complete a specific HI [59].  
 
The general approach calculates the time required for three phases of a HI: recognition of the problem, 
diagnosis of the problem, and recovery actions. For each phase, the analyst specifies the operator 
experience, stress and quality of the human-machine interface (HMI). These three factors can increase or 
decrease the amount of time required for each phase of the HI. After calculating the time required to 
complete the HI’s three phases, the analyst refers to the appropriate HCR curve to estimate the probability 
of non-response [58]. 
 

4.2 Models from Outside the Nuclear Industry 

Human performance models developed outside the nuclear industry take various approaches to modeling 
timing of human actions. We highlight two approaches, one from the human factors domain (GOMS) and 
one developed by the U.S. Army (IMPRINT). 
 
4.2.1 Goals-Operators-Methods-Selection Rules (GOMS) 

Goal-Operator-Methods-Selection (GOMS) is a task analysis method that was developed for usability 
testing to evaluate Human-Computer Interfaces [60]. The method focuses on a subject’s high-level goals 
(G), which can be achieved the any number of methods (M); these methods are a collection of operators 
(O)—that is, the motor or cognitive actions required to complete these goals. Selection rules (S) 
determine which method is used to achieve a goal. Timing estimates are typically included in the operator 
definitions [61].  
 
The original GOMS model is referred to as CMN-GOMS after the authors—Card, Moran, and Newell. 
Other GOMS variations include the Natural Language GOMS (NLGOMS) and the Cognitive Perceptual 
Model (CPM-GOMS). NLGOMS adds a fixed “cognitive overhead” time and is best suited for analyses 
with a large number of associated tasks. The Keystroke Level Model (KLM) is the most basic model that 
includes execution time [61]. 
 
A simplified version of GOMS, KLM analyses specifies the method a subject will use (rather than relying 
on selection rules). The operators are limited to keystrokes with associated time estimates: 
 

• K: press key/button, 0.20s 
• P: point mouse to target on display, 1.10s 
• H: home hands on keyboard or device, 0.40s 
• D: draw line segment on a grid, variable times 
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• M: mentally prepare to do an action or series of closely-related actions, 1.35s (may vary) 
• R: system response time (user waits), variable times 

Notice that even in this simplified model, time is allocated for mental activities (M, 1.35s). Although this 
estimate is based on the time required for a subject to prepare to do a simple action such as move a 
mouse, this model can be used for more complex cognitive tasks. GOMS could also be used to estimate 
the time required to complete physical tasks (opening valves, etc.), providing a minimum time required to 
complete a sequence of actions. 
 
The GOMS structure is similar to the structure of Severe Accident Management Guidelines (SAMGs) 
used in the nuclear industry, which specify objectives and a list of strategies for achieving each objective. 
This may provide a useful framework for modeling scenarios without prescriptive procedures, as many 
HRA methods rely on procedures to characterize control room interactions.  
 
4.2.2 Improved Manpower Personnel Research Integration Tool (IMPRINT) 

For analysis of more complex tasks, the Army Research Laboratory developed a system known as 
IMPRINT, that is, the Improved Manpower Personnel Research Integration Tool [62]. This is a dynamic 
system that models both accuracy and time to complete tasks; although it is not referred to as an HRA 
model, it is may be the most mature implementation of fully dynamic HRA in that it has been widely used 
for a variety of military applications.  IMPRINT is embedded in Micro Saint as described in Section 3.2. 
 
IMPRINT modeling begins with a task analysis that is extended in to a defined sequence of tasks and 
decision points with accompanying branching rules [63]. For each task, analysts use a taxonomy to 
identify the task type. Tasks are categorized as visual, auditory, cognitive or psychomotor tasks, with 
associated sub-categories such as “numerical,” “fine motor” or “oral communication” to further specify 
the nature of the task. A task may fall into multiple categories—for example, a task might be 40% 
attention and 60% psychomotor. Task reference libraries developed at the Army Research Laboratory 
provide nominal time to complete each task as well as nominal success probabilities.  
 
After determining the task type, the analyst determines the operating conditions. IMPRINT models the 
effects of wearing protective equipment and the impact of heat, cold, noise and fatigue. Each factor may 
affect time to complete the task, the success probability, or both time and success probability. IMPRINT 
reference libraries include performance multipliers for each factor that specifies the impact on the two 
outcomes (time and success). Using these multipliers, the model calculates the estimated probability of 
success and the time required to complete the task. 
 
Although IMPRINT is strongly oriented towards military activities (as evidenced by the user manual, 
[64]), IMPRINT has been integrated with the cognitive architecture, ACT-R [65] and may provide a 
suitably flexible structure for dynamic models of human-system interactions in the nuclear domain.  
 

4.3 Timing in Dynamic HRA: The State of the Art 

As discussed in Section 3.3.1, recent dynamic PRA work integrated ADS-IDAC with MELCOR to 
simulate a PWR SBO [55]. Here, we examine how timing of operator actions is modeled in ADS-IDAC 
[52] - [54], the human operator model used in this study.  
 
IDAC uses coded procedures to guide operator actions. In addition to written procedures, IDAC codes 
“mental procedures” to capture operator knowledge that exceeds the written procedures. Variation in 
operator action comes from the timing distribution coded into each procedure step, and from 
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characteristics coded into the operator model. This includes the operator knowledge base, the crew 
decision-making strategy, the crew diagnosis confidence threshold, the crew’s activity level for gathering 
evidence, and the crew’s action time multiplier. Currently, three decision-making strategies are modeled 
in IDAC. These are referred to as Hamlet, Vagabond, and Garden Path. Hamlet decision makers continue 
to seek confirmation for their suspicious well beyond a typical level. Vagabond decision makers jump 
from one diagnosis to another and are easily distracted by new indicators. Garden Path decision makers 
take the opposite approach and hold onto a diagnosis despite contrary evidence. An action time multiplier 
can be applied to any decision-making style to characterize the crew as, for example, a fast crew, a slow 
crew or a nominal crew.  
 
For each of these decision-making styles, two factors influence timing of operator actions. The first factor 
is the diagnosis confidence threshold. Depending on the threshold, an operator may require shorter or 
longer time to make a diagnosis following an abnormal event, which in turn will impact the time an 
operator begins a response procedure.  
 
The second factor that influences timing of operator actions is operator activity, specifically in seeking 
extra information for accident diagnosis without direction from written procedures. Increased activity 
does not necessarily result in a faster diagnosis. In addition to these factors, timing is embedded in the 
coded procedures. Each procedure step uses the three-parameter Weibull distribution to estimate the time 
required to complete the step. The parameters that must be specified for each step are: 
 
• 𝜇, the minimum time (seconds) 
• 𝛼, the scale factor (seconds)  
• 𝛽, the shape factor (unitless) 

The probability distribution function (f) for the time (t) required to perform the action is therefore: 
 

𝑓 𝑡 =
𝛽
𝛼

𝑡
𝛼

!!!
exp −

𝑡 − 𝜇
𝛼

!
 

(1) 

 
 
If multiple branches are desired, the scenario is coded using the mean time for pre-determined regions. 
For example, you might code slow, nominal and fast crews by dividing the distribution into three regions 
(e.g., 0-35%, 35-65%, and 65-100%) and using the mean time from each region to represent the response 
time for each crew.  
 
These distributions are based on expert judgment rather than empirical data. However, the model has been 
calibrated using data from the International HRA Empirical Study conducted in the Halden Man-Machine 
Laboratory (HAMMLAB) [27]. Reviewing multiple Steam Generator Tube Rupture (SGTR) scenarios 
allowed analysts to identify branching points to generate separate scenarios for slow and fast crews. 
Following SGTR calibration, IDAC incorporated several procedure holds to mimic crew briefings, 
unexpected delays, and to sync crews with observed procedure execution speed.  
 
Figure 6 shows the five different time branches used to model the time taken for a crew briefing after 
fitting crew briefing times to the Weibull distribution. Here, the model specifies five timing branches: 
very short, short, nominal, long and very long. This process could be repeated in the HSSL for well-
understood scenarios.  
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Figure 6 - IDAC branch times and observed timing data for an SGTR briefing (Figure 33 in [53]) 

 
4.4 Summary of the Data Used to Support HCR and ADS-IDAC 

Simulator studies can provide concrete data for timing of human actions (in contrast to the “highly 
speculative” time reliability curves used in THERP). We briefly review the data collected in the two 
studies mention above, the EPRI Operator Reliability Experiment (ORE) and the International HRA 
Empirical Study. Both of these sources provide timing data for high-level tasks (isolate a ruptured SG, 
manually trip plant, etc.). This timing data may provide the appropriate level of detail for practical, 
dynamic PRA.  
 
4.4.1 International HRA Empirical Study 

The International HRA Empirical Study involved 14 crews. Each crew completed four scenarios: simple 
and complex versions of an SGTR and a steam line break (SLB). Published reports include timing data 
for pre-defined HFEs, as illustrated in Figure 7 (see [66] and [67]). More detailed timing data are 
available in the study data sets. 
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Figure 7 - Human Failure Event timing data reported in the International HRA Empirical Study (Table 4-

1 in [67]) 

Although these data are limited to variations on two design-basis accidents, the relatively large number of 
crews in the study provides a distribution of timing data that can be modeled in dynamic HRA. A related 
study featured similar data for loss of feedwater (LOFW) scenario variants [27]. Characteristic variations 
in timing that can be applied to other scenarios may be identifiable from these data. 
 
4.4.2 Operator Reliability Experiment (ORE)  

EPRI conducted the ORE in the 1980s to test and improve the HCR model. Data were collected at 8 
plants (four boiling water reactors (BWRs) and four PWRs), with multiple crews observed at each plant. 
Fourteen unique PWR scenarios and 16 unique BWR scenarios were observed for the study; some 
scenarios were repeated at multiple plants [68]. 
 
HCR defines three types of Human Interactions (HIs): pre-initiating event HIs (Type A), initiating event-
related HIs (Type B) and post-initiating event HIs (Type C). Data collected in the study emphasizes Type 
C interactions, specifically post-initiating, proceduralized HIs. These are defined for each scenario as 
follows: 
 

• Cognitively Procedurally (CP) Driven Action 1: response following a change in the plant state 
that is indicated by an alarm or value of a monitored parameter (e.g., in a PWR, spurious 
pressurizer spray operation) 
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• CP2: response following an event that gives rise to a primary cue that has to be achieved when a 
parameter is exceeded or can be seen not to be maintainable below a certain value (e.g., in a 
BWR, Initiate residual heat removal (RHR) when setpoint temperature exceeds 95° F) 

• CP3: response following an event that gives rise to a primary cue that has to be achieved before 
some plant parameter reaches a critical value (regarded as a soft prompt or secondary cue) (e.g., 
in a BWR, initiate standby liquid control system (SLCS) before setpoint temperature reaches 
110° F) 

• CP4: performing a step in a procedure which is being followed as a result of a plant disturbance 
(e. g., in a BWR, inhibit automatic depressurization system (ADS) before lowering level in 
response to anticipated transient without scram (ATWS)) 

• CP5: maintain a variable parameter below, at, or within specific limits (control action) (e.g., 
controlling level in SG to prevent overfill or dryout) 

HIs are identified for each scenario, and individual crew response times are reported for each HI, along 
with scenario timelines for individual crews. Aggregate data provide median response times for specific 
HIs (Table 2), and expected standard deviation values for C1-C3 HI response times are calculated (Table 
3). With this information, an analyst can develop a reasonable distribution for expected response times for 
C1-C3 interactions that are not listed in Table 2 without conducting extensive additional simulator 
studies.  
 

Table 2 - Mean sigma for human interactions by category identified in the ORE study (from [59]). 
  

Plant	  Type	   Human	  Interaction	  
Category	  

Average	  𝝈	   Lower	  Bound	  
(5th	  percentile)	  

𝝈 − 𝟏.𝟔𝟒×𝑺	  

Upper	  Bound	  
(95th	  percentile)	  

𝝈 + 𝟏.𝟔𝟒×𝑺	  
	  
BWR	  

	  
CP1	  

	  
0.70	  

	  
0.40	  

	  
1.00	  

CP2	   0.58	   0.20	   0.96	  
CP3	   0.75	   0.59	   0.91	  

	  
PWR	  

	  
CP1	  

	  
0.57	  

	  
0.26	  

	  
0.88	  

CP2	   0.38	   0.07	   0.69	  
CP3	   0.77	   (Insufficient	  data)	   (Insufficient	  data)	  
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Table 3 - Mean Timing for characteristic Human Interactions (HIs) identified in the ORE study, [59] 

PWR	  Interactions	   Average	  𝐓𝐦𝐞𝐝	  (s)	   𝐓𝐦𝐞𝐝	  range	  (s)	  
Perform	  manual	  RX	  trip	  by	  opening	  trip	  breakers	  
(from	  ATWS)	  

16	   12-‐23	  

Isolate	  faulted	  SG	  to	  prevent	  release	  of	  primary	  coolant	  
into	  secondary	  side	  following	  a	  SGTR	  (from	  SGTR)	  

500	  (8	  min)	   220-‐1021	  

Isolate	  faulted	  SG	  following	  a	  SLB	  (from	  SLB)	   507	  (8	  min)	   323	  
Initiate	  RCS	  cooldown	  following	  a	  SGTR	  (from	  SGTR)	   1040	  (17	  min)	   1040	  
Attempt	  to	  establish	  FW	  following	  loss	  of	  secondary	  heat	  
sink	  (from	  loss	  of	  AFWS)	  

365	   300-‐431	  

Initiate	  RCS	  cooldown	  and	  depressurization	  following	  a	  
small	  or	  medium	  LOCA	  (from	  RX	  trip)	  

1423	  (23	  min)	   -‐-‐	  

Diagnose	  SOSV,	  verify	  SI	  flow	  and	  stop	  RCPs	  (from	  SOSV)	   271	   135-‐373	  
Switchover	  from	  injection	  to	  recirculation	  following	  a	  
LOCA	  

2905	  (from	  Trip)	  
131	  (from	  RWST	  

level)	  

-‐-‐	  

Initiate	  natural	  cooldown	  following	  loss	  of	  CCW	  (from	  
loss	  of	  CCW)	  

566	  (~10	  min)	   428-‐704	  

BWR	  Interactions	   Average	  𝑻𝒎𝒆𝒅	  (s)	   𝑻𝒎𝒆𝒅	  range	  (s)	  
Perform	  manual	  RX	  trip	  following	  ATWS	  (from	  
ATWS)	  

18	   -‐-‐	  

Initiate	  SLCS	  following	  ATWS	  (from	  ATWS)	   134	   65-‐222	  
Initiate	  suppression	  pool	  cooling	  following	  an	  ATWS	  
(from	  ATWS)	  

223	   47-‐145	  

Lower	  level	  to	  control	  power	  following	  an	  ATWS	  (from	  
ATWS)	  

195	   93-‐389	  

Inhibit	  ADS	  following	  SLCS	  initiation	  in	  an	  ATWS	  (from	  
ATWS)	  

238	   219-‐258	  

Depressurize	  RX	  and	  initiate	  LPI	  cooling	  following	  a	  FW	  
line	  break	  (from	  FW	  line	  break)	  

758	  
(~13	  min)	  

590-‐926	  

Attempt	  to	  restart	  HPCI/RCIC	  following	  trip	  in	  a	  station	  
blackout	  (from	  HPIC/RCIC	  trip)	  

84	   30-‐132	  

Depressurize	  Rx	  following	  loss	  of	  HPI	  and	  connect	  
alternate	  water	  supplies	  (e.g.	  fire	  water)	  in	  an	  SBO	  (from	  
DG	  failure/blackout)	  

1190	  
(~20	  min)	  

1074-‐1248	  
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5. CONCLUSIONS 

5.1 Selection of an HRA Approach for RISMC 

For infrequent occurrences, including incidents at power plants, there is often inadequate operations 
experience to provide data-based quantification of human performance in HRA. Utilities, researchers, and 
regulators who wish to determine the risk significance of such past events retrospectively will utilize 
HRA estimation methods to the extent that they encompass the PSFs and scenarios at play in the event. 
However, because of the scarcity of available data, it is often necessary to utilize expert estimation 
techniques, which have historically been fraught with poor inter-analyst reliability [17]. 

Human performance modeling avoids the shortcomings of applying an HRA quantification method in a 
poorly suited domain or utilizing expert opinion to arrive at the human contribution to the risk of an 
event. Instead, by scripting a scenario that closely matches the past event, it is possible to generate 
simulation runs with the virtual personnel to arrive at an estimate of the frequency with which human 
performance elevated the risk of the scenario. This approach increases the veracity of risk estimation. 

Equally promising, so-called unexampled events, particularly severe accident scenarios, stand to benefit 
from human performance modeling by allowing virtual operators to engage in the evolution of events and 
provide a range of decisions and actions that might impact plant response. This form of simulation based 
HRA is a crucial evolution of risk analysis for the plant and one that can only be accomplished by 
coupling virtual operator models with advanced plant simulations. This problem set is the challenge of 
RISMC and presents an important opportunity to advance both HRA and the state of plant models. 

As noted by Gore and Smith [47], the human performance modeling systems used in the mainstream 
human factors community have not addressed HRA. With the exception of ADS-IDAC, research on tying 
human performance models to HRA is preliminary. Because ADS-IDAC is the only human performance 
modeling system specifically designed for nuclear power plant applications and because it is also the only 
system specifically designed to model human error and produce human error probabilities, ADS-IDAC 
has been used for further modeling of Level 2 and 3 PRA applications [55]. While other human 
performance modeling systems have achieved an otherwise adequate level of maturation in their domains, 
only the ADS-IDAC system requires minimal extensions to be used for HRA. Extending these human 
performance modeling systems to include HRA would require costly and time-consuming extensions of 
the preliminary efforts in [48] - [51]. Thus, instead of first modifying a system to enable it to support 
HRA, selection of ADS-IDAC permits immediate development efforts to be tied to extending its Level 1 
HRA capabilities to Levels 2 and 3 and integration within the MOOSE framework. 

5.2 Next Steps: Severe Accident Modeling and Need for Simulation 
Based HRA 

In order to develop an approach for simulation based human reliability modeling, several questions need 
to be addressed:  

• What level of detail should be modeled? Is it appropriate to model operator cognition and every 
operator action, as in ADS-IDAC, or is a more high-level model sufficient? Perhaps a hybrid 
approach (e.g. the course-grain and fine-grain model proposed in [69]) should be adopted. This 
question is particularly relevant in Level 2 and Level 3 analysis, as these events are much less 
familiar to operators and procedures are not available for many of these scenarios. As we move away 
from prescribed human interactions with the plant, step-by-step analysis of operator actions becomes 
more difficult and more speculative.  
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• What PSFs must be considered in simulation based HRA? PSFs are unlikely to remain constant 
throughout a scenario, and interactions between performance shaping factors must be addressed 

• If an existing HRA method (or methods) is used, which method best suits the RISMC toolkit? SPAR-
H was selected for RISMC’s first, simple HRA model; perhaps this is a reasonable choice going 
forward.  

• When and how can empirical data and simulator studies be used to support dynamic HRA? Existing 
sources such as data from the ORE may be useful, and INL’s HSSL provides a platform for collecting 
further data if desired.  

Most of these questions are tied to the tension between a highly realistic but resource-intensive model and 
a model that is easy to implement and modify but perhaps too simplistic. The targeted balance between 
these two ends is complicated by the uncertainty surrounding human performance that has plagued HRA 
since its inception. In the next phase of this project, we will attempt to address these concerns and 
recommend an optimal approach for RISMC HRA. 
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