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Abstract—This paper starts with discussing the princi-

ple based on which the celebrated orthogonal frequency

division multiplexing (OFDM) signals are constructed. It

then extends the same principle to construct the newly

introduced generalized frequency division multiplexing

(GFDM) signals. This novel derivation sheds light on

some interesting properties of GFDM. In particular, our

derivation seamlessly leads to an implementation of GFDM

transmitter which has significantly lower complexity than

what has been reported so far. Our derivation also facil-

itates a trivial understanding of how GFDM (similar to

OFDM) can be applied in MIMO channels.

I. INTRODUCTION

While the orthogonal frequency division multiplexing

(OFDM) has enjoyed its dominance in the present and

past wireless standards for broadband communications,

there is a strong tendency among those who explore can-

didate waveforms for 5G to replace OFDM because of its

well-known limitations. OFDM suffers from some band-

width inefficiency, since a significant portion of each data

packet is allocated to the cyclic prefix segments. Also,

OFDM has been found to be a poor choice in multiuser

applications where any loss of synchronization among

users leads to a significant loss in performance, [1], [2].

Generalized frequency division multiplexing (GFDM)

is one of the candidate waveforms that has been proposed

and currently being explored extensively by the 5GNow

group, [3]. The GFDM waveform have already been

presented in a number of conferences, e.g., [4]–[11], and

its versatility as a 5G candidate has been discussed in a

great detail in [12].

The thrust of this paper is to give a novel presentation

of GFDM which shows how it can be constructed based

on the fundamental principle of OFDM waveform. We

remind the reader that in OFDM each symbol waveform

is a summation of a number of tones, each modulated
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by a quadrature amplitude modulated (QAM) symbol.

We show that this principle is also applicable to GFDM

waveform construction. This derivation of GFDM leads

to a number of interesting results. Firstly, we find that

there exists a more straightforward and less complex

implementation for GFDM transmitter than what has

been presented in the previous literature, [9]. Secondly,

since each GFDM waveform is constructed by adding

a number of tones, its adoption to MIMO channels is

found to be as straightforward as is the case for OFDM.

This paper is organized as follows. In Section II,

we highlight the fundamental principle based on which

OFDM waveforms are constructed. Next, in Section III,

we introduce a less understood, but relevant concept:

frequency spreading design of digital filters. We combine

the results of Sections II and III to introduce a new

construction for GFDM waveforms in Section IV. The

transmitter and receiver implementations are discussed in

Section V and Section VI, respectively. In Section VII,

we show that GFDM can be extended to MIMO channels

straightforwardly. The concluding remarks are made in

Section VIII.

Notations: We found it convenient to give our presenta-

tion through a mix of continuous time and discrete time

signals. We use (t) to denote the continuous time variable

and [n] to denote discrete time index. Subcarrier index

is denoted by subscript k. Discrete time index, n, when

has to be added to a continuous time function is put as a

subscript, e.g., xn(t). Bold lower case is used for column

vectors and bold upper case for matrices. All vectors

are in column form. The vector and matrix transpose

and Hermitian are indicated by the superscripts ‘T’ and

‘H’, respectively. We use FN to denote discrete Fourier

transform (DFT) matrix of size N . We also assume that

FN is normalized, such that FNF
H
N = IN , where IN

denotes the identity matrix of size N . Hence, F−1 = F
H
N

both denote inverse DFT (IDFT) and these may be used

interchangeably. The terms FFT and IFFT refer to the

fast implementations of DFT and IDFT, respectively.



2

II. OFDM PRINCIPLES

Each OFDM (super) symbol carriers N QAM symbols

sk[n], k = 0, 1, · · · , N − 1 and is constructed as

xn(t) =
N−1∑

k=0

sk[n]e
j 2kπ

T
t. (1)

Related to (1), there are a few points that should be

noted:

1) xn(t) is a summation of N tones, weighted by the

data symbols sk[n].
2) These tones are spaced at F = 1/T and located at

the frequencies f = 0, 1/T , 2/T , · · ·, (N − 1)/T .

3) xn(t) is periodic with a period of T .

4) The Fourier series coefficients of xn(t) are the

data symbols sk[n], k = 0, 1, · · · , N − 1, and the

construction of xn(t) may be viewed as an inverse

Fourier series.

5) If xn(t) is passed through a channel with the trans-

fer function H(f), the channel output, excluding

its transient response, is obtained as

yn(t) =
N−1∑

k=0

H

(
k

T

)

sk[n]e
j 2kπ

T
t. (2)

6) Obviously, yn(t) is also period with period of T .

7) The Fourier series coefficients of yn(t) are

H
(
k
T

)

sk[n], k = 0, 1, · · · , N − 1. Hence, the

transmitted data symbols sk[n] can be extracted

from samples of yn(t), by applying a Fourier series

analysis and equalizing the results by the inverse

of channel gains at the respective frequencies.

In practice, where a digital circuitry or a software

radio is used for implementation, (1) is implemented

through an inverse discrete Fourier transform, or equiv-

alently and conveniently, through an IFFT. IFFT output

delivers only on cycle of the sampled version of xn(t);
say xn[m], for m = 0, 1, · · · , N − 1. Similarly, the data

extraction at the receiver is performed by applying an

FFT to the samples of a single period of yn(t), yn[m],
and equalizing the results by the inverse of the channel

gains, as noted in item 7), above.

Clearly, it will be resource inefficient to transmit

xn(t) for any period of time beyond the minimum

duration that one needs for correct extraction of the data

symbols sn[k] at the receiver. This minimum duration

is T (one period of xn(t)) plus the duration of the

channel response, Tch. The latter is needed to absorb

the channel transient response. To serve this purpose, in

digital implementation of the transmitter, a number of

samples, equivalent to TCP ≥ Tch, from the end of the

FFT output are prefixed to its beginning. The prefixed
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Fig. 1. An OFDM packet.

samples, because of obvious reasons, are called cyclic

prefix. At the receiver, the FFT is applied after removing

the cyclic prefix.

From the above discussion, it follows that each OFDM

symbol has a duration of T + TCP, and a data packet

consisting of M OFDM symbols may be expressed, in

continuous time, as

x(t) =
M−1∑

n=0

xn (t− n(T + TCP))

=
M−1∑

n=0

sk[n]e
j 2π

T
(t−n(T+TCP)). (3)

To facilitate our discussions in the subsequent parts of

this paper, we have presented in Fig. 1 the structure of

an OFDM packet. As follows from the above discussion,

each OFDM symbol (consisting of N QAM symbols)

needs to be cyclic prefixed.

III. FREQUENCY SPREADING DESIGN OF DIGITAL

FILTERS

Matrin, [13], and Mirabbasi and Martin, [14], sug-

gested a method of designing a class of finite impulse

response (FIR) square-root Nyquist (N) filters whose

impulse response is expressed as

p[n] =

{

c0 + 2
∑K−1

k=1 ck cos
(
2πkn
L

)

, 0 ≤ n ≤ L− 1

0, otherwise
(4)

where L = KN is the filter order, N is the spacing

between zero-crossings of Nyquist pulse-shape q[n] =
p[n] ⋆ p[−n], and the parameter K is referred to as

overlapping factor.

We also note that (4) may be rearranged as

p[n] =
L−1∑

k=0

c̃ke
j 2πkn

L (5)
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Fig. 2. A GFDM packet.

where

c̃k =







ck, 0 ≤ k ≤ K − 1
0, K ≤ k ≤ L−K
cL−k, L−K + 1 ≤ k ≤ L− 1.

(6)

This observation implies that in the frequency domain,

over a grid of L frequency beans, p[n] is characterized

by the 2K − 1 non-zero coefficients c̃k or, equivalently,

2K − 1 complex frequency beans/tones. The modulated

versions of this filter, when used to realize a filter

bank, are similarly characterized by 2K − 1 non-zero

coefficients/tones; shifted the corresponding frequency

bands.

IV. GFDM DERIVATION

As opposed to OFDM, packet construction in GFDM

is such that only one CP is needed to take care of the

channel transient response. In addition, the data symbols

over each subcarrier are filtered through a well-localized

passband filter that limits the intercarrier interference

(ICI) to only adjacent subcarriers. Fig. 2 presents the

structure of a GFDM packet. The data symbols are

spread across time and frequency, as in OFDM. However,

the data stream in each subcarrier is controlled through a

filter which confines its frequency response to a limited

bandwidth. Similar to OFDM data symbols are transmit-

ted at an interval T and subcarrier spacing is set equal

to F = 1/T .

From the discussion presented above, for OFDM, one

may deduce that to allow the use of a single CP in

GFDM, the modulated signal that carries all the data

symbols in a GFDM packet should be a single cycle

of a periodic signal with the length of MT . Such a

periodic signal may be constructed, following the OFDM

signal synthesis, according to the following formulas.

The contribution from the n data column in the GFDM

⊕ ⊕ ⊕

c0 c0 c0 c0c1

s0[n] s1[n] s2[n] s3[n]

IFFT (size MN)

circular shift and accumulate

c1c1

⊕

c1

a

a

add CP and serialize to output
x[n]

Fig. 3. An implementation of GFDM transmitter, for N = 4 and

K = 2. M can be any value.

packet of Fig. 2 is synthesized as

xn(t) =
N−1∑

l=0

K−1∑

k=−K+1

sl[n]c̃ke
j

2π(Ml+k)

MT
(t−nT ). (7)

Note that this synthsizes the data symbols sk[n] over N
subcarrier bands following the frequency method of the

previous section. We also note that xn(t), effectively,

is the sum of MN tones at the frequencies 0, 1/MT ,

2/MT , · · ·. Since all these tones may be considered as

periodic with a period of MT , xn(t) is also periodic

with the same period.

The complete packet carrying all the data symbols in

the GFDM packet of Fig. 2 is obtained by summing up

the result of (7) over 0 ≤ n ≤ M − 1. That is

x(t) =
M−1∑

n=0

xn(t). (8)

Obviously, since the components xn(t) are periodic with

a period MT , x(t) is also periodic and has the same

period. The GFDM packet is thus obtained by taking a

segment of x(t) over the interval −TCP ≤ t ≤ MT .

Following the above concept, synthesizing a packet

of GFDM in discrete time can be performed according

to the block diagram shown in Fig. 3. Without any

loss of generality, the presentation here is for the case

where N = 4, K = 2, and M . The “circular shift and

accumulate” block adds up the results of IFFT for each

set of data symbols, after applying a circular shift. The

circular shift is to take care of the time delay between the

successive data columns in the packet format of Fig. 2.

The delay associated with the symbol set time index n in

continuous time is nT . In discrete time, this corresponds

to nN sample delay.
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V. TRANSMITTER IMPLEMENTATION

Direct implementation of GFDM transmitter accord-

ing to the block diagram of Fig. 3 requires a total of M
IFFT operations of size NM , plus additional operations

prior and after IFFT. This complexity can be reduced

significantly, by some rearrangement of the operations

as explained next.

The equation that relates the input data symbols sk[n]
and the IFFT output, denoted by the length MN column

vector x[n], may be expressed as

x[n] = F
−1
MNCse[n] (9)

where se[n] = [s0[n] 0 s1[n] 0 · · · sM−1[n] 0]
T, 0 is a

row of M − 1 zeros,

C =






















c0 c−1 · · · cK−1

c1 c0 · · · cK−2
...

...
. . .

...

cK−1 cK−2 · · · 0
0 cK−1 · · · 0
...

...
. . .

...

c−(K−1) 0 · · · c−(K−2)
...

...
. . .

...

c−1 c−2 · · · c0






















and FMN is the DFT matrix of size MN × MN . We

note that C is circular matrix of size MN ×MN .

Direct implementation (9) is performed in two steps:

1) The circular convolution of the first column of C

and the vector se[n] is performed to obtain Cse[n].
2) An IFFT of size MN applied to the result of step

1) to obtain x[n].

The complexity of this procedure is dominantly deter-

mined by Step 2); an IFFT of size MN .

Alternatively, x[n] may be calculated by arranging (9)

as

x[n] = F
−1
MN FMN

[

(F−1
MNc1)⊙ (F−1

MNse[n])
]

︸ ︷︷ ︸

Cse[n]

(10)

where c1 is the first column of C, ⊙ denotes point-wise

multiplication, and the circular convolution of the vectors

c1 and se[n] are performed through point-wise multipli-

cation of their respective inverse DFTs and then applying

a DFT to the result. Here, we have chosen to use inverse

DFT domain instead of the common approach of using

DFT domain, because this, as explained next, gets us to

the low complexity implementation that we strive for.

Obviously, (10) reduces to

x[n] = h⊙ (F−1
MNse[n]) (11)

IFFT (N)
and

expand

circular shift

and

accumulate

add CP

and

serialize
⊗

h

s[n] x[n]

Fig. 4. A simplified implementation of GFDM transmitter.

where h = F
−1
MNc1 is the vector of prototype filter

coefficients. We note that the computational complexity

of (11) is still dominantly determined by the com-

plexity of the operation F
−1
MNse[n], i.e., computation

of IFFT of se[n]. Moreover, since se[n] is the ex-

pended version of the length N column vector s[n] =
[s0[n] s1[n] · · · sN−1[n]]

T, F
−1
MNse[n] can be obtained

by M repetitions of F
−1
N s[n] in a column. Hence,

following (11), x[n] can be calculated through an IFFT

of size N .

Next, we note that the final content of the circular shift

and accumulate block in Fig. 3, upon including all the

data symbols of the packet, will be the vector

xall =
M−1∑

n=0

circshift(x[n], nN) (12)

where circshift(·) means downward circular shift. After

adding the CP to xall, we have a complete packet to

transmit.

The results presented in (11) and (12) have the fol-

lowing interpretation. According to (11), each set of data

symbols modulate the set of carrier tones, added together,

and the result is truncated by a well designed window

defined by h. The results for different choices of time

index n are then (circularly) shifted and added together

to obtain the vector xall.

Now considering the results of (11) and (12) and

the discussions following these equations, the simpli-

fied transmitter block diagram of Fig. 4 is obtained.

Following this block diagram,the computation of each

packet involves M FFT operations, each of size N , M
dot multiplication of h by the expanded output of IFFT,

and M vector additions. For convenience, as a measure

of complexity, each complex multiplication followed

my a complex addition is referred to one operation.

Accordingly, the number of operations for IFFTs will

be (MN/2) log2N . We note that the elements of h

are real-valued and the number of non-zero entries of

it may be smaller than its length MN . We assume this

to be KN , where K ≤ M ; see Section III. We count

each real by complex multiplication as half a complex

multiplication. Hence, multiplications by h and additions

to ‘circular shift and add’ block are counted as KMN/2
operations. Adding our results, we find that the number
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of operation to calculate each GFDM packet will be

(MN/2) log2N + KMN/2 operations. With a typical

value of K = 4, the complexity formula that we get is

C1 =
MN

2
log2 N + 2MN operations. (13)

Taking the formula (7) of [9], a previous paper on

efficient implementation of transmitter in GFDM, and

assuming that the number of active subcarriers is equal

to N (i.e., in formula (7) of [9] we have set K = N ) to

match our assumption here, the reported result in [9] is1

C2 =
3MN

2
log2 MN + 2MN operations. (14)

A quick comparison of (13) and (14) reveals that the

implementation proposed in this paper is three time or

more less complex than that of [9].

VI. RECEIVER IMPLEMENTATION

The key idea for development of any receiver imple-

mentation is to recall that after removing the CP, the

received signal vector y, of size MN×1 may be thought

as one period of a periodic signal whose spectral content

are those of the transmit signal vector xall, scaled by the

channel gains at the respective frequencies (the trans-

mitted tones). The channel equalization at the receiver,

thus, become a trivial task. An FFT is applied to the

received vector y and each element of the result will be

divided by the channel gain at the respective frequency.

The result will be the frequency domain equalized vector

yf,e = xall,f + vf , where xall,f and vf are the FFTs of

xall and the channel noise vector v, respectively. The

procedure presented in [5] is a computationally efficient

method for extracting the data symbols from yf,e.

VII. EXTENSION TO MIMO CHANNELS

The key idea that has made application of OFDM

to MIMO channels trivial relies on the fact that each

subcarrier signal is a pure tone and thus for each channel

link it will be affected by a complex gain. Furthermore,

in an Nt×Nr MIMO channel, a transmit data vector sk
of the kth subcarrier, results in a received vector

uk = Hksk + vk, for k = 0, 1, · · · , N − 1 (15)

where vk is the channel noise vector and Hk is the

channel gain matrix at the kth subcarrier frequency.

Applying a zero-forcing (ZF) or a minimum mean square

error (MMSE) equalizer to (15), will allow one to obtain

an estimate of sk.

1In [9], the number of operations to perform an FFT of size N
is assumed to be N log

2
N . Here, we have replaced with the more

accurate figure (N/2) log
2
N .

Noting that each GFDM packet signal is made up

of MN tones, the same concept can be applied. An

FFT of size MN is applied to the CP stripped received

vector y of each received antenna and the results of

the same indexed outputs are collected to obtain an

equation similar to (15). Then, a ZF or MMSE equalizer

is applied for each tone separately. This process gives

estimates of the k element of the signal vector xall for

all the space multiplexed signals. Collating the elements

corresponding to each space multiplexed signal gives the

estimate of the corresponding xall which then may be

processed according to [5], to extract the data symbols.

VIII. CONCLUSION

This paper presented a novel point of view of GFDM.

We showed that GFDM builds based on the same princi-

ples as OFDM: information is transmitted by modulating

a number of pure sine waves/tones. This point of view

led us to discovery of an implementation of the GFDM

transmitter whose complexity is about one third of the

best that has been reported in the previous literature.

Our point of view also allows deeper understanding of

GFDM, particularly, its application in MIMO channel

becomes obvious.
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