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ABSTRACT: In practice, most HRA methods use direct dependence from THERP—the notion that 
error begets error, and one Human Failure Event (HFE) may increase the likelihood of subsequent HFEs. 
In this paper, we approach dependence from a simulation perspective in which the effects of human errors 
are dynamically modeled. There are three key concepts that play into this modeling: (1) Errors are driven 
by Performance Shaping Factors (PSFs). In this context, the error propagation is not a result of the 
presence of an HFE yielding overall increases in subsequent HFEs. Rather, it is shared PSFs that cause 
dependence. (2) PSFs have qualities of lag and latency. These two qualities are not currently considered in 
HRA methods that use PSFs. Yet, to model the effects of PSFs, it is not simply a matter of identifying the 
discrete effects of a particular PSF on performance. The effects of PSFs must be considered temporally, 
as the PSFs will have a range of effects across the event sequence. (3) Finally, there is the concept of error 
spilling. When PSFs are activated, they not only have temporal effects but also lateral effects on other 
PSFs, leading to emergent errors. This paper presents the framework for tying together these dynamic 
dependence concepts.

component or system. The bottom-up approach is 
conducted by human factors analysts who will typ-
ically follow a task analysis approach to building 
the HFE (Boring, 2015). The issue centers on the 
possibility that the two approaches may not always 
converge on the same HFE. How many and which 
actions are clustered into an HFE is unclear in the 
two approaches.

HRA has created tools to help address the 
boundaries between HFEs. Most HRA methods 
consider dependence, which is the relationship 
between HFEs. A common assumption in HRA 
methods is that error begets error, meaning an ini-
tial human error tends to prime subsequent errors, 
increasing their likelihood. As elaborated in Wha-
ley et al. (2012), it requires a significant break in the 
evolution of the event that results in a changed crew 
mindset to disrupt dependence or recover from the 
error. If  the crew does not realize that an error has 
occurred, they will tend to continue actions based 
on false assumptions, thus propagating the initial 
error. Mathematically, dependence is commonly 
treated such that it results in an increased Human 
Error Probability (HEP) on subsequent HFEs. A 
correction factor is applied to the calculated HEP 
for the HFE to increase that number. The higher 
the dependence between two HFEs, the higher the 
likelihood of error on the second HFE.

The preceding discussion has centered on HFEs 
and dependence for conventional HRA, which is 

1 INTRODUCTION

Human Reliability Analysis (HRA) supports 
Probabilistic Safety Assessment (PSA) by consid-
ering the human contribution to overall system 
risk. HRA may be successfully integrated into 
PSA in a well established process (Bell and Swain, 
1983; EPRI, 1992; IEEE, 1997). The key to this 
integration is the Human Failure Event (HFE), 
which represents a clustering of human activities 
related to the operation of a particular system or 
 component. The HFE can be quantified using any 
of a number of HRA methods (for recent surveys, 
see Bell and Holroyd, 2009; Chandler et al., 2006; 
and Kolaczkowski et al., 2005). The HFE is inte-
grated into the event trees used in the PSA. Often 
the clustering of activities under the HFE is done 
using fault tree logic.

As noted in Boring (2014), there exists no single 
or standard way to decompose human activities 
into an HFE. In practice, the HFE is defined as 
the entirety of human actions related to the human 
interaction with a particular system. In other words, 
the HFE is defined top-down, from the PSA level 
of interest, to encompass all human actions that 
can contribute to the fault of a component or sys-
tem modeled in the PSA. In other domains, where 
such top-down HFEs are not clearly prescribed, the 
HFE may be built bottom-up, starting with human 
actions and clustering them as they  interact with a 



static in nature. Once the overall system is mod-
eled, including HFEs, they do not change as a 
result of the event progression. Dynamic HRA 
(a.k.a., simulation-based or computation-based 
HRA) does not rely on a fixed set of event and fault 
trees to model event outcome. Rather, it builds the 
event progression dynamically, as a result of ongo-
ing actions (Acosta and Siu, 1993). The dynamic 
approach in PSA has proved especially useful for 
modeling beyond design basis accidents, where 
not all failure combinations (and, importantly, not 
all recovery opportunities) can be anticipated or 
have been included in the static model. Addition-
ally, the failure of multiple components or unusual 
sequences of faults, even within design basis, may 
challenge the fidelity of the PSA model. While 
such events are rare, dynamic modeling affords the 
opportunity to anticipate such permutations and 
address them in a risk-informed manner should 
they occur.

One challenge of dynamic HRA is that the unit 
of analysis is not necessarily the HFE. Dynamic 
HRA represents a continuous evolution of the 
event, including multiple discrete actions. The 
problem of determining the HFE is therefore 
analogous to the bottom-up approach for defin-
ing HFEs, based at the task level. Each subtask 
within the HFE carries with it properties that 
affect the probability. In fact, it should be possible 
to calculate the HEP at any point in time for the 
activities currently exercised by the human opera-
tor. This derivative HEP is not for the entire HFE 
but rather for a discrete moment in time. Yet, the 
combinatorial aspects of these HEPs within the 
HFE are not expounded in existing HRA methods. 
Ideally, the integral of the dynamic HEPs should 
equal the static HEP for the HFE. This bridge 
between static and dynamic HEPs has not been 
established to date and presents a challenge when 
applying dynamic HRA methods to existing HRA 
problems. Without a clear definition of the unit of 
analysis (i.e., the HFE), it is impossible to quantify 
the error likelihood.

The key to linking the subtasks in dynamic 
HRA to an overarching HFE umbrella is to use 
task dependence. However, the existing approach 

for dependence in HRA falls short of providing 
a method that could function for dynamic HRA 
needs. In this paper, I first present the existing 
approach to dependence commonly employed in 
HRA. Then, I review considerations for dynamic 
dependence, introducing concepts that are required 
to build subtask HFEs into a successful HRA 
model.

2 THERP DEPENDENCE

Most of dependence as used in HRA is based 
on the dependence model in the original HRA 
method, the Technique for Human Error Rate 
Prediction (THERP) found in NUREG/CR-1278 
(Swain and Guttman, 1983). The key guidance for 
this approach is found in Chapter 10 of NUREG/
CR-1278. The key types of dependence discussed 
in THERP are found in Figure 1. To illustrate, 
assume two tasks occur sequentially, first Task A 
and then followed by Task B. Independence means 
that the success or failure in Task A has no bearing 
on the success or failure of Task B. In contrast, 
dependence occurs when the success or failure 
of Task A does influence the success or failure 
of Task B. Direct dependence means that Task A 
expressly influences Task B. These are typically 
closely coupled tasks, where the outcome of the 
first necessarily affects the second task. In con-
trast, indirect dependence occurs when both tasks 
share a common mediating influence such as a 
mutual Performance Shaping Factor (PSF). Swain 
and Guttman suggest stress is such a PSF, whereby 
an operator experiencing high stress will see delete-
rious effects on all tasking he or she performs. The 
PSF in this case acts as a type of common cause 
leading to elevated error rates for both tasks. For 
direct and indirect dependence, there is both nega-
tive and positive dependence. Negative depend-
ence implies an inverse relationship between the 
two tasks, e.g., success on Task A increases failure 
(decreases success) on Task B or failure on Task 
A increases success (decreases failure) on Task B. 
Positive dependence implies a positive relationship 
between two tasks, e.g., success on Task A increases 

Figure 1. Three types of dependence considered in NUREG/CR-1278.



the chance of success on Task B or failure on Task 
A increases failure on Task B.

Because actual performance data are often 
scarce and because estimating dependence with-
out calibration to a scale is highly subjective, 
THERP provides the Positive Dependence Model. 
In this approach, a mathematical correction is 
applied according to the level of dependence. 
Dependence is assumed at five stations along a 
continuum, ranging through zero, low, moderate, 
high, and complete dependence. Determination 
of the appropriate level of dependence is guided 
in Table 10-1 in THERP. The correction factors, 
found in Table 10-2 in THERP, range from no 
change over the basic HEP for the task if  zero 
dependence up to an HEP  1.0 for complete 
dependence, the likelihood of error increasing the 
greater the dependence. Similar corrections are 
applied if  considering task success, with the likeli-
hood of success increasing the greater the depend-
ence between two tasks. In practice, HRA rarely 
considers success space, and the predominant use 
of dependence focuses on failures and HEPs.

THERP’s Positive Dependence Model remains 
the dominant approach to calculating dependence in 
HRA and is featured in most contemporary HRA 
methods (Kolaczkowski et al., 2005). For example, 
the Standardized Plant Analysis Risk-Human Reli-
ability Analysis (SPAR-H) method (Gertman et al., 
2005) adopts the same levels of dependence and cor-
rection factor calculations as the original THERP 
method. While the Positive Dependence Model is 
widely deployed, it is often used slightly differently 
than in the original implementation. In THERP, 
dependence was historically calculated between sub-
tasks, not between HFEs. Note that Figure 1 refers 
to subtasks rather than HFEs.

Subtasks are modeled in the HRA Event Tree, 
which is unique in THERP (see Fig. 2). It has in 
practice been replaced by event and fault tree logic 
aligned with PSA modeling conventions. THERP’s 
HRA Event Tree is not synonymous with these 
approaches, and THERP’s mathematical approach 
to joining subtasks can be lost in translation. 
NUREG/CR-1278 Chapter 5 particularly notes 
that in fault tree representations dependence is 
much more difficult to represent compared to the 
equivalent HRA Event Tree representations. The 
HRA Event Tree guides the calculation of the total 
HEP for the HFE. The probabilities of subtasks 
along each failure path (denoted by capital letters 
A–F in Fig. 2) are multiplied, and these subtask 
probabilities are then summed. In the process of 
multiplying the subtask probabilities, the cor-
rection factor for dependence is applied where 
 appropriate. Because THERP provides lookup 
tables for subtask HEPs, the proper level of analy-
sis granularity is ensured.

Of particular importance is the current prac-
tice of applying the Positive Dependence Model 
between HFEs. THERP originally considered 
dependence within HFEs only. In fact, in my inter-
pretation, the boundary between HFEs might be 
considered the point at which there is no logical 
dependence between subtasks. In other words, the 
very definition of an HFE might be the case of 
clustering dependent subtasks, while independ-
ent subtasks form the boundaries between HFEs. 
Thus, using the Positive Dependence Model 
between HFEs may violate key assumptions about 
the nature of subtasks and HFEs. Please note that 
I do not wish to claim that the current practice 
of applying dependence between HFEs is wrong 
nor that it produces invalid HEPs; rather, I am 
simply pointing out that current practice does not 
appear to follow the original intent of the Positive 
Dependence Model.

It should be noted that an alternative approach 
to the standard Positive Dependence Model is pro-
vided in Appendix B of NUREG/CR-1278 and 
credited to Easterling (1983). The Positive Depend-
ence Model effectively models direct  dependence. 
Although it may also be applied to indirect 
dependence, it remains insensitive to the effects of 
any mitigating or mediating PSFs. Appendix B of 
THERP provides a probabilistic treatment of indi-
rect dependence. The equations provided account 
for the influences of PSFs in addition to Task A 
and Task B, whereby the conditional probability of 
Task B given Task A and the PSF influence can be 
calculated. As in the Positive Dependence Model, a 
greater level of dependence between the three fac-
tors results in a higher HEP.

Figure 2. Example THERP HFE comprised of sub-

tasks within an HRA Event Tree (from NUREG/

CR-1278, Figure 10-1).



3 DYNAMIC DEPENDENCE

Dynamic HRA promises opportunities to model 
event progressions and outcomes beyond what’s 
possible with static PSA models. As depicted in 
Figure 3, dynamic HRA can also provide an ongo-
ing quantification of the HEP at any given point in 
time. Each subtask performed has an accompany-
ing error rate, which can be combined with other 
subtask HEPs to form a joint HEP representing 
the entire HFE. The relationship between subtasks 
and time remains nonlinear. Subtasks require time, 
but each subtask will do so differently. As such, it is 
often convenient to consider the subtasks in terms 
of windows of time. Hypothetical Tasks A—I are 
parsed across the timeline in Figure 3. Within each 
subtask time window, there is an HEP. This subtask 
HEP may be represented as an averaged single-
point subtask HEP across each time window or 
as a function representing the distribution of the 
HEP within each subtask (see Fig. 4). Additional 

information such as the uncertainty quantification 
may also accompany each subtask HEP.

Note that the joint HEP cannot be calculated 
before the entire HFE has been modeled. Even 
though dynamic HRA does not require a prede-
fined event tree, it must model all relevant subtask 
outcomes to arrive at the overall HFE. Dynamic 
generation of subtask HEPs does not result in joint 
HEPs until all subtasks in the HFE are modeled.

The subtask HEPs must account for depend-
ence within the HFE. As in static HRA, depend-
ence should be considered in dynamic HRA. 
Consideration of dependence will ensure reason-
able HEP estimates, something that is especially 
crucial when modeling a dynamic event progres-
sion that may feature dozens, hundreds, or even 
thousands of subtasks. Dependence bounds the 
HEPs and also provides a crucial mechanism for 
clustering the subtasks into meaningful HFEs. It 
is beyond the scope of this paper to discuss using 
dependence to define HFEs. Rather, the remainder 

Figure 3. Hypothetical subtask HEP calculation for a dynamic event progression.



Figure 4. Four types of subtask HEP estimation.

Figure 5. Illustration of dynamic dependence considerations.

of this paper will discuss a general framework for 
dynamic dependence.

In adapting dependence from static to dynamic 
modeling, there are three essential  considerations. 
Figure 5 serves to illustrate several of these 
considerations.

First, the dynamic HRA approach previously 
advocated (Boring, 2007) relies on PSFs to shape 
virtual operator performance. Negative PSFs serve 
to increase the HEP over a nominal rate, whereas 
positive PSFs decrease the HEP over a nominal 
state. For example, the stress PSF may serve to 
increase the HEP, while crediting the procedures 
PSF may decrease the PSF. As discussed in Boring 
(2007), some PSFs remain constant across an event 
progression, while others change (see Table 1). 
Some PSFs may change gradually, while others may 
change suddenly as a result of rapid changes in the 
plant or individual. Errors are driven by PSFs. In 
this context, the error propagation is not a result of 
the presence of an HFE yielding overall increases in 
subsequent HFEs (i.e., direct dependence). The gra-
dation of human performance is modeled through 
PSFs, and those PSFs have influence across sub-
tasks and even, in some cases, across HFEs. Even 
though one event may yield overall successful per-
formance, the degraded state of particular PSFs 
may drive the error likelihood of events later in the 
sequence. As such, dynamic dependence is entirely 
PSF based in the present approach. Direct depend-
ence is not modeled dynamically; only indirect 
dependence is modeled.



Second, PSFs have qualities of lag and linger. 
Rarely is a PSF (such as stress) instantly invoked. 
Rather, it builds up over time, even after the ini-
tiation of a plant upset event. Some PSFs may 
have a gradual onset, while others may have more 
immediate effects. As shown in Figure 5, there is a 
delay in the increase of the subtask HEP after the 
initiating event. In this case, it represents the PSF 
lag, by which the operator does not immediately 
psychologically or physiologically respond to the 
event. Likewise, once a particular PSF is manifest, 
it may not diminish instantly. For example, stress 
may accumulate, and it may take considerable time 
for the effects of stress to dissipate, even after the 
trigger of the stress has subsided. This is illus-
trated in Figure 5 as the PSF linger, whereby the 
elevated HEP continues into subsequent subtasks, 
even after the plant event has terminated. These 
two qualities—lag and linger—are not currently 
considered in HRA methods that use PSFs. Yet, to 
model the effects of PSFs, it is not simply a mat-
ter of identifying the discrete effects of a particu-
lar PSF on performance at one point in time. The 
effects of PSFs must be considered temporally, as 
the PSFs will have a range of effects across the 
event sequence. Subtasks should never be analyzed 
in isolation. They must always consider the ante-
cedent PSF context, which may lag or linger to 
produce dependence.

Finally, there is the concept of error spilling. 
When an error occurs, it often has effects down-
stream. Similarly, when PSFs are activated, they 
not only have temporal effects but also lateral 
effects on other PSFs. It is well understood in 
HRA that many PSFs are not independent from 
or orthogonal to each other (Groth and Mosleh, 
2009). PSFs are, in fact, entangled, and the effects 
of one PSF will tend to spill over into other PSFs. 
For example, task complexity will invariably affect 
the workload and stress of the individual perform-
ing the task. This error spilling between PSFs has 
been largely unaccounted for in HRA modeling. 
It can best be understood as an emergent property 
that should be modeled dynamically. Error spilling 
is manifest in Figure 5 as a hypothetical surge in 
the subtask HEP after the initial plant upset event 
subsided. While such a surge could simply be the 

result of a PSF linger episode, it is likely that con-
flation across PSFs disrupted the operator’s per-
formance and recovery from the event.

4 FUTURE RESEARCH

This paper has sketched a framework for under-
standing dynamic dependence, including articulat-
ing differences from the accepted THERP model 
as used in static HRA modeling. Future research 
and development will aim to put this framework 
into practice. Current efforts to address dynamic 
HRA are funded through the U.S. Department of 
Energy’s Light Water Reactor Sustainability path-
way on Risk-Informed Safety Margin Characteri-
zations. Topics for future research to help realize 
dynamic HRA and, eventually, dynamic depend-
ence include:

Defining HFEs dynamically, such that they make
use of bottom-up approaches and can emerge as
part of the dynamic progression of the event
rather than rely on predefined characterizations
of human activities.
Automated determination of dependence levels,
such that correction factors for dependence can
be applied as part of the dynamic HRA mode-
ling process without the need for subjective level
assessments by human analysts.
Articulation of a mathematical conditional
probability formula, building on the discussion
on indirect dependence by Easterling (1983) in
THERP and likely incorporating contemporary
methods for Bayesian conditional probabilities
to account for the influence of previous sub-
tasks and PSFs.
Validation of the mathematical treatment of
dependence, including review of the dependence
correction factors included in THERP’s Positive
Dependence Model and their applicability to
dynamic calculations.
Modeling of PSF distributions to account for
the variable influence of the PSFs over time on
operator performance, specifically to account
for PSF lag and linger.
Modeling of PSF overlaps to determine the extent
of error spilling in simple to complex events.

5 CONCLUSIONS

Dynamic dependence is an essential part of using 
dynamic HRA to compute HEPs. Future research 
will aim to create an implementation of depend-
ence that will serve the needs of dynamic HRA 
modeling while improving and validating the 
dependence approach used in static HRA. HRA’s 
approach to dependence has remained largely 

Table 1. Types of PSF modifications (from Boring, 

2007).

Static  

condition

Dynamic 

progression

Dynamic 

initiator

PSFs remain  

constant across  

the events in  

a scenario.

PSFs evolve  

across events  

in a scenario.

A sudden change  

in the scenario  

causes changes  

in the PSFs.



unchanged since THERP, the first HRA method. 
Yet, paradoxically, dependence is not used in prac-
tice in the subtask manner originally intended in 
THERP. Dynamic dependence requires ongo-
ing subtask analysis, suggesting the importance 
of revisiting the THERP subtask dependence 
approach. At the same time, it is crucial not only 
to revisit past approaches but also to include sys-
tematic research on developing new approaches to 
dependence as needed. It is now time to reconsider 
how dependence is treated in HRA.
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