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ABSTRACT 

An effort to design and build a modeling and simulation framework to assess 
the economic viability of Nuclear Hybrid Energy Systems (NHES) was 
undertaken in fiscal year (FY) 2015. The purpose of this report is to document 
the various tasks associated with the development of such a framework and to 
provide a status of their progress. 

Several tasks have been accomplished. First, starting from the simulation 
strategy highlighted in [1], a rigorous mathematical formulation has been 
achieved in which the economic optimization of a Nuclear Hybrid Energy 
System is presented as a constrained robust (under uncertainty) optimization 
problem. 

Some possible algorithms for the solution of the optimization problem are 
presented. A variation of the Simultaneous Perturbation Stochastic 
Approximation algorithm has been implemented in RAVEN, and preliminary 
tests have been performed. 

The development of the software infrastructure to support the simulation of 
the whole NHES has also moved forward. The coupling between RAVEN and an 
implementation of the Modelica language (OpenModelica) has been 
implemented, migrated under several operating systems and tested using an 
adapted model of a desalination plant. In particular, this exercise focused on 
testing the coupling of the different code systems; testing parallel, 
computationally expensive simulations on the INL cluster; and providing a proof 
of concept for the possibility of using surrogate models to represent the different 
NHES subsystems. Another important step was the porting of the RAVEN code 
under the Windows™ operating system. This accomplishment makes RAVEN 
compatible with the development environment that is being used for dynamic 
simulation of NHES components. 

A very simplified model of the performance of an NHES in the electric 
market has been built in RAVEN to confirm expectations on the analysis 
capability of RAVEN to provide insight into system economics and to test the 
capability of RAVEN to identify limit surfaces even for stochastic constraints. 
This capability will be needed in the future to enforce the stochastic constraints 
on the electric demand coverage from the NHES. 

The development team gained experience with many of the tools that are 
currently envisioned for use in the economic analysis of NHES and completed 
several important steps. Given the complexity of the project, preference has been 
given to a structural approach in which several independent efforts have been 
used to build the cornerstone of the simulation framework. While this is a good 
approach in establishing such a complex framework, it may delay reaching more 
complete results on the performance of analyzed system configurations. 

The integration of the previously reported exergy analysis approach was 
initially proposed as part of this effort. However, in reality, the exergy-based 
apportioning of cost will take place only in a second stage of the implementation, 
since it will be used to properly allocate cost among the different NHES 
subsystems. Therefore, exergy does not appear at the same level as the main 
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drivers in the analysis framework; the latter development of the base framework 
is the focus of this report. 
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Status on the Development of a 
Modeling and Simulation Framework 

for the Economic Assessment of 
Nuclear Hybrid Energy Systems 

1. INTRODUCTION 
This report provides the current status of development of a software framework to perform economic 

performance evaluation of NHES (Nuclear Hybrid Energy Systems). This document first illustrates the 
mathematical formulation of the problem and a selected set of options that are being tested and/or 
discussed concerning which software/library should be used for the analysis and simulations. The report 
then highlights the fiscal year (FY) 2015 developments, provides the status of the defined tasks, and 
defines a development plan for the accomplishment of the economic assessment of NHES. 

2. FROM THE MATHEMATICAL PROBLEM TO SOFTWARE DESIGN 
2.1 Mathematical Formulation 

As largely discussed in Rabiti et al. 2015 report [1], the problem to solve is to find the optimal 
configuration of an NHES that will minimize the cost of electricity production, while accounting for 
defined constraints on the capability of the NHES to meet demand. These constraints have a fundamental 
role in enabling the economic evaluation framework by monetizing the ability of the NHES being 
analyzed to better cope with electricity demand volatility. Note that if variable renewable resources are 
present, either within the NHES or connected to the grid external to the NHES, then it is the volatility in 
the net demand (total demand less the renewable contribution) that is addressed. 

While it is possible to analyze the problem by maximizing profit, minimization of the cost of the 
electricity production is alternatively chosen here as a reference approach. The profit maximization 
approach requires an electricity price, and is therefore defined within a specific market. The current 
markets are not designed to minimize electricity cost, but to minimize the electricity production marginal 
cost (suppliers are willing to accept any price above their marginal costs). The minimization of production 
marginal cost, in the short run, ensures lower cost to the grid and to users; however, it does not ensure, in 
the long run, that the suppliers with the lowest total cost (or economical cost) will stay in the market. If 
those suppliers, usually characterized by low marginal cost and high fixed costs, are forced to leave the 
market due to an inability to recover the capital costs over an extended operating time, the price of 
electricity will have an upward trend that could be fairly steep. This trend will be characterized by an 
energy portfolio drifting toward a supplier mix that is more dominated by high marginal cost, but 
generally low capital cost suppliers. Although these suppliers may have higher overall (lifetime) costs, 
utilities that can recover the marginal costs at the time of use are capable of recovering total costs. 

NHES might be among the suppliers with low marginal costs, incapable of recovering capital costs in 
the current market that subsidizes renewable generators, despite having an economical cost for electricity 
production that is below that of several of the current suppliers (more precise economical evaluation for 
NHES are still needed). Therefore, a long-term analysis that is obtained by a cost-based approach seems 
more suitable to reveal the benefits of the NHES. 
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Moreover, the high degree of dispatchability of the NHES might be capable of absorbing the 
volatility of the demand/supply dynamic, allowing more base-load suppliers to stay in the market with the 
benefit of decreasing the need to use a costly, highly dispatchable electricity supplier such as natural gas 
turbines. The decrease in volatility allows base-load suppliers to increase their contribution to covering 
electricity demand. Those suppliers are usually the ones having the lowest marginal costs; therefore, 
NHES could lower the average total cost of electricity production. 

For the above reason, the approach chosen here is cost-based and should include a means to capture 
the reduction of cost at the system level by decreased need for costly dispatchable resources. 

In the cost minimization approach, the “source term” appearing on the right side of the equation set 
(presented and discussed below) that defines the response of the NHES is the electricity demand or the 
net demand (demand less the renewable production). Figure 1 shows the possible definition of the NHES 
boundary. For a fully-coupled hybrid system, the blue box defines the boundary of the NHES, which 
includes both nuclear and renewable generators. If the boundary condition is redefined such that the 
nuclear and renewable components are more loosely coupled (orange box in Figure 1), then the generator 
(the nuclear plant) would need to respond to the net demand from the grid. 

 
Figure 1. Generalization of possible NHES components and boundaries. 

If it is not required to make an explicit distinction between net demand and demand, the term 
demand, 𝑑𝑑, will be used, where 𝑑𝑑 is a function of time and has a stochastic behavior. Generally speaking, 
demand is always a source term in the set of equations presented below. When it is relevant to highlight 
how the contribution of the renewable is accounted, the distinction between net demand and demand is 
relevant. For example, when the system is exposed to demand and renewable generation is present it is 
necessary to explicitly model the energy supply by the renewable. If net demand is used instead then no 
direct modeling of the renewable is necessary. 

 Figure 2 shows the demand in the Electric Reliability Council of Texas (ERCOT) region at the 
beginning of year 2015 (total). 



( )~ ( )
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𝑺𝑺 = (𝑢𝑢, 𝑛𝑛, 𝑐𝑐) 

For a given realization 𝑑𝑑 of the demand the NHES representation should return: 

𝑺𝑺(𝑑𝑑) = �𝑢𝑢(𝑑𝑑), 𝑛𝑛(𝑑𝑑), 𝑐𝑐(𝑑𝑑)� 

During the design stage there are parameters 𝒑𝒑 that could be changed to improve the performance of the 
system. Examples of those parameters are the total installed capacity for a given average demand, the 
fraction of the capacity of each subsystem, the capacity of battery installed, and the design parameters that 
might control the tradeoff between faster ramp-up time and efficiency of the plant, etc. Those parameters 
could be incorporated in the above representation of the system: 

𝑺𝑺(𝑑𝑑,𝒑𝒑) = �𝑢𝑢(𝒑𝒑,𝑑𝑑), 𝑛𝑛(𝒑𝒑,𝑑𝑑), 𝑐𝑐(𝒑𝒑,𝑑𝑑)� 

As already mentioned, the LOLP test could be one of the many metrics to assess the capability of the 
system (in an hourly timescale) to meet demand. In the formulation used so far, failing to meet demand 
within a period (1 day) in any of the hours would imply 𝑛𝑛 > 0. Since 𝑑𝑑 is a realization of a random 
variate, then 𝑢𝑢,𝑛𝑛, and 𝑐𝑐 are as well. Consequently, the LOLP test could be formulated as: 

𝐶𝐶𝐷𝐷𝐶𝐶(𝑛𝑛 > 0) < 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

This representation states that the Cumulative Distribution Function (CDF) of the number of times the 
demand was not met should be below an established LOLP threshold. The LOLP threshold is 
discretionary; a parametric study with respect to such threshold could highlight how the costs increase by 
defining a stricter constraint on grid reliability (lower LOLP threshold). 

The problem can now be fully defined by the solution of the set of equations to determine: 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑛𝑛{𝑐𝑐|𝑐𝑐 = 𝑐𝑐(𝒑𝒑,𝑑𝑑)  ∪  𝐶𝐶𝐷𝐷𝐶𝐶(𝑛𝑛(𝒑𝒑,𝑑𝑑) > 0) < 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡} 

It is expected that the minimization process would not only determine 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 but also 𝒑𝒑, in particular, by 
enforcing the constraint on the LOLP. This is not mathematically ensured, possibly even unlikely, since 
there can be different systems leading to the same minimum cost but having different configurations 
while still meeting the reliability constraint. If this will happens, it will not impact the economic 
assessment, but it could impact the system design. Possible counter measures will need to be considered 
in the future. 

2.2 Overall Software Design 
The problem, from a software design point of view, can be split in two main blocks: one is the 

constrained optimization under uncertainty, the other is the physical representation of the system 𝑺𝑺(𝑑𝑑,𝒑𝒑). 

Both problems are challenging, but the physical representation of the different subsystems that might 
compose the NHES has progressed via the dynamic regional case analysis completed earlier in FY15 [3]. 
Therefore, it is natural to now look to the optimization problem. Previous work in the NHES project has 
not explored the optimization problem to a great extent. For this reason, one of the primary tasks for 
FY15 has focused on the development of the modeling and simulation infrastructure and probing possible 
approaches to solve the constrained optimization problem. 

An additional reason to begin development of the constrained optimization, now referred to as the 
“driver” or “sampler” as will be illustrated later in Section 3, is that in a risk weighted approach, for the 
software development plan, this is the highest complexity component with the lowest cost to 
development. Therefore, it is natural that a feasibility assessment should start by analyzing this problem. 
Following the rationale already discussed in the previous gap analysis report [1] and given a series of 
synergies and already available capabilities, the choice to develop such a driver within the Risk Analysis 
Virtual Environment (RAVEN) framework is the most cost effective. 
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The following list provides a brief summary of capabilities that are already available in RAVEN that 
will be needed and leveraged in the driver for the economic assessment of NHES. 

• Statistical packages for the generation of random sampling on given distributions 

• General sampling strategies for the exploration of stochastic systems from Monte Carlo to reliability 
surface search 

• Large library of surrogate models that could be utilized to accelerate the search for the solution 

• Graphical post-processing for the analysis of the data 

• Statistical post processing to investigate the property of the system (e.g.. correlation analysis, 
topological analysis). 

Section 3 describes how some of these capabilities could be leveraged and combined to create the 
optimization driver, along with preliminary tests. 

With respect to physical representation of the system, the gap analysis [1] suggested Ptolemy II as the 
hub for the communication among the physical representation of different subsystems. The sub-systems 
could eventually be coded in different languages and using the Functional Mock-up Interface (FMI) as a 
common data exchange protocol [4]. This overall scheme is reported in Figure 3. 

 
Figure 3. Simulation framework. 

From a software engineering point of view, this approach has the advantage that the number of 
interfaces grows linearly with the number of subsystems (1-N). This is one of the main advantages of the 
“hub and spoke” approach. At the same time, when the number of subsystems is low, the initial number 
of interfaces is high compared to the number of subsystems – making this approach ineffective for a small 
number of subsystems. While the hub and spoke approach based on Ptolemy II (or similar) is indeed the 
correct long-term approach, at this moment, given the successful experience using Modelica for the 
dynamic analysis of regional cases [3] and consideration of the number of interfaces for a small number 
of subsystems, direct coupling between RAVEN and Modelica was explored. 

This approach, as will be shown later, allows the investigation of the applicability of RAVEN-based 
algorithms to the analysis of the subsystems composing the NHES. In particular, it allows starting the 
evaluation of the use of surrogate models to accelerate the solution of the optimization problem. In this 
case, the simulation framework is simplified, as shown in Figure 4. Section 4 of this report describes the 
development of the interface between subsystem models developed in Modelica with RAVEN. 
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Figure 4. Simplified simulation framework. 

Reduced Order Models (ROM), as already mentioned, could be a means to accelerate the search for 
the set of parameters leading to the minimum electricity cost for a given constraint on the demand 
coverage. Hence, it is necessary to clarify what a surrogate model is and how it could be used. A 
surrogate model (e.g., ROM, meta-model, supervised learning) can be characterized as follows: 

• Provides a replacement for a physical model when: 

- Only a set of specific figures of merit (FOMs) are considered to characterize the physical system 

- The parameters characterizing the input space are bounded within a certain set of values 

• Has a very fast solving time (usually far below a second) 

• Can be trained to improve its capability to predict the system FOMs 

• Further training increases the computational cost for training and for the evaluation. 

RAVEN possesses the capability to sample a physical system represented by a computational model 
(software) and generate surrogate models. RAVEN has access to all supervised learning algorithms 
contained in the scikit learn library [5] and a few internally developed algorithms, such as inverse weight, 
stochastic collocation, n-dimensional splines, and linear topological decomposition [6]. 

Section 4 of this report illustrates how a ROM of the desalination plant model, programmed in 
Modelica, can be built and how well it compares to the original model. Section 3 describes how the 
ROMs can then be used to accelerate the solution of the optimization problem. In stochastic analysis, the 
system needs to be sampled many times, where several of those samples lead to evaluation of the 
sub-systems with a practically identical set of input parameters. In such cases, a surrogate of the model 
representing the sub-system is usually used since there is no need to run the sub-system model once more. 

Another issue that appeared during the initial development of the framework was the long-term 
necessity to have the framework capable of working under several operating systems (Windows™, Linux, 
and Mac) to allow the team developing the different subsystem models to operate in the native 
environment for the specific code system selected and where the team already has a development 
environment set up. This approach also allows for use of though they might be using expensive 
commercial software that is not portable across platforms. For this reason several components of the 
simulation framework proposed have been tested and eventually adapted cross-platform. This effort is 
documented in Section 6. 

RAVEN is currently developed at INL under NQA-1 (quality level designation 3) and is currently 
getting ready to be reclassified as quality level 2. While this indeed generates an extra burden in the 
development process it ensures full traceability and stability of the code. The Modelica interpreters 
(OpenModelica and Dymola) such as Ptolemy II are third party software without a NQA-1 classification. 
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Consequently, as is the practice in such cases, the models built using those tools will be built using NQA-
1 accepted processes and will become part of the regression testing suite to ensure coherence of the 
results over time. 

 

3. DRIVER DESIGN AND INITIAL TESTING 
This section is dedicated to the design and preliminary testing of an algorithm that could be used to 

perform the necessary constrained optimization under uncertainties. It is assumed that the stochastic 
models for the demand and for the renewable generator are available. These models could be derived 
either by constructing a stochastic representation of those quantities or by just directly sampling 
databases. 

3.1 Design 
The field of robust optimization, and in the specific case of stochastic optimization, has received a lot 

of attention in recent years [7,8], and this field continues to grow rapidly. Many possible approaches will 
be briefly discussed here. The 2006 article by Huang, Allen, Notz, and Zeng [8] addresses specific 
algorithms and provides a reasonable overview of available algorithms for robust optimization. 

The objective in the current work is to implement an algorithm that leverages the current RAVEN 
capabilities to help one to understand how to better characterize the problem and thus provide more 
effective approaches. 

First, consideration that many of the optimization algorithms are based on: 

• Sampling of the system. 

• Training of a predictive model to determine the location of the extremum. 

• Use of an active learning logic to determine the next training point. 

• Testing the accuracy of the predictive model. If the convergence test is passed, the algorithm quits; 
otherwise, the algorithm starts again from the first point. 

In the following approach, the predictive model is a local approximation of the gradient, but many 
other types of ROMs have been used to speed up the optimization as noted by Huang, Allen, Notz, and 
Zeng [8], where the ROM used is a Gaussian Process (also known as Kriging). For this reason, later 
sections of this report give particular emphasis to testing the coupling between RAVEN and 
Modelica-based models to generate different ROMs and to determine limit surfaces. Limit surfaces are 
the region of the input parameter where specific constraints are satisfied. In the particular case studied 
here, the limit surface is the region where the reliability constraint is satisfied. 

3.1.1 Summary of Theory 
The algorithm explored here is based on the Simultaneous Perturbation Stochastic Approximation 

(SPSA) [9,10]. To briefly sketch the idea behind this algorithm, start by considering a minimization 
problem as follows: 

�̅�𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = min
�̅�𝑥∈𝑅𝑅𝑛𝑛

𝑓𝑓(�̅�𝑥) 

𝑓𝑓(�̅�𝑥):𝑅𝑅𝑚𝑚 → 𝑅𝑅 

The standard descent algorithm reads: 

�̅�𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑘𝑘→∞

�̅�𝑥𝑘𝑘 

�̅�𝑥𝑘𝑘+1 = �̅�𝑥𝑘𝑘 − 𝛼𝛼∇�𝑓𝑓(�̅�𝑥)|�̅�𝑥𝑘𝑘, 
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where 𝛼𝛼 is the learning rate. When the function to be minimized is stochastic (as in the current case, 
where the cost of electricity depends on the renewable availability and demand, which are both 
stochastic), the algorithm can be recast in terms of expected value 𝐸𝐸[ ]: 

𝐸𝐸[�̅�𝑥𝑚𝑚𝑚𝑚𝑚𝑚] = lim
𝑘𝑘→∞

�̅�𝑥𝑘𝑘 

�̅�𝑥𝑘𝑘+1 = �̅�𝑥𝑘𝑘 − 𝛼𝛼𝐸𝐸�∇�𝑓𝑓(�̅�𝑥)|�̅�𝑥𝑘𝑘� 

The standard descent algorithm can be replaced by the Stochastic Descent Gradient (SDG) algorithm. 
The SDG formulation is based on the fact that the expected value of the gradient can be replaced, under 
some assumption, by a few, or even one, evaluations of the goal function. 

�̅�𝑥𝑘𝑘+1 = �̅�𝑥𝑘𝑘 − 𝛼𝛼 1
𝑚𝑚
∑ ∇�𝑓𝑓𝑚𝑚(�̅�𝑥)|�̅�𝑥𝑘𝑘
𝑚𝑚
𝑚𝑚=1 , 

where i identifies one of the possible realizations (given �̅�𝑥𝑘𝑘) of the cost function. While this is one of the 
most-used optimization searches (not heuristic), it still has major drawbacks. When neither the goal 
function nor its derivative is directly accessible, the evaluation of the gradient is commonly performed 
using the finite difference approach: 

∇�𝑓𝑓𝑚𝑚(�̅�𝑥)|�̅�𝑥𝑘𝑘 ≈
𝑓𝑓𝑖𝑖(�̅�𝑥+𝑐𝑐𝑘𝑘𝐼𝐼)̅−𝑓𝑓𝑖𝑖(�̅�𝑥−𝑐𝑐𝑘𝑘𝐼𝐼)̅

2𝑐𝑐𝑘𝑘
, 

where 𝑐𝑐𝑘𝑘 is a small number (with respect the characteristic mathematical scale of the problem) and 𝐼𝐼 ̅is 
the identity vector. The choice of 𝑐𝑐𝑘𝑘 is always controversial. In RAVEN this problem is solved by 
normalizing each dimension separately and using a variable 𝑐𝑐𝑘𝑘 as in Spall [7]. 

This described approach requires 2n evaluation of the goal function, which could become very 
expensive when the number of optimization parameters is on the order of several tens. This problem is 
overcome by the Simultaneous Perturbation Stochastic Approximation approach where the gradient is 
approximated. The identity vector 𝐼𝐼 ̅is replaced by a random vector r̅ and the gradient is approximated as 
it follows: 

∇�𝑓𝑓𝑚𝑚(�̅�𝑥)|�̅�𝑥𝑘𝑘 ≈ �
𝑓𝑓𝑚𝑚(�̅�𝑥 + 𝑐𝑐𝑘𝑘 r̅𝑚𝑚) − 𝑓𝑓𝑚𝑚(�̅�𝑥 − 𝑐𝑐𝑘𝑘 r̅𝑚𝑚)

2𝑐𝑐𝑘𝑘r𝑚𝑚,1
, … ,

𝑓𝑓𝑚𝑚(�̅�𝑥 + 𝑐𝑐𝑘𝑘 r̅𝑚𝑚) − 𝑓𝑓𝑚𝑚(�̅�𝑥 − 𝑐𝑐𝑘𝑘 r̅𝑚𝑚)
2𝑐𝑐𝑘𝑘r𝑚𝑚,𝑚𝑚

�. 

Methodologies to choose 𝛼𝛼 and 𝑐𝑐𝑘𝑘 are discussed in literature. For example, in Flores’ 
2000 dissertation [11], one can find a quite extensive review; unfortunately, their optimal choice will be 
case dependent. Another question is how many samples are necessary to obtain a reasonable estimation of 
the mean gradient (m). This, m, is controlled by the ratio between the steepness of the goal function 
(magnitude of the gradient) and its dispersion (sigma): the larger this ratio is the larger will have m to be . 
This ratio is a local value in the parametric space; therefore, adaptive methodologies should be evaluated 
to improve the overall performance of the algorithm allowing for variable m, 𝛼𝛼 and 𝑐𝑐𝑘𝑘. 

Having discussed the problem of free optimization above, the reliability constraint must now be 
defined. Constrained robust optimization has been dealt with in previous work but still represents a 
formidable challenge [12]. 

The initial approach suggested for the current problem is to: 

1. Evaluate the constraint function 𝑔𝑔(�̅�𝑥) at the next iterate point �̅�𝑥𝑘𝑘+1 

2. Proceed normally (point 3) if the constraint is satisfied; if not: 

a. Generate a series of random vectors r̅ normal to ∇�𝑓𝑓(�̅�𝑥)|�̅�𝑥𝑘𝑘 until the constraint is satisfied 
at r̅ + �̅�𝑥. 

b. Move the vector r̅ toward ∇�𝑓𝑓(�̅�𝑥)|�̅�𝑥𝑘𝑘 until r̅ is tangent to the limit surface 
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c. Pose �̅�𝑥𝑘𝑘+1 = �̅�𝑥𝑘𝑘 + r̅ 

3. If the constraint is satisfied, proceed with the normal SPSA algorithm. 

This approach is far from being optimized but ensures that the constraint is satisfied and preserves some 
of the information concerning the steepest direction (gradient).  

Other approaches have been suggested using penalty functions based on the Lagrangian formulation 
of the constraint [12] or sequence of ROMs, as in Huang, Allen, Notz, and Zeng’s 2006 journal 
article [8]. In case the approach suggested in the 2006 journal article [8] is feasible, the constraint can be 
enforced using the limit surface finding algorithms in RAVEN. This is one of the reasons for performing 
the test on the search of the limit surface for a stochastic constraint in section 5. 

3.2 Translation to the Case of Interest 
For the evaluation of NHES, the goal function is the cost of electricity production 𝑢𝑢(𝒑𝒑,𝑑𝑑), and the 

constraint is given by the number of hours in which demand would exceed the available capacity over a 
certain period of time or translated in probability terms 𝐶𝐶𝐷𝐷𝐶𝐶(𝑛𝑛(𝒑𝒑,𝑑𝑑) > 0) < 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

As already discussed, 𝑢𝑢 is a stochastic variable; therefore, its minimization with respect the 
parameters 𝒑𝒑 could be performed using the SPSA algorithm. In principle, the reliability constraint could 
deal with the algorithm described above, where the limit surface is the hyper-surface in the parametric 
space separating the region where the constraint is satisfied and where it is not. 

The problem with this type of constraint is that it is a threshold on a statistical quantity having a very 
small dispersion, and the threshold of interest lies in the tail of the distribution. For example, if a period of 
1 day is considered at the resolution time of 1 hour, and the threshold (constraint) is posed as a 1 hour loss 
of load period over 10,000 hours, then the likelihood of detecting the failure when testing a random day is 
very low. 

This scenario would push the number of sub-cycles to be fairly high, ideally realizing about 
10,000 hours within each sub-cycle (m summation upper boundary). This is one of the reasons why 
statistical analysis of LOLP is very difficult. This problem can be circumvented, as illustrated in the 
NERC 2011 report [13], by proper selection of the days to be tested (worst scenario day selection). This 
approach can be seen as a biased Monte Carlo or a variance reduction methodology. Another solution 
could be to replace the system model with a surrogate using active learning techniques. At present, this 
work has not advanced so far to establish a valuable acceleration methodology; this task will be addressed 
in FY16. 

The algorithm flow derived and implemented to date is reported in Figure 5.. 
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3.3 Testing 
3.3.1 Testing Function 

The testing function is a mathematical problem that presents the same characteristics of the final 
problem to solve: 

Cost function: 𝑐𝑐 = 𝐶𝐶𝐵𝐵𝐵𝐵 + 𝑉𝑉𝐵𝐵(𝑑𝑑 − 𝑅𝑅 ∗ 𝑓𝑓) + 𝐶𝐶𝑅𝑅𝑅𝑅 

Constraint: 𝐵𝐵 + 𝑅𝑅 ∗ 𝑓𝑓 > 𝑑𝑑 

In the above equations the availability factor 𝑓𝑓 and the demand 𝑑𝑑 are normally distributed (the 
distributions reported here are then truncated between [0,1] and properly renormalized): 

𝑓𝑓 ≈ 𝑑𝑑 ≈ 𝑁𝑁(𝜇𝜇 = 0.5,𝜎𝜎 = 0.05) 

𝐶𝐶𝑏𝑏 and 𝐶𝐶𝑅𝑅 represent, respectively, the unit fixed cost for a unit of installed capacity of base load and 
variable renewable (e.g., wind, solar). The optimization parameters are the installed capacity of base load 
B and of renewable R. 

3.3.2 Preliminary Results 
First, the nominal solution of the problem can be analytically computed choosing the following values 

for the parameters: 

𝐶𝐶𝐵𝐵 = 0.7 

𝑉𝑉𝐵𝐵 = 0.3 

𝐶𝐶𝑅𝑅 = 1 

The constraint expressed for the mean value reads  𝐵𝐵 + 𝑅𝑅 ∗ 0.5 > 0.5, and the gradient of the cost 
function is ∇�𝑐𝑐 = (0.7, 0.85). The solution of the problem is: 

𝑅𝑅 = 𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎 = 0.070) 

𝐵𝐵 = 𝑁𝑁(𝜇𝜇 = 0.5,𝜎𝜎 = 0.070) 

The solution obtained numerically is R = 0.0000683 and B = 0.524194568, which are both within one 
sigma of the theoretical results. Figure 6 reports the convergence history of the algorithm, while Figure 7 
shows the searching pattern in the 3D space (R,B,c). 

While this example is only a test, the chosen algorithm and its implementation have shown positive 
results. In the future more investigation will be needed to assess the robustness of the algorithm and its 
performance. 
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4. COUPLING RAVEN AND MODELICA 
4.1 Introduction 

The study of Hybrid Energy Systems at Idaho National Laboratory (INL) and in the larger 
Department of Energy (DOE) complex has resulted in the creation of complex models of physical 
systems. Many of these models have been created using the Dynamic Modeling Library (Dymola) 
implementation of the Modelica modeling and simulation language. It is desired to use RAVEN with 
these models to conduct multi-variate parametric studies. RAVEN’s flexible nature allows it to be easily 
interfaced to external models of various types. For this work, an interface to one of the previously 
developed Modelica implementations was created. 

NHES development work at INL is primarily accomplished using Dymola, which is a commercial 
product of the Dassault Systemes Company. Ideally, these models would be used directly by RAVEN to 
perform the studies. It would be straightforward to create a RAVEN interface; however, considerations of 
platform and licensing caused the team to consider other options for coupling in the near term. 

The Dymola development environment is only available for Windows and Linux platforms. The INL 
NHES team currently uses only the Windows version, which typically runs models singly on desktop 
computers. A RAVEN-based parametric study requires many simulation runs, and as such supports the 
use of High Performance Computing (HPC). INL has HPC resources available that use the Linux 
operating system.a Therefore, running a Dymola model under RAVEN on the INL HPC platform would 
require a Linux executable of that model. 

These executable models, created using the version of Dymola currently in use at INL, require a 
license to run. Since running such a model under RAVEN can encompass thousands of individual model 
runs, they would either have to run sequentially, or more licenses would have to be purchased. There are 
also two additional licensing options that may be obtained to facilitate running models under RAVEN:b 

1. Binary model export allows executables created using Dymola to be used on other computers without 
the need for a license. 

2. The Source code generation feature converts Modelica models into C-language code that may be 
compiled on any platform. 

Both of these options are available at significant additional cost. 

For the reasons above, it was decided to investigate the coupling with the OpenModelica 
implementation of Modelica. There are several implementations of the Modelica modelling language. 
One such is OpenModelica (https://openmodelica.org/), which is a long-term open-source development 
effort of the Open Source Modelica Consortium. It has the advantage of being available for the three 
major platforms of interest: Linux, Mac, Windows. Included in the package is a Modelica language 
compiler, a visual diagram-based model editing utility, and scripting support. Figure 8 (taken from 
https://openmodelica.org/openmodelicaworld/tools) illustrates the available tools and how they 
communicate. 

The implementation of the coupling is described in Section 4.2, and Section 4.3 briefly describes the 
regional application of NHES examined in Garcia et al. 2015 report [3] where the Reverse Osmosis (RO) 
plant is introduced. Section 4.4 provides the detail of the RO plant and Section 4.5 illustrates its 
conversion into a model compatible with the OpenModelica implementation of Modelica. Sections 4.6, 
4.7, and 4.8 illustrate the process by which RAVEN can be used to run the executable obtained with 

                                                      
a https://www.inl.gov/article/new-supercomputer-available-idaho-researchers/.  
b http://www.3ds.com/products-services/catia/products/dymola/code-and-model-export/.  

https://openmodelica.org/
https://openmodelica.org/openmodelicaworld/tools
https://www.inl.gov/article/new-supercomputer-available-idaho-researchers/
http://www.3ds.com/products-services/catia/products/dymola/code-and-model-export/
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RAVEN of an external code run failure. 
getInputExtension(self) Informs RAVEN about allowable input 

file extensions. No 
 

4.2.2 Function generateCommand() 
After using the OpenModelica build environment to convert the Modelica language code to an 

executable program suitable for the operating system (as discussed in Section 4.6), the code can be 
invoked as a standalone program using the following syntax: 

• <executable> -f <initialization file> -r <output file> 

Where: 

• <executable> is the name of the generated executable program (which will be the same each time 
the model is run). 

• <initialization file> is the name of the file containing the initial conditions for the model, 
which was previously generated using the createNewInput() function. 

• <output file> is the file that stores the model output. 

RAVEN passes to this method the executable name, the initialization file, and the output file, and 
expects a string returning the command as described above. This structure is necessary so that RAVEN 
does not own any particular interface, but it is the user that is tasked to implement this method to generate 
its own specific command. In this way the maintenance of interfaces is not a burden of the RAVEN 
developers but of the final users, avoiding the issue of proprietary codes and interfaces. The names of the 
input file and the output file are changed by RAVEN each time the code is run so it is possible to 
re-construct the input-output mapping when several runs are executed within the same RAVEN run. 

4.2.3 Function createNewInput() 
This method has the task to produce a new input file for the OpenModelica executable, given the 

variation of the parameters RAVEN requires to be implemented. RAVEN also passes additional details in 
the original input file, including the name of the parameters that need to be changed and their new values; 
in return, RAVEN expects a new modified input file. The names of the parameters to be changed are 
extended names that contain all the information (syntax) concerning how and where those parameters 
should be changed in the input file. 

OpenModelica model executables read their initial conditions from an eXtensible Markup Language 
(XML) initialization file (input file) that is created as part of the build process. Since RAVEN already 
uses XML for many things including input files, the same library (‘etree’) used for these tasks is 
employed here. Each time the createNewInput() function is called: 

• The original initialization file is loaded into an etree XML object. 

• The XML node containing the model initial conditions (called “ScalarVariable”) is located. 

• Each input space parameter provided by RAVEN is located in this node and changed to its new value. 

• The XML object with the modified values is written out to the file name provided by RAVEN in the 
function call and is returned to RAVEN. 

The interface built so far seems capable of accommodating any needed variation of the OpenModelica 
input file for the NHES studies. 
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4.2.4 Function finalizeCodeOutput() 
The finalizeCodeOutput() function is employed when output files from an external code requires 

adjustment before being read by RAVEN. Collecting output information can be accomplished in two 
different ways. First, it could be implemented within the finalizeCodeOuput() method, where a reader 
imports the data from the code-specific format into the internal RAVEN data. Alternately, 
Comma-Separated Values (CSV) file can be passed to RAVEN, which then reads it into the internal data. 
Since OpenModelica executables can be set to produce a CSV file, the second option was the natural 
choice. An example of a simple OpenModelica CSV output file is shown in the following: 
"time","h","v","der(h)","der(v)","v_new","foo","flying","impact" 
0,3.24834864453,0,0,-9.810000000000001,0,2,1,0 
0.002,3.248329024529192,-0.01962000000000001,-0.01962000000000001,-9.810000000000001,0,2,1,0 
0.004,3.248270164529105,-0.03924,-0.03924,-9.810000000000001,0,2,1,0 
0.006,3.248172064529055,-0.05885999999999999,-0.05885999999999999,-9.810000000000001,0,2,1,0 
0.008,3.248034724529015,-0.07847999999999999,-0.07847999999999999,-9.810000000000001,0,2,1,0 

There are two small compatibility issues that have been addressed in the finalizeCodeOutput() 
function for OpenModelica. The first issue is that the variable names in the first line of the CSV file, as 
generated by an OpenModelica model executable, are enclosed in double-quotes (“”), which RAVEN 
cannot read properly. The other is that lines in some output files were observed to end with commas, 
which RAVEN interprets to mean that there should be another value present. This function takes care of 
these problems by reading in a raw CSV output file one line at a time, removing any enclosing 
double-quotes and trailing commas from each and then writing the modified lines out to a new file. 
RAVEN then reads the model results from this new file, which contains the original result data in an 
acceptable form, into his internal formats. 

4.2.5 Function checkInputExtension() 
Since the input file will always be an XML file, this simple function informs RAVEN that any input 

file is expected to have a file extension that is common to this file type (any of .xml, .XML, .Xml). This 
simple function is used for error management, to provide to the users feedback on possible problems 
encountered while running the code. 

4.3 Modeling and Simulation of Regional NHES Configurations in 
Modelica 

In prioritizing region-specific NHES options, available resources, traditional industrial processes, 
energy delivery infrastructure, and energy users within the selected regions need to be researched to 
identify attractive clean energy options. INL researchers have identified two region-specific cases for 
preliminary technical and economic analysis (see Table 2)[1-3]. 

Table 2. Potential NHES configurations. 

Location 
Energy and 
Carbon Source 

Energy 
Product(s) 

Variable Energy 
Load 

Integrated Industrial 
Process 

West Texas Nuclear, wind, 
natural gas 

Electricity, 
gasoline 

Thermal Natural Gas-To-Liquid 
(NGTL) fuel 

Arizona Nuclear, solar 
photovoltaic (PV) 

Electricity, 
fresh water 

Electrical Desalination (via reverse 
osmosis) 

 
The proposed NHES options were dynamically modeled and implemented in Modelica/Dymola, as 

shown in Figure 9 and Figure 10 for West Texas and Arizona, respectively. As illustrated in these figures, 
six main subsystems (components) are modeled for each regional case: 

1. Nuclear reactor (water-cooled small modular reactor) 
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2. Rankine power generation cycle 

3. Renewable generation (via wind or solar PV) 

4. Power-smoothing battery 

5. Electric grid 

6. Industrial scale plant (NGTL plant or reverse osmosis desalination plant). 

The level of modeling detail within each subsystem varies from mapping functions (e.g., empirical 
models to estimate renewable energy generation) to more detailed models (e.g., first principle models to 
predict reverse osmosis performance). In particular, detailed governing equations and models of the 
NGTL process were initially developed and analyzed using “ASPEN Plus;” simplified formulations were 
then implemented in Modelica. For additional details on the integrated model, equipment layout, 
operation, and control for the NHES configurations considered here, see Garcia et al. 2015 [3]. 

 
Figure 9. NHES option in West Texas implemented in Modelica/Dymola. 
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Figure 10. NHES option in Arizona implemented in Modelica/Dymola. 

4.4 Reverse Osmosis Desalination 
Desalination is a general term for the process of removing salt from water to produce fresh water 

(permeate). Desalination technologies can be broadly categorized as thermal (phase change) and 
membrane (non-phase change) processes. Within those two types, there are subcategories depending on 
different techniques, including multi-stage flash, multi-effect, and vapor compression distillations, 
electro-dialysis, and reverse osmosis (RO). Of the various methods used for desalination, RO is the 
predominant means of producing fresh water throughout the world. 

The RO process utilizes a semi-permeable membrane, which allows water to pass through, but not 
salts, to separate the fresh water from the saline feed water. As illustrated in Figure 11(a), a typical 
brackish water reverse osmosis (BWRO) plant consists of four main components: feed water 
pre-treatment, high-pressure (HP) pumping, membrane separation, and permeate post-treatment. In this 
report, the modeling efforts were focused on the two components enclosed in the dashed box shown in 
Figure 11(a) (i.e., HP pumping and membrane separation). Figure 11(b) depicts the configuration of an 
RO vessel used in BWRO, which consists of six membrane models connected in series. These pressurized 
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differential-algebraic equations even when the initialization problem turns out to be ill-posed. Despite 
these disadvantages, it was decided to convert the Dymola model of a BWRO desalination plant for use in 
OpenModelica, since the model executable built in OpenModelica platform is license-free, hence 
avoiding dependence on a commercial product at this development stage and allowing the integration 
with RAVEN to be tested before investing in additional Dymola licenses. 

The BWRO desalination system was converted to OpenModelica Connection Editor (OMEdit) by 
sequentially adding components one at a time. In this manner, it was relatively easy to identify and 
resolve errors that occurred as a result of incorporating each. After the model was successfully compiled 
by the OpenModelica complier, additional efforts were needed to help the initialization of the highly 
nonlinear systems of equations by providing good guess values for a large number of residue states (the 
values of all other states depend on these states). Finally, the executable model of the RO desalination 
system was created using the version of OpenModelica. 

The component models for this system as they appear in the OMEdit are shown in Figure 12. Key 
input and output parameters are summarized in Table 3 and Table 4. 

Table 3. RO desalination model inputs. 
Parameter Nominal Value Bounds 
Feed pressure [Pa] 1.01 × 105 1.01 × 105 to 1.52 × 105 
Feed temperature [°C] 24.85 10 to 26 
Feed salinity [ppm] 3,502 3,502 to 10,000 
Membrane fouling index [%] 5 0 to 30 
Power set point [MW] 45 25 to 45 

 
Table 4. RO desalination model outputs. 

Parameter 
Nominal 
Value Comment 

Freshwater 
production [kg/s] 
(GPD)  

15,588 
(3.57 × 108) None 

Average freshwater 
salinity [ppm] 59.2 A drinking water taste threshold set by U.S. Environmental 

Protection Agency is 500 ppm. 

Water recovery [%] 71.6 It quantifies the fraction of influent water recovered. The water 
recovery is typically 75% in brackish water RO desalination. 

Salt rejection [%] 98.8 
It is a characteristic often used by RO membrane manufactures 
to describe membrane rejection properties. Typically, such 
membranes achieve NaCl rejections of 98–99.8%. 
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Figure 12. RO desalination plant model in Modelica/OpenModelica. 

This model also requires the third-party Modelica-language library “ThermoPower,” which is an 
open-source library for thermal power plant simulation. Table 5 lists the Modelica source files used to 
build the executable model. 

Table 5. Modelica files used in an RO desalination plant. 

Name 
Number of 
Code Lines Purpose 

DesalinationOM.mo 1301 RO desalination plant model 
ThermoPower (9 Files) 44227 Thermal power plant library 

ObsoleteModelica3 3475 
Library that contains components from Modelica 
Standard Library 2.2.2 that have been removed from 
Version 3.0 
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4.6 Running the Model with RAVEN 
4.6.1 Generation of the OpenModelica Executable Files 

Before a simulation can be run, the Modelica code files must be converted into an executable program 
suitable for the operating system on which it will be executed. The OpenModelica Shell (OMShell) 
provides one way to do this. After running OMShell on the host operating system, the commands listed in 
Figure 13 are entered in turn to load the Modelica files into memory, which then enables creation of the 
executable program. 

 
Figure 13. Command for the creation of the OpenModelica executable. 

The outputFormat=”csv” in the buildModel command set up the executable to produce the CSV 
output required by RAVEN. After the buildModel command is complete the directory containing the 
Modelica files will now contain various files from the build process. The needed files are: 

• Desalination.DesalOpenModelicaToRAVEN.ROplant (on Windows this will be 
Desalination.DesalOpenModelicaToRAVEN.ROplant.EXE). This is the executable file that will 
perform the model calculations. 
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• Desalination.DesalOpenModelicaToRAVEN.ROplant_init.xml. This file contains the initial 
conditions for the model. RAVEN’s OpenModelica interface will create copies of this file with 
modified values to vary parameters. 

• Desalination.DesalOpenModelicaToRAVEN.ROplant_info.json. This file contains transformation 
steps between different versions of equations within the model, sometimes used for model debugging. 
The executable will not run unless it can find this file. 

4.6.2 Simple RAVEN Input Structure 
The files used in an OpenModelica model run are specified in the RAVEN input file. First, the 

executable and initialization file are specified in the <Files> section under <Simulation>, as shown 
below. 
<Files> 
    <Input name="File_Init">Desalination_DesalOpenModelicaToRAVEN_ROplant_init.xml</Input> 
    <Input name="File_Exec">Desalination_DesalOpenModelicaToRAVEN_ROplant</Input> 
</Files> 

The OpenModelica executable must also be described in the <Models> section under 
<Simulation> in a <Code> block (see below). In this case, the name “RO_Plant” is the input that 
identifies the executable for RAVEN when the execution steps are defined. 
<Models> 
    <Code name="RO_Plant" subType = "OpenModelica"> 
        <executable>Desalination_DesalOpenModelicaToRAVEN_ROplant</executable> 
    </Code> 
</Models> 

Finally, this model may now be referenced in <MultiRun> blocks in the <Steps> section. In the 
example considered here, the OpenModelica model “RO_Plant” will be run with inputs derived using the 
Monte Carlo sampler “MC_FP,” with its output being stored in a data structure (PointSet) “RO_PointSet” 
that can be used in other steps, as well as being printed to the “RO_dump” output object. 
<Steps> 
    <MultiRun name="sample"  re-seeding="200286"> 
        <Input   class="Files"         type=""              >File_Init</Input> 
        <Sampler class="Samplers"         type="MonteCarlo"    >MC_FP</Sampler> 
        <Model   class="Models"           type="Code"          >RO_Plant</Model> 
        <Output  class='DataObjects'      type='PointSet'      >RO_PointSet</Output> 
        <Output  class='OutStreamManager' type='Print'         >RO_dump</Output> 
    </MultiRun> 

4.7 Limit Surface Search 
One of the necessary capabilities for the driver of a robust optimization is to identify the location of 

the limit surface. Within in the algorithm proposed at the beginning of this report the identification of the 
limit surface is implicit, the approach suggested by Huang et al. [8] would require an explicit location of 
the limit surface. Since RAVEN already possesses an explicit algorithm for finding the limit surface 
algorithm, and it is one of the most demanding applications of the code, this application was tested on the 
INL cluster. The current schema for the search of the limit surface is reported in Figure 14. 
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Figure 15. Limit surface. 

4.8 Surrogate Model Test 
As mentioned, RAVEN is able to rapidly construct and evaluate surrogate models of the NHES that 

could be crucial in creating a computationally affordable framework for the economic analysis of NHES. 
To test this capability, the reverse osmosis desalination plant was considered. 

The set of parameters that have been changed are: 

• Feed pressure (Pa) 

• Feed temperature (°C) 

• Feed salinity (ppm) 

• Membrane fouling index (%) 

• Power set point (MW). 

The FOM considered are: 

• Freshwater production (GPD) 

• Freshwater production (kg/s) 

• Average freshwater salinity (ppm) 

• Water recovery (%) 

• Salt rejection (%). 

The possible variation ranges of the input parameters are provided in Table 6. 
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Table 6. Input parameters (nominal and bound value) for the RO plant. 

Parameters or Variable Units 
Nominal 
Value 

Lower 
Bound Upper Bound 

Feed pressure Pascal 101325 101325 151987.5 
Feed temperature Celsius 24.852 10 26 

Feed salinity (concentration) 
ppm (part per 
million) or mg/kg 3502 3502 10000 

Membrane fouling index % 5 0 30 
Power set point ( or variable 
electrical load [VEL]) MW 45 25 45 

 
The testing of the capabilities of the surrogate models has been performed using several training sets 

and validation sets. The mean of the errors and its standard deviation are reported in Table 8 through 
Table 10, while Table 7 reports the mapping between training sets and validation sets for each test. As 
may be inferred from the table, two surrogate models have been tested. The linear regressor is a 
least-squares fitting of the response of the system (figures of merit) for a linear representation (linear 
multivariate regression). The inverse distance weighted regressor is instead an interpolation scheme 
where the value of the system response for a given input is computed as the contribution of the system 
response for the whole training set. Each point of the training set contributes proportionally to the 
distance between its input coordinate and the input coordinate of the inquired point. 

RAVEN possesses more than 20 surrogate models. The linear regressor was chosen for its simplicity, 
and the inverse weight model was selected for its robustness and versatility in interpolating even a 
complex response function. 

Table 7. Data set descriptions used for creation of the surrogate models and their cross -validation. 

 
The repeatability of the exact sequence of samples is ensured by controlling the seeding of the pseudo 

random number generator in RAVEN. Notice that, overall, the inverse weight performs better (as 
expected) in simulating the overall behavior of the system. This analysis was performed on the INL 
cluster Falcon with eight cores, using the parallel management infrastructure of RAVEN and the 
installation of OpenModelica on the cluster. 

Training Set 
Verification Set 

Monte Carlo 1 Monte Carlo 2 
Monte Carlo 1: 2500 random sampling 
using uniform distributions Table 8 Table 9 

Monte Carlo 2: 2500 random sampling 
using uniform distributions 

The Monte Carlo set 2 was used only for verification not 
for training 

Grid 1: equally spaced 3125 point in 
Cartesian grid (5 point in each dimension) — Table 10 
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Table 8. Comparison of ROMs versus original model (training set: Monte Carlo 1, cross-validation set 
Monte Carlo 1). 

Linear Regressor ROM 

FOM 

Freshwater 
Production 

(GDP) 
Freshwater 

Production (kg/s) 
Average Freshwater 

Salinity (ppm) 
Water 

Recovery (%) 
Salt Rejection 

(%) 
Mean error (%) -0.03% -0.28% -0.13% 0.99% 0.20% 
Error Standard 
deviation 0.001748556 0.043634653 0.049000767 0.087837841 0.034317013 

Inverse Weight ROM 

FOM 

Freshwater 
Production 

(GDP) 
Freshwater 

Production (kg/s) 
Average Freshwater 

Salinity (ppm) 
Water 

Recovery (%) 
Salt Rejection 

(%) 
Mean error (%) 0.00% 0.00% 0.00% 0.00% 0.00% 
Error Standard 
deviation 0 0 0 0 0 
 
Table 9. Comparison of ROMs vs. original model (training set: Monte Carlo 1, cross validation set Monte 
Carlo 2). 

Linear Regressor 

FOM 
Freshwater 

Production (GDP) 
Freshwater 

Production (kg/s) 
Average Freshwater 

Salinity (ppm) 
Water 

Recovery (%) 
Salt Rejection 

(%) 
Mean error (%) -0.03% -0.04% 0.05% 1.22% 0.31% 
Error Standard 
deviation 0.002840228 0.071352009 0.072836712 0.150156766 0.052742815 

Inverse Weight ROM 
Mean error (%) 0.02% 0.28% 0.28% 1.23% 0.04% 
Error Standard 
deviation 0.001537467 0.037357812 0.037298828 0.078756227 0.027160556 
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Table 10. Comparison of ROMs vs. original model (training set: Grid, cross validation set Monte 
Carlo 2). 

Linear Regressor 

FOM 

Freshwater 
Production 

(GDP) 
Freshwater 

Production (kg/s) 
Average Freshwater 

Salinity (ppm) 
Water 

Recovery (%) 
Salt Rejection 

(%) 
Mean error (%) 0.01% 5.49% 0.44% -1.93% -1.32% 
Error Standard 
deviation 0.002975828 0.146102759 0.096586702 0.216198605 0.073214743 

Inverse Weight ROM 

FOM 

Freshwater 
Production 

(GDP) 
Freshwater 

Production (kg/s) 
Average Freshwater 

Salinity (ppm) 
Water 

Recovery (%) 
Salt Rejection 

(%) 
Mean error (%) -0.03% 0.14% 0.14% 1.47% 0.25% 
Error Standard 
deviation 0.000651345 0.016272846 0.016247131 0.033980499 0.01348851 
 

5. DEMONSTRATION OF THE ECONOMIC MODEL 
The following section presents a simplified economic model that was developed to initiate an 

approach to analyzing the dynamics of economic performance. 

5.1 Model Description 
One of the needs of the NHES research program is to understand the value proposition for NHES to 

the electric grid as a whole. To do so, the FOMs necessary to characterize the NHES value proposition 
must be determined, and an economic analysis tool or suite of tools must be used or developed to provide 
accurate estimates of those FOMs. To proceed with these two tasks, a preliminary economic analysis tool 
was developed using RAVEN, which was originally developed to conduct probabilistic safety analysis by 
wrapping around and driving specialized nuclear safety codes. RAVEN has been further developed to 
drive any supplied internal or external code. In the current instance, RAVEN seeks to clarify the 
operational space for a simplified Renewable Energy (RE)/Natural Gas (NG)/NHES system. Though it 
may eventually provide a unique analysis capability for the NHES research program as a part of the larger 
suite of electric grid analysis tools maintained by DOE, the near-term objective of this tool is to help 
clarify the needs of future analysis efforts, which will be undertaken at a much larger and more complex 
scale. 

In the current version, the preliminary economic analysis tool exists as an “external model” within 
RAVEN. External models are codes written in Python that are directly interfaced with RAVEN via an 
Application Programming Interface (API). To aid in understanding the structure of the preliminary 
economic analysis tool, a flowchart is provided in Figure 16. RAVEN acts as the driver for the model, 
where it iterates the model parameters, then stores and visualizes the results. 

For each energy source the following data are kept constant and stored inside the model: 

• D: discount rate 

• N: lifetime of the plant in years 

• CRF: credit recovery factor computed as 𝐶𝐶𝑅𝑅𝐶𝐶 = 𝐷𝐷∗(1+𝐷𝐷)𝑁𝑁

((1+𝐷𝐷)𝑁𝑁−1)
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• Capital Cost 

• T: tax rate 

• 𝐷𝐷𝑃𝑃𝑃𝑃: present value of depreciation 

• 𝑓𝑓𝑚𝑚𝑥𝑥𝑓𝑓𝑑𝑑 𝐿𝐿&𝑀𝑀: fixed operation and management costs 

• 𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓 𝐿𝐿&𝑀𝑀: variable operation and management costs 

• Fuel price 

• Heat factor. 

The electricity demand is also stored inside the model and is taken from the ERCOT database of hourly 
demand. The parameters perturbed by RAVEN, which constitute the input space, include the following: 

• Fraction of effective renewable capacity plus hybrid capacity installed. The effective installed 
capacity is computed as the installed capacity of renewable scaled by the credit capacity factor. 

• The ratio of the effective renewable capacity versus the hybrid capacity. 

• The credit capacity factor of the renewable. 

It should be noted that the credit capacity factor used by the model corresponds to the fraction of the 
renewable resource installed capacity that is estimated to be available to cover the actual peak demand. 
With these parameters and data the code constructs the total installed capacity such that: 

(Capacity Renewable)*Credit Capacity Factor + Capacity Wind + Capacity Hybrid = max{hourly 
demand} 

For each value of the above parameters, each time RAVEN runs the model, the model computes the 
hourly availability of renewable-supplied electricity using a gamma (alpha=2, gamma=5) distribution. 
The electricity supplied by the renewable is subtracted from the demand, resulting in the net demand that 
is first filled by the natural gas capacity and then, if more is needed, by the hybrid systems. 

The dispatching is organized according to the following assumption: 

• The renewable is the source having the lower marginal cost and, therefore, is the first to be in the 
stack. 

• The hybrid system, when not selling electricity, sells a co-product that has a marginal cost above the 
one incurred by natural gas producing electricity. 

Once the dispatching is known for the whole time covered by the demand data, it is possible to compute 
the effective utilization of the plants and to compute the Levelized Cost of Electricity (LCOE) by the 
formula: 

𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸 = 10 ∗ �
𝐶𝐶𝑣𝑣𝐶𝐶𝑚𝑚𝑡𝑡𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ∗ 𝐶𝐶𝑅𝑅𝐶𝐶 ∗ (1 − 𝑇𝑇 ∗ 𝐷𝐷𝑃𝑃𝑃𝑃)
8760 ∗ 𝐶𝐶𝑣𝑣𝐶𝐶𝑣𝑣𝑐𝑐𝑚𝑚𝑡𝑡𝐶𝐶 𝐶𝐶𝑣𝑣𝑐𝑐𝑡𝑡𝐶𝐶𝑣𝑣 ∗ (1− 𝑇𝑇) +

𝑓𝑓𝑚𝑚𝑥𝑥𝑓𝑓𝑑𝑑 𝐿𝐿&𝑀𝑀
8760 ∗ 𝐶𝐶𝑣𝑣𝐶𝐶𝑣𝑣𝑐𝑐𝑚𝑚𝑡𝑡𝐶𝐶 𝐶𝐶𝑣𝑣𝑐𝑐𝑡𝑡𝐶𝐶𝑣𝑣

+
𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓 𝐿𝐿&𝑀𝑀

1000
+
𝐶𝐶𝑢𝑢𝑓𝑓𝑣𝑣 𝐿𝐿𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓 ∗ 𝐻𝐻𝑓𝑓𝑣𝑣𝑡𝑡 𝑅𝑅𝑣𝑣𝑡𝑡𝑓𝑓

1000000 � 

Note that the “Capacity Factor” is not driven by the availability of the plant, but is replaced by the 
effective utilization of the plant. The LCOE computed is the cost of electricity that would lead to a NPV 
of 0 (zero) given the actual utilization of the plant. For the hybrid system we have assumed that the 
capacity factor is 100% since the system always has the option to sell the co-product. It is also assumed 
that the hybrid plant switches between selling electricity and selling the co-product when the prices are 
the same. Under this assumption the impact on the profit from selling the co-product, thereby reducing the 
LCOE, is accounted by the 100% capacity factor. 

An important feature of the model is that it allows for the possibility that the demand is not always 
met. The system is oversized in terms of installed capacity since only a fraction of the renewable installed 
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capacity is accounted in covering the maximum demand. This does not imply that the demand is always 
met, since the gamma distribution used to model the wind distribution could lead to a wind capacity 
available in a specific moment in time that is below the value of the credit capacity factor. If this scenario 
occurs at the same time as the peak demand, it could lead to a lower available capacity than what is 
needed. When such a situation arises, the model imports electricity at a fixed high cost from outside the 
considered system and detects the failure to meet demand. 

Finally, the model output reports the cost of electricity that was needed to ensure coverage of 
demand, the number of hours the system was incapable of meeting demand, CO2 emissions, LCOE for 
each source, and the utilization fraction for each source. The CO2 emissions from the imported electricity 
have been set equal to the amount produced by natural gas plants. Figure 16 provides the flow chart for 
the simulation. 
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Figure 16. Flow chart for the economic assessment demonstration tool. 
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5.2 Results Discussion 
Although a simplified example was conducted, it immediately highlighted important features that are 

key in justifying the selected approach and supporting the validity of the tools. 

5.2.1 Parametric Studies 
Figure 17 shows (left side) that there are two relative maximum values in the total LCOE for the 

modeled system. One maximum value corresponds to the minimum value of the credit capacity factor; the 
other maximum corresponds to the maximum value of the credit capacity factor. This is explained by the 
fact that for a very low credit capacity factor, the volatility of the wind is underestimated; therefore, the 
LCOE is pushed up by the high price of imported electricity required to meet demand. For low values of 
the credit capacity factor, the effective capacity of the renewables is underestimated and the LCOE suffers 
from a large capital cost with respect to the required capacity. 

This result is confirmed by observing Figure 18, where the color map represents the total fraction of 
renewable capacity installed (greater than one since it is divided by the credit capacity factor). The plot 
clearly shows the problem of having oversized the capacity of the renewable in the lower-left corner. The 
problem with using a high-capacity factor for the renewable is alternately confirmed by the next plot 
Figure 19, where the number of hours in which there was insufficient capacity to meet demand is plotted. 
The figure confirms that the number of such events escalates with increased renewable penetration and 
with increased credit capacity factor. 

The last plot provided in Figure 20 is also very informative, as it shows that overestimating the 
reliability of the wind creates an increase in CO2 emissions because imported electricity is very costly in 
terms of CO2 production. Underestimating the renewable availability will produce a very low level of 
emissions, but at the same time results in a higher LCOE overall due to the unused capacity. Moreover, 
the CO2 emissions clearly show a positive sensitivity to the fraction of natural gas in the mix. 

 
Figure 17. LCOE parametric studies (Total cost is equivalent to LCOE_Total). 
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Figure 18. Total renewable capacity installed. 

 
Figure 19. Hours for which demand cannot be met over a one-year period. 
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Figure 20. LCOE parametric studies. 

5.2.2 Reliability Surface Analysis 
The last analysis performed in the current work was a search of the generation source mix that allows 

the system to not exceed 30 hours for which demand exceeds the dispatchable capability over the defined 
1-year time frame. This surface is shown in Figure 21. There are several important aspects of this test. 
First, the limit surface found is actually a de-noised limit surface. Since the renewable availability is a 
random value determined inside the model (beta distribution sampling), this impairs the existence of a 
deterministic relationship between the input space and the output space. In other words, two different 
simulations with the same input parameters might lead to different results given the probabilistic behavior 
of the system. In those cases the limit surface is defined in a probabilistic sense; filtering techniques are 
typically used to make the problem treatable. RAVEN applies a de-noising technique by testing the 
convergence of the limit surface using the prediction of a surrogate model rather than the real model. The 
surrogate model acts as a statistical filter. There are, of course, risks defining tolerances on the surrogate 
models that are too tight, which could lead to very poor convergence and high computational costs. 



 

 35 

 
Figure 21. Limit surface illustrating the parametric region where the system will not lead to more than 
30 hours of loss of load over a year time frame. 

More research is needed to optimize the defined algorithms, but the initial results are encouraging. 
Figure 21 illustrates the limit surface found by directing the code to perform the search using a grid for 
which each element is sized to be 1/1000 of the total hypervolume of the input space and using a 
surrogate model as a “support vector machine” with a radial basis function as a kernel [16]. 

The red colored dots lay on the side of the limit surface facing the region of the input space in which 
the 30-hour limit would be exceeded. As expected, the limit surface tends to be tangent to the planes: 

• Ratio of the renewable to hybrid equals 0 

• Ratio of the renewable plus hybrid capacity to total capacity equals 0 

• Credit capacity factor equals 0. 

These are all cases in which the variable renewable is removed from the system. As the fraction of the 
capacity provided by the renewable plus nuclear hybrid increases, the risk of blackout also increases, as 
does the credit capacity factor (overestimation of renewable availability). 

While the result would be more immediately understood if the plot was expressed in the transformed 
coordinate, as was done for the previous results (e.g., fraction of renewable, fraction hybrid etc.), this is 
not yet feasible since the limit surface could only be expressed with respect to the original input 
parameters. In this case, a clustering-based analysis, also available in RAVEN, would be more effective 
in visualizing the results; however, the point of the current work was to investigate the applicability of the 
current algorithms to search for the limit surface of the NHES analysis under a stochastic behavior of the 
system. 
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6. ENHANCEMENT OF THE DEVELOPMENT FRAMEWORK: 
RUNNING RAVEN UNDER WINDOWS™ OS 

Most RAVEN software development takes place on Mac and Linux operating systems, while several 
of the modeling tools used for the evaluation of the NHES to date are under Windows. Therefore, it has 
been decided to have a RAVEN version running under Windows to facilitate the integration of the teams 
and the various work tasks. One of the key problems in adding a new platform to those that are already 
supported is the need to extend the regression testing system to the new OS—Windows in this case. 
RAVEN has a strong quality assurance (QA) pedigree, most of which derives from a complex automated 
regression test system. The regression system was inherited and extended from the MOOSE development 
environment that does not, unfortunately, cover Windows. 

To facilitate early detection of problems due to software changes under Windows, a new automatic 
software testing facility was created. A specific small Windows server has been dedicated to performing 
the tests. A set of scripts was written to perform the following sequence of operations: 

1. The current devel branches for RAVEN and Crow (the RAVEN statistical library) packages are 
checked out from the software repository. 

2. If Crow has changed since the last time the script was run, try to rebuild it. 

3. If the Crow build fails, send an e-mail message to the RAVEN developer’s mailing list indicating the 
problem, and stop. 

4. If RAVEN has changed since the last time the script was run, try to rebuild the AMSC module. 

5. If the AMSC module build fails, send an e-mail message to the RAVEN developer’s mailing list 
indicating the problem, and stop. 

6. If either Crow or RAVEN has changed, run the framework tests and collect the output. 

7. Send the output in a message to the RAVEN developer’s mailing list. The subject line of this message 
is the count of tests that pass, fail, and were skipped. 

The primary script (written in WindowsPowerShell) is run every night and performs these functions 
by calling several Unix-style shell scripts. Each time the RAVEN or Crow code is updated in the 
repository, developers can expect to see the results of the regular test suite as e-mail the next day. 

This regression testing task was necessary to ensure the needed software reliability using RAVEN to 
the modelers using, for example, Dymola (currently available only under Windows) or PSCAD. 

7. FUTURE ACTIVITIES 
The activities performed in FY15 provide a clearer picture of the next steps required to implement the 

framework for the economic optimization of NHES designs. The short-term goal in further developing the 
framework should probably be the integration of the regional case studies under the RAVEN umbrella to 
integrate the analysis that has been performed to date by introducing a stochastic model of the demand. If 
this is selected as the next task, then the following tasks need to be completed: 

• Modify the RAVEN interface for OpenModelica to be compatible with the Dymola implementation 
of Modelica 

• Acquire an unlimited processor license for Dymola for the Linux environment 
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• Complete the optimization driver, in particular: 

- Integrate the capability to generate a random representation of the time history of both demand 
and available renewable 

- Extend the set of optimization algorithms available 
- Ensure that the proper figures of merit are available after each run (u, n, c) 
- Ensure that the optimization parameters are available as part of the input parameters (e.g., 

capacity of each subsystem) 
• Acquire the time history for the regions over a fairly large time window. 

The above capabilities will allow one to perform a full-scale evaluation of the feasibility and the 
value of the economic analysis framework proposed. At the same time, this work could initiate the 
activity to evaluate Ptolemy II (or other frameworks) as a hub for coordinating the communication of 
multiple subsystems for more complex cases. Moreover, it is necessary to create the infrastructure to 
allow cooperation of the various laboratories involved in the NHES research, such as a gitlab repository 
to ensure version control and quality control by a regression test system (this approach will also leverage 
the infrastructure built for the development of the MOOSE framework under github). This infrastructure 
will also allow for the discussion and the resolution of any Intellectual Property issues that will naturally 
emerge in a large, shared effort. 

8. CONCLUSIONS 
A mathematical formulation of the problem of cost minimization for NHES integration has led to a 

better understanding of a software infrastructure and algorithms that are computationally efficient for the 
economic evaluation of NHES. The main problem can be been cast as a robust constrained optimization 
problem. 

A literature review did not identify any existing algorithms for the solution of the problem, in 
particular with respect the implementation of stochastic constraints. This report proposes a possible new 
approach and shows preliminary results of the implementation in RAVEN. 

An overall software infrastructure, based on RAVEN and OpenModelica coupling, has been 
developed and demonstrated. The portability of the software has been tested and enhanced using RAVEN 
under Windows and OpenModelica in the INL HPC cluster. The coupling between RAVEN and 
OpenModelica was tested on various platforms and applications. Among these tests, a proof of concept 
for the representation of a component of the NHES system (desalination plant) by a surrogate model was 
successfully completed. 

Steps were also made toward a portable common development platform, including porting the 
RAVEN regression test system under Windows, to ensure a proper QA level is maintained under the 
platform used by the developers of NHES models. 

Finally, a simple economic model was developed to test both the capability of RAVEN to identify 
limit surfaces representing stochastic constraints and to confirm the dependency of the system’s economic 
performance (electricity cost) on the fraction of variable renewable sources (wind, in the specific case 
used in the initial example). In particular, results presented in this report indicate that the cost of 
electricity has a minimum for a specific fraction of renewable resources such that their utilization is 
maximized while the volatility introduced is managed. 

Overall, the tasks performed began the implementation of the much-needed capabilities to optimize 
and evaluate NHES. The results of this effort establish a clear path for future work that will expand, 
refine, and utilize this capability. 
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