INL/EXT-15-36151 Revision 0

Results and Analysis of the Research and Development Work Scope Request for Information (DE-SOL-0008246)

Brenden Heidrich

July 2015

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/EXT-15--36151 Revision 0

Results and Analysis of the Research and Development Work Scope Request for Information (DE-SOL-0008246)

Brenden Heidrich

July 2015

Idaho National Laboratory Nuclear Scientific User Facilities Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Nuclear Scientific User Facilities

Results and Analysis of the R&D Work Scope Request for Information (DE-SOL-0008246)

INL/EXT-15-36151 Revision 0

July 2015

Prepared by:

Brenden Heidrich

Nuclear Energy R&D Infrastructure Lead

Approved by:

Rory Kennedy

Director, NSUF

Date

Date

SUMMARY

The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008246) for "University, National Laboratory, Industry and International Input to the Office of Nuclear Energy's Competitive Research and Development Work Scope Development" on April 13, 2015. DOE-NE solicited information for work scopes for the four main program areas as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015.

From the 124 responses, 238 individual work scopes were extracted. Thirty-three were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL).

Thirty US universities submitted proposals as well as ten industrial/commercial institutions.

Four major R&D areas emerged from the submissions, appearing in more than 15% of the proposed work scopes. These were: nuclear fuel studies, safety and risk analysis, nuclear systems analysis and design and advanced instrumentation and controls. Structural materials for nuclear power plants, used nuclear fuel disposition and various types of systems analysis were also popular, each appearing in more than 10% of the proposals.

Nuclear Energy Enabling Technologies (NEET) was the most popular program area with 42% of the proposals referencing the NEET-CTD program. The order of the remaining programs was Fuel Cycle Technologies (FC) at 34%, Nuclear Energy Advanced Modeling and Simulation (NEAMS) at 29% and Reactor Concepts at 17%.

CONTENTS

SUMMARY	v
ACRONYMS	ix
Introduction	10
RFI Questions	10
Link to Infrastructure RFI (DE-SOL-0008318)	10
Data Summary	13
Proposing Institutions	13
Office of Nuclear Energy R&D Areas	15
Infrastructure Requirements for R&D Work Scopes	19
NE Research Areas	21
Costs Associated with Funding the Proposed Work Scopes	23
Integrated Research Project Proposed Work Scopes	25
Qualitative Comments on the CINR Process	26
Appendix 1: Summary data table for all proposals	29
Appendix 2: Request for Information DE-SOL-0008246	41

ACRONYMS

ART	Advanced Reactor Technology
ATR	Advanced Test Reactor
DOE	Department of Energy
DRP	Database Review Panel
FIMS	Facility Information Management System
FY	fiscal year
FC R&D	Fuel Cycle Research and Development Program
GIS	Geographical Information System
IAEA	International Atomic Energy Agency
IM	Information Management
INL	Idaho National Laboratory
LWRS	Light-Water Reactor Sustainability
NE	Nuclear Energy
NEAMS	Nuclear Energy Advanced Modeling and Simulation
NEET-CT	D Nuclear Energy Enabling Technologies – Crosscutting Technology Development
NEID	Nuclear Energy Infrastructure Database
NSUF	Nuclear Science User Facilities
POC	point of contact
RC RD&D	Reactor Concepts Research, Development and Demonstration Program
R&D	research and development

RFI Request for Information

Introduction

The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008246) for "University, National Laboratory, Industry and International Input to the Office of Nuclear Energy's Competitive Research and Development Work Scope Development" on April 13, 2015. DOE-NE solicited information for work scopes for the four main program areas as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015.

From the 124 responses, 238 individual work scopes were extracted. Thirty-three were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL). Thirty US universities submitted proposals as well as ten industrial/commercial institutions.

The four main R&D programs are:

- 1. Fuel Cycle Research and Development (FC R&D) Program
- 2. Reactor Concepts Research, Development and Demonstration (RC RD&D) Program
- 3. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program
- 4. Nuclear Energy Enabling Technologies (NEET) Crosscutting Technology Development (CTD).

The RFI posed five questions to better describe the proposed work scopes. The questions are summarized below.

RFI Questions

- 1. **Definition:** Clearly define your proposed work scope, and how it relates to any part of NE's mission described in this RFI. Describe any defined goals in achieving the desired outcomes, along with appropriate metrics to assess how well those goals have been achieved.
- 2. Cost Estimates: What would be the estimated cost of the work scope?
- 3. **Timeliness and Priority:** Would the work scope be more focused on immediate NE program needs, or more creative, innovative and transformative?
- 4. Partner Requirements: Would the work scope require multiple partners?
- 5. Duration and Milestones: What would be a reasonable schedule duration and key milestones?

Link to Infrastructure RFI (DE-SOL-0008318)

The work scope proposals were also compared using the same infrastructure and R&D areas utilized in the analysis of the Infrastructure RFI (DE-SOL-00008318). This allowed an extension of that analysis to include infrastructure needs not addressed in those submissions, but required to complete the research proposed in this RFI.

1. <u>R&D Infrastructure Capability Type</u>

The capability categories in Table 1 represent the consolidated categories from the infrastructure analysis. This data was Table 11 of INL/EXT-15-35978. Each proposed work scope was assigned to 1-3 capability categories based on expert judgement.

Name	Abbreviation	
Ion/Photon Beam Facility	IPBF	
Materials Examination	MatEx	
Reactor	MS	
Radio-chemistry Laboratory	RX	
Thermal-Hydraulic	FDF	
High-Performance Computing	RCL	
Microscope	THF	
Fuel Development	НРС	
Advanced Instrumentation	AIN	
Advanced Manufacturing	AM	
Shipping Cask (UNF)	INC	
NPP I&C	CSK	
Concrete and Seismic Equipment	CON	

Table 1: Capability Categories

2. Office of Nuclear Energy Mission Areas.

Each proposed work scope was assigned to 1-2 NE mission areas. Some proposals mentioned these missions; others were assigned using expert judgement.

Number	Abbreviation	Category
		Improve the reliability and performance, sustain the safety and security,
1	LWRS	and extend the life of current reactors by developing advanced
		technological solutions.
		Meet the Administration's energy security and climate change goals by
2	2 ART	developing technologies to support the deployment of affordable
		advanced reactors.
3	FC	Optimize energy and waste generation, safety, and nonproliferation
5	FC	attributes by developing sustainable fuel cycles.
4	RD&D	Enable future nuclear energy options by developing and maintaining an
4	NDQD	integrated national RD&D framework.
5	INTL	Maintain U.S. leadership at the international level by engaging nations that
5	INTL	pursue peaceful uses of nuclear energy.

Table 2: Office of Nuclear Energy Missions

3. Nuclear Energy-related research areas

Abbreviation	Category
STM	Structural Materials
NFL	Nuclear Fuels (including cladding)
NSY	Nuclear Systems Design Studies
PCS	Power Conversion Systems
DRY	Dry Heat Rejection Systems
PRO	Process Heat Transport Systems
INC	Instrumentation and Controls
REC	Material Recovery Processes
WST	Waste Forms
SST	Safeguards and Security Tech.
UNF	Used Fuel Disposition
RSK	Safety and Risk Assessment
AM	Advanced Manufacturing Technologies
SYS	Systems Analysis
SDP	Space and Defense Power Systems
CON	Concrete and Seismic Studies

Table 3: Research Areas Supported by the Proposed Capability

4. <u>Respondent Type</u>

Each respondent to the RFI was placed in one of the following categories, based on their type of organization.

Category	Definition							
University	A US academic institution of higher learning.							
National Laboratory	A government-owned contractor-operated entity.							
Industry	An entity that is not a University or National Laboratory. This can be a for-profit entity, like a utility or a vendor, or a not-for-profit entity, like EPRI.							

Table 4: Capability Location Categories

Data Summary

The RFI proposal period closed on June 19, 2015. At this point, 46 institutions had submitted complete responses. The quality of the responses varied, with the majority of proposers adhering to the suggested format supplied in the RFI. Some of the requested cost data was missing, with only 198 of 238 respondents supplying both cost estimates and planned durations (83%).

From the 124 responses, 238 individual work scopes were extracted.

Proposing Institutions

Forty-Six institutions proposed work scopes through this RFI. Thirty-three were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL). Thirty US universities submitted proposals as well as ten industrial/commercial institutions. The raw distributions are shown in Table 5 and Figure 1.

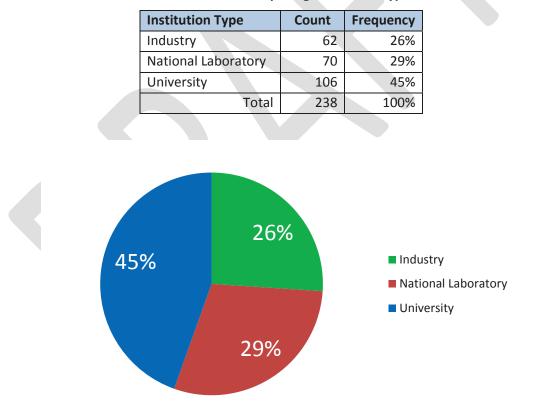


Table 5: Proposing Institution Types

Figure 1: Distribution of Proposing Institutions to Work Scope RFI

Many of the proposing institutions suggested multiple work scopes. Some of this was a result of multiple proposals and some were multiple work scopes within a single proposal. Table 6 shows the top 20 institutions. Figure 2 shows the distribution of institutions.

Institution	total work scopes
Argonne National Laboratory	24
GE Hitachi	20
AREVA Federal Services	17
Pacific Northwest National Laboratory	13
Oak Ridge National Laboratory	12
University of California, Berkeley	12
NuScale Power	11
Idaho National Laboratory	11
Pennsylvania State University	9
University of Michigan	8
University of Illinois, Urbana Champaign	8
Brookhaven National Laboratory	7
North Carolina State University	7
Westinghouse Electric Company LLC	6
Rensselaer Polytechnic Institute	6
Texas A&M University	6
Louisiana State University	5
Purdue University	5
University of Pittsburgh	5
Kansas State University	5

Table 6: Top 20 Institutions with most Work Scope Proposals

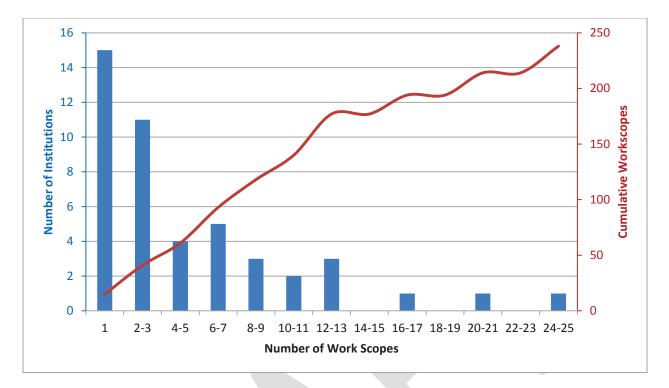


Figure 2: Distribution of Work Scope Proposals and Institutions

Office of Nuclear Energy R&D Areas

The proposer was able to state particular NE R&D areas as well as programs to which the proposed work scope would apply. Both a primary and a secondary choice could be made. Not all proposers made a secondary choice. Table 7 is a summary of the data. Figures 3, 4 and 5 show the distribution of the primary, secondary and aggregate choices. Figure 6 shows the probability that a given R&D area would be in any given proposal. NEET-CTD is the most common primary and secondary choice by proposers.

Table 7:	NE K&D) Area Data	a Summary	/
			-	

Program	NE Primary	NE Secondary	Total	Primary Frequency	Secondary Frequency	Total Frequency	% in any proposal
NEET-CTD	81	18	99	34%	35%	34%	42%
FC R&D	70	10	80	29%	20%	28%	34%
NEAMS	64	6	70	27%	12%	24%	29%
RC RD&D	23	17	40	10%	33%	14%	17%

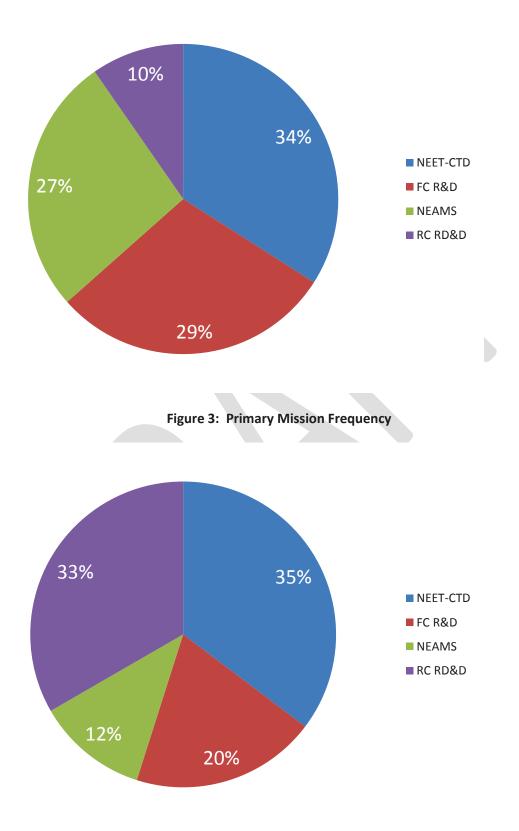


Figure 4: Secondary Mission Frequency

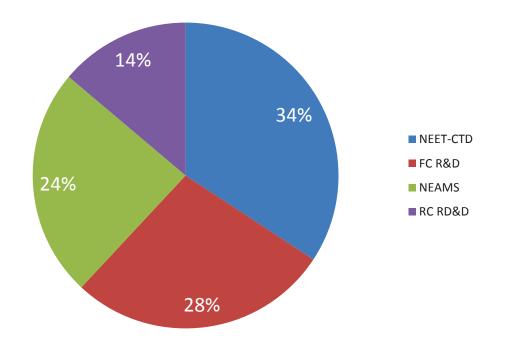


Figure 5: Total R&D Area Frequency

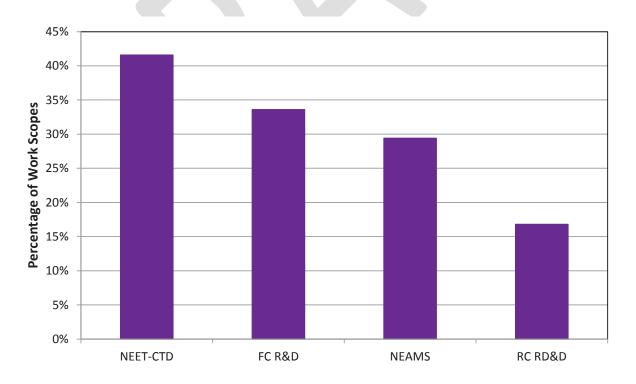


Figure 6: Percentage of Work scopes within each NE Mission Area

The program areas where work scopes were proposed were correlated to the type of institution proposing the work. Table 8 and Figure 7 show the distribution of proposing institutions by program area. Universities were most likely to propose into the NEAMS area, likely because the infrastructure requirements for computer simulation are very small. Industry proposed most often into the Reactor Concepts area, likely in support of the LWRS program. National Laboratories were less skewed in their behavior, but were predisposed to the NEET-CTD program area, likely to support the multi-mission capabilities of the laboratories.

Institution Type	NEAMS	FC R&D	NEET-CTD	RC RD&D
Industry	18%	32%	24%	50%
National Laboratory	32%	25%	45%	28%
University	50%	42%	31%	22%
Total	100%	100%	100%	100%

Table 8:	NE Prog	ram Area	by	Institution	Туре
----------	----------------	----------	----	-------------	------

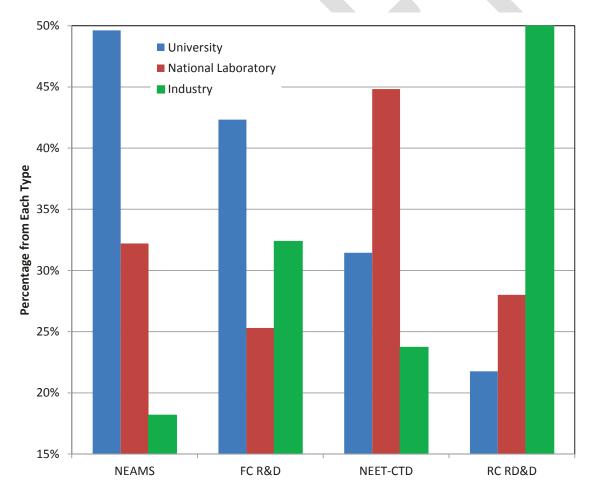


Figure 7: Program Application Normalized to Participation Level

Infrastructure Requirements for R&D Work Scopes

This RFI was focused on work scopes for research and development work, but that work often requires significant infrastructure capabilities. Each proposed work scope was linked to one or more of the combined infrastructure categories from the Infrastructure RFI analysis. Thirty-two of the 238 proposals did not require associated infrastructure. These were mostly in the systems analysis, safety and risk and nuclear systems design studies R&D areas (71%).

Tables 9 and 10 and Figure 8 show the distribution of infrastructure required for the proposed work scopes. Up to three infrastructure areas could be attached to a proposal and two R&D areas. All of this data was aggregated so that any of the infrastructure areas were linked to all of the R&D areas. Because of this technique, some of the correlations may not be very strong.

Table 9 shows the important infrastructure requirements for each R&D area. The data has been converted to a percent of all infrastructure associated with each of the R&D work scope proposals. The data is summed across the rows (work scopes). Most of the R&D areas have strong preferences for one or two infrastructure types.

	Infrastructure Areas												
R&D Areas	AIN	AM	CON	CSK	FDF	HPC	IGBF	INC	MatEx	RCL	RX	THF	Total
AM	17%	48%			7%		3%	3%	14%	3%		3%	100%
CON		7%	43%						50%				100%
INC	46%	5%			2%			43%			2%	3%	100%
NFL	4%	4%		1%	22%	7%	7%	1%	26%	7%	18%	4%	100%
NSY	6%				3%	24%	3%	5%		2%	11%	46%	100%
PCS				50%								50%	100%
PRO	8%	8%						8%		8%		69%	100%
REC										100%			100%
RSK	15%		6%	1%	3%	16%	2%	20%	11%	6%	4%	16%	100%
SDP		50%			50%								100%
SST	50%				33%			17%					100%
STM	5%	7%				2%	14%		47%	14%	12%		100%
SYS	21%			14%		21%		14%	7%	7%	7%	7%	100%
UNF	3%	3%		22%	27%				8%	30%		8%	100%
WST		10%			30%		3%		10%	37%	3%	7%	100%

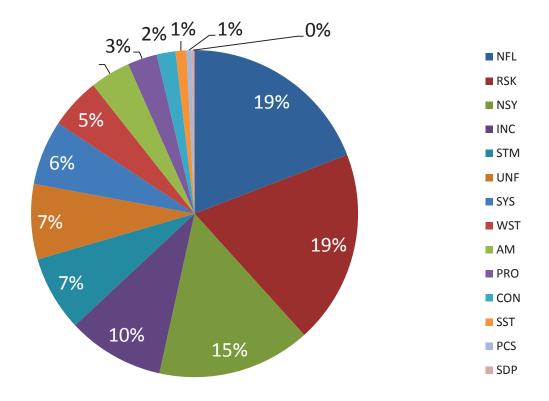
Table 9: Important Infrastructure Requirements for Each Proposed R&D Area

Table 10 is based on the same data, analyzed to show the R&D areas that are supported by a particular type of infrastructure. The data is summed over the columns. Once again, there are specific R&D areas that a type of infrastructure will support.

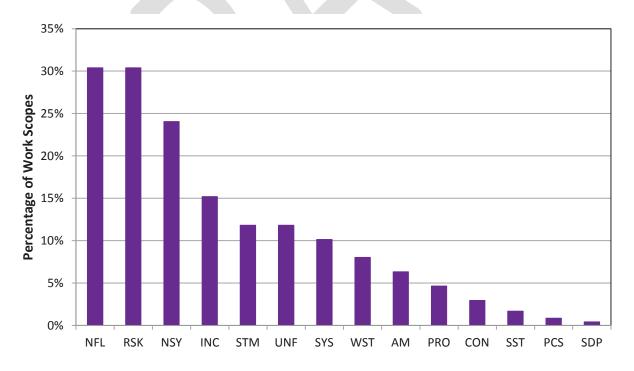
					In	frastruc	ture Are	eas				
R&D Areas	AIN	AM	CON	CSK	FDF	HPC	IGBF	INC	MatEx	RCL	RX	THF
AM	8%	45%			4%		5%	2%	5%	2%		2%
CON		3%	55%						9%			
INC	44%	10%			2%			49%			3%	3%
NFL	6%	13%		8%	42%	18%	37%	2%	36%	16%	49%	6%
NSY	6%				4%	38%	11%	6%		2%	19%	44%
PCS				8%								2%
PRO	2%	3%						2%		2%		14%
REC										2%		
RSK	20%		45%	8%	6%	35%	11%	34%	13%	11%	11%	21%
SDP		3%			2%							
SST	5%				4%			2%				
STM	3%	10%				3%	32%		27%	13%	14%	
SYS	5%			15%		8%		4%	1%	2%	3%	2%
UNF	2%	3%		62%	19%				4%	24%		5%
WST		10%			17%		5%		4%	24%	3%	3%
Grand Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 10: Infrastructure Types that Support Various R&D Areas

Finally, Figure 8 displays the probability that a given type of infrastructure was required for any given proposed work scope. This is the relative popularity of each type of infrastructure in this RFI.


Figure 8: Probability of requiring a given Type of Infrastructure

NE Research Areas


Each proposed work scope was matched to a set of research areas originally used for the Infrastructure RFI. Up to two areas could be assigned to a given proposed work scope. Table 11 and Figure 9 show the distribution of these research areas. Figure 10 shows the probability of a given research area appearing in any given work scope proposal.


Research Area	Abbreviation	TOTAL	Frequency
Nuclear Fuels (including cladding)	NFL	72	19%
Safety and Risk Assessment	RSK	72	19%
Nuclear Systems Design Studies	NSY	57	15%
Instrumentation and Controls	INC	36	10%
Structural Materials	STM	28	7%
Used Fuel Disposition	UNF	28	7%
Systems Analysis	SYS	24	6%
Waste Forms	WST	19	5%
Advanced Manufacturing Technologies	AM	15	4%
Process Heat Transport Systems	PRO	11	3%
Concrete and Seismic	CON	7	2%
Safeguards and Security Tech.	SST	4	1%
Power Conversion Systems	PCS	2	1%
Space and Defense Power Systems	SDP	1	0%
Dry Heat Rejection Systems	DRY	0	0%
Material Recovery Processes	REC	0	0%

Table 11: Frequency of Research Areas in the set of Proposed Work Scopes
--

While the distribution of research areas is clear, the relationship among them is also important. Two choices were allowed for each proposal. The selection of the first area had a strong influence on the second choice. Figure 11 shows the relationship among the research areas with respect to first and second choices. Safety and Risk Analysis is the most probable secondary choice of research areas. This may be real, or it may be a function of the proposer adding a statement about safety in order to provide gravitas to the proposal.

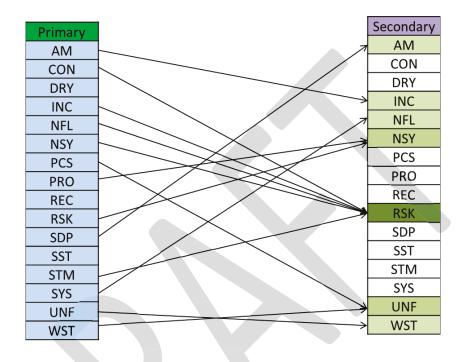


Figure 11: Preferred Secondary Research Area Choices in set of Proposed Work Scopes

Costs Associated with Funding the Proposed Work Scopes

The respondents were asked to provide a cost and schedule estimate for the proposed work scopes. Figures 12, 13 and 14 show the distribution of total costs, expected schedule duration and the associated cost per year for each work scope. Most of the proposals provided an estimate of \$800,000 and a three-year duration, which has been the typical cost and length. The distributions were as expected, with a few high-cost and long-term proposals.

Figure 13: Expected Work Scope Duration

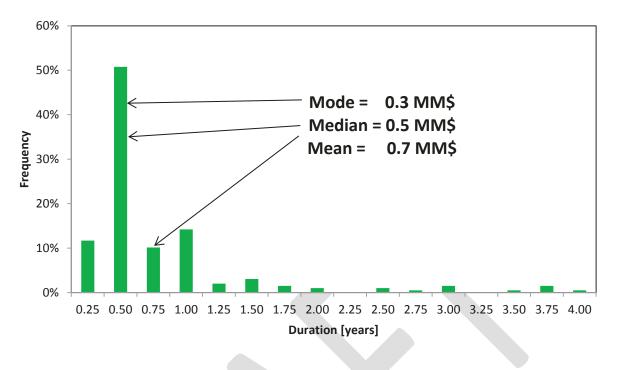


Figure 14: Cost/Year Distribution

Integrated Research Project Proposed Work Scopes

Five integrated research project work scopes were proposed:

- 1. Validation of Multi-physics/Multiscale Simulations Experimental and analytical techniques for the characterization of tightly coupled phenomena to quantify and justify confidence in high fidelity simulations, the Idaho National Laboratory (3 years, 6.0MM\$)
- 2. Assessing Unit Resilience Impacts in the Optimal Control of Hybrid Systems, The Ohio State University (3 years, 4.5MM\$)
- 3. Modeling the Transport of Radionuclides in Arid Environments, AREVA-NP (3 years, 3.0MM\$)
- 4. Development of a Process For Tritium Separation and Capture from Aqueous Streams Containing Dilute Quantities of Tritium, AREVA-NP (3 years, 3.0MM\$)
- 5. Development of an Open-Source Virtual Reactor Road Map for Use in Research and Education, AREVA-NP (3 years, 3.0MM\$)

Qualitative Comments on the CINR Process

Two proposers submitted qualitative statements concerning the administration of the Office of Nuclear Energy competitive funding programs. These statements are included here in their entirety with only editorial changes made for clarity.

Fuel Cycle Research and Development

There is significant work scope in many different areas, so, fewer topics that rotate so that awards can be funded at a higher level, e.g. ~3 topics per year would be more beneficial. If the work scope is very specific to one or two issues, it results in more centered and relevant proposals.

NEET

Offer fewer topics with more dollars to maintain collaborations. The number of NEET subject areas has increased significantly from three to six. This reduces the number of proposals that can be funded in each area. If six or more areas are going to stay constant, the funding for NEET needs to be increase by a factor of two. If the funding is to stay the same for the same six subject areas, I would suggest that proposals be solicited for three subject areas the first year and the other three the second year.

Also, the original idea was to have each proposal include collaborators in industry, national laboratories, and universities. If that is expected, the funding needs to be increased to be similar to the amount of funding for IRPs at ~1MM\$ per year for three years. With funding so low, it is very difficult to have more than three collaborators without significantly reducing the scope that can be accomplished.

Needed capabilities supporting research, training and technology demonstration

The capabilities needed to support research, training, and technology demonstration are state of the art characterization equipment that is maintained in working order.

- In addition, to be used for training, this equipment needs to be accessible for students.
- The capabilities must be able to handle low-level radioactive samples.

Capabilities that are needed include:

- Focused Ion Beam Microscopes (FIB)
- Transmission Electron Microscopes, both high-resolution and analytical (TEM)
- Scanning Electron Microscopes (SEM)
- Electron Backscatter Diffraction (EBSD)
- Optical microscopy
- Mechanical Testing equipment
- Other specialized equipment such as Atom Probe Tomography (APT)

Because these capabilities are in high demand for performing research, these are needed at national laboratories as well as universities.

Additional Comments on DOE NEUP

The funding of nuclear research by DOE NEUP is greatly appreciated and it has caused a sea change in the outlook of nuclear engineering departments across the country. The comments below should be taken in the context of this deep appreciation, while wanting to make the program even better, of higher quality and more useful to DOE.

Relevance Assessment

The system for assessing the relevance of research proposals in the DOE system is deeply flawed. The relevance reviewers appear to have little knowledge of the research currently being done in the DOE NEUP, so they reject proposals that they believe are being addressed when in fact they are not and recommend funding proposals that are repeats of others. Further, the review relevancy process is very opaque, as the PIs receive only a cryptic message of this work is being done elsewhere. This makes the DOE lose credibility with researchers.

• It is recommended that technical people be involved in both the real review and the relevancy evaluation as it is not possible to evaluate relevancy when the reviewers have little technical knowledge of the field.

Accountability of research projects

It is necessary to require greater accountability of the results in the research projects funded, especially on the IRP projects. This is because these projects often do not deliver on their promises. Currently there is little incentive in the DOE proposal process for being accurate on what is promised in the research proposal. If one promises more than can be reasonably delivered, but adjusts the milestones to something that can be fulfilled, little other checking appears to occur. In speaking to other researchers, the feeling is that there is little use of the reports we send in, the TPOC being busy with their own work and having little incentive to follow up.

This process is made worse in the initial evaluation process by the fact that the reviews are semi-blind, and it is not possible to take an applicant's track record into account while making the evaluation of whether the objectives of a research project is likely to be completed. NSF asks for a report on prior support; this should at least be evaluated by DOE.

- It is recommended that DOE NEUP consider
 - (i) No longer using the semi blind process of evaluations (find other means of awarding research funding to young investigators which is very a laudable

goal - e.g. reserve a part of the budget for investigators less than X years out). This would allow reviewers to take the PI's track record into account in evaluating the proposal.

- (ii) Ask for an account of prior support to be submitted with the proposal;
- (iii) Require that IRPs have an Advisory Board approved by the TPOC who monitors the research projects and reports independently to DOE; this would allow in course corrections,
- (iv) Change the reward system so that TPOC's have an incentive to engage in and monitor the research.

Appendix 1: Summary data table for all proposals

IRP?		9	2	2	9	9	S	9				9	0	0	0	0	Q	Q	0	
Cost/Year		1.00	0.67	0.27	0.80	0.48	1.25	0.50				0.40	0.50	0.50	0.50	0.50	1.00	1.00	1.00	
Schedule [YEARS]	NE	2	3	m	10	'n	3	m	3.5	1.25	m	2	2	2	2	2	2	2-5	2-5	
Multiple Partners?	NE	٨	٢	z	٢	۶	٨	٨	۲	z	۲	*	۲	٨	۲	٨	۲	۲	٨	
Immediate or Future Needs	-		-	u.	u.	L.	L.	u.	-	-	-	-	-	-	-	-	-	u.	u.	
Cost [MM\$]	NE	2	2	0.8	8	2.4	3.75	15	5-20	1.7-3.1	4-6	0.8	1	1	1	1	2	8-12	1-5	
NEAMS Tie- In?	z	z	٨	۲	z	7	٨	z	۲	z	z	z	z	z	z	z	z	z	N	
NE R&D Program															ßC	RC		NEET- CTD	NEET- CTD	
NE R&D Program	RC	RC	RC	R	R	NEAMS	RC	NEET- CTD	RC	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	R	RC	RC	
NE R&D Area (Q8)			CON		NFL	RSK	RSK	ASN	RSK		NSV	STIM			RSK	RSK	NFL	RSK	RSK	
NE R&D Area (Q8)	STM	NSV	RSK	NFL	NSY	STM	NSV	SST	NSV	STM	RSK	AM	STM	STM	STM	STM	UNF	NFL	ASN	
NE Mission Area (Q7)					m		1	4	2	1	1	2	1	1	2					
NE Mission Area (Q7)	1	2	1	m	2	0	2	m	1	2	2	1	2	2	1	1	m	2	2	
Infra Area (Q6)				IGBF		MatEx						MatEx	RCL							
Infra Area (Q6)			CON	MatEx	Ð	IGBF	HPC		불	RCL		IGBF	IGBF	RCL			g			
Infra Area (Q6)	MatEx	RX	MatEx	FDF	RX	RX	THF	AIN	HPC	MatEx	HPC	AM	MatEx	MatEx	RCL	RCL	Š	RX	ЭНL	
Institution Type	Industry	University	University	University	University	National Laboratory	University	University	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	
Description	improved NDE capabilities to characterize materials aging	Offshore Floating Nuclear Plant (OFNP) concept with the potential for attractive economics and unprecedented levels of safety.	degradation of concrete structures (radiation and high- temperature effects) experiments and simulation tools	CsiOCSIC Coated Particle Fuels and CsiOCSIC Encapsulated Pellet Fuels for Nuclear Reactors (on , irradiation, structural evaluation & simulation)	Development of Technology to Enable Thorium Fueled Molten Salt Reactors	Synergistic, Length Scale Bridging Characterization Scheme: in Assessing Irradiation Danage Effects and Evolution of Advanced Beactor Materiation Lentenes. The conseptualization, optimization and conduct of unique but relevant experiments at different scales.		Development for Field mightementation of a Transformational Camma-Beta Blind Neutron - Alpha – Fission Spectrometer for CrossOutling Needs: The over all objective Neith project is to develop protocype advanced aeroors and instrumentation to monitor in near real-time for fission, fission fragments, neutrons and alpha spectra based on the TMFD	TWO PHASE FLOW COMPUTATIONAL FLUID DYNAMICS METHODS	ADVANCED MATERIAL FOR APPLICATION IN PYROTECHNIC- OPERATED VALVES (VALVE BODIES - CERAMET)	AN INTEGRATED GENERATION RISK ASSESSMENT AND PROBABILISTIC RISK ASSESSMENT MODEL FOR GENERATION III+ PLANTS	EVALUATION AND OPTIMIZATION OF ADDITIVELY MANUFACTURED NICKEL BASED ALLOYS FOR NUCLEAR APPLICATIONS (600 & 718)	ADVANCED HIGH STRENGTH NICKEL ALLOYS WITH IMPROVED RESISTANCE TO ENVIRONMENTAL DEGRADATION (725 & Hiccrow-11)	EVALUATION AND OPTIMIZATION OF HIGH CHROMIUM STRUCTURAL ALLOYS AND WELD METALS FOR BWR APPLICATIONS (310, 800, 690)	CONTINUOUS ONLINE ELECTROCATALYTIC INJECTION TECHNOLOGY MECHANISM AND DEVELOPMENT	ALTERNATIVE NOBLE METAL DELIVERY METHOD FOR BWR APPLICATIONS	ENVIRONMENTAL DEGRADATION RESISTANCE OF STAINLESS STELL CANISTERS AND MECHANICAL & CHAMICAL BEHAVIOR OF USE FUEL UNDER DRY CASH LONG TERM STORAGE	SODIUM-REACTOR AMALYSIS TOOLS/MODELING FOR LICENSING – PRIORITY 1 (modern code suite for LMR: TRANSIENT AMALYSIS)	SODIUM-REACTOR ANALYSIS TOOLS/MODELING FOR LICENSING – PRIORITY 1 (modern code suite for LMR: SS TH)	SODILIM-REACTOR ANALYSIS TOOLS/MODELING FOR
Institution	EPRI	Massachusetts Institute of Technology	University of Houston	Virginia Polytechnic Institute and State University	University of Utah	Brookhaven National Laboratory	North Carolina State University	Purdue University	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	GE Hitachi	
Tracking ID	RFI-RD-9609	RFI-RD-9610	RFI-RD-9613	RFI-RD-9615	RFI-RD-9616	RFI-RD-9619	RFI-RD-9620	RFI-RD-9621	RFI-RD-9622-1	RFI-RD-9622-2	RFI-RD-9622-3	RFI-RD-9622-4	RFI-RD-9622-5	RFI-RD-9622-6	RFI-RD-9622-7	RFI-RD-9622-8	RFI-RD-9622-9	RFI-RD-9622- 10A	RFI-RD-9622- 108	

Tracking ID	Institution	Description	Institution Type	Infra Area (Q6)	Infra Area (Q6) (Q6)	NE Mission Area (Q7)	NE Mission Area (Q7)	NE R&D Area (Q8)	NE R&D Area (Q8)	NE R&D N Program P	NE R&D NE Program	NEAMS Tie- In?	Cost I [MMS] F	Immediate or Future Needs	Multiple Partners?	Schedule [YEARS]	Cost/Year	IRP?
RFI-RD-9699	Brookhaven National Laboratory	Alternative Carrier Fluids for Homogeneous Reactor Systems	National Laboratory	ΡŪ		m		NFL	WST	£		z	N.	ш	۲	NE	#VALUE!	
RFI-RD-9700	Brookhaven National Laboratory	Understanding and Predicting Performance of Potential Nuclear Hybrid Energy Systems	National Laboratory	Ŧ		2		NSV	PRO	ßC		z	-	u.	۲	æ	0.33	
RFI-RD-9701-1	NuScale Power	Innovative fuel pin/assembly designs to enhance natural circulation flow	Industry	ΗF		m		NSY	RSK	R		z	J	u.	٢	NE		
RFI-RD-9701-2	NuScale Power	Development of interface technologies to facilitate coupling of SMRs to hybrid energy systems	Industry	THF		2		PRO	NSV	ßC		z	NE	L	٢	NE		
RFI-RD-9701-3	NuScale Power	Small, mobile nuclear energy systems	Industry			2		NSY	PCS	RC		N	NE	F	٢	NE		
RFI-RD-9701-4	NuScale Power	Benchmarked modeling and simulation of the coupled neutronics and thermal-hydraulics under natural circulation	Industry	ΗL		5		NSV	RSK	NEAMS		*	¥	u.	٢	NE		
RFI-RD-9701-5	NuScale Power	Development of multi-objective, multi-parameter optimization methods and user tools	Industry			2		NSY	SYS	NEAMS		۲	NE	u.	۲	NE		
RFI-RD-9701-6	NuScale Power	Advancing integrated dynamic PRA for LWRs and next generation advanced nuclear systems	Industry			2		RSK		NEAMS		۲	NE	u.	۲	NE		
RFI-RD-9701-7	NuScale Power	Demonstration of defined hard and soft wireless technology solutions for LWRs and advanced reactor systems	Industry	AIN	INC	1	2	INC		NEET- CTD		z	NE	-	۲	NE		
RFI-RD-9701-8	NuScale Power	Extension of dynamic modeling and simulation to nuclear supply chain modeling	Industry			1	2	SYS		CTD -		z	NE	-	٢	NE		
RFI-RD-9701-9	NuScale Power	Advanced factory-based manufacturing technologies	Industry	AM		2		AM		CTD CTD		z	NE	u.	٢	NE		
RFI-RD-9701- 10	NuScale Power	Novel approaches to seismic isolation	Industry	MatEx	CON	2		RSK	CON	CTD CTD		z	NE	u.	٢	NE		
RFI-RD-9701- 11	NuScale Power	New technologies supporting SMR fleet management	Industry	AIN	AM	2		AM		CTD CTD		z	Я	L	۲	NE		
RFI-RD-9703-1	Pacific Northwest National	Integrated Research on Fuel Cladding Failure in Simulated LWR Coolant Loop T. S. Byun, M. B. Toloczko	National Laboratory	Ħ		m		NFL		ñ		z	2	-	۲	10	0.70	
RFI-RD-9703-2	Pacific Northwest National Laboratory	Digging Deep and Overcoming Challenges with Nuclear Waste Disposal - M. Asmussen, J. Neeway, G. Last and N. Qafoku	National Laboratory	Ħ	RCL	m		UNF	WST	ñ		z	1.5	u.	۲	ę	0.50	
RFI-RD9703-3	Pacific Northwest National	Integrated Characterization and Modeling of Reactor Materials Degradation - P. Ramuhalli and R. Devanathan	National Laboratory	MatEx		1	2	STM		RC		z	m	-	٨	ę	1.00	
RFI-RD-9703-4	Pacific Pacific Northwest National	Modeling and non-destructive evaluation of concrete degradation for reactor life extension - R. Devanathan	National Laboratory	MatEx	CON	1		CON	RSK	S		~	15	-	٨	e	0.50	
RFI-RD-9703-5	Pacific Northwest National Laboratory	Radiation-tolerant sensors and telerobotics for harsh environments - P. Ramuhalli and W. Glass	National Laboratory	AIN	INC	2		INC		S		z	4.5	u.	۲	m	1.50	
RFI-RD-9703-6	Pacific Northwest National Laboratory	Signature Discovery and Analysis from Non-Destructive Evaluation (NDE) Data - W. Glass	National Laboratory	AIN	INC	1	2	INC		RC		z	m	u.	٢	m	1.00	
RFI-RD-9703-7	Pacific Northwest National Laboratory	Multiphysics Modeling of Spent Nuclear Fuel Canister Degradation - P. J. Jensen, S. B. Ross and R. Devanathan	National Laboratory	Š		m		UNF		NEAMS		~	m	-	۲	m	1.00	
RFI-RD-9703-8	Pacific Northwest National Laboratory	Mesoscale Simulation of Nuclear Fuel Cladding Behavior with Atomistic Input - R. Devanathan	National Laboratory	MatEx		m		NFL		NEAMS		*	2.4	-	٢	ŝ	0.80	
RFI-RD-9703-9	Pacific Northwest National Laboratory	Development and Characterization of Manostructured Ferritic-Austenitic Duplex Alloy for Reactor Core Applications - T. S. Byun and R. Devanathan	National Laboratory	AM	MatEx	2		STM		NEET- CTD		z	1.5	u.	٢	3	0.50	

IRP?																					
Cost/Year	0.70	0.50	0.35	0.67	1.88	0.13	0.55	0.55	0.55	0.55	0.55	0.40	0.50	0.50	0.50	0.50	0.67	0.50	0.33	0.50	0.50
Schedule [YEARS]	3	m	m	m	2	ę	3	e	ę	m	m	en	m	2	3	3	m	2	e	m	m
Multiple Partners?	Y	٨	z	٨	٢	z	٨	٢	٢	٢	٨	۲	7	٢	٨	٢	٨	7	٢	٨	٨
Immediate or Future Needs	u.	-	u.	u.	L	u.	-	-	-	u.	u.	-	-	-	-	-	u.	-		u.	Ľ
Cost [MMS]	2.1	1.5	1.05	2	3.75	0.375	1.6375	1.6375	1.6375	1.6375	1.6375	12	15	1	1.5	1.5	2	1	1	15	15
NEAMS Tie- In?	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	۲	z	z
NE R&D Program					CI PEL		FC	ßC	FC	RC	ñ							ßC	NEAMS		
NE R&D Program	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	RC	8	NEET- CTD	CTD -	CTD -	neet-	CTD -	CTD CTD	Leet-	neet-	NEET- CTD	CTD -	8	CTD -	RC	RC	RC
NE R&D Area (Q8)	SYS	RSK			PRO	WST	NFL	STM	NFL	PRO	WST	STM		UNE	AM		RSK		RSK		
NE R&D Area (Q8)	RSK	STM	UNF	STM	NSY	UNF	AM	AM	AM	AM	AM	NFL	INC	ß	INC	INC	PRO	SVS	NFL	VSV	NFL
NE Mission Area (Q7)	2	2	m	2								2						1			
NE Mission Area (Q7)	1	m	1	1	2	m	s	2	m	2	m	m	1	m	4	4	m	2	2	2	3
Infra Area (Q6)		X																			
Infra Area (Q6)		MatEx	ğ	AIN		岸	MatEx	MatEx	MatEx	岸	g	MatEx	INC	岸	AIN	AIN					
Infra Area (Q6)		IGBF	MatEx	MatEx	THF	RCL	AM	AM	AM	AM	AM	IGBF	AIN	SK	INC	INC	RCL		THF	ΗF	RCL
Institution Type	National Laboratory	National Laboratory	National Laboratory	National Laboratory	Industry	University	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory
Description	Innovative Tools for Nuclear Power Operations and Risk Management - P. Ramuhalli	The Use of Neutron Intadiation Preconditioning Followed by Self-Jon Intadiation to Assess High Dose Performance of Fast Reactor Clad and Duct Materials M.B. Tiolocolo	Development of State-of-the-Art Methods for Determining SCC fack Susceptibility of Spent Nuclear Fuel Dry Storage Containers - M.B. Toloczko	Mirco-Magnetic Materials Characterization and Modeling for Advanced Diagnostic NDE of Irradiated Metals - P. Ramuhalli, B. R. Johnson, J. McCloy	First-of-a-Kind Heat Exchanger for Advanced Small d. Modular Reactors Cooled by Molten Salt	Enhanced Solvent Extraction for Nuclear Fuel Recycle Via Encapsulation of Ligands into or on Nano Particles	Additive Manufacturing for Nuclear Energy Applications (Manufacturing advanced fuel materials)	Additive Manufacturing for Nuclear Energy Applications (Manufacturing Advanced Nuclear Structural Materials)	Additive Manufacturing for Nuclear Energy Applications (Manufacturing Zircaloy based Advanced Cladding Materials)	Additive Manufacturing for Nuclear Energy Applications (3D Printing of Advanced Heat Exchanger for Nuclear Systems)	Additive Manufacturing for Nuclear Energy Applications (Manufacturing for the Back End of the Fuel Cycle)	Application of Penetrating Heavy lons to Nuclear Materials Development	Wireless Power and Data Transfer for Post-Accident Standoff Monitoring of a Nuclear Power Plant (microwave technology)	Harvesting Power from Spent Nuclear Fuel for Enhanced Safety and Economics	Virtual Simulation of Mechanical Operations in Nuclear Applications	Wearable Mobile Display for Nuclear Power Plant Workers	Investigation of the Effect of Suspended Nanoparticles on Chemical Reactivity of Liquid Sodium	The Role of Nuclear Power and Energy Storage in Future Carbon-Constrained Power Systems	Radial Core Expansion as a Fast Reactor Reactivity Feedback	Development of Sodium-Cooled Fast Reactors and Lead- Cooled Fast Reactors (Evolution of LFR Conceptual Designs)	Development of Sodium-Cooled Fast Reactors and Lead- Cooled Fast Reactors (Lead Coolant Corrosion Control and Coolant Chemistry Control for a Pool-Type LFR)
Institution	Pacific Northwest National Laboratory	Pacific Northwest National Laboratory	Pacific Northwest National Laboratory	Pacific Northwest National Laboratory	Terrestrial Energy USA Ltd.	University of Tennessee at Knoxville	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Laboratory	Argonne National Iaboratory	Argonne National Laboratory	Argonne National Laboratory
Tracking ID	RFI-RD9703- 10	RFI-RD9703- 11	RFI-RD-9703- 12	RFI-RD9703- 13	RFI-RD-9704	RFI-RD-9705	RFI-RD-9707-1	RFI-RD-9707-2	RFI-RD-9707-3	RFI-RD-9707-4	RFI-RD-9707-5	RFI-RD-9708	RFI-RD-9709	RFI-RD-9710	RFI-RD-9711	RFI-RD-9712	RFI-RD-9713	RFI-RD-9714	RFI-RD-9715	RFI-RD-9716-1	RFI-RD-9716-2

RFH0D-97163 Negatine Development of Solitum-Cooled Fast Reactors and Lead- Negatine Development of Solitum-Cooled Fast Reactors and Lead- Argome Development of Solitum-Cooled Fast Reactors and Lead- NethD-97164 National Cooled Fast Reactors (Terring of HLMC) Hast RFHDD-97164 Nethenical Prince RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) RFHDD-97164 Nethenical Prince) Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince) RFHDD-97164 Nethenical Prince) Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince) Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince (Solitum-Cooled Fast Reactors and Lead- Nethenical Prince (Solitum-Cooled Fast R
Argome Development of Sodium-Cooled Fast Reactors and Lead- National Cooled Fast Reactors and Lead- Lationation Cooled Fast Reactors (Development and Testing of HUKC Laboratory) Argome Development of Sodium-Cooled Fast Reactors and Lead- National Cooled Fast Reactors and Periodium-210 from Laboratory and Laboratory RCL 2 REC WST RC WST RC
Argonne Development of Sodium-Cooled Fast Reactors and Lead- National Cooled Fast Reactors (Removal of Polonium-210 from 1-Abernane) RCL 2 REC WST RC
v Heavy Linuid Metal Conlant)
Argonne Leak Detection Systems for Steam Generators of Sodium- National Laboratory Laboratory
Argome Argome National Mational Matter Materials under Extreme Conditions National MatEx IGBF 3 NFL FC N
Performance Limit States of Flood Defense Structures Protecting Muclear Power Plants in Coastal Regions
United States United States United States Advanced St. Ceramic fuel cladding as Accident Tolerant Leaves Devi Net. D
Field Asstrated Simteming leadmology E
Protecting Muclear Power Plants in Coastal Regions University End I NSK Advanced Fabrication of UO2-UB2 Composite Fuels by University FDF AM Matrix 3 NFL AM Field Accited Sintering Technology University FDF AM Matrix 3 NFL AM SIC certain the cladefing as Accident Tolerant Invincio Doi University Doi Mic 3 NFL AM
Protecting Mudeer Power Plants to Coastal Regions University International and International Advanced Fabrication of Coastal Regions University FDF Advanced Fabrication of UC3-UB2 Composite Fueld by University FDF Advanced Fabrication and Advance
Wulterability beyond Design Bases for Multiple Hazards University 1 1 RSK Performance Limit States of Flood Defence Structures University 1 1 RSK Protecting Nuclear Power Plants in Coastal Regions University FDF 1 RSK Advanced Fabrication of UO2-UB2 Composite Fleic by University FDF AM MatEx 3 MrL Field Assisted Simening Technology Externation of UO2-UB2 Composite Fleic by University FDF AM MatEx 3 MrL
ID Aging in Pipring Systems University watex CUN I Vulnerability beyond Design Bases for Mutiple Hazards University I I I Performance Limit States of Flood Defense Structures University I I I Protecting Nuclear Power Flants in Coasta Regions University FDF I I Advanced Fabrication of UO2-UB2 Composite Fleits by University FDF AM Matex 3 Field Assisted Sintering Technology EXECTED Composite Fleits by University EDF AM Matex 3
Behavior of Nuclear Materials under Extreme Conditions National Laboratory Mattix IGBF Image Assessment of Seismically Induced Leakage Fragilities due to Aging in Piping Systems University Mattix CON Image
Leak Detection Systems for Steam Generators of Sodium- cooled Fast Reactors' (chemical and accusic) National THF AIN NIC Behavior of Nuclear Materials under Extreme Conditions Mathonaly Matters IoBoratory Materials Behavior of Nuclear Materials under Extreme Conditions Mathonaly Materials IoBoratory Materials Assessment of Seismically Induced Leakage Fragilities due Vulneershity bejond Design Bases for Mutiple Hazards University Materials IoDoce Performance Limit States of Flood Defense Structures University Materials Materials IoDoce Reformance Limit States of Flood Defense Structures University Materials Materials IoDoce Reformance Limit States of Flood Defense Structures University Materials Materials IoDoce Reformance Limit States of Flood Defense Structures University Materials Materials IoDoce Reformance Limit States of Flood Defense Structures University Inversity Materials IoDoce Reformance Limit States of Flood Defense Structures University Inversity Inversity Inversity
Metallic Fuel Ladoratory Ladorator
Argoine Development of Sodium-Cooled Fast Reactor: and Lead- haritomal Matrixe Matrixe Matrixe Laboratory Laboratory RX Matrixe Matrixe Matrixe Argoine Acoustic Sunwillance Wethod: and Instrumentation for Matrixed National THF AIN Pagement Acoustic Sunwillance Wethod: and Instrumentation for Matrixed National THF AIN Pagement Acoustic Sunwillance Wethod: and Instrumentation for Matrixed Laboratory THF AIN Pagement Acoustic Sunwillance Wethod: and Instrumentation for Laboratory Matrixe Matrixe AIN Pagement Laboratory Matrixe Matrixe Matrixe AIN Argoine Behavior of Nuclear Material: under Extreme Conditions Matrixe Matrix AIN Argoine Behavior of Nuclear Material: under Extreme Conditions Matrixe Matrix AIN Argoine Behavior of Nuclear Material: under Extreme Conditions Matrixe Matrix AIN Matrixe Matrixe Matrixe Matrixe Matrixe AIN AIN
Mational Cooled Fast Reactors (Free:ing and Melting Behavior of Lendoration) Importance The Lendoration Agional Adjoinal Adjoinanotory Adjoinal A
Laboratory Locotariat reactors (starting of a factural ucruation LH) Laboratory Agome Development of Sodium-Cooled Fast Reactors and Lead- National National Laboratory Agome Development of Sodium-Cooled Fast Reactors and Lead- National National Laboratory Agome Development of Sodium-Cooled Fast Reactors and Lead- National National Laboratory Agome Development of Sodium-Cooled Fast Reactors and Lead- National National Laboratory Agome Laboratory Matonal National Laboratory Agome Laboratory National National Laboratory Agome Laboratory Laboratory Laboratory Laboratory Argome Laboratory Laboratory Laboratory
Laboratory Heavy Liould Metal Coolant) Adgrome Development of Sodium-Cooled Fast Reactors and Lead- National National Development of Sodium-Cooled Fast Reactors and Lead- Algoratory Algoratory National Algoratory Hould Fast Reactors (Startup of a Natural Circulation FR) Algoratory Hould Fast Reactors (Journ-Cooled Fast Reactors and Lead- Algoratory Algoratory Hould Fast Reactors (Journ-Cooled Fast Reactors and Lead- Algoratory Algoratory Metallif Fuel) Algoratory Metallif Fael) Algoratory Metallif
Agorations Agorations Agorational Agoratio

IRP?																				
Cost/Year	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	1.00	0.25		0.27	0.13			0.27	0.15	21.0
Schedule [YEARS]	m	3	e	ß	ŝ	3	3	3	3	3	e	4	NE	3	3	4	4	3	ß	m
Multiple Partners?	۲	٢	z	z	z	N	z	N	٢	٨	٢	z	z	٢	N	z	٢	N	٢	٨
Immediate or Future Needs	u.	L.	Ľ.	L.	L.	u.	L.	L.	щ	L.	u.	u.	-	Ŀ	-	-	-	F	u.	-
Cost [MMS]	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	e	1	0.4	0.8	0.4	0.6-0.8	0.8-1	0.8	0.45	0.5
NEAMS Tie- In?	z	z	۲	٢	٢	٢	٢	z	z	z	z	z	z	z	٢	٢	N	N	z	z
NE R&D Program	ß	RC	NEET- CTD	NEET- CTD			FC									NEET- CTD			RC	
NE R&D Program	8	FC	RC	RC	RC	RC	RC	CTD CTD	FC	Я	R	R	CID VEET	Я	NEAMS	NEAMS	NEET- CTD	NEET- CTD	CTD CTD	ßC
NE R&D Area (Q8)	NFL				RSK		RSK	NFL	SYS	SAS	WST			UNF	SAS		RSK		RSK	AM
NE R&D Area (Q8)	NSV	NFL	NSY	NSY	NSV	NFL	NFL	RSK	NFL	NFL	UNF	NFL	RSK	WST	RSK	STM	INC	RSK	INC	SDP
NE Mission Area (Q7)	2	2					з										2		1	
NE Mission Area (Q7)	m	m	m	m	2	2	2	4	s	8	m	m	4	m	4	4	1	4	4	2
Infra Area (Q6)			MatEx			HPC						X		MatEx						
Infra Area (06)			IGBF	HPC	HPC	AIN		RCL			MatEx	MatEx		RCL				HPC	AIN	AM
Infra Area (Q6)	HPC	HPC	RX	Ή	推	RX	RX	MatEx			ΡŪ	ä		Ę	HPC	MatEx	INC	RCL	INC	ä
Institution Type	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University	University
Description	Improve both fuel cycle economics and resource utilization through the investigation of high power density theis and hard netrons pset (Fully Passive Resource Renewable/FRU Burnine LWR)		Improve both fuel cycle economics and resource utilization fraugh the inscription for any power density fuels and hard neutron spectra. (Fifter of fast flux and fluence on Zircaioy and advanced claddings)	Improve both fuel cycle economics and resource utilization fraugh the investigation of high power density fuels and hard neutron spectra. (Viol draction prediction in small hydraulic diameters)			Improve both fuel cycle economics and resource utilization through the investigation of high power density theis and hand neutron spectra. (Reactor Physics in Intermediate Sectorum)		Assessment of Stakeholders and Attributes to Support Nuclear Fuel Cycle Research, Development and Deployment Decision-Making	Developing a User-Focused Environment for Continued Enhancement of Nuclear Fuel Cycle Simulators	GYROMELTER FOR RAPID PROCESSING OF NUCLEAR VV WASTES		Support and Enhancement of Research and Training Capabilities for Engineers Trained in Probabilistic Risk Accessment	Novel Multiphase Waste Forms for Complex Waste Streams: Synthesis and Performance Evaluation	Safety assessment of nuclear reactors using Monte Carlo reactor simulation tools (TH feedback optimization, sy dynamic MC calculations and parallel scalability)	 Hierarchical Models for High Temperature Diffusion Assisted Crack Growth Mechanisms in Crystalline Alloys 	Emerging Digital I&C Technology		SUSTAINABLE CONDITION ASSESSMENT AND PROGNOSTIC HEALTH MONITORING FOR ADVSMR COMPONENTS WITH SENSOR FUSION	
Institution	University of California, Berkeley	University of California, Berkeley	University of California, Berkeley	University of California, Berkeley	University of California, Berkeley	University of California, Berkeley	University of California, Berkeley	University of Missouri	Vanderbilt University	Vanderbilt University	Alfred University	University of Wisconsin, Madison	University of Missouri	Rensselaer Polytechnic Institute	Pennsylvania State University	North Carolina State University	University of Pittsburgh	University of Missouri	Illinois Institute of Technology	Virginia Polytechnic Institute and State University
Tracking ID	RFI-RD-9744-1	RFI-RD-9744-2	RFI-RD-9744-3	RFI-RD-9744 4	RFI-RD-9744-5	RFI-RD-9744-6	RFI-RD-9744-7	RFI-RD-9745	RFI-RD-9747	RFI-RD-9748	RFI-RD-9750	RFI-RD-9751	RFI-RD9752	RFI-RD9753	RFI-RD-9754	RFI-RD9755	RFI-RD-9757	RFI-RD-9758	RFI-RD-9760	RFI-RD-9761

IRP?																					
Cost/Year		0.17	0.27	4.00	1.00	0.50	09:0	1.00	1.28	1.67	0.63	0.42	1.20	0:00	1.33	0.50		1.00	1.00		133
Schedule [YEARS]	æ	3	ŝ	'n	S	'n	'n	m	4	en	4	3	2	3-4	e	m	NE	m	m	JE	en
Multiple Partners?	٢	٢	٢	٨	z	٨	۲	٨	۲	٨	z	N	۲	۲	Y	٢	Y	٨	۲	٢	٢
Immediate or Future Needs	-	-	-	-	-	-	-	-	-	-	-	F	u.	Ŀ	F	-	-	-	-	u.	-
Cost [MMS]	0.8-1	0.5	0.8	12	s	15	1.8	en	5.1	2	2.5	1.25	2.4	'n	4	15	NE	'n	m	¥	4
NEAMS Tie- In?	z	z	٢	z	z	z	z	z	z	٨	z	N	z	z	٢	۲	٢	z	z	z	z
NE R&D Program				NEET- CTD	ßC					NEAMS											
NE R&D Program	CID NEET	RC	NEAMS	£	CTD CTD	CID CID	CID CID	CTD CTD	£	Я	£	NEET- CTD	RC	CTD CTD	NEAMS	NEAMS	NEAMS	5	£	ñ	CTD CTD
NE R&D Area (Q8)	RSK	NSV	NSV	RSK	RSK		PRO	RSK	UNF	NSV	UNF	INC	PRO	RSK	RSK	RSK	RSK	SYS	SYS	WST	RSK
NE R&D Area (Q8)	INC	RSK	RSK	NFL	NSY	INC	INC	INC	WST	RSK	WST	RSK	NSV	CON	NSY	NSY	NSV	UNF	UNF	UNF	INC
NE Mission Area (Q7)	2			4																	2
NE Mission Area (Q7)	1	1	4	m	1	2	2	1	m	m	m	4	2	4	4	4	4	m	m	m	4
Infra Area (Q6)																					
Infra Area (Q6)							AIN	AIN	RCL		RC	AIN		MatEx						MatEx	
e Infra Area (Q6)	IN	THF			₽	AIN	岸	IN	ä	Ë	ä	INC		SON	Ħ			Š	Š	AM	INC
Institution Type	University	University	University	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	National Laboratory	University	University	University	University	University	University	University
Description	Advanced I&C for Real-Time Risk-Based Decision Making	Pool Mixing Validation for Enhanced Safety of Current and Future Water-cooled Reactors	Resolving geometric complexities in reactor models – An isogeometric approach	Cross-Cut Nuclear Physics Working Group (NPWG) to Identify and Address Nuclear Data Needs for Advanced Fuel Cycle Applications	A Benchmark Experiment to Investigate Reactor Fuel Bundle Fluid and Thermal Behavior Under 2-Phase Conditions	High-Temperature Thermometry Based on Thermographic Phosphors	High-Temperature Flow Meter Concept Based on Acoustics	Critical Instrumentation improvements Needed For BWR Mark 1 Severe Accident Management	Mini-Scale Processing Capability Developing Advanced Processing Techniques for Used Nuclear Fuel	Criticality Excursion Modeling & Simulation Capability For Repository Evaluations	Expanded Use Of The Modified Direct De-Nitration (MDD) Process For Advanced Fuel Cycle Applications	Improving LWR Plant Margin through Development of a Higher-Fidelity Core Protection Calculator System	Preconceptual Design of Portable Small Modular Reactor	Advanced Engineered Cementitious Composites for Next Generation of Nuclear Power Plants	Advanced modeling and simulation of nuclear energy systems (Validation of two-phase flow conditions) boiling all try spacer give defacts, natural circulation and scaling experiments workscopes)		Advanced modeling and simulation of nuclear energy systems (Education and workforce training in V&V)	Fuel cycle research and development for used fuel storage a and disposal (Pool to repository systems analysis for LWR used fuel)	Fuel cycle research and development for used fuel storage and disposal (Deep borehole disposal of nuclear waste)	Fuel cycle research and development for used fuel storage a and disposal (Used nuclear fuel storage: development of robust radiation resistant ceramics)	Digital and cyber capabilities for reliability, resilience, and reducing risks of nuclear power plants
Institution	University of Pittsburgh	Texas A&M University	Texas A&M University	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory	Oak Ridge National Laboratory		Oak Ridge National Laboratory	Oak Ridge National Laboratory	⊃ <u>≣</u> ⊂	University of Illinois, Urbana Champaign	University of Illinois, Urbana Champaign	University of Illinois, Urbana Champaign	University of Illinois, Urbana Champaign	University of Illinois, Urbana Champaign	University of Illinois, Urbana Champaign
Tracking ID	RFI-RD-9762	RFI-RD-9764	RFI-RD-9765	RFI-RD-9766-1	RFI-RD-9766-2	RFI-RD-9766-3	RFI-RD-9766-4	RFI-RD-9766-5	RFI-RD-9766-6	RFI-RD-9766-7	RFI-RD-9766-8	RFI-RD-9766-9	RFI-RD-9766- 10	RFI-RD-9766- 11	RFI-RD-9767-1	RFI-RD-9767-2	RFI-RD-9767-3	RFI-RD-9767-4	RFI-RD-9767-5	RFI-RD-9767-6	RFI-RD-9767-7

Tracking ID	Institution	Description	Institution Type	Infra Area (Q6)	Infra Area I (Q6)	Infra Area N (Q6)	NE Mission N Area (Q7)	NE Mission N Area (Q7) Ar	NE R&D Area (Q8) A	NE R&D N Area (Q8) Pi	NE R&D NE Program Pro	NE R&D NEAI Program	NEAMS Tie- Cost In? [MMS]	st Immediate or 15] Future Needs	r Multiple s Partners?	Schedule [YEARS]	Cost/Year	IRP?
RFI-RD-9768	Purdue University	High Temperature interface properties to Predict Effect of Particles on Creep Fatigue Failure of Metallic Alloys such as IN_617 and Hastealloy	University	MatEx			5		STM	_	NEET- CTD		N	<u>ب</u>	z	NE		
RFI-RD-9769	Purdue University	Interface Effects on Fracture in Nuclear Structures	University	MatEx			2		STM	-	NEET- CTD		Y NE	ш.	z	NE		
RFI-RD-9770	Purdue University	Effect of Corrosion, High Temperature, and Irradiation on Cladding Material Interface Thermal and Mechanical Properties	University	MatEx	RCL		2		STM	_	NEET- CTD		Y NE	u.	z	NE		
RFI-RD-9771	Purdue University	A COMBINED ELECTROCHEMICAL NANOINDENTATION ANN MANOMICHANICAL RAMAN SPECTROSCOPY BASED APPROAT TO CHARAICAL RAMAN SPECTROSCOPY BASED DEFENDENT MECHANICAL RADVERTIES OF NUCLEAR MATERIALS IN ELECTROCHEMICAL ENVIRONMENTS	University	MatEx	RCL		2		STM		RC		× NE	u.	z	NE		
RFI-RD-9772	ldaho National Laboratory	Single Fuel Pellet Ultrasonic Three-Dimensional Computed Tomography	National Laboratory	RX	AIN	MatEx	m		NFL	INC	NEET- CTD NE	NEAMS	3	-	۲	m	1.00	
RFI-RD9773	ldaho National Laboratory	Advanced Image Analysis for Nuclear Energy Applications	National Laboratory	AIN			4		INC	-	Neet- Ctd		s N	-	٨	ę	1.00	
RFI-RD-9774	Idaho National Laboratory		National Laboratory	MatEx	AIN	X	4		SYS	z	NEAMS		Y 15	-	۲	5	3.00	
RFI-RD9775	Pennsylvania State University	A new funding area called "Nuclear Before the Shifting Science (NEES). This area would specifically fund the search that aims to increase or understanding of the basic mechanisms that drive fission and fusion reactor behavior, but does not fuectly aim for bhort-term immonsements to runnent reactor rechonione.	University	RX			4		SYS	-	CTD		N 0.8	۳. ۳	Y	ñ	0.27	
RFI-RD-9776	ldaho National Laboratory	_	National Laboratory	AIN	INC		4		INC	RSK	NEET-	NEAMS	۲ 3	-	٢	ŝ	1.00	
RFI-RD-9777	Pennsylvania State University	Nexus for Fundamental Science of Nuclear Systems	University	MatEx			4		NFL	STM 1	neet- CTD		N 0.9	-	۲	æ	0.30	
RFI-RD-9778	University of California, Berkeley	Fuel Cycle Options Analysis: nuclear fuel cycle systems analyses evaluating, at the engineering technology level, variations on the four promising fuel cycles	University				m		NFL	UNF	FC		N 0.6	-	٨	ę	0.20	
RFI-RD9779	Texas A&M University	Robust 3D Sensor System for Dry Cask Storage Facility Functional Integrity Monitoring	University	ğ	AIN		m		UNF	RSK	ñ		L I	-	z	m	0.33	
RFI-RD-9781	University of California, Berkelev	Software Development to Enable Next-Generation Computational Neutronics Capability (GPU abd/or MIC architectures)	University	HPC			4		NSY	sus	NEET- CTD		N	-	*	m		
RFI-RD-9782-1	ldaho National Laboratory	NEUP Topics to Support Electrochemical Recycling (Release Fraction and Particle Size for Declad High Burnup Commercial Fuel)	National Laboratory	MatEx	ä		m		NFL	RK K	R		N 0.45	-	z	2	0.23	
RFI-RD-9782-2	ldaho National Laboratory		National Laboratory	MatEx	ų		m		NFL		£		N 0.6	ш. 10	*	m	0.20	
RFI-RD-9782-3	ldaho National Laboratory	NEUP Topics to Support Electrochemical Recycling (Morphology Control of Uranium Deposition in Electrorefining Systems)	National Laboratory	MatEx	FDF		m		NFL		R		N 0.75	5 F	٢	e	0.25	
RFI-RD-9782-4	ldaho National Laboratory	NEUP Topics to Support Electrochemical Recycling (Direct Lanthanide Removal from Electrorefining Electrolyte)	National Laboratory	MatEx	FDF		m		NFL		R		N 0.9	۲. ۲	٨	ę	0.30	
RFL-RD9783	Kansas State University	Lattice Boltzmann methods: New methods can be developed which can solve neutron or radiation transport and thermo-fluid transport at meso-scale to evaluate the micro-to-macroscopic effects of fuel irradiation, localized reaction rates, bubble formation in the fuel and high fidelity models for fuel gaps and pellet-clad interactions.	University				4		NFL	Z	NEAMS		Y NE	u.	z	NE		
RFI-RD-9784	University of California, Berkeley	Neutronics Aspects of Boiling Water Reactors	University				4		NSY	SYS N	NEAMS		Y NE	-	٢	3		
RFI-RD9786	Rensselaer Polytechnic Institute	Effects of Defects and High Burn-up Structure on the Thermal Conductivity of Sintered Fuels: Validation of MARMOT Thermal Transport Model	University	FDF	IGBF	MatEx	4	m	NFL	z	NEAMS		γ 0.8		٨	m	0.27	

IRP?				_																		RP	
Cost/Year			0.27	0.33	0.13							0.27	117		0.50			0.27			0.27	1.50	0.50
Schedule [YEARS]	NE	NE	ß	m	n	NE	NE	NE	NE	NE	NE	3	e	2	3	ß	3	3	3	3	ŝ	3	en
Multiple Partners?	N	N	۲	٢	۲	٢	٢	٢	٢	Y	Y	٢	۲	٢	٢	٢	٨	N	٢	٢	٨	٢	٢
Immediate or Future Needs	-	-	-	-	-	-	_	-	-	Ι	1	-	Ŀ	F	-	-	-	F	F	F	F	F	-
Cost [MMS]	NE	NE	0.8	1	0.4	NE	NE	NE	NE	NE	NE	0.8	3.5	2	1.5	0.7-0.8	0.7-0.8	0.8	0.8-1	0.8-1	0.8	4.5	1.5
NEAMS Tie- In?	N	۲	z	z	z	۶	z	z	z	N	N	z	۲	z	z	z	N	z	N	N	z	z	z
NE R&D Program												RC	NEAMS					RC					
NE R&D Program	NEET- CTD	R	Я	CID VEET	Я	NEET- CTD	FC	FC	R	FC	NEET- CTD	ñ	ñ	ñ	NEET- CTD	R	FC	Ę	NEET- CTD	NEET- CTD	NEET- CTD	NEET- CTD	CTD
NE R&D Area (Q8)	RSK		NFL	RSK	NFL	STM					STM			RSK		WST	WST	SVS	INC	INC			
NE R&D Area (Q8)	INC	NFL	SVS	INC	SVS	NFL	NFL	NFL	NFL	NFL	NFL	SYS	NFL	NFL	NSY	NFL	NFL	NSY	AM	AM	NSY	NSY	NSY
NE Mission Area (Q7)													4					2					
NE Mission Area (Q7)	4	e	m	4	m	4	m	3	m	3	4	4	m	m	4	m	8	e	4	4	4	4	4
Infra Area (Q6)		MatEx									MatEx		MatEx			MatEx							
Infra Area (Q6)	INC	RX					MatEx	MatEx	MatEx	MatEx	IGBF		IGBF	MatEx		IGBF	MatEx		AM	AM	FDF		
Infra Area (Q6)	AIN	FDF		IN		MatEx	IGBF	RCL	RCL	RX	RX		ų	FDF	THF	AM	RCL		AIN	AIN	RX		THF
Institution Type	University	University	University	University	University	University	University	University	University	University	University	University	Industry	Industry	University	University	University	University	University	University	University	University	University
	Advanced instrumentation and data learning tools for monitoring severe accidents and stored nuclear waste	Advanced Nuclear fuel for load following Nuclear Power Plants	Reactor Module Library for Fuel Cycle Analysis	Development and Experimental Validation of an Integrated System for Software Dependability Assessment and Prediction	Reprocessing Facility Library for Fuel Cycle Analysis	Multiphysics experiments and modeling of coupled thermah-hydraulics, reactor physics, chemistry, mechanics and materials to develop a unfined understanding of in-reactor materials degradation observmena.			Behavior of nuclear fuel cladding at high burnup: Effect of hydrides on the mechanical behavior of zirconium alloy	Behavior of nuclear fuel cladding at high burnup: RIA behavior at high burnup	Fundamental Materials Research	Nuclear Power Sustainability Analysis and Economics of Energy Sources			Experimental investigation CHF under natural circulation	Development of in situ experimental techniques to examine phase transformation process for nuclear materials		Analysis of Fuel Processing, Disposal and System Decommissioning Issues Related to Advanced Burner Reactor (ABR) Systems	Advanced Sensor Instrumentation and Its Manufacturing Method (Sensor Fused Additive Manufacturing)	Advanced Sensor Instrumentation and Its Manufacturing Method (Photonic Instruments Via 3D Printing)	Fast Spectrum Material's Testing Reactor with variable energy spectra to support Advanced Reactors Program and Light Water Reactor Sustainability Program R&D	ASSESSING UNIT RESILIENCE IMPACTS IN THE OPTIMAL CONTROL OF HYBRID SYSTEMS	CHF under natural circulation
Institution	Kansas State University	Kansas State University	University of California, Berkelev	Ohio State University	University of California, Berkelev	Star	Pennsylvania State University	Pennsylvania State University	Pennsylvania State University	Pennsylvania State University	Pennsylvania State University	Texas A&M University	8	Ger	Missouri University of Science and Technoloev	Louisiana State University	Louisiana State University	Texas A&M University	University of Pittsburgh	University of Pittsburgh	Texas A&M University	Ohio State University	University of Illinois, Urbana Champaign
Tracking ID	RFI-RD-9787	RFI-RD-9788	RFI-RD-9790	RFI-RD-9791	RFI-RD-9794	RFI-RD9795-1	RFI-RD-9795-2	RFI-RD-9795-3	RFI-RD-9795-4	RFI-RD-9795-5	RFI-RD-9795-6	RFI-RD-9796	RFI-RD-9797-1	RFI-RD-9797-2	RFI-RD-9798	RFI-RD-9799	RFI-RD-9800	RFI-RD-9801	RFI-RD-9802-1	RFI-RD-9802-2	RFI-RD-9803	RFI-RD-9804	RFI-RD-9805

Appendix 2: Request for Information DE-SOL-0008246

REQUEST FOR INFORMATION

DE-SOL-0008246

University, National Laboratory, Industry, and International Entities Input to the Office of Nuclear Energy's Competitive Research and Development Work Scope Development

April 13, 2015

Office of Nuclear Energy Office of Innovative Nuclear Research

Table of Contents

1	Int	roduction	. 1
2	Re	quested Information	. 1
	2.1	Cover Page	. 3
	2.2	NE Work Scope Recommendations	. 4
	2.3	Other Information	. 4
3	Pa	rticipant Eligibility To Respond to RFI	. 4
4	Pro	ogram Guidelines	. 4
5	Int	ellectual Property Rights	. 4
6	Co	ommunications Protocol	. 4
7	Sc	hedule	. 5
	7.1	Submission Time and Date	. 5
8	Di	sclaimers	. 5

1 Introduction

The primary mission of the Office of Nuclear Energy is to advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate.

NE's program is guided by the four research objectives detailed in its Nuclear Energy Research and Development Roadmap:

- Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors.
- Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals.
- · Develop sustainable fuel cycles.
- Understand and minimize the risks of nuclear proliferation and terrorism.

NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. This approach ensures a balanced R&D portfolio and encourages new nuclear power deployment with creative solutions to the universe of nuclear energy challenges. The competitive portion of NE's R&D portfolio is executed through the Nuclear Energy University Program (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and Simulation (NEAMS). NEET CTD supports national laboratory, university and industry led crosscutting research.

2 Requested Information

1) DOE is seeking ideas in the areas of research, information, comments, feedback, and recommendations from interested parties for future work scopes for the major NE-funded research programs. This input may lead to a more robust R&D program that reflects the communities' ideas and could identify new work scopes. Although the focus of this Request For Information (RFI) is to obtain input to and identify potential new work scopes for future Funding Opportunity Announcements in the areas listed below, DOE also seeks input on creative, innovative and transformative work that aligns with NE's mission.

Fuel Cycle Research and Development (FC R&D) Program. The mission of the FC R&D program is to develop used nuclear fuel management strategies and technologies to support

meeting the federal government responsibility to manage and dispose of the Nation's commercial used nuclear fuel and high-level waste and to develop sustainable fuel cycle technologies and options that improve resource utilization and energy generation, reduce waste generation, enhance safety, and limit proliferation risk.

The program vision is that by mid-century, strategies and technologies for the safe, long-term management and eventual disposal of U.S. commercial used nuclear fuel and any associated nuclear wastes have been fully implemented. Additionally, it is desired that advanced nuclear fuel and fuel cycle technologies that enhance the accident tolerance of light-water reactors and enable sustainable fuel cycles are demonstrated and deployed. Together, these technologies and solutions support the enhanced availability, affordability, safety, and security of nuclear-generated electricity in the United States.

Current challenges include the development of high burnup fuel and cladding materials to withstand irradiation for longer periods of time with improved accident tolerance; development of simplified materials recovery technologies, waste management (including storage, transportation, and disposal), and proliferation risk reduction methods; and development of processes and tools to evaluate sustainable fuel cycle system options and to effectively communicate the results of the evaluation to stakeholders.

Reactor Concepts Research, Development and Demonstration (RC RD&D) Program.

The mission of the RC RD&D program is to develop new and advanced reactor designs and technologies that broaden the applicability, improve the competitiveness, and ensure the lasting contribution toward meeting our Nation's energy and environmental challenges. Research activities are designed to address the technical, cost, safety, and security issues associated with various reactor concepts. The four technical areas are Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), Advanced (Non-Light Water) Reactor Concepts (ARC) and Advanced Small Modular Reactors (Adv SMRs). In addition, R&D for the manufacturing of radioisotope power systems for national security and space exploration missions is supported through the Space and Defense Infrastructure Program.

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of the NEAMS program is to create modern computer simulation codes and methods that give the user state-of-the-art physics models that can take advantage of powerful multi-processing computers in order to better understand the behavior of nuclear reactor and fuel systems during normal operations and/or transient events. In particular, NEAMS is aimed at creating an advanced mechanistic toolkit that is applicable to a wide range of reactor designs for use by industry, academia, and the national laboratories. The NEAMS Toolkit will help engineers and scientists form new insights into the safety and economics of current and next generation reactor and fuel systems. It will provide much higher fidelity than current methods and incorporate well-defined and validated prediction capabilities.

This will be achieved by employing advanced software environments and modern highperformance computers to create a set of engineering-level codes in which fuels and materials continuum properties are informed by first-principles modeling of materials at the atomistic and meso-scale. A set of simulation tools will be developed that promote interoperability of codes with respect to spatial meshing, materials and fuels models, and achieve a common "look and feel" for setting up problems and displaying results. The toolset to be developed aims to achieve scalability in terms of computing power and the types and couplings of the physics that dominates the system behavior.

The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources.

Nuclear Energy Enabling Technologies (NEET) Crosscutting Technology Development (CTD). NEET CTD competitively awards high-priority R&D to universities, national laboratories, and industry, leading to the development of innovative solutions to unique and crosscutting nuclear energy challenges. The subprogram works in close coordination with NE's other R&D programs to ensure that developed technologies and capabilities address critical technology gaps as part of an integrated solution offering the potential of revolutionary improvement in safety, performance, reliability, economics, and proliferation risk reduction. Additionally, NEET CTD strategically invests in competitive, nuclear energy-related infrastructure enhancement at national laboratories; ensuring researchers have access to stateof-the-art R&D capabilities. The capabilities developed through NEET CTD advance the state of nuclear technology, improving its competitiveness, and promoting continued contribution to meeting our Nation's energy and environmental challenges.

Replies to this request should follow the general organization of Section 2 of this RFI and information should be as succinct as possible. Respondents are encouraged to provide input on any areas of interest of this RFI.

2.1 Cover Page

Responses shall include a cover page containing the following information:

- RFI title
- · Names, phone numbers, and e-mail addresses for the principal points of contact
- Company or affiliate name and address
- Date of submittal

2.2 NE Work Scope Recommendations

Clearly define your proposed work scope, and how it relates to any part of NE's mission described in this RFI. Describe any defined goals in achieving the desired outcomes, along with appropriate metrics to assess how well those goals have been achieved.

- 2) What would be the estimated cost of the work scope?
- 3) Would the work scope be more focused on immediate NE program needs, or more creative, innovative and transformative?
- 4) Would the work scope require multiple partners?
- 5) What would be a reasonable schedule duration and key milestones?

2.3 Other Information

Provide any other relevant information you feel is important not otherwise already covered including comments or suggestions.

3 Participant Eligibility to Respond to RFI

Information is being sought from educational institutions, National Laboratories, utilities, private industry, international entities, and any other interested party.

4 Program Guidelines

This market research request is done under the Federal Acquisition Regulation (FAR), Parts 10 – Market Research and FAR subpart 15.201(e) – Requests for Information.

5 Intellectual Property Rights

Participants are advised that their RFI response package should be submitted without any restrictive markings. However, if restrictions are required in order to fully explain a response, the participant is responsible to mark the cover page and any and all submittal documents appropriately. Respondents are strongly discouraged from placing any restrictive markings on submissions as they may limit DOE's ability to use the submitted information.

6 Communications Protocol

Responses must be submitted through www.NEUP.gov to be considered. You must create an account to access the submission site. Submit electronic submissions through the "Applications" function at <u>www.NEUP.gov</u>. If you have problems completing the registration process or submitting your response, call 208-526-1507 or send an email to NEUP@inl.gov.

Participants are advised that any indication of interest, in the affirmative, is not meant to imply nor in any way impart an obligation on the part of the Government that an award will be forthcoming for the offered work or project.

7 Schedule

7.1 Submission Time and Date

The DOE will continually accept packages in response to this RFI No. DE-SOL-0008246. However to be considered for the 2016 grant opportunities a response will be required no later than 8:00 p.m. ET, June 19, 2015.

This announcement does not impose any obligation on the Government nor does it signify any intent for a contract or other form of award.

8 Disclaimers

- a. DOE does not plan to send individual acknowledgements or replies to respondents to the RFI. However, DOE may conduct one-on-one meetings with entities that respond to this request if clarification or additional information is required to improve the DOE's understanding of the comments provided. If DOE decides to hold one-on-one meetings, applicable interested parties will be contacted. The decision to meet with a company one-on-one has no bearing on the worthiness of its RFI submittal or on any future offerings.
- b. This is a request for information only. It has no direct relation to other DOE Funding Opportunity Announcements or solicitations. DOE does not presently intend to solicit or award any kind of contract or financial assistance award; this RFI is issued only with the intent of obtaining information.
- c. Any response to this RFI is voluntary and does not commit to Government to any expense or obligation. This request does not impose any obligation on the Government or signify a firm intention to enter into a contract. No costs associated with responding to this RFI or participating in any subsequent meetings will be borne by the Government.
- d. DOE does not intend to publish the results of the responses to this RFI.