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1 Overview

The improved quasi-static (IQS) method is a transient spatial kinetics method that involves factor-
izing flux into space- and time-dependent components. These components include the flux’s power
and shape. Power is time-dependent, while the shape is both space- and time-dependent. However,
the impetus of the method is the assumption that the shape is only weakly dependent on time;
therefore, the shape may not require computation at every time step, invoking the quasi-static
nature.

In this Section, we recall the equations for the IQS method, starting from the standard multigroup
diffusion equations written below:
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Factorization is the most important step in the derivation of the IQS method. The factorization
approach leads to a decomposition of the multigroup flux into the product of a time-dependent
amplitude (p) and a space-/time-dependent multigroup shape (ϕg):

φg(~r, t) = p(t)ϕg(~r, t) (4)

Then the flux and precursor equations become:
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PRKE formulation (amplitude equations):
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It can be shown that the most appropriate weighting function (wg) is the initial adjoint flux
(φ∗g). For brevity, the following definition will be applied:
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In order to impose uniqueness of the factorization, one imposes:
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Therefore the PRKE formulation reduces to:
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It is convenient to define the effective reactivity, delay-neutron fraction, and delayed-neutron
precursor decay constant:
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Equations (18) and (19) are a formulation of the point reactor kinetics equation (PRKE), but
the parameters (Equations (15)-(17)) are dependent on the shape. If the assumption is made that
the shape is time-independent, the shape is computed once at the first time step and used for
the PRKE parameter evaluation at all other steps. However, if the shape is dependent on time,
the shape needs to be computed in transient using equation (5) and (6) in order retain accuracy.
Equations (20) and (21) shows the usual form of the shape and precursor equations with amplitude
put on the right hand side. Equation (20) is very similar to the multigroup flux equation (1), except
the removal cross-section term is augmented by a 1

vg
1
p
dp
dt term and the precursor contribution has

a 1
p mulitiplier. Equation (21) is very similar to the normal precursor equation (2), except the

fission source term is multiplied by p. These differences are crucial for IQS implementation in
Rattlesnake.
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Computing this shape can become expensive, especially in two or three dimensions. Subse-
quently, it is attractive to make the assumption that the shape is weakly time-dependent so the
shape can be computed after a multitude of PRKE calculations which is the root of IQS. To
visualize:

Additionally, to improve consistency and accuracy, each macro time step can be iterated so the
best shape is used to compute power at the micro time steps. This iteration process must converge
the shape such that the uniqueness condition ( ddt

∑G
g=1

(
φ∗g, 1

vgϕ
g
)

= 0) is preserved.

2 Rattlesnake Implementation

This section will explain how, thus far, IQS has been implemented in Rattlesnake.
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Figure 1: IQS method visualization

2.1 Executioner

The IQS executioner derives from the Transient executioner in MOOSE. The IQS executioner
contains a loop over micro time steps that computes the PRKE and then passes p and dp

dt for the
Transient executioner to evaluate the shape equation at each macro step. The PRKE is computed
with backward Euler to retain simplicity and insure convergence, but higher order methods are an
obvious next step for this computation. The IQS executioner also supplements Transients Picard
iteration process by adding its own error criteria:
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∣∣∣∣∣
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∣∣∣∣∣ (22)

2.2 Action System

IQS defines its uniqueness from its executioner type; however, many changes needed to be made
in the Rattlesnake action system in order to support IQS execution. First, changes needed to be
made in order to evaluate the shape equation. The shape equation, after some manipulation, is
very similar to the time-dependent, which Rattlesnake is already set up to solve:
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To enable Rattlesnake to solve this equation, another kernel was created that evaluated
∑G
g=1

1
vgp

dp
dtϕ

g

and added when the IQS executioner is called. Second, four postprocessors were created in order

to calculate the PRKE parameters. The parameter calculations were separated by β̄i

Λ numerator,

λ̄i numerator/denominator, ρ
Λ/

β̄
Λ denominator, and ρ−β̄

Λ numerator. The first three are relatively

simple, only relying on material properties and solution quantities. The ρ−β̄
Λ numerator requires the

use of the MOOSE save in feature, which saves the residual from a calculated kernel or boundary
contribution in the shape evaluation to an auxiliary variable. Finally, a user object was created to
pull together all the postprocessor values and carryout the numerator/denominator divisions that
were then passed to the executioner.
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2.3 Precursor Integration

This section presents two different time-integration methods to solve coupled IQS shape + precursor
equations, recalled below using, for simplicity, a single neutron group and a single precursor group.
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First, we note that we could keep this system of two time-dependent equations and solve it as
a coupled system. However, this is unnecessary and a memory expensive endeavor because the
precursor equation is only an ODE and not a PDE. Instead, one may discretize in time the shape
equation, which typically requires the knowledge of the precursor concentrations at the end of
the time step. This precursor value is taken from the solution, numerical or anlaytical, of the
precursors ODE. This document will discuss two techniques for solving the precursor equation.
First is a time discretization method that is currently being implemented in Rattlesnake. The
second is a analytical integration of the precursors, the latter method has proven to be more
beneficial for IQS convergence.

2.3.1 Time Discretization using the Theta Method

A fairly simple way to evaluate the precursor equation is to employ the θ-scheme (0 ≤ θ ≤ 1),
explicit when θ = 0, implicit when θ = 1, and Crank-Nicholson when θ = 1/2). Generally, if there
is a function u whose governing equation is du

dt = f(u, t), then the θ-discretization is

un+1 − un

∆t
= (1− θ)f(un, t) + θf(un+1, t) . (26)

Applying this to the precursor equation:

Cn+1 − Cn

∆t
= (1− θ)βSnf pn − (1− θ)λCn + θβSn+1

f pn+1 − θλCn+1 (27)

Where Sf is the fission source equivalent for shape:

Snf = (νΣf )nϕn (28)

Rearranging to solve for the precursor at the end of the time step yields

Cn+1 =
1− (1− θ)∆tλ

1 + θ∆tλ
Cn +

(1− θ)∆tβ
1 + θ∆tλ

Snf p
n +

θ∆tβ

1 + θ∆tλ
Sn+1
f pn+1 (29)

Reporting this value of Cn+1, one can solve for the shape ϕn+1 as a function of ϕn and Cn (and
pn, pn+1, dp/dt|n and dp/dt|n+1). Once ϕn+1 has been determined, Cn+1 is updated. Rattlesnake
currently implements both implicit and Crank-Nicholson as options for precursor evaluation.

2.3.2 Analytical Integration

Through prototyping, it has been found that neither implicit nor Crank-Nicholson time discretiza-
tion of precursors are preferable methods for solving the shape equation in IQS. It has been found
that these discretizations result in a lack of convergence of the shape over the IQS iteration process.
In order to remedy the error, a analytical representation of the precursors was implemented in the
prototype and the shape solution was able to converge (the normalization constant of the IQS
method can be preserved to 10−10 while the theta-scheme only allowed convergence in the normal-
ization factor to about 10−3). The following section shows how this method was implemented in
the prototype and the desired implementation for Rattlesnake.
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Using an exponential operator, the precursor equation can be analytically solved for:∫ tn+1
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′
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Because β and Sf being integrated are not known continuously over the time step, they can be
interpolated linearly over the macro step. Such that:
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hn +
t− tn

tn+1 − tn
hn+1 tn ≤ t ≤ tn+1 (32)

However, for the PRKE solve, we do have a very accurate representation of p(t′) over the time
interval [tn, tn+1].

Finally, we have the final expression for the analytical value for Cn+1:
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n
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n
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Where the integration coefficients are defined as:
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The amplitude (p) is included in the integration coefficient because it has been highly accurately
calculated in the micro step scheme, so a piecewise interpolation between those points can be done
to maximize accuracy.

The prototype code uses Matlab software to interpolate the amplitude between micro steps and
a quadrature integration for the coefficients. So the challenge for Rattlesnake is to replicate this
procedure: passing the amplitude vector to the DNP auxkernel, interpolating it, and integrating
the coefficients.

2.4 Input

The input deck for IQS is very similar to the current transient diffusion input file. The IQS
input has a different executioner type and parameters. The executioner type is simply IQS and
input parameters include number of micro time steps, IQS error tolerance, and initial power. The
Rattlesnake transient action system currently requires a multi-app and transfer to compute and
pass the initial φ and keff , which is present in the transient input deck. However, IQS also requires
an initial evaluation of the adjoint flux, for the weighting function. So another input file was made
for the adjoint calculation, as well as including another multi-app and transfer in the IQS input
deck.

2.5 Unintended Contributions

The implementation of IQS in Rattlesnake put pressure on many features of Rattlesnake and
MOOSE that reveled bugs and possible improvement. Two significant issues in Rattlesnake that
were found involved the adjoint solve and the diffusion fission kernel. When testing IQS, it was
found that the adjoint flux solution was not the same as the forward flux solution in a single group
test, which is obviously invalid. Also, when investigating which action to include the IQS kernel

6 DRAFT



INL/EXT-16-38059

in, it turned out that the fission diffusion kernel was placed in the neutron transport action, so this
kernel was demoted to the neutron diffusion actions for clarity. Additionally, the pressure on the
save in feature in MOOSE propagated its application to boundary conditions and initial solves.
MOOSE also updated its ability to restart dense vector data and to set MooseApp executioner
right after executioner is created. Merge requests: #5474, #5489, #5495, and #5497

3 Current Status

IQS has almost completely been implemented to CFEM Diffusion in Rattlesnake. The method cur-
rently passes multi-dimensional and multi-group null-transient tests. However, there are currently
three prevalent issues that are restricting full implementation of IQS in Rattlesnake.

1. The Transient executioner is currently being worked on to improve its flexibility. Until
this improvement is complete, the IQS error contribution is unable to be supplemented to
Transient. For testing purposes, Transient has been modified locally to support the error
contribution.

2. IQS is currently being tested with higher order schemes for diffusion evaluation in the matlab
prototype. This is to make sure that IQS will perform with similarly when subjected to higher
accuracy.

After CFEM implementation is completed, the next step is to apply IQS to DFEM and ulti-
mately neutron transport. These applications should be much simpler because the base of IQS has
already been implemented and verified from this CFEM work. Another method of IQS, called the
predictor-corrector method, could also be implemented in the future. This method is very simple
to implement and actually faster than standard IQS because there is no iteration process. However,
the performance of the method has yet to be evaluated to prove its worth in Rattlesnake.
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4 RESULTS

This section describes results of an examples that tests the IQS implementation and shows its
effectiveness on computation speed and accuracy. Two examples were selected for this purpose. The
first is a homogeneous one-group problem, subjected to a heterogenous material change (absorption
cross-section change as a ramp in time for a subset of the geometry). The second is the two-
dimensional TWIGL ramp transient benchmark, described further.

4.1 One-Dimensional Custom Example

The example is very simple and computes quickly, it entails a one dimensional, heterogeneous 400
cm slab with a varying absorption cross section. Figure 2 how the regions of the slab are divided
and Table 1 shows the initial material properties. Table 2 shows the ramp of the absorption
cross-section of each region.

1 1 1 1 2 3 1 1 1 1 1 1 1 1 4 4 1 1 1 1

Figure 2: 1-D heterogeneous slab region identification

Region D(cm) Σa(cm−1) νΣf (cm−1) v(cm/s) β λ(s−1)
1 1.0 1.1 1.1 1,000 0.006 0.1
2 1.0 1.1 1.1 1,000 0.006 0.1
3 1.0 1.1 1.1 1,000 0.006 0.1
4 1.0 1.1 1.1 1,000 0.006 0.1

Table 1: 1-D heterogeneous slab material properties and problem parameters

Material Property 0.0 s 0.1 s 0.6 s 1.0 s 1.7 s
Σa,2(cm−1) 1.1 1.1 1.095 1.095 1.095
Σa,3(cm−1) 1.1 1.1 1.09 1.09 1.1
Σa,4(cm−1) 1.1 1.1 1.105 1.105 1.105

Table 2: 1-D heterogeneous slab absorption cross-section slope perturbation

Figure 7 shows the power at each macro time step as compared to the traditional brute force
(full flux time discretization) method. The strong correlation between the two curves shows that
IQS is consistent with a proven method for a highly transient example. Figure ?? shows that IQS
is not only consistent for this example, but also has a better error constant in the convergence
study. Figures 4 - 6 plots shape changes in the IQS method, showing where the shape solution is
necessary and a simple PRKE evaluation is inadequate.

4.2 TWIGL Benchmark

This benchmark problem originates from the Argonne National Lab Benchmark Problem Book. It
is a 2D, 2-group reactor core model with no reflector region shown in Figure 8. Table 3 shows the
material properties of each fuel region and the ramp perturbation of Material 1.

Figures 9 and 10 show the IQS solution as compared with the Brute Force solution. It is
important to note the IQS shape plot is scaled differently than the Brute Force flux plot because
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Figure 3: Power level comparison of 1D heterogeneous example between IQS and Brute Force using
∆t = 0.025

Figure 4: Initial Flux Plot

Figure 5: Flux Plot when Absorption Cross Section is at Minimum
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Figure 6: Final Flux Computation (not steady-state)

Figure 7: Error convergence comparison of 1D hetergenous example

Figure 8: TWIGL benchmark problem description

10 DRAFT



INL/EXT-16-38059

Σs(cm
−1)

Material Group D(cm) Σa(cm−1) νΣf (cm−1) χ g → 1 g → 2
1 1 1.4 0.010 0.007 1.0 0.0 0.01

2 0.4 0.150 0.200 0.0 0.0 0.00
2 1 1.4 0.010 0.007 1.0 0.0 0.01

2 0.4 0.150 0.200 0.0 0.0 0.00
3 1 1.3 0.008 0.003 1.0 0.0 0.01

2 0.5 0.050 0.060 0.0 0.0 0.00
ν v1(cm/s) v2(cm/s) β λ(1/s)
2.43 1.0E7 2.0E5 0.0075 0.08

Material 1 ramp perturbation:

Σa,2(t) = Σa,2(0) × (1 − 0.11667t) t ≤ 0.2s

Σa,2(t) = Σa,2(0) × (0.97666t) t > 0.2s

Table 3: 1-D heterogeneous slab absorption cross-section slope perturbation

the amplitude term is not included, but the gradients of colors is comparable. These plots show
that IQS is consistent in more complex, higher dimensional problems in RATTLESNAKE. Finally,
Figure 11 plots the error convergence of IQS and the Brute Force methods. The curves show the
impressive convergence of IQS for the highly transience TWIGL example.

Figure 9: Power level comarison of 1D heterogeneous example between IQS and Brute Force using
∆t = 0.004
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(a) Brute force flux (b) IQS Shape

Figure 10: TWIGL Benchmark flux/shape comparison at t = 0.2

Figure 11: Error convergence comparison of TWIGL Benchmark
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