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Summary

The RELAP-7 code is the next generation nuclear reactor system safety analysis code being
developed at the Idaho National Laboratory (INL). The code is based on the INL’s mod-
ern scientific software development framework, MOOSE (Multi-Physics Object Oriented
Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the
previous thirty years of advancements in computer architecture, software design, numerical
integration methods, and physical models. The end result will be a reactor systems anal-
ysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and
extends their analysis capabilities for all reactor system simulation scenarios.

RELAP-7 is a new project started in Fiscal Year 2012. It will become the main reactor
systems simulation toolkit for the LWRS (Light Water Reactor Sustainability) program’s
RISMC (Risk Informed Safety Margin Characterization) effort and the next generation tool
in the RELAP reactor safety/systems analysis application series. The key to the success
of RELAP-7 is the simultaneous advancement of physical models, numerical methods,
and software design while maintaining a solid user perspective. Physical models include
both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations)
and experimental based closure models. RELAP-7 utilizes well-posed governing equations
for compressible two-phase flow, which can be strictly verified in a modern verification
and validation effort. Closure models used in RELAP5 and newly developed models will
be reviewed and selected to reflect the progress made during the past three decades and
provide a basis for the closure relations that will be required in RELAP-7. RELAP-7 uses
modern numerical methods, which allow implicit time integration, second-order schemes
in both time and space, and strongly coupled multi-physics.

RELAP-7 is written with object oriented programming language C++. By using the
MOOSE development environment, the RELAP-7 code is developed by following the same
modern software design paradigms used for other MOOSE development efforts. The code
is easy to read, develop, maintain, and couple with other codes. Most importantly, the mod-
ern software design allows the RELAP-7 code to evolve efficiently with time. MOOSE is
an HPC development and runtime framework for solving computational engineering prob-
lems in a well planned, managed, and coordinated way. By leveraging millions of lines of
open source software packages, such as PETSC (a nonlinear solver developed at Argonne
National Laboratory) and LibMesh (a Finite Element Analysis package developed at Uni-
versity of Texas), MOOSE reduces the expense and time required to develop new applica-
tions. MOOSE provides numerical integration methods and mesh management for parallel
computation. Therefore RELAP-7 code developers have been able to focus more upon
the physics and user interface capability. There are currently over 20 different MOOSE
based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel
performance analysis, to long-term material aging. Multi-physics and multi-dimensional
analysis capabilities, such as radiation transport and fuel performance, can be obtained by
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coupling RELAP-7 and other MOOSE-based applications through MOOSE and by lever-
aging with capabilities developed by other DOE programs. This allows restricting the focus
of RELAP-7 to systems analysis type simulations and gives priority to retain and signifi-
cantly extend RELAP5’s and TRACE’s capabilities.

During the Fiscal Year 2012, MOOSE was extended to better support system analysis
code development. The software structure for RELAP-7 had been designed and developed.
Numerical stability schemes for single-phase flow, which are needed for continuous finite
element analysis, have been developed. Major physical components have been completed
(designed and tested) to support a proof of concept demonstration of RELAP-7. The case
selected for initial demonstration of RELAP-7 was the simulation of a two-loop, steady
state PWR system. During Fiscal Year 2013, both the homogeneous equilibrium two-
phase flow model and the seven-equation two-phase flow model have been implemented
into RELAP-7. A number of physical components with two-phase flow capability have
been developed to support the simplified boiling water reactor (BWR) station blackout
(SBO) analyses. The demonstration case includes the major components for the primary
system of a BWR, as well as the safety system components for reactor core isolation cool-
ing (RCIC) and the wet well of a BWR containment. The homogeneous equilibrium two-
phase flow model was used in the simplified BWR SBO analyses. During Fiscal Year 2014,
more detailed implementation of the physical models as well as the code performance im-
provements associated with the seven-equation two-phase flow model were carried out in
order to demonstrate more refined BWR SBO analyses with more realistic geometries.

During Fiscal Year 2015 and 2016 (to date) the ability to use realistic equations of state
based on the IAPWS-95 formulation for water/steam, using a numerically efficient Spline-
Based Table Look-up approach, were incorporated. Also incorporated with this approach
was an extension to include the metastable states needed by the 7-equation nonequilib-
rium two-phase model used by RELAP-7. An improved entropy viscosity method was
implemented for solution stabilization. New and improved boundary conditions for both
single-phase and nonequilibrium, 7-equation, two-phase flows, consistent with the method
of characteristics, were included. Constitutive equations were added which depend upon
the phase’s topological sizes and arrangements, e.g. interfacial area concentration and its
effects, wall friction and heat transfer, interfacevfriction and heat transfer, etc. Currently,
the topology-dependent closures are limited to pre-CHF, vertical flows, but extensions to
CHF and to horizontal flows are ongoing. This revision (Revision 2) of the RELAP-7
Theory Manual is expanded to describe these new features in detail.

In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The
MOOSE framework enables rapid development of the RELAP-7 code. The developmental
efforts and results demonstrate that the RELAP-7 project is on a path to success. This
theory manual documents the main features implemented into the RELAP-7 code. Because
the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with
periodic updates to keep it current with the state of the development, implementation, and
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model additions/revisions.
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1 Introduction

The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is the next generation
nuclear reactor system safety analysis code being developed at Idaho National Laboratory
(INL). The code is based on the INL’s modern scientific software development framework
MOOSE (Multi-Physics Object Oriented Simulation Environment) [5]. The overall design
goal of RELAP-7 is to take advantage of the previous thirty years of advancements in com-
puter architecture, software design, numerical integration methods, and physical models.
The end result will be a reactor systems analysis capability that retains, and improves upon,
RELAP5’s [6] and TRACE’s [2] abilities and extends the analysis capability for all reactor
system simulation scenarios.

The RELAP-7 project, which began in Fiscal Year 2012, will become the main re-
actor systems simulation toolkit for LWRS (Light Water Reactor Sustainability) program’s
RISMC (Risk Informed Safety Margin Characterization) effort and the next generation tool
in the RELAP reactor safety/systems analysis application series. The key to the success of
RELAP-7 is the simultaneous advancement of physical models, numerical methods, and
software design while maintaining a solid user perspective. Physical models include both
PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and ex-
perimental based closure models. RELAP-7 will utilize well-posed governing equations
for two-phase flow, which can be strictly verified in a modern verification and validation
effort. Closure models used in RELAP5, TRACE, and other newly developed models will
be reviewed and selected to reflect the progress made during the past three decades and
provide a basis for the closure relations that will be required in RELAP-7. RELAP-7 uses
modern numerical methods, which allow implicit time integration, second-order schemes
in both time and space, and strongly coupled multi-physics.

MOOSE is INL’s development and runtime framework for solving computational engi-
neering problems in a well planned, managed, and coordinated way. By using the MOOSE
development environment, the RELAP-7 code is developed by following the same mod-
ern software design paradigms used for other MOOSE development efforts. The code is
easy to read, develop, maintain, and couple with other codes. Most importantly, the mod-
ern software design allows the RELAP-7 code to evolve efficiently with time. MOOSE
provides numerical integration methods and mesh management for parallel computation.
Therefore RELAP-7 code developers need primarily to focus upon the physics and user
interface capability.

There are currently over 20 different MOOSE based applications ranging from 3-D tran-
sient neutron transport, detailed 3-D transient fuel performance analysis, to long-term ma-
terial aging. The advantage of multi-physics and multi-dimensional analyses capabilities,
such as radiation transport and fuel performance, can be obtained by coupling RELAP-7
and other MOOSE-based applications (through MOOSE) and by leveraging with capabil-
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ities developed by other DOE programs. This allows restricting the focus of RELAP-7
to systems analysis-type simulations and gives priority to retain, and significantly extend
RELAP5’s capabilities.

Because RELAP-7 is an ongoing development effort, this theory manual will evolve
with periodic updates to keep it current with the state of the development, implementa-
tion, and model revisions. It is noted that, in some instances, the models reported in this
initial version of the theory manual cover phenomena which are not yet implemented, for
example the species balance equation for two phase flows. But when it made sense to in-
clude derivations, which we have already developed, or descriptions of models which are
currently ongoing, such as the entropy viscosity method, we have included such.

1.1 RELAP-7 Description of Approach

An overall description of the RELAP-7 architecture, governing theory, and computational
approach is first given as an instructive, and executive overview of the RELAP-7 project
direction.

1.1.1 Software Framework

MOOSE is INL’s development and runtime environment for the solution of multi-physics
systems that involve multiple physical models or multiple simultaneous physical phenom-
ena. The systems are generally represented (modeled) as a system of fully coupled non-
linear partial differential equation systems (an example of a multi-physics system is the
thermal feedback effect upon neutronics cross-sections where the cross-sections are a func-
tion of the heat transfer). Inside MOOSE, the Jacobian-Free Newton Krylov (JFNK)
method [7, 8] is implemented as a parallel nonlinear solver that naturally supports effec-
tive coupling between physics equation systems (or Kernels). The physics Kernels are de-
signed to contribute to the nonlinear residual, which is then minimized inside of MOOSE.
MOOSE provides a comprehensive set of finite element support capabilities (LibMesh [9],
a Finite Element library developed at University of Texas) and provides for mesh adapta-
tion and parallel execution. The framework heavily leverages software libraries from DOE
SC and NNSA, such as the nonlinear solver capabilities in either the the Portable, Extensi-
ble Toolkit for Scientific Computation (PETSc [10]) project or the Trilinos project [11] (a
collection of numerical methods libraries developed at Sandia National Laboratory). Ar-
gonne’s PETSc group has recently joined with the MOOSE team in a strong collaboration
wherein they are customizing PETSc for our needs. This collaboration is strong enough
that Argonne is viewed as a joint developer of MOOSE.

A parallel and tightly coordinated development effort with the RELAP-7 development
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project is the Reactor Analysis Virtual control ENvironment (RAVEN). This MOOSE-
based application is a complex, multi-role software tool that will have several diverse tasks
including serving as the RELAP-7 graphical user interface, using RELAP-7 to perform
RISMC focused analysis, and controlling the RELAP-7 calculation execution.

Together, MOOSE/RELAP-7/RAVEN comprise the systems analysis capability of the
LWRS RISMC ToolKit.

1.2 Governing Theory

The primary basis of the RELAP-7 governing theory includes 7-equation two-phase flow,
reactor core heat transfer, and reactor kinetics models. While RELAP-7 is envisioned to
incorporate both single and two-phase coolant flow simulation capabilities encompassing
all-speed and all-fluids, the main focus in the immediate future of RELAP-7 development
is LWRs. Thus, the flow summary is restricted to the two-phase flow model.

1.2.1 7-Equation Two-Phase Model

To simulate light water (nuclear) reactor safety and optimization scenarios there are key is-
sues that rely on in-depth understanding of basic two-phase flow phenomena with heat and
mass transfer. Within the context of these two-phase flows, two bubble-dynamic phenom-
ena boiling (or heterogeneous boiling) and flashing or cavitation (homogeneous boiling),
with bubble collapse, are technologically very important. The main difference between
boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limita-
tions on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing
is limited primarily by inertial effects in the surrounding liquid. The flashing process tends
to be far more explosive (or implosive), and is more violent and damaging (at least in the
near term) than the bubble dynamics of boiling. However, other problematic phenomena,
such as departure from nucleate boiling (DNB) and CRUD deposition, are intimately con-
nected with the boiling process. Practically, these two processes share many details, and
often occur together.

The state of the art in two-phase modeling exhibits a lack of general agreement amongst
the so-called experts even regarding the fundamental physical models that describe the
complex phenomena. There exist a large number of different models: homogeneous mod-
els, mixture models, two-fluid models, drift-flux models, etc. The various models have
a different number of variables, a different number of describing equations, and even the
definition of the unknowns varies with similar models. There are conservative formula-
tions, non-conservative formulations, models and techniques for incompressible flows and
also for compressible flows. Huge Mach number variations can exist in the same prob-
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lems (Mach number variations of 0.001 to over 100 with respect to mixture sound speed)
high-speed versus low-speed gives way to the need for all-speed. In their recent compila-
tion [12], Prosperetti and Tryggvason made important statements that have generally been
given insufficient attention in the past: ”uncertainties in the correct formulation of the equa-
tions and the modeling of source terms may ultimately have a bigger impact on the results
than the particular numerical method adopted.” ”Thus, rather than focusing on the numeric
alone, it makes sense to try to balance the numerical effort with expected fidelity of the
modeling”...”The formulation of a satisfactory set of average-equations models emerges as
the single highest priority in the modeling of complex multiphase flows.”

Because of the expense of developing multiple special-purpose simulation codes (at
both the system and the detailed multi-dimensional level) and the inherent inability to cou-
ple information from these multiple, separate length- and time-scales, efforts at the INL
have been focused toward development of multi-scale approaches to solve those multi-
phase flow problems relevant to light water reactor (LWR) design and safety analysis.
Efforts have been aimed at developing well-designed unified physical/mathematical and
high-resolution numerical models for compressible, all-speed multiphase flows spanning:
(1) well-posed general mixture level (true multiphase) models for fast transient situations
and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve inter-
face level phenomena like flashing and boiling flows, and critical heat flux determination,
and (3) multi-scale methods to resolve (1) and (2) automatically, depending upon specified
mesh resolution, and to couple different flow models (single-phase, multiphase with several
velocities and pressures, multiphase with single velocity and pressure, etc.). In other words,
we are extending the necessary foundations and building the capability to simultaneously
solve fluid dynamic interface problems as well as multiphase mixtures arising from boiling,
flashing of superheated liquid, and bubble collapse, etc. in LWR systems. Our ultimate goal
is to provide models that, through coupling of system level and multi-dimensional detailed
level codes, resolve interfaces for larger bubbles (DNS-like) with single velocity, single
pressure treatment (interface capturing) and average (or homogenize) the two-phase flow
field for small bubbles with two-velocity, two-pressure with well-posed models.

The primary, enabling feature of the INL (Idaho National Laboratory) advanced multi-
scale methodology for multiphase flows involves the way in which we deal with multiphase
mixtures. This development extends the necessary foundations and builds the capability to
simultaneously solve fluid dynamic interface problems as well as multiphase mixtures aris-
ing from boiling, flashing or cavitation of superheated liquid, and bubble collapse, etc.
in light water reactor systems. Our multi-scale approach is essentially to solve the same
equations everywhere with the same numerical method (in pure fluid, in multi-velocity
mixtures, in artificially smeared zones at material interfaces or in mixture cells, in phase
transition fronts and in shocks). Some of the advantages of this approach include: coding
simplicity and robustness as a unique algorithm is used, conservation principles are guaran-
teed for the mixture, interface conditions are perfectly matched, and the ability to include
the dynamic appearance/disappearance of interfaces. This method also allows the coupling
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of multi-velocities, multi-temperature mixtures to macroscopic interfaces where a single
velocity must be present. This entails development on two main fronts. The first requires
the derivation (design) of theoretical models for multiphase and interfacial flows whose
mathematical description (equation system) is well-posed and exhibits hyperbolicity, ex-
hibiting correct wave dynamics at all scales. The second requires the design of appropriate
numerical schemes to give adequate resolution for all spatial and time scales of interest.

Because of the broad spectrum of phenomena occurring in light water nuclear reactor
coolant flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation,
wave propagation, large density variation convection, etc.) it is imperative that models
accurately describe compressible multiphase flow with multiple velocities, and that the
models be well-posed and unconditionally hyperbolic. The currently popular state of the
art two-phase models assume the pressures in each phase are equal, i.e. they are single pres-
sure models, referred to herein as the “classical” 6-equation model. This approach leads to
a system of equations that is ill-posed, not hyperbolic, and it has imaginary characteristics
(eigenvalues) that give the wrong wave dynamics. The classical 6-equation model is inap-
propriate for transient situations and it is valid only for flows dominated by source terms.
Numerical methods for obtaining the solution of the 6-equation model rely on dubious
properties of the numerical scheme (for example truncation error induced artificial viscos-
ity) to render them numerically well-posed over a portion of the computational spectrum.
Thus they cannot obtain grid-converged solutions (the truncation error goes down thus the
artificial viscosity diminishes and the ill-posed nature returns). This calls into question the
possibility of obtaining “verification”, and thus, “validation” (what does it mean to validate
a model that cannot be verified?).

To meet this criterion, we have adopted the 7-equation two-phase flow model [13–
15]. This equation system meets our requirements, as described above it is hyperbolic,
well-posed, and has a very pleasing set of genuinely nonlinear and linearly degenerate
eigenvalues . This 7-equation system is being implemented in RELAP-7, via the INL
MOOSE (Multi-physics, Object Oriented Simulation Environment) finite element frame-
work, through a 7-step progression designed to go successively from single-phase com-
pressible flow in a duct of spatially varying cross-sectional area to the compressible, two-
phase flow with full thermodynamic and mechanical nonequilibrium. This same 7-equation
model, along with its reduced subsystems, is being utilized as described above to build
Bighorn, the next generation 3-D high-resolution, multiscale two-phase solver. This will
give a unique capability of consistently coupling the RELAP-7 system analysis code to our
multi-dimensional, multi-scale, high-resolution multiphase solver and the other MOOSE-
based fuels performance packages.

There is yet another benefit to this approach alluded to above with the mention of re-
duced subsystems of the 7-equation model. Because of the way the 7-equation system for
two-phase flow is constructed, it can evolve to a state of mechanical equilibrium (phasic
pressure and velocity equilibrium) whereby a very nice 5-equation system results, and even

17



further to thermodynamic equilibrium (phasic temperature and Gibb’s energy equilibrium)
whereby the classical 3-equation homogeneous equilibrium model (HEM) results. The rate
at which these various equilibrium states are reached can be allowed to occur naturally or
they can be controlled explicitly to produce a locally reduced model (reduced subsystem)
to couple/patch with simpler models. For example this reduction method enables the cou-
pling of zones in which total or partial nonequilibrium effects are present to zones evolving
in total equilibrium; or it can be used to examine the admissible limits of a physical system
because all limited models are included in this general formulation.

1.2.2 Core Heat Transfer and Reactor Kinetics

The nuclear reaction that takes place within the reactor core generates thermal energy in-
side the fuel. Also, the passive solid structures, such as piping and vessel walls and the
internal vessel structures, represent significant metal masses that can store and release
large amounts of thermal energy depending on the reactor fluid (coolant) temperature. The
RELAP-7 code must calculate the heat conduction in the fuel and the metal structures to
simulate the heat-transfer processes involved in thermal-energy transport. Therefore, in ad-
dition to the two-phase fluid dynamics model described above, RELAP-7 necessarily simu-
lates the heat transfer process with reactor kinetics as the heat source. The heat-conduction
equation for cylindrical or slab geometries is solved to provide thermal history within metal
structures such as fuel and clad. The volumetric power source in the heat conduction equa-
tion for the fuel comes from the point kinetics model with thermal hydraulic reactivity
feedback considered [16]. The reactor structure is coupled with the thermal fluid through
energy exchange (conjugate heat transfer) employing surface convective heat transfer [17]
within the fluid . The fluid, heat conduction, conjugate heat transfer and point kinetics
equations may be solved in a fully coupled fashion in RELAP-7 in contrast to the operator-
splitting or loose coupling approach used in the existing system safety analysis codes. For
certain specific transients, where three-dimensional neutronics effects are important (i.e.,
rod ejection), three-dimensional reactor kinetics capabilities are available through coupling
with the RattleSNake [18] code. RattleSNake is a reactor kinetics code with both diffusion
and transport capabilities being developed at INL based on the MOOSE framework.

1.3 Computational Approach

Stated previously, the MOOSE framework provides the bulk of the ”heavy lifting” available
to MOOSE-based applications with a multitude of mathematical and numerical libraries.
For RELAP-7, LibMesh [9] provides the second-order accurate spatial discretization by
employing linear basis, one-dimensional finite elements. The Message Passing Interface
(MPI, from Argonne National Laboratory) provides for distributed parallel processing. In-
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tel Threading Building Blocks (Intel TBB) allows parallel C++ programs to take full ad-
vantage of multicore architecture found in most large-scale machines of today. PETSc
(from Argonne), Trilinos (from Sandia), and Hypre [19] (from Lawrence Livermore Na-
tional Laboratory) provide the mathematical libraries and nonlinear solver capabilities for
JFNK. In MOOSE, a stiffly-stable, second-order backward difference (BDF2) formulation
is used to provide second-order accurate time integration for strongly coupled physics in
JFNK.

With the objective of being able to handle the flow all-fluids at all-speeds, RELAP-7 is
also being designed to handle any systems-level transient imaginable. This can cover the
typical design basis accident scenarios (on the order of one second, or less, time scales)
commonly associated with RELAP5 simulations to reactor core fuel burnup simulations
(on the order of one year time scales). Unfortunately, the JFNK algorithm can be ineffi-
cient in both of these time scale extremes. For short duration transients, typically found in
RELAP5 simulations, the JFNK approach requires a significant amount of computational
effort be expended for each time step. If the simulation requires short time steps to re-
solve the physics coupling, JFNK may not be necessary to resolve the nonlinear coupling.
The Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) algorithm [20, 21] is
an operator-split semi-implicit time integration method that has some similarities with RE-
LAP5’s time integration method but does not suffer from phase and amplitude errors, given
a stable time step. Conversely for very long duration transients, JFNK may not converge
for very large time steps as the method relies on resolving the nonlinear coupling terms,
and thus, may require an initial estimate of the solution close to the advanced solution time
which maybe unavailable. Recently, INL LDRD funds have been directed toward develop-
ing a point implicit time integration method for slow transient flow problems [22]. These
topics may be addressed in future versions of RELAP-7. Thus, a three-level time integra-
tion approach is being pursued to yield an all-time scale capability for RELAP-7. The three
integration approaches are described as follows:

1. The JFNK method easily allows implicit nonlinear coupling of dependent physics un-
der one general computational framework. Besides rapid (second-order) convergence
of the iterative procedure, the JFNK method flexibly handles multiphysics problems
when time scales of different physics are significantly varied during transients. The
key feature of the JFNK method is combining Newton’s method to solve implicit
nonlinear systems with Krylov subspace iterative methods. The Krylov methods
do not require an explicit form of the Jacobian, which eliminates the computation-
ally expensive step of forming Jacobian matrices (which also may be quite difficult
to determine analytically), required by Newton’s method. The matrix-vector product
can be approximated by the numerical differentiation of nonlinear residual functions.
Therefore, JFNK readily integrates different physics into one solver framework.

2. The PCICE computational fluid dynamics (CFD) scheme, developed for all-speed
compressible and nearly incompressible flows, improves upon previous pressure-
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based semi-implicit methods in terms of accuracy and numerical efficiency with a
wider range of applicability. The PCICE algorithm is combined with the Finite Ele-
ment Method (FEM) spatial discretization scheme to yield a semi-implicit pressure-
based scheme called the PCICE-FEM scheme. In the PCICE algorithm, the total
energy equation is sufficiently coupled to the pressure Poisson equation to avoid iter-
ation between the pressure Poisson equation and the pressure-correction equations.
Both the mass conservation and total energy equations are explicitly convected with
the time-advanced explicit momentum. The pressure Poisson equation then has the
time-advanced internal energy information it requires to yield an accurate implicit
pressure. At the end of a time step, the conserved values of mass, momentum, and
total energy are all pressure-corrected. As a result, the iterative process usually as-
sociated with pressure-based schemes is not required. This aspect is highly advan-
tageous when computing transient flows that are highly compressible and/or contain
significant energy deposition, chemical reactions, or phase change.

3. Semi-implicit methods can step over certain fine time scales (i.e., ones associated
with the acoustic waves), but they still have to follow material Courant time step-
ping criteria for stability or convergence purposes. The new point implicit method is
devised to overcome these difficulties [22]. The method treats only certain solution
variables at particular nodes in the discretization (that can be located at cell centers,
cell edges, or cell nodes) implicitly, and the rest of the information related to same or
other variables at other nodes are handled explicitly. The point-wise implicit terms
are expanded in Taylor series with respect to the explicit version of the same terms, at
the same locations, resulting in a time marching method that is similar to the explicit
methods and, unlike the fully implicit methods, does not require implicit iterations.
This new method shares the characteristics of the robust implementation of explicit
methods and the stability properties of the unconditionally stable implicit methods.
This method is specifically designed for slow transient flow problems wherein, for
efficiency, one would like to perform time integrations with very large time steps.
Researchers at the INL have found that the method can be time inaccurate for fast
transient problems, particularly with larger time steps. Therefore, an appropriate so-
lution strategy for a problem that evolves from a fast to a slow transient would be to
integrate the fast transient with a semi-implicit or implicit nonlinear technique and
then switch to this point implicit method as soon as the time variation slows suffi-
ciently. A major benefit of this strategy for nuclear reactor applications will reveal
itself when fast response coolant flow is coupled to slow response heat conduction
structures for a long duration, slow transient. In this scenario, as a result of the stable
nature of numerical solution techniques for heat conduction one can time integrate
the heat part with very large (implicit) time steps.

Because it is the only integration/solution approach currenly implemented in RELAP-7,
only the JFNK method will be discussed subsequently in this report.
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2 Single-Phase Thermal Fluids Models

2.1 Single-Phase Flow Model

RELAP-7 treats the basic pipe, duct, or channel flow component as being one dimensional
with a cross-sectional area that varies along its length. In this section the instantaneous,
area-averaged balance equations are derived to approximate the flow physics. This deriva-
tion will begin with a three dimensional local (point-wise), instantaneous statement of the
balance equations. For economy of derivation these local balance equations are represented
in generic form. The area-averaged balance equations will then be derived from this local
generic form, from which the specific area averaged mass, momentum, energy, and entropy
equations will be given.

A local generic transport equation can be stated as

∂

∂t
(ρψ) +∇ · (ρψu) +∇ · J − ρφ = 0 (1)

where ρ is the local material mass density, u is the local material velocity, and ψ, J , and
φ are generic “place holder” variables that can take on different meanings to represent
different physical balance equations. To represent balance of mass, momentum, energy,
and entropy these generic variables take on the meaning of the variables shown in Table 1.
Notice that these variables can take on scalar, vector, or second order tensor character as
needed in the equation of interest. In particular, the symbol J is used to represent either a
vector or tensor, depending on the equation in question.

Table 1. Balance Equation Variable Definitions.

Balance Equation ψ J φ

mass 1 0 0
momentum u pI − τ g
total energy E q + pI · u− τ · u g · u+ r

ρ

entropy s 1
T
q 1

ρ
∆

It is assumed that an instantaneous section of the variable duct can be represented as
shown in Figure 1. It is necessary to introduce specific forms of the Leibnitz and Gauss
rules, or theorems, from advanced calculus that are specialized to the specific geometry of
Figure 1. These rules will be used as tools to shorten the derivations. First, the “Leibnitz
Rule” states:

∂

∂t

∫
A(x,t)

f(x, y, z, t) dA =

∫
A(x,t)

∂f

∂t
dA+

∫
c(x,t)

fuw · n̂ ds (2)

21



ncn

nx

Figure 1. Diagram showing the variable-area duct used in the

derivation of the governing equations.

where

ds ≡ dc

n̂ · n̂c

(3)

and uw is the velocity of the (possibly) moving wall. Next, the “Gauss Theorem” is given

by ∫
A(x,t)

∇ ·B dA =
∂

∂x

∫
A(x,t)

B · n̂x dA+

∫
c(x,t)

B · n̂ ds (4)

For brevity, in the following derivations we shall suppress the explicit dependence on

(x, t) of the area A and boundary c in the relevant integrals. Integrating the local, instanta-

neous relation (1) over A, gives∫
A

∂

∂t
(ρψ) dA+

∫
A

∇ · ρψu dA+

∫
A

∇ · J dA−
∫
A

ρφ dA = 0. (5)

Applying the the Leibnitz and Gauss rules listed above to this equation results in

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A−A〈ρφ〉A = −

∫
c

(ṁψ+ J · n̂) ds (6)
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where

〈f〉A ≡
1

A

∫
A

f(x, y, z, t) dA (7)

ṁ ≡ ρ(u− uw) · n̂. (8)

Finally, because the walls are impermeable and u · n̂|c = uw · n̂|c, Equation (6) reduces to

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A − A〈ρφ〉A = −

∫
c

J · n̂ ds. (9)

This is the instantaneous, area-averaged generic balance equation.

2.1.1 Single-Phase Flow Field Equations

To obtain mass, momentum, energy, and entropy forms, the variables from Table 1 are
substituted into the instantaneous, area-averaged generic balance equation to produce the
respective balance equations. The conservation of mass equation is given by:

∂

∂t
A〈ρ〉A +

∂

∂x
A〈ρu〉A = 0 (10)

where u = u · n̂x is the x-component of velocity. The momentum balance equation is:

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρuu〉A − A〈ρg〉A

+
∂

∂x
A〈pn̂x − τ · n̂x〉A =

∫
c

(−pI · n̂+ τ · n̂) ds (11)

where I is the identity tensor. To reduce this equation further, note that

∂A

∂x
= −

∫
c

n̂ · n̂x ds (12)

Now take the projection of the momentum equation along the duct axis, i.e. take the scalar
product of this equation with n̂x, and use identity (12) to get the final version of the instan-
taneous, area averaged momentum balance equation

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρu2〉A +

∂

∂x
A〈p〉A −

∂

∂x
A〈(τ · n̂x) · n̂x〉A

= p̃
∂A

∂x
+ A〈ρgx〉A +

∫
c

(τ · n̂) · n̂x ds (13)

where gx is the component of gravity along the duct axis and p̃ is the average pressure
around curve c on the wall, which can generally differ from 〈p〉A. Here the term which ac-
counts for deviations of the wall pressure from this mean wall pressure has been neglected,
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i.e. the local wall pressure has been assumed constant along c giving p̃(x, t); the deviatoric
term could be included if a higher order approximation is warranted. In the past, the av-
erage wall pressure has typically been assumed equal to the area averaged pressure, i.e.
p̃(x, t) = 〈p〉A. More will be said of this later. The total energy conservation equation is

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu · n̂x〉A +

∂

∂x
A〈(q + pI · u− τ · u) · n̂x〉A − A〈ρg · u〉A

− A
〈
ρ
r

ρ

〉
A

= −
∫
c

(q + pI · u− τ · u) · n̂ ds (14)

or, as is typically done, by assuming the shear stress terms are small enough to be neglected
in the total energy equation

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −
∫
c

pu · n̂ ds−
∫
c

q · n̂ ds (15)

where E = e + u·u
2

is the specific total energy and e is the specific internal energy. This
equation can be reduced further by noting the identity

∂A

∂t
=

∫
c

uw · n̂ ds (16)

Again, because u · n̂|c = uw · n̂|c, the identity (16) allows the energy equation to be finally
written as

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −p̃∂A
∂t
−
∫
c

q · n̂ ds (17)

where the last term on the right hand side is the net heat transfer from the fluid to the duct
wall. The entropy inequality relation is next written as an equality (an entropy production
equation) as:

∂

∂t
A〈ρs〉A +

∂

∂x
A〈ρsu〉A +

∂

∂x
A
〈qx
T

〉
A
− A〈∆〉A = −

∫
c

q

T
· n̂ ds (18)

where the last term on the right hand side is the entropy flux due to heat transfer to the duct
wall and ∆ is the entropy production per unit volume due to the process being irreversible.

With this form of the balance equations a closure equation will need to be supplied
describing how the local cross-sectional area will change, both spatially and temporally,
e.g. stretching or expanding due to pressure. Also, the usual assumption is made (though
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not necessarily accurate) that the covariance terms of the averaging process are negligible,
i.e. if f = 〈f〉A + f ′ and g = 〈g〉A + g′ then

〈fg〉A = 〈f〉A〈g〉A + 〈f ′g′〉A︸ ︷︷ ︸
=0

= 〈f〉A〈g〉A, (19)

wherein the notational simplification 〈f〉A ⇒ f can be utilized. With this assumption the
mass, momentum, total energy, and entropy balances can be respectively written as

∂ρA

∂t
+
∂ρuA

∂x
= 0 (20)

∂ρuA

∂t
+
∂ (ρu2A+ pA)

∂x
= p̃

∂A

∂x
− Fwall friction (21)

∂ρEA

∂t
+
∂(ρE + p)uA

∂x
= −p̃∂A

∂t
+Qwall (22)

∂ρsA

∂t
+
∂ρsuA

∂x
+

∂

∂x

(
qxA

T

)
− A∆ =

Qwall

T̃
(23)

where the Fwall friction is the average duct wall shear force (friction), Qwall is the average heat
transfer rate from the duct wall to the fluid and T̃ is the average fluid temperature along
the line c on the duct wall. Also note that in writing the momentum equation (21) the last
term on the left hand side of the momentum equation (13) has been neglected as being
insignificant. Of course, if the duct wall is rigid, the cross-sectional area is not a function
of time and is a function of spatial position only; i.e. A = A(x) only, and ∂A

∂t
= 0.

2.2 Single-Phase Flow Constitutive Models

2.2.1 Single-Phase Flow Wall Friction Factor Model

The wall friction term in (21) takes the general form

Fwall friction =
f

2dh
ρu |u|A (24)

where f is the (Darcy) friction factor, and dh is the hydraulic diameter, defined as

dh =
4A

Pwet
(25)

and Pwet is the so-called wetted perimeter of the pipe, which is defined as the “perimeter of
the cross-sectional area that is wet.” More accurately, it is that portion of the perimeter of
the cross-sectional area for which a wall-shear stress exists. Because of its dependencies,
f is usually a function of x, along with the other flow variables. Furthermore, in the case
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of a variable-area duct or pipe, both the cross-sectional area and the wetted perimeter are
functions of x, and therefore dh is also a function of x. In the particular case of a pipe with
circular cross section and radius r(x), we have A = πr2, Pwet = 2πr, and consequently

dh = 2r(x) = 2

√
A

π
(26)

so that (24) becomes

Fwall friction =
f

4
ρu |u|

√
πA (27)

This relationship simply states that the wall shear force due to the fluid flow is proportional
to the bulk kinetic energy of the flow.

Currently, the same wall friction factor model is used for single-phase flow as that used
in RELAP5 [23]. The friction factor model is simply an interpolation scheme linking the
laminar, laminar-turbulent transition, and turbulent flow regimes. The wall friction model
consists of four regions which are based on the Reynolds number (Re):

1. f = fmax for 0 ≤ Re < 64.

2. Laminar flow for 64 ≤ Re < 2200.

3. Transitional flow for 2200 ≤ Re < 3000.

4. Turbulent flow for Re ≥ 3000.

where Re is defined as

Re =
ρ|u|dh
µ

(28)

where µ is the fluid viscosity, which in general depends on the fluid temperature. The
laminar friction factor depends on the cross-sectional shape of the channel and assumes
steady state and fully-developed flow (and a variety of other assumptions). It is defined as

f =
64

ReΦS

, 64 ≤ Re < 2200 (29)

where ΦS is a user-defined shape factor for noncircular flow channels, and has a value of 1
for circular pipes. For the transition from laminar to turbulent flow, a reciprocal interpola-
tion method is employed. This choice is motivated by the form of (29), and is valid over the
region Remin ≡ 2200 ≤ Re ≤ Remax ≡ 3000. Solving for the parameter N in the relation

N

Remin
− N

Remax
= 1 (30)
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yields

N =
RemaxRemin

Remax −Remin
. (31)

The reciprocal weighting function w is then defined as

w =
N

Remin
− N

Re
(32)

and varies from 0 to 1 as the Reynolds number varies from Remin to Remax. Finally, the
transition friction factor formula is defined as

f = (1− w)flam,Remin + wfturb,Remax . (33)

Formula (33) is valid for 2200 ≤ Re ≤ 3000, flam,Remin is the laminar friction factor at
Remin, and fturb,Remax is the turbulent friction factor at Remax. The turbulent friction factor is
given by a Zigrang-Sylvester approximation [24] to the Colebrook-White correlation [25],
for Re ≥ 3000:

1√
f

= −2 log10

{
ε

3.7D
+

2.51

Re

[
1.14− 2 log10

(
ε

D
+

21.25

Re0.9

)]}
(34)

where ε is the surface roughness, D is the pipe diameter, and the factor 1.14 corrects the
value of 1.114 present in the original document.

2.2.2 Single-Phase Flow Convective Heat Transfer Model

The general form of the convective heat transfer term in (22) is

Qwall = Hwaw (Twall − T )A (35)

where aw is the so-called heat transfer area density, Hw is the convective wall heat transfer
coefficient, Twall = Twall(x, t) is the average temperature around perimeter c(x, t), and
T = T (x, t) is the area average bulk temperature of the fluid for cross-section at (x, t). In
the constant-area case, the heat transfer area density is roughly defined as:

aw ≡ lim
∆x→0

wetted area of pipe section of length ∆x

volume of pipe section of length ∆x
(36)

For a constant-area pipe with radius r and circular cross-section, formula (36) yields

aw = lim
∆x→0

2πr∆x

πr2∆x
=

2

r
(37)

For a variable-area duct or pipe, if we consider the “projected area” through which heat
transfer can occur, we observe that the rate of change of the pipe’s area, ∂A

∂x
, also plays a
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role (though it may be neglected). If we wish to account for the rate of change of the pipe’s
area, in (35) we can set

awA∆x ≡ “projected area of a pipe segment of length ∆x” (38)

and then take the limit as ∆x → 0. The right-hand side of (38) of course depends on the
geometric shape of the pipe cross section. For a circular pipe with cross sectional area
A(x) and associated radius r(x), the formula for the lateral surface area of a right-circular
frustum of height ∆x implies that (38) can be written as:

awA∆x = π

(
2r +

∂r

∂x
∆x

)
∆x

√
1 +

(
∂r

∂x

)2

(39)

In the limit as ∆x→ 0, we obtain

awA = 2πr

√
1 +

(
∂r

∂x

)2

=

√
4πA+

(
∂A

∂x

)2

(40)

where (40) arises upon substitution of the cross-sectional area formula for a circle. Note
also that we recover

awA = 2πr (41)

from (40) in the constant area case. The resulting wall heating term in this case is

Qwall = Hw (T − Twall)

[
4πA+

(
∂A

∂x

)2
] 1

2

(42)

Clearly, pipes with rapidly changing cross-sectional area, i.e. ∂A
∂x
� 1, have a larger pro-

jected area than pipes with slowly-varying cross-sectional areas. Conversely, if the area is
not changing rapidly with x, this additional term can safely be neglected.

It is possible to derive an analogous formula to (40) for polygonal cross sections other
than circles. For example, for a square cross section with side length L(x), the analog
of (39) is

awA∆x = 2

(
2L+

∂L

∂x
∆x

)
∆x

√
1 +

1

4

(
∂L

∂x

)2

(43)

which, as ∆x→ 0 yields,

awA = 4L

√
1 +

1

4

(
∂L

∂x

)2

=

√
16A+

(
∂A

∂x

)2

(44)
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where we have used the relations A(x) = L2(x), ∂A
∂x

= 2L∂L
∂x

.

Currently, the same wall heat transfer model for single-phase flow is used as in RE-
LAP5 [26]. The convective heat transfer coefficient is determined by many factors, i.e.,
hydraulic geometry, fluid types, and several Buckingham π-group dimensionless numbers.
For single-phase, different flow regimes can be involved, including laminar forced con-
vection, turbulent forced convection, and natural convection. For the current version, all
the heat transfer models are based on steady-state and fully-developed flow assumptions.
These assumptions may become questionable, for example, in a short pipe with strong en-
trance effect. Effects that account for flow regions which are not fully developed will be
added in the future.

2.2.2.1 Internal Pipe Flow

For internal pipe flow, (the default geometry) the maximum of the forced-turbulent, forced-
laminar, and free-convection coefficients is used for non-liquid metal fluids in order to avoid
discontinuities in the heat transfer coefficient. The forced laminar heat convection model
is an exact solution for fully-developed laminar flow in a circular tube with a uniform wall
heat flux and constant thermal properties. The laminar Nusselt number (Nu) is here defined
to be

Nu =
Hwdh
k

= 4.36 (45)

where k is the fluid thermal conductivity, based on fluid bulk temperature. The turbulent
forced convection model is based on the Dittus-Boelter correlation

Nu = CRe0.8Prn (46)

where C = 0.023, Pr is the Prandtl Number, n = 0.4 for heating, and n = 0.3 for cooling.
The applicable ranges and accuracy of the correlation are discussed in Section 4.2.3.1.1
of [26]. The Churchill and Chu Nu-correlation,

Nu =

0.825 +
0.387Ra

1
6(

1 +
(

0.492
Pr

) 9
16

) 8
27


2

(47)

is used for free convection along a vertical flat plate, where Ra = GrPr is the Rayleigh
number. The Grashof number Gr is defined as

Gr =
ρ2gβ(Tw − T )L3

µ2
(48)

where β is the coefficient of thermal expansion and L is the natural convection length scale.
The default natural convection length scale is the heat transfer hydraulic diameter. For
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liquid metal fluids (with Pr < 0.1), the following correlation is used for all the convective
heat transfer regimes:

Nu = 5.0 + 0.025Pe0.8 (49)

where Pe = RePr is the Peclet number.

2.2.2.2 Vertical Bundles with In-line Rods, Parallel Flow Only

The correlations for vertical bundles with in-line rods and parallel flow differs from the
default internal pipe flow only in the implementation of the turbulent flow multiplier of
Inayatov [27], which is based on the rod pitch to rod diameter ratio. The pitch is the
distance between the centers of the the adjacent rods. If the bundle consists of in-line tubes
on a square pitch or staggered tubes on an equilateral triangle pitch, the coefficientC in (46)
becomes

C = 0.023
P

D
(50)

where P is the pitch and D is the rod diameter. As in RELAP5, if P
D
> 1.6, then P

D
is

reset to 1.6. If P
D

is not provided, or is less than 1.1, a default value of 1.1 is used. For
liquid metals (with Pr < 0.1), the following correlation is used for all the convective heat
transfer regimes in vertical bundles

Nu = 4.0 + 0.33

(
P

D

)3.8(
Pe

100

)0.86

+ 0.16

(
P

D

)5

. (51)

Equation (51) is valid for 1.1 < P
D
< 1.4. If P

D
is outside this range, it is “clipped” to either

the maximum or minimum value.

2.2.3 Single-Phase Equations of State

In the following sections, we discuss several equations of state employed for the various
thermal-fluid models used in RELAP-7. When we say “equation of state,” we really mean
a so-called “incomplete” equation of state defined by a pair of equations

p = p(ρ, e) (52)
T = T (ρ, e) (53)

i.e., both the pressure and the temperature can be computed if the density and internal
energy are given. Reformulations of (52) and (53) which consist of two equations relating
the four quantities p, T , ρ, and e are also acceptable and useful in practice.

The pair of equations (52) and (53) may be contrasted with the case of a single ther-
modynamically consistent “complete” equation of state e = e(ϑ, s) where ϑ = 1/ρ is the
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specific volume, and s is the specific entropy. Note that the existence of a complete equa-
tion of state implies the existence of an incomplete equation of state through the relations
p = −

(
∂e
∂ϑ

)
s
, and T =

(
∂e
∂s

)
ϑ
, but the converse is not true [28]. The partial derivative

notation
(
∂f
∂x

)
y

is used to denote the fact that f = f(x, y) and the derivative is taken with
respect to x while holding y constant. Solution of the Euler equations requires only an in-
complete equation of state (for smooth flows), hence we focus on the form (52)–(53) in the
present work. More will be said subsequently, when discussing selection and stabilization
of ”weak” solutions.

2.2.3.1 Barotropic Equation of State

The barotropic equation of state is suitable for a two-equation (isothermal) fluid model.
It describes only isentropic (reversible) processes, and implies a constant sound speed.
Shocks do not form from initially smooth data in fluids modeled with the barotropic equa-
tion of state; discontinuities present in the initial data may be retained and propagated
without “sharpening or steepening”. This equation of state, described here only for refer-
ence because it is used in RELAP-7 primarily for testing and verification purposes, is given
by

p = p0 + a2(ρ− ρ0)

= p0 + a2(U0 − ρ0) (54)

where a is a constant, roughly the sound speed. The derivatives of p with respect to the
conserved variables are

p,0 = a2 (55)
p,1 = 0 (56)
p,2 = 0 (57)

2.2.3.2 Isentropic Stiffened Gas Equation of State

The isentropic stiffened gas equation of state is more general than the barotropic equation
of state. In this equation of state, the pressure and density are related by:

p+ p∞
p0 + p∞

=

(
ρ

ρ0

)γ
(58)

which is sometimes rearranged to read:

p = (p0 + p∞)

(
ρ

ρ0

)γ
− p∞ (59)
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where p∞, γ, and ρ0 are constants which depend on the fluid. Representative values for
water are p∞ = 3.3 × 108 Pa, γ = 7.15, ρ0 = 103 kg/m3. Note that although the symbol
γ is used in (59), it should not be confused with the ratio of specific heats (the ratio of
specific heats is approximately 1 for most liquids). The isentropic equation of state is, of
course, not valid for flows with shocks, but for weak pressure waves and weak shocks the
approximation is not bad. The speed of sound in this fluid can be computed as

c2 =
∂p

∂ρ
=
γ

ρ
(p+ p∞) (60)

Hence, unlike the barotropic equation of state, the sound speed of this model varies with
the density and pressure values. In terms of conserved variables, we have:

p = (p0 + p∞)

(
U0

ρ0

)γ
− p∞ (61)

with derivatives

p,0 =
γ

U0

(p+ p∞) = c2 (62)

p,1 = 0 (63)
p,2 = 0 (64)

Finally, we note that Courant and Friedrichs [29] also discuss this equation of state in the
form

p = A

(
ρ

ρ0

)γ
−B (65)

Approximate values for the constants in (65) are given in Table 2.

Table 2. Constants for Courant and Friedrich’s form of the isen-
tropic stiffened gas equation of state.

SI Imperial

ρ0 999.8 kg/m3 1.94 slug/ft3

γ 7
A 3.04076× 108 Pa 3001 atm
B 3.03975× 108 Pa 3000 atm

32



2.2.3.3 Linear Equation of State

A more general “linear” equation of state (a straightforward extension of (54)) which takes
into account variations in temperature as well as density, is given by

p = p0 +Kρ(ρ− ρ0) +KT (T − T0) (66)
e = e0 + cv(T − T0). (67)

Since Kρ ≡
(
∂p
∂ρ

)
T

and KT ≡
(
∂p
∂T

)
ρ

(evaluated at p0) are large for liquids (like water),
we see that large changes in pressure are required to produce changes in density, assuming
T is approximately constant. This observation is in accordance with what we expect for
a nearly incompressible fluid. If the working fluid is water, representative values for the
constants in (66) and (67) are given in Tables 3 (p0 = 1 MPa) and 4 (p0 = 5 MPa) for
several temperatures. The tables demonstrate that the various constants are not strongly
dependent on the absolute magnitude of the pressure. These constants are obtained from
the thermodynamic data for water available on the NIST website1.

In terms of conserved variables, (66) and (67) can be written as

p = p0 +Kρ(U0 − ρ0) +
KT

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
(68)

T = T0 +
1

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
, (69)

and the derivatives of p with respect to the conserved variables are

p,0 = Kρ +
KT

cvU0

(
U2

1

U2
0

− U2

U0

)
= Kρ +

KT

cvρ

(
u2 − E

)
(70)

p,1 = −KTU1

cvU2
0

= −KTu

cvρ
(71)

p,2 =
KT

cvU0

=
KT

cvρ
. (72)

The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU0

(
U2

1

U2
0

− U2

U0

)
=

1

cvρ

(
u2 − E

)
(73)

T,1 = − U1

cvU2
0

= − u

cvρ
(74)

T,2 =
1

cvU0

=
1

cvρ
. (75)

1http://webbook.nist.gov/chemistry/fluid
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For completeness, the density is given as a function of pressure and temperature, and the
temperature as a function of pressure and density, for the linear equation of state:

ρ = ρ0 +
p− p0

Kρ

− KT

Kρ

(T − T0) (76)

T = T0 +
p− p0

KT

− Kρ

KT

(ρ− ρ0) . (77)

Table 3. Constants for the linear equation of state for p0 = 1 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 957.43 kg/m3

KT 1.5394× 106 Pa/K
T0 375 K
cv 4.22× 103 J/kg-K
e0 4.27× 105 J/kg

T = 400K

p0 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 937.87 kg/m3

KT 1.6497× 106 Pa/K
T0 400 K
cv 4.22× 103 J/kg-K
e0 5.32× 105 J/kg

T = 425K

p0 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 915.56 kg/m3

KT 1.6643× 106 Pa/K
T0 425 K
cv 4.22× 103 J/kg-K
e0 6.39× 105 J/kg

T = 450K

p0 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 890.39 kg/m3

KT 1.6303× 106 Pa/K
T0 450 K
cv 4.22× 103 J/kg-K
e0 7.48× 105 J/kg

2.2.3.4 Stiffened Gas Equation of State

In the single-phase model discussed in this section, the fluid (whether it be liquid or va-
por) is compressible and behaves with its own convex equation of state (EOS). For initial
development purposes it was decided to use a simple form capable of capturing the essen-
tial physics. For this purpose, the stiffened gas equation of state (SGEOS) was selected
(LeMetayer et al. [4])

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (78)

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy of
the fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of each
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Table 4. Constants for the linear equation of state for p0 = 5 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 5× 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 959.31 kg/m3

KT 1.5559× 106 Pa/K
T0 375 K
cv 4.26× 103 J/kg-K
e0 4.25× 105 J/kg

T = 400K

p0 5× 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 939.91 kg/m3

KT 1.6406× 106 Pa/K
T0 400 K
cv 4.26× 103 J/kg-K
e0 5.31× 105 J/kg

T = 425K

p0 5× 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 917.83 kg/m3

KT 1.6659× 106 Pa/K
T0 425 K
cv 4.26× 103 J/kg-K
e0 6.37× 105 J/kg

T = 450K

p0 5× 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 892.99 kg/m3

KT 1.6370× 106 Pa/K
T0 450 K
cv 4.26× 103 J/kg-K
e0 7.46× 105 J/kg

fluid. The parameter q defines the zero point for the internal energy, which will be relevant
later when phase transitions are involved with two-phase flows. The parameter p∞ gives
the “stiffened” properties compared to ideal gases, with a large value implying “nearly-
incompressible” behavior.

The first term on the right-hand side of (78) is a repulsive effect that is present for any
state (gas, liquid, or solid), and is due to molecular motions and vibrations. The second
term on the right represents the attractive molecular effect that guarantees the cohesion
of matter in the liquid or solid phases. The parameters used in this equation of state are
determined by using a reference curve, usually in the

(
p, 1

ρ

)
plane. In LeMetayer et al. [4],

the saturation curves are utilized as this reference curve to determine the stiffened gas
parameters for liquid and vapor phases. The SGEOS is the simplest prototype that contains
the main physical properties of pure fluids — repulsive and attractive molecular effects —
thereby facilitating the handling of the essential physics and thermodynamics with a simple
analytical formulation. Thus, a fluid, whether liquid or vapor, has its own thermodynamics.

The pressure law, equation (78), is incomplete. A caloric law is also needed to relate
the fluid temperature to the other fluid properties (for example, T = T (p, ρ)) and thereby
completely describe the thermodynamic state of the fluid. For the fluid, whether liquid or
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vapor, it is assumed that the thermodynamic state is determined by the SGEOS as:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (79)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(80)

h(T ) = γ cvT + q (81)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)(γ−1)
+ q (82)

where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively,
of the fluid considered. In this system, equation (80) is the caloric law. In addition to
the three material constants mentioned above, two additional material constants have been
introduced, the constant volume specific heat cv and the parameter q′. These parameters
will be useful when two-phase flows are considered later. The values for water and its
vapor from [4] are given in Table 5. These parameter values appear to yield reasonable
approximations over a temperature range from 298 to 473 K [4]. Equation (81) can also be

Table 5. Stiffened gas equation of state parameters for water and
its vapor, from [4].

Water γ q (J kg−1) q′ (J kg−1 K−1) p∞ (Pa) cv (J kg−1 K−1)

Liquid 2.35 −1167× 103 0 109 1816
Vapor 1.43 2030× 103 −23× 103 0 1040

written as
h = cp T + q (83)

if we define cp = γcv. Combining (79) and (80) also allows us to write the temperature as

T =
1

cv

(
e− q − p∞

ρ

)
. (84)

In terms of conserved variables, the pressure is given by

p = (γ − 1)

(
U2 −

U2
1

2U0

− U0q

)
− γp∞. (85)

The derivatives of p with respect to the conserved variables are

p,0 = (γ − 1)

(
1

2

U2
1

U2
0

− q
)

= (γ − 1)

(
1

2
u2 − q

)
(86)

p,1 = (γ − 1)

(
−U1

U0

)
= (γ − 1) (−u) (87)

p,2 = γ − 1. (88)
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In terms of conserved variables, the temperature is given by

T =
1

cv

(
U2

U0

− U2
1

2U2
0

− q − p∞
U0

)
. (89)

The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU2
0

(
p∞ +

U2
1

U0

− U2

)
=

1

cvρ2

(
p∞ + ρu2 − ρE

)
(90)

T,1 = − U1

cvU2
0

= − u

cvρ
(91)

T,2 =
1

cvU0

=
1

cvρ
. (92)

The sound speed for this equation of state can be computed as

c2 =
p

ρ2
(γ − 1)ρ+ (γ − 1)(e− q)

= γ

(
p+ p∞
ρ

)
. (93)

2.2.3.5 Ideal Gas Equation of State

The ideal gas equation of state is fundamental; many other equations of state are more-or-
less based on the ideal gas equation of state in some way. Although RELAP-7 is primarily
concerned with flows involving liquids and their vapors, there are certainly nuclear reactor
applications, such as helium cooling, where the ideal gas equation of state is relevant. The
pressure and temperature in a (calorically-perfect) ideal gas are given by

p = (γ − 1)ρe (94)

T =
e

cv
(95)

where γ = cp
cv

is the ratio of specific heats, and cv is the specific heat at constant volume,
which in a calorically-perfect gas is assumed to be constant. This equation of state is a
particular form of the stiffened gas equation of state already described in Section 2.2.3.4,
with q = p∞ = 0. We therefore omit giving a detailed listing of the derivatives of this
equation of state with respect to the conserved variables. The reader should instead refer to
Section 2.2.3.4, and the derivatives listed therein.
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3 Two-Phase Thermal Fluids Models

3.1 Seven Equation Two-Phase Flow Model

Many important fluid flows involve a combination of two or more materials or phases
having different properties. For example, in light water nuclear reactor safety and opti-
mization there are key issues that rely on in-depth understanding of basic two-phase flow
phenomena with heat and mass transfer. Within the context of these multiphase flows, two
bubble-dynamic phenomena: boiling (heterogeneous) and flashing or cavitation (homoge-
neous boiling), with bubble collapse, are technologically very important to nuclear reactor
systems. The main difference between boiling and flashing is that bubble growth (and col-
lapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas
bubble growth (and collapse) in flashing is limited primarily by inertial effects in the sur-
rounding liquid. The flashing process tends to be far more explosive (and implosive), and is
more violent and damaging (at least in the near term) than the bubble dynamics of boiling.
However, other problematic phenomena, such as crud deposition, appear to be intimately
connected with the boiling process. In reality, these two processes share many details, and
often occur together.

The multiple phases or components often exhibit relative motion among the phases or
material classes. The microscopic motions of the individual constituents are complex and
the detailed solution to the micro-level evolutionary equations is very difficult. Character-
istic of such flows of multi-component materials is an uncertainty in the exact locations
of the particular constituents at any particular time. For most practical purposes, it is not
possible to exactly predict or measure the evolution of the details of such systems, nor is it
even necessary or desirable. Usually, more gross features of the motion, or the “average”
behavior of the system are of greater interest. Here we present descriptive equations that
will predict the evolution of this averaged behavior. Due to the complexities of interfaces
and resultant discontinuities in fluid properties, as well as from physical scaling issues, it is
essential to work with averaged quantities and parameters. The rational approach pursued
here to examine two-phase flow must be based on the fundamental postulates of contin-
uum mechanics and upon careful use of averaging procedures. We begin by rigorously
specifying our concept of an average. There are several types of averaging. The published
literature predominantly contains two types of averaging: “volume averaging” [30,31] and
“time averaging” [32]. Occasionally variants, such as the “area averaging” described in the
single-phase flow section above for one-dimensional variable cross-sectional area, or com-
binations of the two, such as “volume-time averaging,” are used. However, a more general
approach (least restrictions) will be utilized here, adopting what is known as “ensemble
averaging.” The equation forms that result from these different averaging approaches can
appear quite similar, though the physical/mathematical interpretation of the various terms
are certainly different and there are subtle differences in the inherent restrictions associated
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with each.

When the physical system has a large amount of variability, a natural interpretation
of the meaning of predictions is in terms of expected values and variances. If there are
many different events, or “realizations,” possible, then the expected value is naturally an
“average” over all of these events, or the ensemble of realizations. The ensemble is then the
set of all experiments with the same boundary and initial conditions, with some properties
that we would like to associate with the mean and distribution of the components and their
velocities. A realization of the flow is a possible motion that could have happened. Implicit
in this concept is the intuitive idea of a “more likely” and a “less likely” realization in
the ensemble. Therefore, as we shall see, each ensemble of realizations, corresponding to a
given physical situation, has a probability measure on subsets of realizations. The ensemble
average is the generalization of the elementary idea of adding the values of the variable for
each realization, and dividing by the number of observations. The ensemble average then
allows the interpretation of phenomena in terms of repeatability of multi-component flows.

One of the nice features of ensemble averaging, as opposed to volume averaging, is
that ensemble averaging does not require that a control volume contain a large quantity of
a particular component in any given realization. Consider the following example, taken
directly from Drew and Lahey [33], where the average of a particle-fluid mixture is of
interest. Gas turbines are eroded by particulate matter (or droplets) suspended in the gas
stream passing through the inlet and impacting on the various parts of the machine, e.g.
the turbine blades. The trajectories of individual particles moving through the gas turbine
are very complicated, depending on where and when the particles enter the inlet of the
device. Such predictions are usually not required. A prediction, however, that is of interest
to the designer is the average, or expected values, of the particle flux (or the concentration
and velocities of particles) near parts in the device that are susceptible to erosion. Since
the local concentration of particles is proportional to the probability that particles will be
at the various points in the device at various times, and the particle velocity field will be
the mean velocity that the particles will have if they are at that position in the device, the
design engineer will be able to use this information to assess the places where erosion due
to particle impact may occur.

It may be that there are no times for which there will be many particles in some repre-
sentative control volume (or representative elementary volume, REV). So, volume averag-
ing, which depends on the concept of having many representative particles in the averaging
volume at any instant, will fail. The appropriateness of ensemble averaging is obvious.
Here the ensemble is the set of motions of a single particle through the device, given that
it started at a random point at the inlet at a random time during the transient flow through
the device. Clearly the solution for the average concentration and average velocity gives
little information about the behavior of a single particle in the device; however, the infor-
mation is very appropriate for assessing the probability of damage to the device. Similar
examples could be given where time averaging will fail, but where ensemble averaging
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is again appropriate. The ensemble average is more fundamental than either time or vol-
ume averaging. In fact, both time and volume averaging can be viewed as approximations
to the ensemble average, which can be justified, respectively, for steady or homogeneous
flow [34].

3.1.1 Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [34–38] for
developing averaged balance or conservation equations for multiple materials, any one of
which may be at point x, at a given instant t. With this procedure, the most likely state
at a point, i.e. the expected value, will be determined simultaneously with which material
is most likely to be found at that point. Imagine running an experiment many times and
collecting data about the state of the flow at each point x and time t. This information could
include which material or phase is present, material density, velocity, pressure, temperature,
concentration, etc. From this information, one can compute the ensemble average. The
ensemble average of a generic property Q0 of a fluid or material in a process is an average
over the realizations

〈Q0〉(x, t) =
1

NR

NR∑
r=1

Q0,r(x, t) (96)

where NR is the number of times the process or experiment is repeated, and is a large num-
ber. Now imagine that many of the realizations are near duplicates, i.e. they are essentially
the same state, with N occurrences. We can then rewrite the sum over the realizations as a
sum over the number of states NR

〈Q0〉(x, t) =
1

NR

NR∑
r=1

N(x, t,Γ)Q0(Γ)

=

NΓ∑
r=1

N(x, t,Γ)

NR

Q0(Γ)

=

∫
all Γ

Q0(Γ)f(x, t,Γ) dΓ (97)

where f(x, t,Γ) = N(x,t,Γ)
NR

is the probability of the state Γ in the ensemble. Note that in
the limit of an infinite number of repetitions of the experiment, with a sum over all of the
states, the summation is replaced with an integral form in the definition of the ensemble
average. More correctly, because

∫
all Γ

f(x, t,Γ) dΓ = 1, f(x, t,Γ) is referred to as the
probability density.

The state is the full thermodynamic/kinematic description of the matter at a point x and
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time t; for example, the set

Γ =

 ρ0,u0, h0, p0, τ0, . . .
ρ1

0,u
1
0, h

1
0, ρ

2
0,u

2
0, h

2
0, . . .

X1, X2, . . .

 (98)

where the various symbols used in (98) are described in Table 6, and

ρ0 =
∑
s

ρs0 (99)

ρ0u0 =
∑
s

ρs0u
s
0 (100)

ρ0h0 =
∑
s

ρs0h
s
0 . (101)

Other properties may also appear in the above thermodynamic/kinematic state such as the
phase or material temperature, θ0, the phase or material specific internal energy, e0, and the
phase or material specific entropy, s0.

Table 6. State variable definitions.

Symbol Description

Xk(x, t) Phase or material indicator function: equal to 1 if material k is present, 0 otherwise
ρ0 Phase or material density
u0 Phase or material velocity
h0 Phase or material specific enthalpy
p0 Pressure
τ0 Deviatoric stress
ρs0 Species partial density
us0 Species velocity
hs0 Species partial enthalpy

In a typical multiphase flow, the ensemble averages of interest may include those listed
in Table 7. From a physical viewpoint, the bulk average density of a phase represents a
summation of all of the density values that occurred for that phase, divided by the total
number of experiments run. The bulk average density corresponds intuitively to the idea
of the mass of phase per unit volume of mixture, or the observed material density. On the
other hand, the intrinsic average density physically corresponds to a summation of all of the
density values that occurred for that phase, dividing by the number of times in which that
phase occurred in the experiments. The intrinsic average density corresponds intuitively to
the idea of the mass of phase per unit volume of phase k , or the true material density. Some
researchers prefer to work with bulk average densities, e.g. Kashiwa and Rauenzahn [35],
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while others prefer working with intrinsic densities, e.g. Drew and Passman [34]. This is
mostly an issue of convenience, since one can easily be converted to the other. Here intrin-
sic averages will be used, and henceforth, when an average is mentioned, mean intrinsic
average will be implied unless indicated otherwise.

Table 7. Multiphase flow ensemble averages of interest.

Ensemble Average Description

αk ≡ 〈Xk〉 Material k volume fraction
ρ̂k ≡ 〈Xkρ0〉 Material k bulk average density
ρk ≡ Xkρ0

αk
Material k intrinsic average density

ρ̂sk ≡ 〈Xkρ
s
0〉 Species s in material k bulk average density

ρsk ≡
Xkρ

s
0

αk
Species s in material k intrinsic average density

uk ≡ 〈Xkρ0u0〉
ρ̂k

= 〈Xkρ0u0〉
αkρk

Material k velocity
Ek ≡ 〈Xkρ0E0〉

ρ̂k
= 〈Xkρ0E0〉

αkρk
Material k total energy

sk ≡ 〈Xkρ0s0〉
ρ̂k

= 〈Xkρ0s0〉
αkρk

Material k entropy
T ≡ 〈T0〉 Mean mixture stress
Tk ≡ 〈XkT0〉

αk
Mean k-material stress

p ≡ 〈p0〉 Pressure (single pressure model)
pk ≡ 〈Xkp0〉

αk
Pressure in k-material

3.1.2 Seven-Equation Two-Phase Flow Field Equations

For a reasonably broad range of conditions (with common substances), the exact balance
equations, valid at a point inside each material, are

ρ̇0 = −ρ0∇ · u0 (102)
ρ̇s0 = −ρs0∇ · u0 −∇ · ρs0(us0 − u0) + ṙs0 (103)

ρ0u̇0 = ∇ · T0 + ρ0g (104)

ρ0Ė0 = ∇ · (T0 · u0) +∇ · q0 + ρ0g · u0 + ρ0ε0 (105)

ρ0ṡ0 >
ρ0ε0

θ0

−∇ ·
(
q0

θ0

)
. (106)

For these macroscopic balance laws the material derivative has been used, which is defined
as

Q̇0 ≡
∂Q0

∂t
+ u0 · ∇Q0 . (107)
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Let the total variation of f in the phase space (x, t,Γ) be given by [35]

∂f

∂t
+ u0 · ∇f + Γ̇

∂f

∂Γ
=
df

dt
= 0 (108)

where it is assumed that, as a material point is followed through phase space, its probability
of occurrence remains constant. Various moments of this equation can be formed by first
multiplying this equation by Q0, and then averaging this result. It can be shown (see also
Kashiwa and Rauenzahn [35], here corrected) that the resulting equation is

∂

∂t
〈Q0〉+∇ · 〈Q0u0〉 = 〈Q̇0 +Q0∇ · u0〉 . (109)

This result is called the moment evolution equation and the details of its derivation are
given in [14, 15]. The averaged balance or conservation equations are obtained by letting
the generic Q0 be replaced by various “meaningful” functions and then by performing
judicious manipulations on the equations to bring about physically useful forms of the
equation.

3.1.3 Mass Balance

Letting Q0 = Xkρ0 in (109) results in

∂ 〈Xkρ0〉
∂t

+∇ · 〈Xkρ0u0〉 =
〈
Ẋkρ0 +Xk(ρ̇0 + ρ0∇ · u0)

〉
. (110)

Introducing the pure material (microscopic) mass balance equation and the definition of
average into this equation gives

∂αkρk
∂t

+∇ · αkρkuk =
〈
Ẋkρ0

〉
. (111)

Because the time- and spatial-derivatives are being taken of functions that are not smooth,
this averaged mass balance equation is to be interpreted in the sense of distributions, or
generalized functions [39]. To examine the right hand side of this equation in more detail
the definition of the material derivative is first considered. It is defined by

Ẋk =
∂Xk

∂t
+ u0 · ∇Xk (112)

in a generalized function sense. By noting that for points not on the interface where either
Xk = 0 or Xk = 1 the partial derivatives both vanish, while for points on the interface
(which also move with the interface velocity) the function Xk is a jump that remains con-
stant so their material derivatives following the interface vanish, it is seen that the material
derivative of Xk following the interface vanishes,

∂Xk

∂t
+ uint · ∇Xk = 0 (113)
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where uint denotes the velocity of an interface of phase or material k. Thus,〈
Ẋkρ0

〉
= 〈ρ0(u0 − uint) · ∇Xk〉 (114)

and the averaged mass balance equation becomes

∂αkρk
∂t

+∇ · αkρkuk = 〈ρ0(u0 − uint) · ∇Xk〉

≡ Ωmass
k . (115)

Because∇Xk has the sifting property of the Dirac delta function(al), the only contributors
(on the right hand side) are the material interfaces. As shown in [40, 41], ∇Xk is aligned
with the surface unit normal vector pointing to phase k, ∇Xk = n̂kδ(x − xint, t). Thus
the Ωmass

k represents the flux of mass to phase k from the other phases via the interface,
usually just referred to as phase change. With no storage of mass at an interface, mass
balance requires further that

no. of phases∑
k=1

Ωmass
k = 0 . (116)

For later use, it is convenient to introduce the concept of interfacial area density of phase
or component k, defined as

Ak = −〈n̂k · ∇Xk〉 (117)

where n̂k is the unit exterior normal to phase or component k. Ak is the expected value of
the ratio of the interfacial area (in a small volume) to the (small) volume, in the limit as that
volume approaches zero.

3.1.4 Generic Balance Equation

To more expeditiously derive the other conservation equations, the averaged balance equa-
tion resulting from a generic, microscopic balance equation will be derived first. Then the
other balance equations can be found by judicious substitution of pertinent quantities into
the generic balance equation. Consider the generic, microscopic balance equation

∂ρ0ψ0

∂t
+∇ · ρ0ψ0u0 = ∇ · J0 + ρ0g0 (118)

or

ρ0ψ̇0 =
d(ρ0ψ0)

dt
+ (ρ0ψ0)∇ · u0 = ∇ · J0 + ρ0g0 . (119)

Equations (118) and (119) hold at each point where sufficient smoothness occurs for the
derivatives to be taken, otherwise at simple discontinuities its generic jump balance condi-
tion

Jρ0ψ0(u0 − uint) + J0K · n̂ = m (120)
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holds, where ψ0 is the conserved quantity, J0 is a molecular or diffusive flux, g0 is a source
density, and m is the interfacial source of ψ0. The notation J·K here denotes the jump in the
enclosed quantity across an interface. Obviously, these generic quantities must be included
in our state space, e.g.

Γ =

[
ρ0,u0, ψ0, J0, . . .
X1, X2, . . .

]
. (121)

Let us also define averages of these quantities as

ψk ≡
〈Xkρ0ψ0〉
αkρk

(122)

Jk ≡
〈XkJ0〉
αk

(123)

gk ≡
〈Xkρ0g0〉
αkρk

. (124)

Letting Q0 = Xkρ0ψ0 in (109) gives

∂〈Xkρ0ψ0〉
∂t

+∇ · 〈Xkρ0ψ0u0〉 = ∇ · 〈XkJ0〉+ 〈Xkρ0g0〉

+ 〈[ρ0ψ0(u0 − uint)− J0] · ∇Xk〉 . (125)

Introducing the fluctuating velocity

u′k ≡ u0 − uk (126)

into this expression finally results in

∂αkρkψk
∂t

+∇ · αkρkψkuk = ∇ · αkJk +∇ · αkJFluctk + αkρkgk

+ Ωmass
k ψintk + Ωψ

k

where JFluctk = − 〈Xkρ0ψ0u′k〉
αk

is the flux of ψ due to fluctuations in the phase k velocity, ψintk

is the effective value of ψ that is transferred to phase k from the other phases due to mass
transfer, or phase change, and Ωψ

k is a flux of ψ to phase k not due to bulk mass transfer
from the other phase(s). This is the averaged generic balance equation. To obtain balance
at the interface, the generic jump balance equation requires the constraint

no. of phases∑
k=1

Ωmass
k ψintk + Ωψ

k = M (127)

where M = 〈m〉 is the expected net effect of all the interfacial ψ − source terms. With
this generic balance equation, the phasic species mass, momentum, and energy equations,
as well as the phasic entropy inequality, can readily be determined.

45



3.1.5 Species Mass Balance

The microscopic species mass balance equation can be written as
∂ρs0
∂t

+∇ · ρs0us0 = ṙs (128)

where ρs0 is the species partial density, us0 is the species bulk velocity, and ṙs is the genera-
tion or source of the species due to chemical reactions. The species mass balance equation
is not usually written this way because not much is usually known about individual species
velocities. Instead, it is usually cast as

∂ρs0
∂t

+∇ · ρs0u0 = ∇ · ρs0(u0 − us0) + ṙs (129)

because of the availability (to a certain extent) of acquired empirical knowledge of the
behavior of the first term on the right hand side of this equation (species diffusion). This
equation is in the form of the generic balance equation (118) with the assignments of

ψ0 =
ρs0
ρ0

, J0 = ρ0
ρs0
ρ0

(u0 − us0), g0 =
ṙs

ρ0

. (130)

Thus the averaged species mass balance equation takes the form
∂

∂t
〈Xkρ

s
0〉+∇ · 〈Xkρ

s
0u0〉 = ∇ · 〈Xkρ

s
0(u0 − us0)〉+ 〈Xkṙ

s〉

+ 〈[ρs0(u0 − uint)− ρs0(u0 − us0)] · ∇Xk〉 . (131)

Again introducing the fluctuating velocity along with the definitions of averaged quantities,
the final form of the averaged species mass balance equation is

∂αkρ
s
k

∂t
+∇ · αkρskuk = ∇ · 〈Xkρ

s
0(u0 − us0)〉

− ∇ · 〈Xkρ
s
0u
′
k〉

+ 〈ρs0(u0 − uint) · ∇Xk〉
− 〈ρs0(u0 − us0) · ∇Xk〉
+ Ṙs

k (132)

where the terms on the right-hand side of (132) are the relative species flux, fluctuational
diffusion, phase change, mass exchange, and average generation rate in phase k due to
chemical reactions, Ṙs

k ≡
〈Xk ṙs〉
αk

, respectively.

3.1.6 Momentum Balance

The averaged momentum balance equation results from the generic averaged balance equa-
tion with the assignments of

ψ0 = u0, J0 = T0, g0 = g0 (133)
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to give:

∂αkρkuk
∂t

+∇ · αkρkuk ⊗ uk = ∇ · αk(Tk + T Fluct
k ) + αkρkgk

+ Ωmom
k + uintk Ωmass

k (134)

where the fluctuating stress T Fluct
k and the interfacial momentum source Ωmom

k are given
by

T Fluct
k ≡ −〈Xkρ0u

′
k ⊗ u′k〉
αk

(135)

Ωmom
k ≡ −〈T0 · ∇Xk〉 . (136)

The averaged interfacial momentum balance constraint (jump condition) is

γ =

no. of phases∑
k=1

Ωmom
k + uintk Ωmass

k (137)

where γ is the interfacial momentum source, i.e. surface tension source.

3.1.7 Energy Balance

The assignment of

ψ0 = E0 = e0 +
1

2
u0 · u0 (138)

J0 = T0 · u0 + q0 (139)
g0 = g0 · u0 + ε0 (140)

to the variables of the generic averaged balance equation give the averaged energy balance
equation

∂

∂t
αkρk

(
ek +

1

2
uk · uk + eFluctk

)
+∇ · αkρkuk

(
ek +

1

2
uk · uk + eFluctk

)
= ∇ · [αk(Tk + T Fluct

k ) · uk]
−∇ · αk(qk + qFluctk ) + αkρk(εk + gk · uk)

+ Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
(141)

where

eFluctk ≡ 1

2

〈Xkρ0u
′
k · u′k〉

αkρk
(142)
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is the fluctuation kinetic energy,

qFluctk ≡ 〈Xkρ0u
′
ke
′
k〉

αk
+
〈XkT0 · u′k〉

αk
+

1

2

〈Xkρ0u
′
k(u

′
k · u′k)〉

αk
(143)

is the fluctuation energy flux,

εk ≡
〈Xkρ0ε0〉
αkρk

(144)

is the energy source,

Ωenergy
k ≡ 〈q0 · ∇Xk〉 (145)

is the interfacial heat source, and

Ωmom
k · uintk ≡ −〈T0 · u0 · ∇Xk〉 (146)

is the interfacial work term. The averaged interfacial energy balance constraint (interface
jump condition) is

no. of phases∑
k=1

Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
= ξ (147)

where ξ is the interfacial energy source. The kinetic energy associated with the velocity
fluctuations, eFluctk , is a type of “turbulent” kinetic energy. Sometimes the sum ek + eFluctk

is interpreted as the effective internal energy per unit mass of phase k.

It is sometimes useful to have an expression for the balance of fluctuation kinetic energy,
eFluctk . Its evolutionary description is derived by introducing the partitionu′k = u0−uk into
the microscopic pure phase momentum balance, taking the dot product of this equation with
Xku

′
k, and then performing the statistical average over configurations (keeping in mind that

〈Xkρ0u
′〉 vanishes) to obtain (details are left to the reader, see e.g. [42])

αkρk
∂eFluctk

∂t
+ αkρkuk · ∇eFluctk = αkT

Fluct
k : ∇uk

−∇ · 〈Xkρ0
u′k · u′k

2
u′k〉

+ 〈Xku
′
k · (∇ · T0 + ρ0g0)〉 . (148)

This equation exhibits some similarity to the equation of evolution of the fluctuational ki-
netic energy in a single-phase turbulent fluid [43]. The first term on the right side describes
the influence of the gradient of uk on the development of eFluctk , the second term is ex-
pected to diffuse eFluctk , and the last term represents the power developed by the stresses
and external forces [36].
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For most multiphase flows, including some very (conceptually) simple flows such as
gas flow through a packed bed or through a pebble-bed nuclear reactor, the nature of eFluctk

is somewhat different than that of a turbulent single-phase flow. Contrary to a single-phase
fluid in which the fluctuations disappear for slow flows, these fluctuations for a multiphase
flow exist however slow the flow. For this reason, eFluctk that is produced by hydrody-
namic interactions between the phases has been called “pseudo-turbulence,” for example
by Lhuillier [36].

3.1.8 Entropy Inequality

The local form of the entropy inequality (106), sometimes called the “Second Law of Ther-
modynamics,” is used to place restrictions on the constitutive relations used to give unique
phase or material behaviors. With the assignment of

ψ0 = s0, J0 = −q0

θ0

, g0 =
ε0

θ0

(149)

to the variables of the generic averaged balance relationship, the averaged entropy inequal-
ity results,

∂αkρksk
∂t

+∇ · αkρkskuk ≥ ∇ · αk(Φk + ΦFluct
k )

+ αkρkSk + Ωentropy
k + Ωmass

k sintk (150)

where

Φk ≡ −

〈
Xk

q0

θ0

〉
αk

(151)

is the entropy flux,

ΦFluct
k ≡ −〈Xkρ0s

′
ku
′
k〉

αk
(152)

is the fluctuation entropy flux,

Sk ≡

〈
Xk

ρ0ε0
θ0

〉
αkρk

(153)

is a volumetric entropy source, and

Ωentropy
k ≡

〈
q0

θ0

· ∇Xk

〉
(154)
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is an interfacial entropy source. This entropy inequality corresponds to what Drew and
Passman [34] call the microscopic entropy inequality. A macroscopic entropy inequality
can be obtained by summing inequalities (150) over all of the phases or materials present
in the mixture (for details, see Truesdell [44] and the other authors contained therein). The
macroscopic entropy inequality is useful for placing restrictions on the phasic or material
interaction constitutive relations. The averaged interfacial entropy inequality (interfacial
jump condition) is

no. of phases∑
k=1

Ωentropy
k + Ωmass

k sintk ≥ 0 . (155)

3.1.9 Volume Fraction Propagation Equation

There remains one very important relationship to derive, a dynamic relationship that effec-
tively reflects boundary conditions at the microscale. It accounts for the fact that the con-
stituent volume fractions may change without affecting the gross motion and, in a sense,
models the microstructural force systems operating within the multiphase mixture. Begin-
ning with the previous Lagrangian interface material derivative relationship for Xk,

∂Xk

∂t
+ uint · ∇Xk = 0 (156)

this equation is averaged to give〈
∂Xk

∂t
+ uint · ∇Xk

〉
=
∂αk
∂t

+ 〈uint · ∇Xk〉 = 0 . (157)

Introducing the fluctuating interface velocity u′I = uint − uI , where uI is the average
interface velocity, into this equation yields

∂αk
∂t

+ 〈uint · ∇Xk〉 =
∂αk
∂t

+ 〈(uI + u′I) · ∇Xk〉

=
∂αk
∂t

+ uI · ∇αk + 〈u′I · ∇Xk〉

=
∂αk
∂t

+ uI · ∇αk − Ωvol
k

= 0 (158)

where Ωvol
k (for which a constitutive description will be needed) is the driving function for

the change of volume fraction αk with time. In summary, the volume fraction propagation,
or volume fraction evolution equation is written as

∂αk
∂t

+ uI · ∇αk = Ωvol
k . (159)

50



The volume fraction evolution equation plays a central role in modern, well-posed two-
phase models with correct wave dynamics.

Even before 2000, past researchers had proposed and utilized various forms of the in-
dependent volume fraction evolution equation: second order (in time) with “microinertia”
effects [30, 45], first order (in time) as above with “viscous damping” effects [46–51], and
zeroth order (in time) which amounts to a steady-state version balancing the microstruc-
tural forces operating within the Ωvol

k function [34,52–57]. Most of these were also used in
conjunction with so called “two pressure” two-phase flow models, which will be examined
next. Since 2000, the literature has become much more voluminous, documenting the vari-
ations of models utilizing an independent volume fraction evolution equation, usually with
independent phasic pressures. Most are from Europe. It is not the intent here to provide a
review of such.

To gain closure for this set of generic material (fluid) balance equations, additional re-
lations must be specified which will restore information that was lost during the averaging
process, and render the model material specific. All of these relations are collectively re-
ferred to as constitutive relations. Those that are pertinent to the RELAP-7 equation system
will be discussed in the following section on constitutive equations, but it is easier to discuss
the microstructural force model, which is an important part of Ωvol

k , in the volume fraction
evolution equation now, before reducing the multi-dimensional model above (which will be
applied in other INL MOOSE-based applications) to the 1-D variable cross-sectional area
equation system employed in RELAP-7.

The need for, and form of, a dynamic volume fraction evolution equation is presented
next with deliberate choice of an “intuitive” engineering approach over, perhaps, a “rig-
orously theoretical” approach. Consider a cell mixture physics model for two-phase flow
in which a fixed volume V is instantaneously filled with two immiscible constituents or
phases (e.g. from a computational fluid dynamical modeling point of view, these two con-
stituents may have been advected into a mixed cell control volume). These two constituents
have masses m1 and m2 occupying volumes V1 and V2, respectively, such that

V1 + V2 = V . (160)

The constituent phases have material density ρ1 and ρ2, respectively, so

V = V1 + V2

=
m1

ρ1

+
m2

ρ2

(161)
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or

1 =
V1

V
+
V2

V
= α1 + α2

=
m1

V ρ1

+
m2

V ρ2

(162)

where α1 = V1

V
and α2 = V2

V
are now volume fractions (or with ensemble averaging,

expected phasic presence) of each constituent or phase. For each phase, because ρ1 = m1

V1

and ρ2 = m2

V2
, using a generic equation of state gives

p1 = f1(ρ1, e1)

= f1

(
m1

V1

, e1

)
(163)

p2 = f2(ρ2, e2)

= f2

(
m2

V2

, e2

)
. (164)

Generally the pressures p1 and p2 of the two phases are not equal. In fact, if V1 and V2 are
adjusted (subject to the V ∗1 + V ∗2 = V constraint) until the two phase pressures are equal to
the “equilibration” or “equilibrium pressure” or “relaxed pressure”, p, then

p = f1

(
m1

V ∗1
, e1

)
= f2

(
m2

V ∗2
, e2

)
. (165)

At this equilibrium pressure the corresponding phase volumes yield the equilibrium volume
fractions

αe1 =
V ∗1
V
, αe2 =

V ∗2
V

. (166)

Alternatively, equations (163) and (164) can be rewritten as

p1 = f1(ρ1, e1)

= f1

(
m1

α1V
, e1

)
(167)

p2 = f2(ρ2, e2)

= f2

(
m2

α2V
, e2

)
= f2

(
m2

(1− α1)V
, e2

)
(168)

and equivalently, α1 can be varied until the equilibrium pressure is obtained along with the
corresponding equilibrium volume fraction(s). Note also that, for two phases α1 + α2 = 1
and consequently dα1

dt
= −dα2

dt
and d2α1

dt2
= −d2α2

dt2
. Intuitively, this can be accomplished in

a dynamical manner with
dα1

dt
=
p1 − p2

τ
. (169)
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If α1 is compressed too much (such that p1 > p2) then α1 will increase with time (i.e. relax)
letting p1 reduce while α2 decreases, thereby letting p2 increase. This process will continue
until p1 = p2 = p and thus dα1

dt
= 0. The relaxation rate, τ , controls the rate at which the

phases (pressures) equilibrate or relax.

With analogy to the classical dynamics of simple mass-dashpot systems, a more general
dynamical description of volume fractions could even be considered, wherein

d

dt

[
(microinertia)× dα1

dt

]
+ (compression viscosity)× dα1

dt
= (microstructural forces)

= F . (170)

The microstructural force F is a relaxation term that is intended to model the driving force
or resistance exhibited by the mixture to changes in its configuration (volume fractions).
Playing further upon this simple abstraction (analogy), the “microinertia” function is anal-
ogous to “mass” and the “compression viscosity” function is analogous to the viscous
damping coefficient. As a simple example from mechanics, consider the compaction of
a gas-solid particle bed [58] with

F =

{
αsαg(ps − pg − βs) , ps − βs > 0
−αsαgpg , ps − βs ≤ 0

(171)

in accordance with the view of compaction as an irreversible process. βs is the “configura-
tion pressure” of the bed. If the microinertia and the configuration pressure are set to zero,
then

dα1

dt
=
α1α2(p1 − p2)

µ
(172)

where for this example µ could be referred to as the “compaction viscosity”. Note the
multiplicative coefficient α1α2 in the driving force F . This term is included for two reasons.
First, α1α2 is roughly proportional to the interfacial area per unit volume, Ai

V
. Second, better

behavior results in the single-phase limit, i.e. α1 → 0, (α2 → 1) or α2 → 0, (α1 → 1).
This concept will be further refined for the two-phase flow model of RELAP-7.

3.1.10 Multi-dimensional Two-Phase Governing Equations

Before moving on to the 1-D variable cross-sectional area form of the 7-equation two-
phase model (next section), it is useful to collect a simplified multi-dimensional version
of the mass, momentum, and energy balance equations, equations (115), (134), and (141)
respectively, as well as the volume fraction evolution equation (159) with simple pressure
driving force. For the liquid (“liq” subscript) and vapor (“vap” subscript) phases, we have
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∂ (αρ)liq
∂t

+∇ · (αρu)liq = Ωmass
liq (173)

∂ (αρu)liq
∂t

+∇ · (αρu⊗ u+ αpI)liq = pint∇αliq + λ(uvap − uliq)

+ (αρ)liq g + uintΩ
mass
liq (174)

∂ (αρE)liq
∂t

+∇ · [α(ρE + p)u]liq = pintuint · ∇αliq + λu′int(uvap − uliq)

− µp′int(pliq − pvap) + EintΩ
mass
liq +Qliq (175)

∂αliq
∂t

+∇αliq · uint = µ(pliq − pvap) +
Ωmass
liq

ρint
(176)

∂ (αρ)vap
∂t

+∇ · (αρu)vap = −Ωmass
liq (177)

∂ (αρu)vap
∂t

+∇ · (αρu⊗ u+ αpI)vap = pint∇αvap − λ(uvap − uliq)

+ (αρ)vapg − uintΩmass
liq (178)

∂ (αρE)vap
∂t

+∇ · [α(ρE + p)u]vap = pintuint · ∇αvap − λu′int(uvap − uliq)

+ µp′int(pliq − pvap)− EintΩmass
liq −Qliq (179)

∂αvap
∂t

+∇αvap · uint = −µ(pliq − pvap)−
Ωmass
liq

ρint
(180)

where uint is the interface velocity inside the two-phase control volume and u′int is the
average interfacial velocity. The pressure exerted on the interfacial surface inside the two-
phase control volume, interface pressure, is denoted pint and the average interfacial pressure
by p′int. In these equations Qliq denotes the direct energy transfer from the vapor phase to
the liquid phase not due to interphase mass transfer, andEk = ek+

1
2
uk·uk+ghk,datum (k =

liq, vap) represents the phasic total energy. Note that in a two-phase system, the saturation
constraint allows either (176) or (180) to be replaced by the algebraic relation

αvap = 1− αliq . (181)
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In this relaxation model, µ has been redefined as the reciprocal of that used above to
intuitively describe the volume fraction evolution equation (where it was referred to, in a
narrow context, as a “compaction viscosity”; before that it was referred to as compression
viscosity and as a relaxation rate time constant τ ). Now in this new form, µ will be more
generally called the pressure relaxation coefficient or function and similarly λ is the velocity
relaxation coefficient or function. Relaxation models play a key role in the modern theory
of hyperbolic partial differential equations – physically, analytically, and numerically (see
Leveque [59] for an introduction).

3.1.11 One-dimensional, Variable Cross-sectional Area, Seven Equation Two-phase
Model

Because it is not economical to solve the entire two-phase flow field with highly resolved
three-dimensional computational fluid dynamics for an entire light water reactor coolant
system, it is necessary to construct a one-dimensional model for flow in pipes, nozzles, and
other components. The one-dimensional model is constructed from the multi-dimensional
model, following the approach developed in the one-dimensional Single-Phase Flow Model
Section 2.1, to allow the representation of continuously variable cross-sectional area.

Consider flow through a duct with local cross-sectional area A = A(x, t). Actually,
most of the time we consider local cross-sectional area to depend upon position coordinate
x only, for which a time rate of change of cross-sectional area is not necessary because for
this case ∂A

∂t
= 0. However, A(x, t) is left inside the time derivative terms for generality

and possible future use. Applying the methods developed in the Single-Phase Flow Model
Section 2.1 to the 7-equation model in Section 3.1.10 results in:

∂ (αρ)liq A

∂t
+
∂ (αρu)liq A

∂x
= −ΓAintA (182)

∂ (αρu)liq A

∂t
+
∂αliqA (ρu2 + p)liq

∂x
= pintA

∂αliq
∂x

+ pliqαliq
∂A

∂x
+ Aλ(uvap − uliq)
− ΓAintuintA

− Fwall friction,liq − Ffriction,vap

+ (αρ)liq Ag · n̂axis (183)
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∂ (αρE)liq A

∂t
+
∂αliquliqA (ρE + p)liq

∂x
= pintuintA

∂αliq
∂x
− p̄intAµ(pliq − pvap)

+ ūintAλ(uvap − uliq)

+ ΓAint

(
pint
ρint
−Hliq,int

)
A

+Qint,liq +Qwall,liq (184)

∂αliqA

∂t
+ uintA

∂αliq
∂x

= Aµ(pliq − pvap)−
ΓAintA

ρint
(185)

for the liquid phase, and

∂ (αρ)vapA

∂t
+
∂ (αρu)vapA

∂x
= ΓAintA (186)

∂ (αρu)vapA

∂t
+
∂αvapA (ρu2 + p)vap

∂x
= pintA

∂αvap
∂x

+ pvapαvap
∂A

∂x
+ Aλ(uliq − uvap)
+ ΓAintuintA

− Fwall friction,vap − Ffriction,liq

+ (αρ)vapAg · n̂axis (187)

∂ (αρE)vapA

∂t
+
∂αvapuvapA (ρE + p)vap

∂x
= pintuintA

∂αvap
∂x

− p̄intAµ(pvap − pliq)

+ ūintAλ(uliq − uvap)

− ΓAint

(
pint
ρint
−Hvap,int

)
A

+Qint,vap +Qwall,vap (188)

∂αvapA

∂t
+ uintA

∂αvap
∂x

= Aµ(pvap − pliq) +
ΓAintA

ρint
(189)

for the vapor phase. As before, it is noted that for two-phase flow, either of the differential
relations (185) or (189) may be replaced with the algebraic relation

αvap = 1− αliq (190)

throughout, reducing the total number of equations to be solved to seven.
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In equations (182)–(189), Γ is the net mass transfer per unit interfacial area from the
liquid to the vapor phase and Aint is the interfacial area per unit volume of mixture. Also,
Hliq,int and Hvap,int are the liquid and gas total enthalpies at the interface, respectively.
The nomenclature has also been modified so that now uint and ūint are, respectively, the
interfacial velocity and average interfacial velocity; and pint and p̄int are, respectively, the
interfacial pressure and average interfacial pressure. In the momentum balance equations
n̂axis is the unit vector directly along the axis of the duct, which is also the± flow direction.
Of course Fwall friction,k is the frictional force due to the wall acting on phase k and Ffriction,k′

is the frictional force acting on phase k due to the presence of the other phase k′. Similarly,
Qint,k is the direct heat transfer from the interface to phase k and Qwall,k is the direct heat
transfer from the wall to phase k.

Equation system (182)–(189) is the basic system solved with RELAP-7. The sys-
tem was implemented within the MOOSE computational framework following a series of
logically-complete steps [60] designed to confidently allow physically- and mathematically-
meaningful benchmark testing at each step of increased complexity. This 7-equation two-
phase model allows both phases to be compressible. Because pvap is not, in many practical
problems, very different from pliq (with the exception of surface tension effects), most tradi-
tional two-phase models assume pvap = pliq which allows the elimination of one dependent
variable and serves as a substitute for the volume fraction evolution equation. However,
pvap u pliq does not entail the same property for their partial derivatives [53]. Therefore
the assumption of pvap = pliq is very restrictive when derivatives are involved. As pointed
out by Boure and Delhaye [61], it requires that pressure disturbances have the same av-
erage effect on the two phases and, in particular, that they propagate at the same velocity
within the phases. While the assumption pvap = pliq has proved useful in many cases, it
is definitely too restrictive when propagation phenomena are important2. The RELAP-7
approach forgoes this assumption and retains the 7-equation model as its basis.

More importantly, the 7-equation model allows for complete mechanical and thermo-
dynamic non-equilibrium between the phases and it is hyperbolic and well-posed in the
sense of Hadamard3. The hyperbolicity (and thus well-posedness) of this model is a direct
result of incorporation of both phases’ compressibilities, and not of a manipulation of in-

2With the complex characteristics that can occur with the classical 6-equation model, it is not clear how to
set the boundary conditions, and high wave number instabilities occur during convergence testing. It has been
argued that equation sets with complex characteristics may still model a range of phenomena quite adequately
if the numerical method introduces sufficient dissipation to damp the high frequency instabilities. There are
obviously real physical effects that do this but are left out of the equations. As pointed out in [62] one does
not always know whether these effects are important and under what conditions they are important.

3The mathematician Jacques Hadamard [63] espoused that a “well-posed” mathematical model of phys-
ical phenomena should have the properties that (1) a solution exists, (2) the solution is unique, and (3) the
solution’s behavior depends continuously upon the initial conditions. Problems that are not well-posed are
said to be “ill-posed.” Early researchers in two-phase flow knew that, if due diligence was not exercised, an
ill-posed formulation could result; and they understood the need for a well-posed model, as summarized in
Hughes et al. [64].
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terfacial variables as is done in CATHARE [65]. The system has symmetrically occurring
eigenvalues and eigenvectors with respect to the two-phases; its wave speeds (eigenvalues)
are (u± c)liq and (u± c)vap for the genuinely nonlinear fields, and uliq, uvap, and uint (mul-
tiplicity 2) for the linear degenerate fields. This 7-equation two-phase model is a relaxation
model and it has the very desirable feature of naturally devolving to simpler, even classi-
cal, models upon mechanical and/or thermodynamical relaxation [66]. Thus, this model
can readily couple to simpler models via a natural transition from the 7-equation model to
a classical 6-equation (ill-posed) model, a 5-equation Kapila model [67, 68], a 4-equation
homogeneous relaxation model (HRM), or a 3-equation homogeneous equilibrium model
(HEM). It is noted that, because of this feature, experience shows that some physically and
mathematically realistic solutions may, upon first examination, appear counter-intuitive to
the inexperienced modeler. More will be said about this later.

3.2 Seven-Equation Two-Phase Flow Constitutive Models

Without additional closure equations the balance relations derived above are generic, i.e.
they apply to all materials (fluids). They must made to apply to the unique material (fluid)
being considered – material specific. Also, though averaging the microlevel balance equa-
tions led to a “simplified” or perhaps more tractable model, this simplification (averaging)
led to a loss of information, and some additional relations must also be specified to sup-
ply (or restore) at least some information that was lost in this process4. Collectively, any
additional relations, or sub-models, that must be specified to render mathematical closure
(allowing a solution to be obtainable) to the generic balance equations are known as “con-
stitutive relations”. Familiar examples of constitutive relations from single-phase flow in-
clude ideal gas equation of state, Newtonian fluid stress-rate of strain laws, Fourier’s law
for heat conduction, k-ε turbulence model.

Because the 7-equation two-phase model’s most unique features are reflected in the
presence of a volume fraction evolution equation, interfacial pressure and velocity, and
mechanical relaxation terms involving pressure and velocity relaxation, it is natural to begin
with their constitutive relations. Constitutive ideas associated with the volume fraction
evolution equation were discussed previously for pedagogical reasons. Thermodynamical
relaxation will be discussed subsequently, followed by other closures.

4The process of averaging the balance equations produced a system with more unknowns than equations;
thus postulates or empirical correlations are required to resolve this deficiency.
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3.2.1 Interface Pressure and Velocity, Mechanical Relaxation Coefficients

In the original 7-equation model of Baer and Nunziato [50], pint was chosen to be equal to
the phasic pressure of the phase with the largest acoustic impedance which for two-phase
liquid-vapor flow corresponds to that of the liquid, i.e. pint = pliq. On the other hand, they
took the interface velocity uint to be that of the phase with the smallest acoustic impedance,
which for liquid-vapor flows corresponds to that of the vapor phase, or uint = uvap. Later,
Saurel and others chose the following interfacial values

pint =
∑
k=1,2

αkpk (191)

uint =

∑
k=1,2 αkρkuk∑
k=1,2 αkρk

. (192)

In this early research, mechanical relaxation parameters µ and λ were also specified in
a, more or less, ad hoc manner. Abgrall and Saurel [69] introduced a clever generaliza-
tion to the development of the 7-equation model, the discrete equation method (DEM),
which permits some interesting closure capability. In reviewing the traditional approach
presented above, the microscopic level, single-phase balance equations (PDEs) are first av-
eraged to obtain macroscopic averaged balance equations (again PDEs). Then appropriate
simplifying assumptions, including constitutive relations, are applied to this macroscopic
system giving a simplified averaged balance equation system. Finally, the simplified aver-
aged PDE system is discretized numerically using finite difference, finite volume, or finite
element methods and the numerical solution is obtained.

With the DEM approach, a generic phase distribution topology is first assumed, then
a discretized solution is developed within the computational cell employing Riemann or
approximate Riemann methods. Then finally, this discrete local solution is effectively av-
eraged over the cell volume and time to obtain a meaningful macroscopic solution. The
DEM method carries a pressure and velocity for each phase and, because it effectively only
solves Euler equations locally, is hyperbolic and well-posed and gives correct wave dynam-
ics. But this new homogenization method offers an additional bonus; the DEM can be used
not only to obtain the 7-equation model above, but also explicit closure formulas for pint,
uint, µ, and λ that are symmetric, compatible with the second law of thermodynamics, and
responsible for the fulfillment of interface conditions when dealing with contact/interface
problems! In the continuous limit of small mesh spacing and time steps along with em-
ployment of the Godunov weak wave limit, the finite closure relations converge [15, 70]
to

pint = p̄int +
ZliqZvap
Zliq + Zvap

sgn
(
∂αliq
∂x

)
(uvap − uliq) (193)

p̄int =
Zvappliq + Zliqpvap

Zliq + Zvap
(194)
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uint = ūint + sgn
(
∂αliq
∂x

)
pvap − pliq
Zliq + Zvap

(195)

ūint =
Zliquliq + Zvapuvap

Zliq + Zvap
(196)

λ =
1

2
µZliqZvap (197)

µ =
Aint

Zliq + Zvap
(198)

where λ is the velocity relaxation coefficient function, µ is the pressure relaxation coeffi-
cient function, Zk = ρkwk, (k = liq, vap), is the phasic acoustic impedance and Aint is
the specific interfacial area (i.e. the interfacial surface area per unit volume of two-phase
mixture) which must be specified from some type of flow regime map or function. The
DEM model for two-phase flow of water and its vapor in a one dimensional duct of spa-
tially varying cross-section was derived and demonstrated with these closures by Berry et
al. [13].

Remark (1): From this specification of λ and µ it is clear that special coupling is rendered.
To relax the 7-equation model to the ill-posed classical 6-equation model, the pressures
should be relaxed toward a single pressure for both phases. This is accomplished by spec-
ifying the pressure relaxation coefficient to be very large, i.e. letting it approach infinity.
But if the pressure relaxation coefficient goes to infinity, so does the velocity relaxation
rate also approach infinity. This then relaxes the 7-equation model not to the classical
6-equation model, but to the mechanical equilibrium 5-equation model of Kapila. This re-
duced 5-equation model is also hyperbolic and well-posed. The 5-equation model provides
a very useful starting point for constructing multi-dimensional interface resolving methods
which dynamically captures evolving, and even spontaneously generating, interfaces [71].
Thus the 7-equation model of RELAP-7 can be relaxed locally to couple seamlessly with
such a multi-dimensional, interface resolving code.

Remark (2): Numerically, the mechanical relaxation coefficients µ (pressure) and λ (veloc-
ity) can be relaxed independently to yield solutions to useful, reduced models (as explained
previously). It is noted, however, that relaxation of pressure only by making µ large with-
out relaxing velocity will indeed give ill-posed and unstable numerical solutions, just as
the classical 6-equation two-phase model does, with sufficiently fine spatial resolution, as
confirmed in [13, 72].

Remark (3): Even though the implementation of the 7-equation two-phase model within
RELAP-7 (or any other code for that matter) does not use the generalized approach of
DEM, the interfacial pressure and velocity closures as well as the pressure and velocity
relaxation coefficients of Equations (193) to (198) are utilized.

60



3.2.2 Wall and Interface Direct Heat Transfer

Without wall boiling, the direct, convective heat transfer from the wall to fluid phase k will
be the same as that of a single-phase except the duct wall area over which this heat transfer
can occur is weighted by the wetted fraction of the phase. That is,

Qwall,k = Hw,kaw (Twall − Tk)αkA (199)

for phase k = (liq, vap), where Hw,k is the wall convective wall heat transfer coefficient
associated with phase k. Similarly, the direct heat transfer from/to the interface to/from the
phase k, which will also be used to determine the mass transfer between the phases, is

Qint,k = hT,k (Tint − Tk)AintA (200)

with hT,k denoting the convective heat transfer coefficient between the interface and phase
k. The phasic bulk temperature Tk is determined from the respective phase’s equation of
state.

For wall heat flux sufficiently large to cause wall boiling a more elaborate model, which
accounts for interphase mass transfer due to this wall heat transfer, must be utilized. Such
a wall boiling model is detailed in the latter portion of the following section.

3.2.3 Interphase Mass Transfer and Wall Boiling

For a vapor to be formed from the liquid phase (vaporization) energy must be added to the
liquid to produce vapor at nucleation sites; whether the liquid is heated directly or decom-
pressed below its saturation pressure. A liquid to vapor phase change may occur based
on two main mechanisms. The first is related to vaporization induced by external heating
or heat transfer in a nearly constant pressure environment which is called heterogeneous
boiling, or simply boiling. This heat input can occur through a solid/liquid interface with
the solid typically hotter than the liquid, or through a liquid/gas interface with the gas being
hotter than the liquid.

The second case corresponds to “flashing” vaporization such as cavitation induced by
strong and rapid depressurization of the liquid phase (this is sometimes referred to as homo-
geneous boiling). In this relaxation process no extra energy is needed for the phase change;
the necessary energy is already contained in the liquid phase in the form of internal energy.
The process of phase change from vapor to liquid is known as condensation. The vapor
condenses when it loses energy by heat transfer to a cool surface, but decompression of a
saturated vapor also causes condensation at nucleation sites in the vapor. Nucleation sites
are small particles or impurities in a fluid, or cavities or protrusions on a surface from which
bubbles or droplets can grow during a change of phase. The phase change by condensation
is similar to the first mechanism discussed and will be treated in the same manner.
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To examine the mass flow rate between phases, local mechanisms of the vaporization
(condensation) process are considered between the liquid phase and its associated vapor in
the presence of temperature gradients. The mechanisms of interest here are dominated by
heat diffusion at the interface. The pertinent local equations to consider are the mass and
energy equations. As a vaporization front propagates slowly (on the order of 1 mm/s to 1
m/s) compared to acoustic waves present in the medium (which propagate with speeds of
the order 1 km/s), acoustic propagation results in quasi-isobaric pressure evolution through
vaporization fronts. The momentum equation is therefore not needed – because the quasi-
isobaric assumption (neglecting the pressure and kinetic energy variations in the total en-
ergy equation) is made. The mass and energy balance equations are integrated over a “pill-
box” control volume containing an interface (see e.g. Kuo [73]), as shown in the upper
graphic of Figure 2, to obtain the algebraic “jump conditions”

ρliq,intuliq,int · n̂liq + ρvap,intuvap,int · n̂vap = 0 (201)
or

Γliq + Γvap = 0 (202)

for mass, and

Γliqhliq,int + qliq,int · n̂liq + Γvaphvap,int + qvap,int · n̂vap = 0 (203)

for energy, where the subscript int denotes the interface location. For convection domi-
nated heat flux at the interface, and using local equilibrium conditions between phases at
the local interface (equality of pressure and temperature), the heat fluxes can be defined as

qk,int · n̂k = −kk∇Tk,int · n̂k
= hT,k (Tint − Tk) (204)

where Tint is the common interface temperature of phases. Combining these relations gives
a simple expression for the interphase mass flow rate

Γ = Γvap =
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

hvap,int − hliq,int

=
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

Lv (Tint)
(205)

where Lv (Tint) = hvap,int−hliq,int represents the latent heat of vaporization. The interface
temperature is determined by the saturation constraint Tint = Tsat(p) with the appropriate
pressure p = p̄int determined above, the interphase mass flow rate is thus determined. The
lower graphic of Figure 2, schematically shows the p-T state space in the vicinity of the
saturation line (shown for the case with Tliq < Tvap).

To better illustrate the model for vaporization or condensation, Figure 3 shows pure
liquid and pure vapor regions separated by an interface. Representative temperature pro-
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Figure 3. Vaporization and condensation at a liquid-vapor inter-
face (after Moody [1]).
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files are shown for heat transfer from vapor to liquid or liquid to vapor. As discussed by
Moody [1], either vaporization or condensation can occur for both temperature profiles.
The interphase mass transfer is determined by the net interfacial heat transfer: if net heat
transfer is toward the interface, vapor will form; conversely, if net heat transfer is away
from the interface, liquid will condense. Figure 3 shows heat transfer rates qvap and qliq
from the vapor and liquid sides of the interface. For bidirectional phase change (vapor-
ization and condensation), mass transfer based on heat balance at the interface is adopted.
When vaporization occurs, vapor is assumed to form at a saturated interface temperature
Tint = Tsat(p̄int). If condensation occurs, liquid is assumed to form also at a saturated
interface temperature Tint = Tsat(p̄int). The interfacial total enthalpies correspond to the
saturated values in order that the interphase mass transfer rate and conservation of total
energy be compatible:

Hk,int = hk,int +
1

2
u2
int (206)

for phase k = (liq, vap), where hk,int is the phase k specific enthalpy evaluated at the
interface condition. Phasic specific enthalpy depends upon the equation of state used and
will be discussed with the equations of state. The interfacial density corresponds to the
liquid saturated density ρint = ρliq,sat(pint).

To summarize, the total saturated phasic enthalpies are constructed as

Hliq,sat = hliq,sat + 0.5v2
int (207)

Hvap,sat = hvap,sat + 0.5v2
int (208)

along with the total heat of vaporization at Tint = Tsat

Ltot(Tsat) = Hvap,sat −Hliq,sat. (209)

Notice that this step was not really necessary in this case Ltot(Tsat) and Lvap(Tsat), which
was obtained from the equations of state (see above), are identical. The interphase mass
transfer rate (per unit interfacial area) per unit volume coming from the liquid phase across
the interfacial area can now be determined from

Γint,vap =
hconv,liq(Tliq − Tint) + hconv,vap(Tvap − Tint)

Lvap(Tsat)
. (210)

At this point, all information necessary to compute the interface energy transfer due to mass
transfer as well as the direct energy transfer has been described, i.e.

Liquid energy equation terms

+ Γint,vap(Aint)(
pint
ρint
−Hliq,sat)A+ (Aint)hconv,liq(Tint − Tliq)A (211)
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Vapor energy equation terms

− Γint,vap(Aint)(
pint
ρint
−Hvap,sat)A+ (Aint)hconv,vap(Tint − Tvap)A. (212)

Because our two-phase model is cast as a 1-D variable cross-sectional area model, in or-
der to capture realistic multidimensional physical phenomena such as boiling and frictional
shear stress that occur at the wall, additional mechanistic terms must be added. Simple
forms of these terms will be described in the balance of this section and in the next section.

Thus, it is first noted that additional vapor will be generated at the wall, Γwall,vap, due
to local wall boiling such that ΓvapA = Γint,vap(Aint)A+ Γwall,vap.

To describe this additional wall mass transfer term, Γwall,vap, a wall-boiling model has
been incorporated into RELAP-7 in which the wall heat flux is first partitioned into a por-
tion which may go directly to convective heat transfer to the vapor phase and a portion
which is available to both convectively heat the liquid phase and generate vapor via wall
boiling. This partitioning is specified with a simple function of the liquid volume fraction
κ(αl). The portion of the wall heat flux available to convectively heat the liquid phase and
generate vapor is further partitioned into a portion which may convectively heat the liq-
uid phase and a portion which goes toward generation of vapor by first bringing a portion
of the liquid to the saturation condition then bringing it to the saturated vapor condition.
This partitioning fraction β depends upon the wall temperature and the saturated liquid
temperature, i.e. β(Twall, Tsat,liq). Rendering this into equation form,

Qwall,total = Qwall,vap +Qwall,liq

= Qwall,vap +Qwall,liq,conv +Qwall,liq,boil (213)

where for a simple model in RELAP-7

Qwall,vap = hwall,vap(Twall − Tvap)(1− κ)awallA

= hwall,vap(Twall − Tvap)(1− κ)Phf (214)

Qwall,liq = hwall,liq(Twall − Tliq)κPhf
= Qwall,liq,conv +Qwall,liq,boil

= βQwall,liq + (1− β)Qwall,liq (215)

so
Qwall,liq,conv = βhwall,liq(Twall − Tliq)κPhf (216)

Qwall,liq,boil = (1− β)hwall,liq(Twall − Tliq)κPhf (217)
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It is emphasized that additional, perhaps more sophisticated or realistic, models will be
described in subsequent sections. The rate of vapor generated by boiling at the wall due to
wall heat flux is then

Γwall,vap =
Qwall,liq,boil

cp,liq(Tsat,liq − Tliq) + L(Tsat)

=
(1− β)hwall,liq(Twall − Tliq)κPhf
cp,liq(Tsat,liq − Tliq) + L(Tsat)

. (218)

The total vapor production is the sum of the vapor transferred from the liquid phase
directly via the interfacial area in the bulk flow and the vapor produced at the wall:

ΓvapA = Γint,vapAintA+ Γwall,vap.

Again it is recalled that the interface saturation temperature corresponds to the interface
pressure pint.

Here, for the simple RELAP-7 model, β is unity while the wall temperature is less
than the liquid saturation temperature corresponding to the liquid pressure and drops ex-
ponentially (90% variation over 9.2 degrees) for wall temperatures greater than the liquid
saturation temperature, i.e.

Twall ≤ Tsat,liq ⇒ β = 1

Twall > Tsat,liq ⇒ β = exp[−0.25(Tsolid,wall − Tsat,liq)]. (219)

In the above κ is defined to be zero for αliq < 0.01, ramp up linearly to a value of 1.0 at
αliq = 0.1, then remain constant at a value 1.0 for 0.01 < αliq < 1.0. Again, more realistic
models will be described subsequently.

3.2.4 Wall and Interphase Friction

A simple wall friction model results from making the same assumptions as for single-
phase duct flow with the exception that the duct wall area over which the shear stress acts
is reduced by the fraction of the wall area which the phase occupies. Thus

Fwall friction,k =
fk
2dh

ρkuk |uk|αkA (220)

for phases k = (liq, vap), where fk is the wall friction factor associated with phase k. As
discussed in Section 2.2.1, the hydraulic diameter dh depends on the shape of the cross
section, and the position x in the pipe.
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The frictional pressure drop in each phase will be different in general due the different
velocities of the two phases. However, because of the tendency toward pressure equilibrium
between the phases an effective pressure drop will be realized.

The friction force, or viscous drag, acting between the two phases due to their relative
motion is also given in analogy to that of single-phase duct flow:

Ffriction,k′ = fk, k′
1

2
ρk(uk − uint) |uk − uint|AintA (221)

for k = (liq, vap), k′ = (vap, liq), with fk,k′ denoting the friction factor acting upon phase
k due to the (relative) motion of the other phase k′. This equation is rewritten as

Ffriction,k′ = Kk,k′(uk′ − uk)A. (222)

For a simple model with bubbles and droplets on the ends of the phasic topological
spectrum with an interpolation between these two for intermediate volume fractions, as
was done for the interphase mass transfer above, the coefficient Kk,k′ is obtained after [74]
by first determining effective bubble/droplet radius, r0, as

if αvap ≤ αvap,A : Bubbles

r0 = rbub (223)

if αvap ≥ αvap,B : Droplets

r0 = rdrop (224)

if αvap,A < αvap < αvap,B : Linear Interpolation

r0 = rbub,A +
(rdrop,B − rbub,A)(αvap − αvap,A)

αvap,B − αvap,A
. (225)

Then
Kk,k′ =

ρAint
8

[CD|uk − uk′|+
12ν̂

r0

] (226)

where

ρ = αvapρvap + (1− αvap)ρliq
ν̂ = αvapν̂vap + (1− αvap)ν̂liq (kinematic viscosity) (227)

CD = 0.5. (228)

As with the simple wall boiling model, in RELAP-7 this simple wall friction model can be
replaced with more sophisticated and realist models which are described later.
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3.2.5 Nonequilibrium, Seven-Equation, Two-Phase Flow Model Summary

Combine the discussion from the previous sections with the conservation equations results
in the phasic balance equations of mass, momentum, and total energy along with volume
fraction evolution:

∂ (αρ)liq A

∂t
+
∂ (αρu)liq A

∂x
= −Γint,vapAintA− Γwall,vap +

∂fliq
∂x

(229)

∂ (αρu)liq A

∂t
+
∂αliqA (ρu2 + p)liq

∂x
= pintA

∂αliq
∂x

+ pliqαliq
∂A

∂x
+ Aλ(uvap − uliq)
− Γint,vapAintuintA− Γwall,vapuint

− Fwall friction,liq − Ffriction,vap

+ (αρ)liq Ag · n̂axis

+
∂gliq
∂x

(230)

∂ (αρE)liq A

∂t
+
∂αliquliqA (ρE + p)liq

∂x
= pintuintA

∂αliq
∂x
− p̄intAµ(pliq − pvap)

+ ūintAλ(uvap − uliq)

+ Γint,vapAint

(
pint
ρint
−Hliq,int

)
A

+ Ainthconv,liq(Tint − Tliq)A
+Qwall,liq,conv

− Γwall,vap

(
−pint
ρint

+ hvap,int +
u2
int

2

)
+ (αρu)liq Ag · n̂axis

+
∂ (hliq + uliqgliq)

∂x
(231)

∂αliqA

∂t
+ uintA

∂αliq
∂x

= Aµ(pliq − pvap)−
Γint,vapAintA

ρint
− Γwall,vap

ρint

+
∂lliq
∂x

(232)

for the liquid phase, and
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∂ (αρ)vapA

∂t
+
∂ (αρu)vapA

∂x
= Γint,vapAintA+ Γwall,vap +

∂fvap
∂x

(233)

∂ (αρu)vapA

∂t
+
∂αvapA (ρu2 + p)vap

∂x
= pintA

∂αvap
∂x

+ pvapαvap
∂A

∂x
+ Aλ(uliq − uvap)
+ Γint,vapAintuintA+ Γwall,vapuint

− Fwall friction,vap − Ffriction,liq

+ (αρ)vapAg · n̂axis

+
∂gvap
∂x

(234)

∂ (αρE)vapA

∂t
+
∂αvapuvapA (ρE + p)vap

∂x
= pintuintA

∂αvap
∂x

− p̄intAµ(pvap − pliq)

+ ūintAλ(uliq − uvap)

− Γint,vapAint

(
pint
ρint
−Hvap,int

)
A

+ Ainthconv,vap(Tint − Tvap)A
+Qwall,vap

+ Γwall,vap

(
−pint
ρint

+ hvap,int +
u2
int

2

)
+ (αρu)vapAg · n̂axis

+
∂ (hvap + uvapgvap)

∂x
(235)

∂αvapA

∂t
+ uintA

∂αvap
∂x

= Aµ(pvap − pliq) +
Γint,vapAintA

ρint
+

Γwall,vap
ρint

+
∂lvap
∂x

(236)

for the vapor phase. The terms shown in red are viscous regularizations added as part of
the entropy viscosity method, EVM. The entropy viscosity method is an approach to regu-
larization which is applied purely to stabilized and to insure compatibility of the entropy
inequality when capturing discontinuities (shocks) with this otherwise hyperbolic system
of equations. More will be said about these terms as well as their correct formulation in the
subsequent Numerical Methods chapter.
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3.2.6 Stiffened Gas Equation of State for Two-phase Flows

With the 7-equation two-phase model each phase is compressible and behaves with its own
convex equation of state (EOS). For initial development purposes it was decided to use a
simple form capable of capturing the essential physics. For this purpose the stiffened gas
equation of state (SGEOS) [4] was selected

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (237)

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy of the
fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of each fluid.
The first term on the right hand side is a repulsive effect that is present for any state (gas,
liquid, or solid), and is due to molecular vibrations. The second term on the right represents
the attractive molecular effect that guarantees the cohesion of matter in the liquid or solid
phases. The parameters used in this SGEOS are determined by using a reference curve,
usually in the

(
p, 1

ρ

)
plane.

LeMetayer [4] uses the saturation curves as this reference curve to determine the stiff-
ened gas parameters for liquid and vapor phases. The SGEOS is the simplest prototype
that contains the main physical properties of pure fluids, repulsive and attractive molecular
effects, thereby facilitating the handling of the essential physics and thermodynamics with
a simple analytical formulation. Thus each fluid has its own thermodynamics. For each
phase the thermodynamic state is determined by the SGEOS:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (238)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(239)

h(T ) = γcvT + q (240)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)γ−1 + q (241)

where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively, of
the phase considered. In addition to the three material constants mentioned above, two
additional material constants have been introduced, the constant volume specific heat cv
and the parameter q′. The method to determine these parameters in liquid-vapor systems,
and in particular the coupling of liquid and vapor parameters, is given in [4]. The values
for water and its vapor from that reference are given in Table 2. These parameter values
appear to yield reasonable approximations over a temperature range from 298 to 473K.

Unlike van der Waals type modeling where mass transfer is a thermodynamic path, with
the 7-equation two-phase model the mass transfer modeling, which produces a relaxation
toward thermodynamic equilibrium, is achieved by a kinetic process. Thus the 7-equation

71



model preserves hyperbolicity during mass transfer. From equation (240) it is readily seen
that the phase k specific enthalpy evaluated at the interface condition from equation (206)
is

hk,int = cp,kTint + qk (242)

because cp,k = γkcv,k.

The bulk interphase mass transfer from the liquid phase to the vapor phase Γ is due
to their difference in Gibb’s free energy. At saturated conditions the Gibb’s energies of
the two-phases are equal. It is necessary to determine the saturation temperature Tsat(p)
for given pressure p = p̄int and the heat of vaporization Lv (Tsat(p̄int)) at this saturation
temperature with the SGEOS for each phase. For this calculation the procedure of [4] is
adopted. This procedure for the determination of SGEOS parameters can be made very
accurate provided the two reference states are picked sufficiently close to represent the
experimental saturation curves as locally quasi-linear. Restrictions occur near the critical
point, but away from this point wide ranges of temperatures and pressures can be consid-
ered. At thermodynamic equilibrium at the interface, the two phasic Gibbs free enthalpies
must be equal, gvap = gliq, so the use of equation (241) yields

ln (p+ p∞,vap) = A+
B

T
+ C ln(T ) +D ln (p+ p∞,liq) (243)

where

A =
cp,liq − cp,vap + q′vap − q′liq

cp,vap − cv,vap
(244)

B =
qliq − qvap

cp,vap − cv,vap
(245)

C =
cp,vap − cp,liq
cp,vap − cv,vap

(246)

D =
cp,liq − cv,liq
cp,vap − cv,vap

. (247)

Relation (243) is nonlinear, but can used to compute the theoretical curve Tsat(p). A sim-
ple Newton iterative numerical procedure is used. With Tsat(p) determined, the heat of
vaporization is calculated as

Lv (Tint) = hvap,int − hliq,int
= hk,int

= (γvapcv,vapT + qvap)− (γliqcv,liqT + qliq) . (248)
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3.2.7 Spline Based Table Look-up Method with IAPWS-95 Equation of State for
Steam and Water

For the simulation of two-phase flows with RELAP-7 accurate equations of state must be
used to obtain the properties of steam and water. Moreover, for CPU-intensive numerical
simulations with this code, thermodynamic and transport properties of steam and water
are calculated extremely often. Because the dependent variables of the two-phase model
partial differential equations are mass-, momentum-, and total energy-densities the thermo-
dynamically independent variables of the required property functions are specific volume
and specific internal energy (v, e). These are readily computed from the phasic dependent
variables as

vk =
1

ρk
=

αk
(αρ)k

, k = {liq, vap} (249)

ek =
(αρE)k
(αρ)k

− 1

2

(αρu)2
k

(αρ)2
k

, k = {liq, vap} . (250)

Then other phasic properties are functions of these two phasic thermodynamic properties,
e.g. pressure pk = f (vk, ek).

Determining properties as a function of (v, e) from an accurate equation of state such
as IAPWS-95 would normally require backward functions for calculations from pressure
and specific volume (p, v) and specific internal energy and specific entropy (e, s). This re-
quires an iterative solution that is very time-consuming and not computationally efficient.
Therefore, in the original development of RELAP-7 property calculations were simplified
through the use of the stiffened gas equation of state for each phase. These simplifications
cause, depending on the range of state, inaccuracies in the results of the reactor system
simulation. To provide fast and accurate property calculation algorithms, RELAP-7 was
modified to employ the Spline-Based Table Look-up (SBTL) Method [75] which was de-
veloped in a project of the International Association for the Properties of Water and Steam
(IAPWS). With this method properties from existing accurate equations of state, such as
IAPWS-95 for steam and water, can be reproduced with high accuracy and significantly re-
duced computational times. Under INL direction, the SBTL method based on the IAPWS-
95 properties for steam and water was extensively modified for RELAP-7, by Matthias
Kunick at Zittau/Goerlitz University of Applied Sciences [76], to allow the calculation
of not just the equilibrium properties for the homogeneous equilibrium model (HEM), but
also to provide the metastable properties that are needed by the 7-equation, nonequilibrium,
two-pressure model.

Table look-up methods can be well-suited for fast and accurate property calculations. A
table is populated with discrete values of the required properties which are calculated from
an available equation of state such as IAPWS-95. During the simulation process, prop-
erties are determined from this look-up table through the use of simple interpolation and
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approximation algorithms. The Spline-Based Table Look-up (SBTL) method [75] applies
polynomial spline interpolation techniques to reproduce the results of the IAPWS-95 equa-
tion of state with high accuracy and low computing time. It employs specialized coordinate
transformations and simplified search algorithms to minimize the computing time and to
optimize the look-up table for the desired accuracy [77].

For the numerical process simulations here, the continuous, piecewise-defined spline
functions need additionally to be only once continuously differentiable. Therefore the
SBTL method utilizes a simple bi-quadratic spline polynomial which offers the additional
advantage of being analytically solvable in terms of the independent variables. This latter
property allows the calculation of the inverse spline functions, i.e. the numerically consis-
tent backward functions. Because the bi-quadratic polynomial spline has a constant second
derivative which precludes its capture of changing curvature, SBTL method allows the
transformation of the variables of the interpolated function in order to minimize the third
derivative, i.e. the coordinates are transformed in such manner that the change in curvature
of the underlying function is reduced. This allows the spline polynomial to reproduce the
transformed property function more easily and with greater accuracy [77]. For the version
of SBTL utilized for RELAP-7, the specific internal energy e is not transformed while the
specific volume is transformed as v̄ = ln(v).

For example, a two-dimensional spline-based property function, such as pressure, for
the liquid phase would be written pL(v̄, e) while the same property for the vapor (gas) phase
would be written pG(v̄, e). In the RELAP-7 nonequilibrium, 7-equation two-phase model
the phasic specific internal energies and phasic transformed specific volumes are passed,
respectively, to compute each corresponding phasic property function. It is important to
point out that for the 7-equation two-phase model, these phasic property functions can
be either normal (equilibrium) single phase values or metastable (nonequilibrium) single
phase values.

For the SBTL Method the spline function is created in transformed coordinates (v̄, e)
and interpolates values from a logically rectangular set of discrete data points called nodes.
Locally defined spline polynomials are defined over a local rectangular cells having nodes
at their centers and knots at their four corners. Four polynomial cells are connected at
each knot, see Figure 4. The equidistant nodes (in transformed space) are distributed in a
manner to insure the required accuracy of the spline function over the full range of validity.
An efficient search algorithm is employed to rapidly determine the grid cell in which an
arbitrary (v̄, e) is located. The locally defined polynomial must intersect the cell node,
e.g. pLi,j(v̄i, ej), while its partial state derivatives with respect to v̄ and e must match at
the right and left edges (located midway between the nodes in the horizontal direction)
and, respectively, the top and bottom edges (located midway between nodes in the vertical
direction). At the cell corners, knots, the cross derivatives of all four contiguous cells must
match. The equations representing these conditions, the composite of all of these nine-
point stencil cells, form a system of equations that are solved globally to yield the local
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polynomial coefficients for each cell [75] [78]. As an illustration, the pressure of one of
the phases (the phasic subscript is supressed here purely for clarity of exposition) would be
determined from the expression

Figure 4. (v̄, e) state space spline polynomial cell PSPL
ij (v̄, e)

[note: v̄ is denoted vt], with node (center circle), knots (corner
squares), and mid-points (edge x’s) plus neighboring cells and
nodes.

p{i,j}((v̄, e) =
3∑

k=1

3∑
l=1

aijkl(v̄ − v̄i)k−1(e− ej)l−1

where aijkl are the polynomial spline coefficients.

The SBTL method was applied to industrial formulation IAPWS-IF97 in [77] and tested
in multidimensional CFD simulations of condensing steam in a turbine cascade. With
this approach to obtaining real fluid properties the computing times were increased by a
factor of only 1.4 over the same calculation using analytical ideal gas values, and these
CFD simulations using the SBTL method were 6-10 times faster than using IAPWS-IF97
directly [77] (presumably in an iterative manner).
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The following thermodynamic and transport properties are provided by the modified
SBTL Package for equiliibrium mixture and for each phase (stable and metastable) as
a function of respective phasic specific volume v and specific energy e, as well partial
derivatives of the property with respect to v and e (it is noted that RELAP-7 employs im-
plicit temporal integration and needs a Jacobian which is based on these derivatives, which
will be discussed in the following chapter describing the numerical methods it uses):

p(v, e) – pressure
T (v, e) – temperature
w(v, e) – sound speed
cp(v, e) – isobaric specific heat
cv(v, e) – isochoric specific heat
g(v, e) – Gibbs energy
s(v, e) – specific entropy

k(v, e) – thermal conductivity
ν(v, e) – dynamic viscosity
σ(T (v, e)) – surface tension.

For convenience the following functions are also provided:

ρ(p, T ) – mass density (1/v) as a function of pressure and temperature
e(p, T ) – specific internal energy as a function of pressure and temperature

along with their partial derivatives with respect to pressure p, and temperature T , and

e(v, p) – specific internal energy as a function of specific volume and pressure
e(s, p) – specific internal energy as a function of specific entropy and pressure
v(s, p) – specific volume as function of specific entropy and pressure

along with their respective partial derivatives.

Lastly, the following functions of, and partial derivatives with respect to, pressure p and
temperature T , at saturation condition are provided:

Tsat(p) – saturation temperature as a function of pressure
psat(T ) – saturation pressure as function of temperature
δhvap – heat of vaporization.
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3.3 Homogeneous Equilibrium Two-Phase Flow Model (HEM)

As remarked in Section 3.1.11 and Section 3.2.1, the 7-equation two-phase model naturally
reduces to simpler models with appropriate relaxation. If mechanical relaxation, in which
pressure and velocity are relaxed to a single value, is performed the 5-equation model
of Kapila results. If, in addition, thermodynamic relaxation is performed, in which tem-
peratures and Gibb’s energies are relaxed to a single value, the 3-equation Homogeneous
Equilibrium Model (HEM) is obtained. The HEM model is also know as the EVET (Equal
Velocity, Equal Temperature) model, wherein it is implied that the pressures are equal and
a saturated condition, which also implies that the Gibb’s energies for the liquid and vapor
phases are equal. The 3-equation HEM model is the simplest (at least from the balance
equation viewpoint) and oldest of the two-phase model hierarchy [66], however some of
its other properties, e.g. effective sound speed, are more difficult, and may even exhibit
discontinuities in transitions from single- to two-phase.

For some applications where the HEM representation is physically appropriate, it may
be more economical to begin with the 3-equation HEM model, rather than carrying the
additional expense of a relaxed 7-equation model. The 3-equation HEM model is included
also as a selectable model in RELAP-7. It is noted that a partially- or transitionally-relaxed
7-equation model will be very useful for coupling of the spatial regions where the unrelaxed
7-equation model is needed with spatial regions where the 3-equation HEM model may be
used.

3.3.1 HEM Field Equations

In the HEM model, the two phases in the mixture are assumed to be in thermodynami-
cal and mechanical equilibrium and the pressure in the mixture is taken to be equal to the
saturation pressure. Consequently, the two-phase mixture is effectively treated as a single
(pseudo) fluid whose properties are suitable averages of the phasic properties of the indi-
vidual phases. The balance equations for HEM are the same as those for the single-phase
flow as shown in (20) through (23); but each primary variable now represents the state of
a homogeneous mixture of two phases. Therefore, the primary variables are denoted with
an overbar as ρ̄, ρu, ρE and ρs, where for example ρ̄ = (1 − α)ρliq,sat(T ) + αρvap,sat(T )
is the mixture density and α is again the probability of presence (or volume fraction) of the
vapor phase.

In the RELAP-7 solution of the HEM model, the primary variables are solved with fully
implicit time discretization and the vapor volume fraction is calculated with

α =
ρ̄− ρliq,sat(T )

ρvap,sat(T )− ρliq,sat(T )
(251)
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where ρliq,sat(T ) and ρvap,sat(T ) are the saturated density of liquid and vapor respectively
for a given temperature T .

3.3.2 HEM Constitutive Models

The same closure models are used for the HEM model as for the single-phase flow, such as
wall friction coefficients and convective heat transfer coefficients, except that the following
viscosity and thermal conductivity models are used:

µ̄ = µliq(1− α) + αµvap (252)
k̄ = kliq(1− α) + αkvap . (253)

The stiffened gas equation of state discussed above for the single-phase and 7-equation
two-phase model is used also for the HEM model.
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4 Numerical Methods

4.1 Spatial Discretization Algorithm

In this section, the continuous Galerkin finite element method used for spatial discrtiztion
method of the governing partial differential equations of the 7-equation two-phase model
is briefly described. The temporal discretization and time integration used for this system
will be described in the subsequent section. This discritized system of RELAP-7 is imple-
mented through the MOOSE multiphysics framework [5]. For conciseness, the system of
equations is recalled here in more compact form by considering for the two phases, denoted
by the subscript k and j, the following form:

∂tU + ∇·F (U) = N (U) + R (U) + S (U) + ∇·D(U)∇U (254)

where U = [(αA)k, (αρA)k, (αρuA)k, (αρEA)k, (αρA)j, (αρuA)j, (αρEA)j]
T is the

solution vector. The nomenclature has been abbreviated by using subscript k to denote the
liquid phase and subscript j to denote the vapor phase. The inviscid conservative Eule-
rian fluxes are denoted F (U). N (U) contains the non-conservative differential terms (in-
cluding duct wall pressure force and Lagrangian fluxes). R (U) contains the mechanical
relaxation terms. The source vector S (U) contains the thermodynamic relaxation terms
(interphase mass, energy, and heat transfer), as well as the interphase friction, duct wall
friction, duct wall heat addition, body force (gravity) terms. These are given, respectively,
by:

F ≡



0
(αρuA)k

[α (ρu2 + p)A]k
[αu(ρE + p)A]k

(αρuA)j
[α (ρu2 + p)A]j
[αu(ρE + p)A]j


, N ≡



−Auint ·∇αk
0

αkpk∇A+ pintA∇αk
pintAuint ·∇αk

0
αjpj∇A+ pintA∇αj
pintAuint ·∇αj


,

R ≡



Aµ (pk − pj)
0

Aλ (uj − uk)
−p̄intAµ (pk − pj) + ūintAλ (uj − uk)

0
Aλ (uk − uj)

−p̄intAµ (pj − pk) + ūintAλ (uk − uj)


,
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and S(U) = [S1(U), S2(U), S3(U), S4(U), S5(U), S6(U), S7(U)]T , where

S1(U) =− Γint,jAintA

ρint
− Γwall,j

ρint
S2(U) =− Γint,jAintA− Γwall,j

S3(U) =− Γint,jAintuintA− Γwall,juint − Fwall friction,k − Ffriction,j + (αρ)k Ag · n̂axis

S4(U) = + Γint,jAint

(
pint
ρint
−Hk,int

)
A+ Ainthconv,k(Tint − Tk)A+Qwall,k,conv

− Γwall,j

(
−pint
ρint

+ hj,int +
u2
int

2

)
+ (αρu)k Ag · n̂axis

S5(U) = + Γint,jAintA+ Γwall,j

S6(U) = + Γint,jAintuintA+ Γwall,juint − Fwall friction,j − Ffriction,k + (αρ)j Ag · n̂axis

S7(U) =− Γint,jAint

(
pint
ρint
−Hj,int

)
A+ Ainthconv,j(Tint − Tj)A+Qwall,j

+ Γwall,j

(
−pint
ρint

+ hj,int +
u2
int

2

)
+ (αρu)j Ag · n̂axis .

The non-physical dissipative flux terms are given by ∇·D(U)∇U. The viscous coeffi-
cients D (U) in these terms will be described later when discussing the entropy viscosity
method for stabilization of this hyperbolic equation system. In the equations above, and
in the finite element equations (255) to follow, a nomenclature (that is also useful for de-
scribing multidimensional systems) has been used wherein, for the quasi one-dimensional
systems of RELAP-7, ∇ means ∂

∂x
.

To apply the continuous finite element method, Eq. (254) is multiplied by a test function
W(r), integrated by parts and each integral is decomposed into a sum of spatial integrals
over the domain Ωe of each element e of the discrete mesh domain Ω. The following weak
form is obtained:

R(U) ≡
∑
e

∫
Ωe

∂tU WdΩe −
∑
e

∫
Ωe

F(U) ·∇WdΩe +

∫
∂Ω

F(U) · nW

−
∑
e

∫
Ωe

(N(U) + R(U) + S(U)) WdΩe

+
∑
e

∫
Ωe

D(U)∇U ·∇WdΩe −
∫
∂Ω

D(U)∇U · nW = 0 . (255)
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The two boundary integral terms in (255), i.e.
∫
∂Ω

F(U) · nW and
∫
∂Ω
D(U)∇U ·

nW are evaluated at the boundaries of the domain and come from appropriate boundary
condition approximations. Appropriate physical boundary conditions for finite elements,
based upon, and consistent with, the method of characteristics will be discussed in the next
chapter. The integrals over the elements Ωe are evaluated using a numerical quadrature. The
MOOSE framework provides a wide range of test functions and quadrature rules. Note that
the test functionW is not chosen arbitrarily. In particular, it is required thatW come from
the space of vector functions

W ∈


w0

0

 ,
0
w
0

 ,
0

0
w

 (256)

where w ∈ W is a scalar test function. In the present work, and in general practice, the
spaceW is taken to be (a subspace of) the Hilbert space H1(Ω). This choice, for instance,
guarantees enough smoothness that (255) makes sense. The approximate problem proceeds
by selecting only test functions from a finite-dimensional subspace ofW , denoted byWh,
and which is spanned by the basis {φi}, i = 1, . . . , N . Linear Lagrange polynomials are
employed by RELAP-7 as test functions, from which second-order spatial convergence
isobtained for smooth solutions.

Remark: As the dissipative terms are added to the basic balance equation for the 7-equation
two-phase model purely for stabilization of the weak solution to the hyperbolic system, the
last boundary integral term of (255) is neglected. The stabilization is needed only for the
solution in the domain interior and not at the boundary points.

For the continuous Galerkin formulation of RELAP-7, the unknown functions of the
solution vector, U, are approximated in the same basis used for the test functions, i.e.

Uh
m(x, t) =

nnd∑
j=1

Um,j(t)φj(x) for m = 1, 2, · · · , 7 . (257)

where j = 1 is the first (terminal) node in the duct and j = nnd (number of nodes) is the
last (terminal) node in the duct. The coefficients Um,j(t) vary in time only, and comprise
the solution vector, (at each iteration) for each dependent variable Um and at each spatial
node j, of the system of equations. The system of so-called “semi-discrete” equations
resulting from the finite element procedure discussed above (they have been discretized
in space, but the temporal derivatives remain in continuous form) are, in this incomplete
state, effectively a system of coupled ordinary differential equations (ODE’s), which must
be integrated in time to obtain the solution. In Section 4.2 the various time discretization
methods employed in RELAP-7 to perform this temporal integration are discussed.

It is well-known that a continuous Galerkin discretization of this set of hyperbolic equa-
tions is equivalent to a central finite difference method for a certain choice of integration
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rule, and therefore will exhibit oscillatory instabilities unless some artificial dissipation is
added, as state previously, to stabilize the method. In Section 4.3, the stablization meth-
ods available in RELAP-7 are discussed, namely the entropy viscosity method (4.3.1) used
for both single- and two-phase flows, and the steamline upwind/Petrov-Galerkin method
(4.3.2) available only for single-phase flows in the present work.

4.2 Time Integration Methods

RELAP-7, through MOOSE, supports a number of standard implicit time integration meth-
ods such as the backward Euler (Section 4.2.1) and BDF2 (Section 4.2.2) methods.

4.2.1 Backward Euler

The backward Euler method [79] is a well-known, first-order, A-stable implicit time in-
tegration method. Given a generic semi-discrete equation in a form similar to equations
(255) with (257), ∫

Ω

(
∂uh

∂t
+G(uh)

)
φi dΩ = 0 (258)

the backward Euler method results in the temporal discretization∫
Ω

(
un+1 − un

∆t
+G(un+1)

)
φi dΩ = 0 (259)

where ∆t is the timestep, tn+1 = tn + ∆t, and un ≡ uh(tn) is a shorthand notation used
to refer to the finite element solution at time level n. Equation (259) is a fully-discrete
(possibly nonlinear) equation which must be satisfied for each i.

Note that the backward Euler method, when applied to the linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0 (260)

yields a leading-order truncation error term of the form

∂u

∂t

∣∣∣∣
tn+1

=
un+1 − un

∆t
+

∆t

2

∂2u

∂t2

∣∣∣∣
tn+1

+O(∆t2)

=
un+1 − un

∆t
+
a2∆t

2

∂2u

∂x2

∣∣∣∣
tn+1

+O(∆t2) (261)
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where (261) follows from differentiating the continuous equation (260) with respect to
time:

∂2u

∂t2
= −a ∂

∂t

(
∂u

∂x

)
= −a ∂

∂x

(
∂u

∂t

)
= −a ∂

∂x

(
−a∂u

∂x

)
= a2∂

2u

∂x2
. (262)

Rearranging terms in (261) and adding a∂u
∂x

to both sides allows us to write

un+1 − un

∆t
+ a

∂u

∂x
=
∂u

∂t
+ a

∂u

∂x
− a2∆t

2

∂2u

∂x2
+O(∆t2) (263)

where all the continuous derivatives are assumed to be evaluated at time level tn+1. Thus,
the semi-discrete form of the linear convection on the left-hand side of (263) is equal to the
continuous parabolic partial differential equation on the right-hand side, which includes
“artificial” diffusion of O(a

2∆t
2

), to within O(∆t2). For this reason, we often say that
the backward Euler time discretization is inherently stabilizing for the hyperbolic equa-
tion (260). Obviously, the artificial viscosity for the complete scheme is a composite of the
artificial viscosity of both the time and spatial discretization.

The backward Euler time integration method should only be used for transients with
RELAP-7 as an initial scoping calculation, or if only the steady-state solution is of in-
terest. For accurate transient solutions with RELAP-7, the BDF2 time integration method,
described next, is highly recommended because it is a second-order (in time) discretization.

4.2.2 BDF2

The backward differentiation formula (BDF) is a family of implicit methods for numer-
ically integrating ordinary differential equations. Some notable members of this family
include BDF1, which is equivalent to the backward Euler [80] method discussed in Sec-
tion 4.2.1, and BDF2, which is the highest-order BDF method which is still A-stable. For
fixed step-size ∆t, the BDF2 method applied to the ordinary differential equation

∂u

∂t
= f(t, u) (264)

u(t = 0) = u0 (265)

yields the update step:

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆tf(un+1, tn+1) (266)

Dividing through by 2
3
∆t, equation (266) can be alternatively written as

3
2
un+1 − 2un + 1

2
un−1

∆t
= f(un+1, tn+1) (267)
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The left-hand side of (267) can be interpreted as a backward-difference approximation to
the continuous time derivative ∂u

∂t
, and may be employed in a manner analogous to (259) to

derive a fully-discrete system of equations:∫
Ω

( 3
2
un+1 − 2un + 1

2
un−1

∆t
+G(un+1)

)
φi dΩ = 0 (268)

based on the semi-discrete equations (255) with (257).

The second-order, backward difference temporal integrator BDF2 can be generalized
for time varying time-step sizes. By considering three consecutive solutions, un−1, un

and un+1, at times tn−1, tn and tn+1, respectively, the temporal derivative above can be
expressed with BDF2 as:∫

Ω

∂tuφi =

∫
Ω

(
ω0u

n+1 + ω1u
n + ω2u

n−1
)
φi , (269)

with

ω0 =
2∆tn+1 + ∆tn

∆tn+1 (∆tn+1 + ∆tn)
(270)

ω1 = −∆tn+1 + ∆tn

∆tn+1∆tn
(271)

ω2 =
∆tn+1

∆tn (∆tn+1 + ∆tn)
(272)

where ∆tn = tn − tn−1 and ∆tn+1 = tn+1 − tn.

Notice that because BDF2 requires two old timesteps, the method must be employ a
single step method, such as backward Euler, for the first time-step when starting. The
BDF2 method is recommended for most transient simulations with RELAP-7.

4.3 Solution Stabilization Methods

In review of solutions to nonlinear hyperbolic, initial-boundary value problems such as the
single- and two-phase equation systems of RELAP-7, it is known that even with smooth
initial data, the existence of a globally smooth solution may be violated because of the
nonlinearity of the flux functions and other nonlinear terms. The concept of a weak solution
is introduced to guarantee the existence of a global solution; however, the uniqueness of
the solution(s) is lost because the problem may allow infinitely many weak solutions. An
additional condition is usually imposed, which is called the “entropy condition,” to select a
unique solution from the infinitely many weak solutions. The unique solution is called the
“entropy solution.”
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In the literature, although there are several different ways of defining the entropy con-
dition, they are all equivalent in the sense that they select the same entropy solution. For
numerical schemes, this entropy condition and solution is sought through utilization of so-
called conservative formulations of the physically descriptive equations along with appro-
priate specification of an artificial viscosity, either added directly to the governing equations
or implied by the discretization employed. That is, a discretization scheme is selected, or
built, which is consistent with the entropy condition, thereby guaranteeing that the numer-
ical computation faithfully captures the physically relevant solution.

It is not easy to satisfy the somewhat contradictory objectives of capturing singularities
(like shocks or interfaces) without instability or numerical dispersion while also realizing
better resolution where the solution is smooth. Consequently, a plethora of schemes fill
the literature, all attempting to accomplish this, either better or more robustly. First order
Godunov upwind schemes are overly dissipative while sophisticated higher order methods,
which are typically a nonlinear combination of first order dissipative schemes and basic
higher order schemes that are necessarily oscillatory, need to employ flux limiters to prevent
unphysical oscillations. Even linear hyperbolic equation systems can be problematic for
numerical discretization schemes. For example, the well-known central difference method
generally produces oscillations for simple linear advection.

It is well-known that the continuous Galerkin finite element method, as described in
Section 4.1, is unstable when applied directly to hyperbolic systems of equations. It at-
tempts to approximate potentially nonlinear discontinuous solutions with continuous, δ-
mollified solutions as nearly as possible with the functional space selected and element
spacing chosen [81]. For certain finite element spaces and integration rules, the central
difference method and Galerkin finite element methods are equivalent. This spatial dis-
cretization is known to not produce sufficient entropy locally. To compensate, especially
for equations in conservative form, the method attempts to achieve this through a train of
entropy producing oscillations in the vicinity of the local entropy production deficit. For ex-
ample, this discretization exhibits oscillations when applied to convection-dominated flows.

Remark: It is also pointed out that the first-order backward Euler time integration method
(BDF) described above is known to inherently introduce an excessive O(∆t) artificial vis-
cosity through its discretization error. Thus its use is strongly discouraged for simulation
of transient flow phenomena.

Currently available options of solution stabilization for RELAP-7 application include
entropy viscosity method (EVM), steamline upwind/Petrov- Galerkin method (SUPG), and
Lapidus methodologies. The main details of two of those schemes, EVM and SUPG, are
described in the following sections.
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4.3.1 Entropy Viscosity Method

As an available option, RELAP-7 employs a new technique, introduced recently [82–85],
which requires the explicit addition of artificial viscosity or dissipation terms to the equa-
tions while ensuring that the physical entropy minimum principle remains satisfied. Most
modern solvers for hyperbolic equation systems now use Godunov methods employing
Riemann or approximate Riemann solvers to capture the discontinuities, or shocks. How-
ever, both the methods of artificial viscosity (either explicitly included by the addition of
dissipation terms or implcitly included through the inherent truncation error of the numer-
ical scheme used) and Godunov methods are general shock capturing methods. The effect
of either method is the introduction of an appropriate amount of entropy into the flow [86].
With the artificial viscosity methods, the entropy is added by the dissipation produced by
the incorporated artificial viscosity. On the other hand, with Godunov methods the entropy
is primarily added implicitly by the presence of shock waves resulting from the Riemann
problem. Actually, at least in those cases when it can be found explicitly, the shock Hugo-
niot curve (i.e. the shock pressure jump as a function of the shock velocity jump) closely
resembles commonly used, early forms of explicitly added artificial shock viscosity [87].

Under INL direction, the viscous regularization for the 7-equation two-phase model
of RELAP-7 was obtained by Delchini [88] at Texas A&M University, using the similar
methodology to that for the Euler equations. The method consists of adding dissipative
terms to the system of governing balance equations and in deriving an entropy equation
for the regularized system. By adequately selecting these artificial viscous fluxes, the sign
of the entropy production remains positive. Derivation of the viscous regularization for
the 7-equation two-phase model can be achieved by considering either the phasic entropy
equation or the total entropy equation. In the latter case, the minimum entropy principle
can be established for the whole two-phase system but may not ensure positivity of the
entropy equation for each phase. However, positivity of the total entropy equation can
also be achieved by requiring that the minimum entropy principle holds for each phase.
This stronger requirement has the advantage of ensuring consistency with the single-phase
Euler equations when one of the phases disappears in the limit of phase disappearance.
With the entropy viscosity method, the added viscous dissipation is controlled locally to
be effective only where discontinuities or wiggles occur in the solution. When a shock
is formed, entropy is produced, so this metric is utilized to locally increase the viscous
dissipation. However, other discontinuities, such as contact surfaces or volume fraction
discontinuities, do not produce entropy. These will be signaled to the artificial viscosity
controller by additional metrics such as the jump or change in a solution variable gradient.
Additional details regarding its application to the 7-equation two-phase model and to low
Mach number flows are directly based upon INL-sponsored research of Delchini [89]. This
entropy viscosity method is independent of the spatial discretization employed, so it can be
used with the standard Galerkin, continuous Finite Element Method (FEM). Though shown
below for the 7-equation two-phase model, the entropy viscosity method is available for use
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with single-phase flow systems as well.

The red terms in the balance equations for the nonequilibrium, 7-equation, two-phase
model summarized in Section 3.2.5, fk, gk, hk, and lk, with k = {liq, vap}, are the added
phasic viscous terms to be specified. The 7-equation model without the viscous regulariza-
tion terms is, by design, entropy producing. The 7-equation model with the regularization
terms must also be entropy producing. To verify the entropy production of the 7-equation
with regularization terms we therefore need only consider the regularization terms. The
phasic entropy equation with only the added regularization terms is

αkρkA
Dksk
Dt

= [(ρsρ)k − (ese)k]
∂fk
∂x
− ρ2

k(sρ)k
∂lk
∂x

+ (se)k
∂
(
hk + 1

2
u2
kfk
)

∂x
+ (se)k (gk − fkuk)

∂uk
∂x

. (273)

where Dk(·)
Dt

is the phase k material derivative. Because the right hand side of this equa-
tion must be greater than zero, by the minimum entropy principle, at a point where the
entropy sk (ρk, ek) reaches its minimum value, the gradient ∇ρk,ek (sk) must be zero and
the Laplacian ∆ρk,ek (sk) must be positive; see e.g. [90]. It can be shown [91] that a way to
ensure this principle is to require

lk = βkA
∂αk
∂x

(274)

fk = αkκkA
∂ρk
∂x

+ ρklk (275)

gk = αkµkρkA
∂uk
∂x

+ fkuk (276)

hk = αkκkA
∂ (ρe)k
∂x

− u2
k

2
fk + (ρe)k lk (277)

where βk, µk, and κk are positive coefficients to be specified (note: the phasic, subscripted
parameter κk here is not to be confused with the unsubscripted variable κ appearing in the
total energy balance equations).

Because two-phase flows may be found in a wide range of speeds, from extremely low-
Mach subsonic (nearly incompressible) to supersonic, these three positive viscous coef-
ficients are designed, from the scaled 7-equation model to ensure well-scaled dissipative
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terms over the entire range of Mach numbers of interest. When artificial viscosity tech-
niques are used, sufficient artificial viscosity must be present in the shock and discontinuity
regions to prevent spurious oscillations from forming in the numerical solution, but little
or no dissipation should be present where the solution is smooth. It is also imperative that
viscosity coefficients scale properly to ensure recovery of the incompressible equations in
the low-Mach asymptotic limit. Careful analysis has resulted in the following definitions
for the viscous regularization coefficients:

βk (x, t) = min (βk,e (x, t) , βk,max (x, t)) (278)
µk (x, t) = min (µk,e (x, t) , µk,max (x, t)) (279)
κk (x, t) = min (κk,e (x, t) , κk,max (x, t)) (280)

where the definitions of the entropy viscosity coefficients with subscript e and the first-
order viscosity coefficents (ceiling values) with subscript max are given, respectively, by

βk,e (x, t) = h2max (|Rα
k (x, t) |, Jαk )

|sαk − s̄αk |∞
(281)

µk,e (x, t) = h2
max

(
|R̃k (x, t) |, Jk

)
(1− σ (Mk)) ρkw2

k + σ (Mk) ρku2
k

(282)

κk,e (x, t) = h2
max

(
|R̃k (x, t) |, Jk

)
ρkw2

k

(283)

βk,max (x, t) = µk,max (x, t) = κk,max (x, t) =
h

2
(|uk|+ wk) . (284)

In the above
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R̃k (x, t) =
Dkpk (x, t)

Dt
− w2

k (x, t)
Dkρk (x, t)

Dt
(285)

Rα
k (x, t) =

∂ (Ask)

∂t
+ Auint

∂sk
∂x

(286)

Jk = |uk| max
(
Je

[
∂pk
∂x

]
, w2

kJe

[
∂ρk
∂x

])
(287)

Jαk = |uint| Je
[
∂αk
∂x

]
(288)

and sαk denotes any entropy function of the volume fraction evolution equation, e.g. sαk =
1
2
α2
liq. Also, s̄αk denotes the average of sαk over the computational domain, i.e. s̄αk is a

function of time only. Note that sαk is not the same as the physical phasic entropies, sk
k = {liq, vap}. Je [·] denotes the hybrid elemental jump in function (·),

Je

[
∂a

∂x

]
= max

{∣∣∣∣s∂a∂x
{

1

∣∣∣∣ , ∣∣∣∣s∂a∂x
{

2

∣∣∣∣} (289)

where s
∂a

∂x

{

1

=

(
∂a

∂x

)
e

−
(
∂a

∂x

)
e−1

and s
∂a

∂x

{

2

=

(
∂a

∂x

)
e+1

−
(
∂a

∂x

)
e

.

with subscripts 1 and 2 representing the two node points for the (linear) element e. Thus,
Je
[
∂a
∂x

]
for generic variable a is constant over element e and has the same value for each

quadrature point, qp, in element e. In the equations above, h represents the element char-
acteristic size (for example, when considering a cell of volume V belonging to a mesh of
dimension r then h = V

1
r ).

In the denominator of the equation for µk,e above, the parametric function σ (Mk) is
a weighting function designed to change the normalization, and thus the local dissipation,
with varying flow Mach number; this parameter is important for the success of the entropy
viscosity method for all-speed flows. To produce a stabilization method valid for a wide
range of Mach numbers, from very low-Mach to supersonic flows, the denominator of the
equation for µk,e above should vary between ρku2

k for non-isentropic flows and ρkw2
k for

low-Mach flows. These two scalings (denominator terms) are combined via a smoothed,
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shifted Heaviside-type function, σ (Mk), to give a smooth transition between these two
states. One such function available in RELAP-7 (which varies smoothly between 0 and 1)
is the following [88]:

σ(M) =


0 if M ≤M thresh − a,
1 if M ≥M thresh + a,
1
2

(
1 + M−M thresh

a
+ 1

π
sin
(
π(M−M thresh)

a

))
otherwise,

(290)

where M thresh is a threshold Mach number value beyond which the flow is no longer con-
sidered to be low-Mach (default value is M thresh = 0.05), M is the local Mach number, and
the scalar a determines how rapidly the function σ(M) changes in the vicinity of M thresh

(default, a = 0.005). Both M thresh and a are, however, user specified inputs in RELAP-7.

This definition of the phasic viscosity coefficients takes advantage of the properties of
the entropy residual that is peaked in the vicinity of the shock, whereby the high-order
viscosity coefficient will saturate to the first-order viscosity coefficient that is known to be
over-dissipative. Moreover, in regions where the numerical solution is smooth, the phasic
viscosity coefficient will be equal to the high-order viscosity coefficient that will ensure
higher order accuracy and also the correct low-Mach asymptotic limit.

4.3.2 Streamline Upwind/Petrov-Galerkin Method

The Streamline Upwind/Petrov-Galerkin (SUPG) method is available in RELAP-7 for use
with single-phase flows only. The SUPG method is introduced by first writing (20)–(22)
from Section 2.1 in system notation as

R(V ) ≡ ∂V

∂t
+
∂G

∂x
− S = 0 (291)

where

V ≡

 ρA
ρuA
ρEA

 G ≡

 ρuA
(ρu2 + p)A
ρuHA

 (292)

and S comprises the remaining source (gravity, wall-heating, friction) terms. Note that
a slightly different notation for the area conserved variables, V , and flux, G, has been
utilized because it will prove useful to refer to the non-area conserved variables in the
discussion which follows. As in Section 4.1, the weak form proceeds by dotting (291) with
an admissible test functionW , integrating over the domain Ω, and applying the divergence
theorem. We then define

a(V ,W ) ≡
∫

Ω

(
∂V

∂t
·W −G · ∂W

∂x
− S ·W

)
dΩ +

∫
Γ

(G ·W ) n̂x dΓ (293)
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for subsequent use. To introduce the SUPG method, we begin by defining the non-area
conserved variable and flux vectors

U ≡

 ρ
ρu
ρE

 F ≡

 ρu
ρu2 + p
ρuH

 . (294)

In particular, note that V = AU and G = AF . If F and U are continuous, the chain rule
can be used to write

∂F

∂x
=
∂F

∂U

∂U

∂x
≡ A∂U

∂x
. (295)

The matrixA is known as the “flux Jacobian” matrix. The identities

∂G

∂x
= A

∂F

∂x
+
∂A

∂x
F (296)

A
∂V

∂x
= A

(
A
∂U

∂x
+
∂A

∂x
U

)
= A

∂F

∂x
+
∂A

∂x
AU (297)

can be combined to eliminate the A∂F
∂x

terms and obtain

∂G

∂x
= A

∂V

∂x
+ (F −AU)

∂A

∂x
. (298)

Substituting (298) into (291) then gives

R̃(V ) ≡ ∂V

∂t
+A

∂V

∂x
+ (F −AU)

∂A

∂x
− S = 0 (299)

which is the so-called “quasi-linear” form of (291).

A few remarks about (299) are warranted. First, in the special case where F is a “ho-
mogeneous function of degree 1,” F = AU , and the term in (299) which is proportional to
∂A
∂x

vanishes. The flux F is a homogeneous function of degree 1 for the ideal gas equation
of state, but not for equations of state in general. It is relatively straightforward to show
that

F −AU =

 0
p̂
up̂

 (300)

where

p̂ ≡ p− p,0ρ− p,1ρu− p,2ρE , (301)

and, for the one-dimensional Euler equations with a generic equation of state p = p(U0, U1, U2),
the partial derivatives are denoted p,i ≡ ∂p

∂Ui
, i = 0, 1, 2. For the stiffened gas equation of
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state, we can use the partial derivatives discussed in Section 2.2.3.4 to compute p̂ = −γp∞.
Finally, we note that the two forms of the residual,R and R̃, coincide if the exact solution
V is smooth. Some solutions, e.g. with shocks, violate this assumption, but the SUPG
method is nevertheless still applicable in such situations. The SUPG method may now be
stated succinctly as: find V such that

a(V ,W ) +
∑
K

∫
ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK = 0 (302)

for all admissible W . In (302), AT is the transpose of the flux Jacobian matrix, τSUPG is
in general a 3 × 3 matrix of solution-dependent stabilization parameters, and the second
term of (302) is traditionally written as a sum of integrals over the finite elements ΩK

because of the possibility of higher-order derivatives in R̃, although there are no such
higher derivatives present in the current work. The method (302) is said to be “consistent”
in the following sense: if the true solution V (which satisfies (291) pointwise and the weak
form (293)) is smooth, then it also satisfies (299), and therefore the additional stabilizing
term is zero.

The “stabilizing” effects of (302) come specifically from the inviscid flux terms of the
quasi-linear residual (299), i.e.∫

ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK =

∫
ΩK

AT ∂W

∂x
· τSUPG

(
. . .+A

∂V

∂x
+ . . .

)
dΩK

=

∫
ΩK

∂W

∂x
·
(
AτSUPGA

∂V

∂x

)
dΩK + . . . (303)

where the ellipsis are used to represent other terms in the quasi-linear residual which do
not lead to stabilization, but are nevertheless required for consistency. The matrix M ≡
AτSUPGA can be thought of as the “artificial diffusivity” tensor associated with the method.
Thus, a major design goal of the SUPG method is to pick τSUPG in such a way thatM is:

1. O(h) in size, so the scheme retains the Galerkin method’s order of accuracy.

2. Positive-definite, to mimic a physical diffusion tensor.

Most of the effort and “art” in implementing the SUPG method is therefore concerned with
choosing τSUPG appropriately. For advection-dominated one-dimensional systems of con-
servation equations, Hughes et. al [92] have shown that a possible form for the stabilization
operator τSUPG is

τSUPG =
h

2
|A|−1 (304)

where h is element length, and the absolute value of aA is defined as

|A| ≡ P |D|P−1 (305)

92



where D is a diagonal matrix of eigenvalues of A and P is a matrix whose columns are
A’s eigenvectors. The absolute value of a diagonal matrix D is defined simply by taking
the absolute value of each of the entries on the diagonal. For the one-dimensional Euler
equations with a generic equation of state p = p(U0, U1, U2) having partial derivatives
p,i ≡ ∂p

∂Ui
, i = 0, 1, 2, we have:

A =


0 1 0

p,0 − u2 p,1 + 2u p,2

u (p,0 −H) up,1 +H u (1 + p,2)

 . (306)

The eigenvalues of the matrix defined in (306) are given by

λ1 = u (307)

λ2,3 = u+
p,1 + up,2

2
±
[
4 (p,0 + up,1 +Hp,2) + (p,1 + up,2)2]1/2

2
(308)

The eigenvalues (308) will be real (and hence the system will be hyperbolic) only if the
term under the square root sign is ≥ 0. It may be readily verified that, for a given equation
of state, (308) reduces to λ2,3 = u ± c, where c is the local sound speed. In general, the
form (308) is preferred because it explicitly demonstrates the intrinsic role of the equation
of state in determining the eigenvalues ofA.

The matrix of eigenvectors ofA is given by

P ≡

 c1 c3 c2

λ1c1 λ2c3 λ3c2

1 1 1

 (309)

where

c1 ≡
−p,2

p,0 + λ1p,1
(310)

cj ≡
−λj
dj

, j = 2, 3 (311)

dj ≡ (H − u2)(up,2 − λj) + u(p,0 − u2) , j = 2, 3 . (312)

Its inverse is

P−1 ≡ 1

detP

λ2c3 − λ3c2 c2 − c3 c2c3(λ3 − λ2)
λ3c2 − λ1c1 c1 − c2 c1c2(λ1 − λ3)
λ1c1 − λ2c3 c3 − c1 c1c3(λ2 − λ1)

 (313)

where
detP ≡ c1(c2 − c3)λ1 + c3(c1 − c2)λ2 + c2(c3 − c1)λ3 . (314)
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The preceding discussion provides all the information necessary to implement the SUPG
scheme (302). In addition to the code required to implement the Galerkin part of the finite
element method, one needs new code to define the stabilization matrix and quasi-linear
residuals, and code to assemble the new residual contributions. For effective precondi-
tioning and to implement solvers other than the JFNK method, one also needs to compute
Jacobian contributions for the new stabilization terms, but this procedure is not discussed
in detail here.

4.4 Jacobian-Free Newton Krylov Solver

The RELAP-7 code solves coupled multi-physics problems using the Jacobian-Free New-
ton Krylov (JFNK) approach via the MOOSE framework. Field equations solved in the
current RELAP-7 code include PDEs to describe one-dimensional fluid flow in pipe sys-
tems and heat conduction in solids, as well as ODEs to describe physics in zero-dimensional
components and the point kinetics equations.

The JFNK method is a fully-coupled, multi-level method for solving large nonlinear
equation systems. In general, it consists of at least two levels: the outer Newton loop for
the nonlinear solve and the inner Krylov loop for the linear systems of equations associated
to Newton iteration. The JFNK method has become an increasingly popular option for
solving large nonlinear equation systems arising from multi-physics problems over the last
20 years, and has branched out into a number of different disciplines [7].

In what follows, a brief description of the JFNK method as it applies to the RELAP-7
application is given. The FEM-discretized field equations (Eqns. (255) with suitable time,
and viscous stabilization, discretizations) are first written as

F(u) = 0 (315)

where F represents the nonlinear equation system and u is the solution vector. Newton’s
method requires an initial guess, u0, computed either from the initial conditions or the
previous time-step solution, to start the iteration process. For the transient problems of
interest here, the solution at a previous time step is generally used as the initial guess for
the method. At the kth iteration, the residual vector is defined as

rk ≡ F(uk) . (316)

Clearly if uk satisfies (315) exactly, the kth residual will be zero. To update the solution
vector, the following equation is solved for the update vector, δuk+1:

J(uk)δuk+1 = −rk (317)

where J(uk) is the Jacobian matrix evaluated at uk. In index notation,

Jij ≡
∂Fi
∂uj

. (318)
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After δuk+1 is obtained, the (k + 1)st solution iterate is computed by

uk+1 = uk + δuk+1 . (319)

The Newton iteration is terminated when one of the following conditions is met:

1. The residual vector norm, |rk|, is sufficiently small.

2. The relative residual vector norm |rk|
|r0| is sufficiently small.

3. The step size norm, |δuk+1| is sufficiently small.

Note that (317) represents a large linear system of equations. In the JFNK method, we
need not explicitly form the matrix J : only its action on a vector (via matrix-vector product)
is required. Effective preconditioning is generally required for Krylov subspace methods
to be efficient, i.e., for the method to converge in a reasonable number of iterations. A
preconditioned version of equation (317) can be expressed as (using right preconditioning
as an example),

JkP−1
(
P δuk+1

)
= −rk (320)

where P is the preconditioning matrix. In the approach current used in RELAP-7, an
analytical Jacobian matrix is computed according to (318), and passed to the underlying
numerical solver library as the matrix P for preconditioning purposes.
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5 Boundary Conditions

For convenience, or of necessity, governing balance equations are usually solved over a
finite, bounded spatial domain. However, from a physical point of view the domain is usu-
ally not really bounded. There is some physical object or material beyond the fixed domain
with which the material within the domain of interest has some interaction. To represent the
physical effects, at least partially, of the entities beyond the domain of interest upon the the
material within the domain, so called boundary conditions are introduced. These boundary
conditions must supply adequate information to fulfill both the mathematical needs of the
governing balance equations solved within the domain and also to adequately represent the
physical effects of the entities beyond the domain. It is emphasized that sometimes the
approximations inherent in these boundary conditions adversely effects the solution of the
governing balance equations. When this occurs, the domain should be modified, if possi-
ble, so that the boundary conditions can be placed where the effects of their approximate
nature will be minimized.

Because the governing two-phase flow equations used in RELAP-7 are hyperbolic, the
boundary conditions that will be specified must be consistent with the method of character-
istics [1], [93], [94]. For a single-phase, one-dimensional flow with variable cross-sectional
area A(x), method of characteristics theory shows that solution information propagates
along three characteristic, or wave, directions dx

dt
and that the solution at any point in time

and space is constructed from the characteristic information carried by the three char-
acteristic waves convergent at that point. One wave carries its charcteristic information,
propagating at the material velocity, dx

dt
= u. The other two characteristic waves travel, car-

rying their characteristic information, at acoustic or sound speed, w, relative to the flowing
material, i.e. dx

dt
= u + w and dx

dt
= u− w. The three characteristic equations which carry

the solution information and their respective characteristic directions in (x, t)− space are

dp+ ρw du = F1 dt along
dx

dt
= u+ w (321)

dp− ρw du = F2 dt along
dx

dt
= u− w (322)

dρ− 1

w2
dp = F3 dt along

dx

dt
= u , (323)

where the source terms F1, F2, and F3 are generally functions of the fluid’s thermody-
namic state, the flow’s cross-sectional area A(x) and its gradient A′(x), flow velocity u,
the fluid’s specific heat at constant pressure cp along with its coefficient of volume expan-
sion −1

ρ
( ∂ρ
∂T

)p, the external heat transfer to/from the fluid, and the pipe wall friction factor.
The first two characteristics listed above are acoustic and, for subsonic flows, are some-
times referred to as right running and left running characteristics, respectively. The third
characteristic listed above is referred to, for obvious reasons, as the material motion, par-
ticle path, or entropic characteristic. For the 7-equation two-phase model, seven of these
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characteristic equations and characteristic directions occur. Six of the seven characteristic
equations are basically comprised of a set of three characteristics, similar to those above,
for each of the two phases. The seventh characteristic equation and direction corresponds
to the volume fraction evolution equation. It specifies how the (liquid) volume fraction
will change along the characteristic wave traveling with velocity dx

dt
= uint. Thus, for the

7-equation two-phase model the characteristics are

dpliq + (ρw)liq duliq = F1 dt along
dx

dt
= (u+ w)liq (324)

dpliq − (ρw)liq duliq = F2 dt along
dx

dt
= (u− w)liq (325)

dρliq −
1

w2
liq

dpliq = F3 dt along
dx

dt
= uliq (326)

dpvap + (ρw)vap duvap = F4 dt along
dx

dt
= (u+ w)vap (327)

dpvap − (ρw)vap duvap = F5 dt along
dx

dt
= (u− w)vap (328)

dρvap −
1

w2
vap

dpvap = F6 dt along
dx

dt
= uvap (329)

dαliq = F7 dt along
dx

dt
= uint , (330)

where now the functions Fj , j = 1, · · ·, 7, depend (in addition to those dependencies give
above for single phase) also upon all of the interphase interaction terms.

At points on domain boundaries, it often occurs, e.g. for single phase flow, that less
than three of the waves propagate their characteristic information to the boundary point.
The information that does come from the characteristic waves propagating from the domain
interior must be utilized to form the solution at the boundary. The additional information
necessary to obtain the solution at the boundary must be supplied by appropriate boundary
condition equations that approximate the physical and mathematical effect of the truncated
material or fluid. Detailed discussion of the method of characteristics is beyond our scope
here, but the parts of characteristic theory that will be employed will be apparent. RELAP-7
uses a continuous finite element method to numerically construct the solution for the gov-
erning two-phase flow equations. The elemental equations for the element adjacent to the
boundary, in a sense, supplies all of the same information that the characteristic equations
that propagate to the boundary from the domain interior provides. These finite element
equations are also deficient, and must be supplimented with additional boundary condition
information. There is, however, one caviat. The finite element equations are in an implicit
form, i.e. they have a so called mass matrix which must be inverted, usually iteratively, to
obtain the solution. So with some care, at each iterate the correct characteristic information
will be extracted from the incomplete finite element equations for the element adjacent to
the boundary, and combined with the appropriate boundary condition equations to compute

97



the complete boundary solution or flux approximation for the next iterate. Upon numerical
convergence, the complete finite element solution at the boundary nodel will be consis-
tent with both the characteristic information propagating to the boundary from the domain
interior and the correctly specified boundary condition equations.

In the ensuing development, the following nomenclature is used: subscript 1 or nnd on
a variable denotes the elemental value of the variable at the terminous node (i.e. the first
or last node) denoted with the subscript for the current solution iterate, subscript bc on a
variable denotes a supplied boundary condition value, and superscript ∗ denotes a generic
value of the variable at the boundary node. For each of the boundary conditions given, a
detailed discription will first be given for single-phase flow, then in somewhat more terse,
but concise, form for the 7-equation two-phase flow.

5.1 Closed End, Single-Phase

Perhaps the simplest boundary condition is that of a closed end, dead-end, or wall bound-
ary condition. At a closed end the governing physics is that there can be no flow through
the boundary, i.e. uboundary = 0. To begin this description, assume that the closed end
or wall boundary condition is located at the right, terminal end of a duct at its last node,
numbered nnd. Subscript nnd on a variable will denote the finite element solution value of
the variable at that boundary node of the duct for the current solution iterate. Superscript ∗
denotes a generic value of the variable at the boundary node. From the method of charac-
teristics it is known that the material motion, particle path, or entropic characteristic from
the domain interior requires either

ρ∗ = ρnnd

or
p∗ = pnnd

while the right running acoustic characteristic from the domain interior requires either

u∗ = unnd

or
p∗ = pnnd .

Futhermore, this is the only information that can be used from the solution’s domain in-
terior. But because the physical no-flow end condition unnd = ubc = 0 is specified, this
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forces the following choice:

ρ∗ = ρnnd (fromnodal solution iterate) (331)
p∗ = pnnd (fromnodal solution iterate) (332)
u∗ = 0.0 (specified boundary condition) . (333)

To get pnnd, the mass density and specific internal energy ennd for the current solution iter-
ate must first be determined from the element nodal conservative variables

ρnnd =
(ρA)nnd
Annd

(334)

ennd =
(ρEA)nnd
(ρA)nnd

− 1

2

(ρuA)2
nnd

(ρA)2
nnd

(335)

and then from the equation of state

pnnd = p(vnnd, ennd) (336)

where the specific volume is the reciprical of mass density, vnnd = 1
ρnnd

. For a weakly
specified element boundary, boundary fluxes are set for node nnd as

(Fρ)nnd = ρnndubcAnnd = 0 (337)
(Fρu)nnd = ρnndu

2
bcAnnd + pnndAnnd = pnndAnnd (338)

(FρE)nnd = ρnndubcAnnd[ennd +
pnnd
ρnnd

+
1

2
u2
bc] = 0 . (339)

Thus the nodal fluxes depend implicitly upon the current element nodal solution iterate
(which provides characteristic information from the domain interior) and the supplied
boundary condition information (which replaces the “missing” characteristic information).
Solution with finite element methods are typically iterative. Even for explicit time inte-
gration, because of the necessity to invert the mass matrix, iteration is often used. Upon
iterative convergence, the finite element boundary node variables will be consistent with
the characteristic information from the domain interior and the specified boundary condi-
tion unnd = (ρuA)nnd

(ρA)nnd
≈ 0.

Remark: If so called mass lumping (in which the mass matrix is diagonalized) is used
with explicit time itegration, iteration will not be performed, and the nodal information
from the domain interior will need to be replaced with approximations to the actual char-
acteristic equations. This same remark applies to all of the boundary conditions described
in this chapter regarding the use of characteristic information.
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Alternatively, instead of a weak boundary condition for the momentum equation, i.e.
the specification of (Fρu)nnd, a Dirichlet or strongly specified boundary condition could be
specified for the momentum equation. In this case, the momentum flux boundary condition
(only) would be replaced by the condition

Residual(ρuA)nnd = (ρuA)nnd − (ρ)nndubcAnnd

which upon iterative convergence, i.e Residual(ρuA)nnd ≈ 0, gives (ρuA)nnd ≈ 0 because
of the specification ubc = 0. Thus the two methods of setting a closed end boundary
condition are equivalent to within iterative convergence tolerance. It is emphasized that, in
this case, the weak boundary conditions (flux specification) are still used for the mass and
total energy balance equations.

If the closed end boundary condition is specified for the other end of the pipe, i.e. node
1, the the exact procedure above is mirrored and the fluxes for a weakly specified boundary
are

(Fρ)1 = ρ1ubcA1 = 0 (340)
(Fρu)1 = ρ1u

2
bcA1 + p1A1 = p1A1 (341)

(FρE)1 = ρ1ubcA1[e1 +
p1

ρ1

+
1

2
u2
bc] = 0 (342)

with

ρ1 =
(ρA)1

A1

(343)

e1 =
(ρEA)1

(ρA)1

− 1

2

(ρuA)2
1

(ρA)2
1

(344)

and again from the equation of state

p1 = p(v1, e1) . (345)

5.2 Closed End, Two-Phase

The closed end boundary condition for the nonequilibrium 7-equation two-phase model is
very much similar to its single-phase counterpart described above. Because the 7-equation
model has a special eigenstructure in which three of the seven eigenvalues are identical to
those of liquid single phase and another three are identical those of the vapor phase, the
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method described above can be duplicated for each of the two phases. The characteristic
equation due to the seventh eigenvalue, uint, is satisfied from the element interior equation.

To make the notation lucid, another subscript is added to denote the phase or interface
values. The physical no-flow boundary condition for the closed end with the 7-equation
model is unnd,liq = unnd,vap = ubc = 0. This forces the choice

ρ∗liq = ρnnd,liq (fromnodal solution iterate) (346)

ρ∗vap = ρnnd,vap (fromnodal solution iterate) (347)

p∗liq = pnnd,liq (fromnodal solution iterate) (348)

p∗vap = pnnd,vap (fromnodal solution iterate) (349)

u∗liq = 0.0 (specified boundary condition) (350)

u∗vap = 0.0 (specified boundary condition) . (351)

Thus, the phasic nodal variables ρnnd,k and ennd,k, with k = {liq, vap}, for the current
solution iterate are first determined from the current iterate of elemental nodal variables

ρnnd,liq =
(αρA)nnd,liq
(αA)nnd,liq

(352)

ρnnd,vap =
(αρA)nnd,vap
(αA)nnd,vap

(353)

ennd,liq =
(αρEA)nnd,liq
(αρA)nnd,liq

− 1

2

(αρuA)2
nnd,liq

(αρA)2
nnd,liq

(354)

ennd,vap =
(αρEA)nnd,vap
(αρA)nnd,vap

− 1

2

(αρuA)2
nnd,vap

(αρA)2
nnd,vap

(355)

which are then used with the equation of state to obtain the element nodal phasic pressures

pnnd,liq = pliq(vnnd,liq, ennd,liq) (356)
pnnd,vap = pvap(vnnd,vap, ennd,vap) (357)

with, again, the specific volumes being the reciprical of their respective mass densities,
vnnd,k = 1

ρnnd,k
, k = {liq, vap}. Finally, for a weakly specified element boundary, the

boundary fluxes are set for node nnd as
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(Fρ)nnd,liq = (αρA)nnd,liq ubc = 0 (358)
(Fρ)nnd,vap = (αρA)nnd,vap ubc = 0 (359)
(Fρu)nnd,liq = (αρA)nnd,liq u

2
bc + (αA)nnd,liq pnnd,liq = (αA)nnd,liq pnnd,liq (360)

(Fρu)nnd,vap = (αρA)nnd,vap u
2
bc + (αA)nnd,vap pnnd,vap = (αA)nnd,vap pnnd,vap (361)

(FρE)nnd,liq = (αρA)nnd,liq ubc [ennd,liq +
pnnd,liq
ρnnd,liq

+
1

2
u2
bc] = 0 (362)

(FρE)nnd,vap = (αρA)nnd,vap ubc [ennd,vap +
pnnd,vap
ρnnd,vap

+
1

2
u2
bc] = 0 . (363)

Remark: There are only six fluxes specified here for the 7-equation model because the
volume fraction evolution equation has no Eulerian flux (and thus cannot be integrated by
parts for the finite element solution). The advection term in the volume fraction evolution
equation results from the so called Lagrangian flux [13], and is not treated as a flux in the
RELAP-7 finite element method. Because the volume fraction evolution equation is already
in characteristic form, with eigenvalue uint, it is satisfied from the element interior solution,
and nothing more needs to be done for the volume fraction at a closed end or wall boundary.

5.3 Stagnation Inlet, Single-Phase

The stagnation inlet, or tank boundary condition is designed to approximate the effect of
attaching a very large tank or volume of fluid (at rest) to the inlet so that flow can be
driven into the duct. It could physically be a tank, or it could be a large volume such
as the atmosphere. Regardless, it is ideally assumed that its volume is sufficiently large
that flow velocities within the volume are negligible and, consequently, that the stagnation
values of its thermodynamic properties are temporally invariant. A complicating feature
of such a boundary condition is that, while this boundary condition may drive flow into
the duct at steady state, during a transient, waves of sufficient magnitude may reflect from
this boundary so as to cause a temporary flow reversal, i.e. the normal inlet becomes a
temporary outlet until such time as the flow reverses again, becoming an inlet once more.

To begin this description, assume first that the stagnation inlet or tank is located at the
terminus of a duct at its first node. For discussion sake, we imagine it to be also at the left
end of the duct, so that flow will normally be driven into the duct from left to right. As
with the closed end boundary condition, subscript 1 on a variable indicates the value at the
first elemental (terminus) node of the duct for the current solution iterate. A subscript 0
indicates a stagnation value, i.e. the thermodynamic value which would occur if the flow
were stagnated to zero velocity. The superscript * denotes a generic value of the variable
at the boundary node.
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From the method of characteristics it is known that for a subsonic inlet there is only
one left running acoustic characteristic coming from the solution domain interior which
requires either

u∗ = u1

or
p∗ = p1 , (364)

and this is the only information that can be used from the solution’s interior domain. The
latter, p∗ = p1, is picked. The other information which would be carried by a right running
acoustic characteristic, u∗ or p∗, and right running material motion, particle path, or en-
tropy characteristic, ρ∗ or p∗, is missing and must be supplied by the boundary conditions.
The choice of p∗ to come from the interior solution forces the following choice:

ρ∗ = ρbc (fromspecified boundary condition/solution) (365)
p∗ = p1 (fromnodal solution iterate) (366)
u∗ = ubc (fromspecified boundary condition/solution) . (367)

The missing information will be supplied from two physical approximations based on: (1)
From the energy equation, it is assumed that the stagnation enthalpy is invariant from the
tank or volume to the duct inlet, and (2) From the second law of thermodynamics, it is
assumed that the flow is isentropic from the tank or volume to the duct inlet.

For the single-phase stagnation inlet boundary, RELAP-7 requires the user to specify
the stagnation pressure, p0, and the stagnation temperature, T0. From these two user speci-
fied values the stagnation specific enthalpy, h0, and the stagnation specific entropy, s0, are
computed from the equations of state as follows:

h0 = h(p0, T0) (368)
s0 = s(p0, T0) . (369)

Next, the nodal velocity of the current solution iterate is computed

u1 =
(ρuA)1

(ρA)1

.

If this velocity repesents outflow, u1 ·n1 ≥ 0, then the solution solution algorithm switches
to a static outlet boundary condition in which the specified static back pressure, pb, will be
taken to be the value of the stagnation pressure, i.e. pb = p0. The static outlet boundary
condition will be described in a later section.
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Remark: The nodal velocity, u1, of the current solution iterate is used solely as an esti-
mate to trigger a switch in the solution algorithm indicating a flow reversal. It is not used
in the calculation of any fluxes as this would violate characteristic information flow, and
therefore would be wrong.

To compute the nodal pressure of the current solution iterate, the nodal specific volume
(density) and specific internal energy are computed from

v1 =
A1

(ρA)1

(370)

e1 =
(ρEA)1

(ρA)1

− 1

2

(ρuA)2
1

(ρA)2
1

, (371)

and then from the equation of state,

p1 = p(v1, e1) . (372)

To get the inlet velocity that is consitent with these physical principles, and which utilizes
the characteristic information from the solution interior, consider energy conservation be-
tween the tank or volume and the duct inlet

h∗ +
1

2
(u∗)2 = h0︷ ︸︸ ︷

e∗ +
p∗

ρ∗
+

1

2
(u∗)2 = h0

ebc +
p1

ρbc
+

1

2
u2
bc = h0 .

Now by employing the isentropic condition, sbc = s0, including the thermodyamic function
dependencies ρbc = 1

vbc
= 1

v(sbc,p∗)
= 1

v(s0,p1)
and ebc = e(sbc, p

∗) = e(s0, p1) the equation
above becomes

e(s0, p1) + p1 v(s0, p1) +
1

2
u2
bc = h0 .

Rearranging this equation gives the desired equation to determine the inlet velocity, ubc:

1

2
u2
bc = h0 − e(s0, p1)− p1 v(s0, p1)

or
ubc = {2[h0 − e(s0, p1)− p1 v(s0, p1)]}

1
2 . (373)
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In this calculation it is important to check first that the descriminant h0 − e(s0, p1) −
p1 v(s0, p1) ≥ 0 which usually corresponds to the condition p1 ≤ p0. If this condition
occurs, flow reversal has occured for this iteration. Again, this represents a branch point
whereby the algorithm switches to the specified static back pressure boundary condition
wherein the static back pressure pb is taken to be the specified stagnation pressure value,
i.e. pb = p0, as discussed above.

It is recalled that at the outset of this section it was assumed that the inflow was sub-
sonic. Before computing the inlet fluxes for node 1, an additional check must therefore be
performed to determine whether the inlet flow could be supersonic. This is easily accom-
plished by computing the local sound speed using the equation of state

w∗ = w(v∗, e∗) = w(vbc, ebc) .

If ubc ≤ w∗, the inlet flow is indeed subsonic and the previous caluculations are all correct.
However, if ubc > w∗, the inlet flow is supersonic and the characteristic information that
was used from the solution domain interior is incorrect.

Remark: Supersonic inlet flow does not typically occur in nuclear reactor flows, under
normal or accident conditions. But because of the effectively low two-phase sound speeds
(described later), and because, during a transient, strong wave reflections could potentially
create such a state temporarily, supersonic inlet flow must be accounted for.

For clarity of presentation, the supersonic condition will be described subsequently in
this section; but first the description of subsonic inlet flows must be concluded.

Assuming that the inlet flow is subsonic, and weakly specified boundary conditions are
specified, the fluxes for node 1 are

(Fρ)1 =
ubc

v(s0, p1)
A1 (374)

(Fρu)1 =

[
u2
bc

v(s0, p1)
+ p1

]
A1 (375)

(FρE)1 =

[
ubc

v(s0, p1)
h0

]
A1 . (376)

The nodal fluxes thus depend implicitly upon the current element nodal solution iterate
(which provides characteristic information from the domain interior) and the supplied
boundary condition information (which replaces the “missing” characteristic information).

Alternatively, for subsonic inlet flow with Dirichlet (or strongly specified) boundary
conditions, each of the flux boundary conditions can be replaced, respectively with
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Residual(ρ) = (ρA)∗1 − ρbcA1 (377)
Residual(ρu) = (ρuA)∗1 − ρbcubcA1 (378)

Residual(ρE) = (ρEA)∗1 − ρbcebc −
1

2
ρbcu

2
bc . (379)

Upon convergence, i.e. when these Residuals are minimized to be approximately zero, the
boundary condition approximations, along with the finite element solutions for the element
adjacent to the boundary, will become equivalent to the characteristic method solutions (for
subsonic inlet) to within convergence tolerance.

Supersonic Inflow

If, in fact, the inlet flow is supersonic, no information can be used from the interior
domain solution, and all of the information must come from the specified boundary con-
ditions. In this case, the specification of h0 and s0 will remain the same; but, in addition,
either ubc, pbc, or hbc must be specified. Then for the supersonic inlet case the energy bal-
ance between the tank or volume and the duct inlet is written

1

2
u2
bc = h0 − e(s0, pbc)− pbcv(s0, pbc)︸ ︷︷ ︸

= h0 − hbc . (380)

If hbc is specified then to get ubc,

1

2
u2
bc = h0 − hbc , (381)

and pbc is obtained either from the transcendental equation

e(s0, pbc)− pbcv(s0, pbc)− hbc = 0 , (382)

or, alternatively, if the equation of state of form p = p(s, h) is available, pbc can be obtained
directly from

pbc = p(s0, hbc) . (383)

If ubc is specified then to get hbc,

hbc = h0 −
1

2
u2
bc , (384)

and pbc is again obtained either from the transcendental equation

e(s0, pbc)− pbcv(s0, pbc)− hbc = 0 , (385)
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or, alternatively, if the equation of state of form p = p(s, h) is available, pbc can be obtained
directly from

pbc = p(s0, hbc) . (386)

If pbc is specified then hbc is obtained from

hbc = e(s0, pbc) + pbcv(s0, pbc) (387)

and ubc is again obtained from
1

2
u2
bc = h0 − hbc . (388)

Because RELAP-7 does not currently employ an equation of state in the form p = p(s, h),
the first two options are neglected, and this latter option is currently utilized.

Then finally, for supersonic inflow the fluxes are set as

(Fρ)1 =
ubc

v(s0, pbc)
A1 (389)

(Fρu)1 =

[
u2
bc

v(s0, pbc)
+ pbc

]
A1 (390)

(FρE)1 =

[
ubc

v(s0, pbc)
h0

]
A1 . (391)

Alternatively, for subsonic inlet flow with Dirichlet (or strongly specified) boundary con-
ditions, each of the flux boundary conditions can be replaced, respectively with

Residual(ρ) = (ρA)∗1 − ρbcA1 (392)
Residual(ρu) = (ρuA)∗1 − ρbcubcA1 (393)

Residual(ρE) = (ρEA)∗1 − ρbcebc −
1

2
ρbcu

2
bc . (394)

These Residuals appear to be defined the same as for the subsonic case, but it is emphasized
that the the quantities ρbc, ubc, and ebc are defined in terms of the specified pbc, not the nodal
p1. Upon convergence, i.e. when these Residuals are minimized to be approximately zero,
the boundary condition approximations, along with the finite element solutions for the el-
ement adjacent to the boundary, will again become equivalent to the characteristic method
solutions (for supersonic inlet) to within convergence tolerance.

5.4 Stagnation Inlet, Two-Phase

Fortunately the eigenstructure for the 7-equation two-phase model, without source terms,
is like that of two, separate instances of the single-phase model. The source terms which
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would occur with the characteristic equations are accounted for in the element solution
equations. To physically and mathematically describe the stagnation inlet boundary for the
7-equation two-phase model, the procedure described in the previous section for a single
phase is duplicated for each of the two phases, except that the effective flow areas are mod-
ulated by the local, phasic volume fraction. That accounts for six of the seven characteristic
equations. In addition, one more characteristic equation occurs for the 7-equation model
because of the volume fraction evolution equation.

As was done with the extension of closed end boundary conditions from single-phase
to the 7-equation two-phase equation set an additional subscript indicating the phase or
interface is used. As with the single-phase, the two-phase stagnation inlet boundary for
RELAP-7 requires the specification of phasic stagnation pressures, p0,liq and p0,vap, and the
phasic stagnation temperatures, T0,liq and T0,liq, which are used with the equations of state
to obtain stagnation specific enthalpies and stagnation specific entropies for each phase

h0,liq = hliq(p0,liq, T0,liq) (395)
h0,vap = hvap(p0,vap, T0,vap) (396)

s0,liq = sliq(p0,liq, T0,liq) (397)
s0,vap = svap(p0,vap, T0,vap) . (398)

Remark: The phasic stagnation pressures and temperatures specified may be the same for
each phase, e.g. if the boundary condition represents a common tank. But more gener-
ally, each phase could conceivably be feeding from a different tank; thus the more general
separate specification.

In addition, because of the seventh characteristic corresponding to the volume fraction
evolution equation, an additional boundary condition must be specified, αbc,liq, the liquid
volume fraction at the inlet that will be used if the interface velocity uint is an inflow, i.e.
uint · n1 ≤ 0 at node 1 (n1 denotes the solution domain outward normal). A more detailed
description will be given subsequently.

Next, the nodal velocities of the current solution iterate are computed

u1,liq =
(αρuA)1,liq

(αρA)1,liq

u1,vap =
(αρuA)1,vap

(αρA)1,vap

.

If this velocities repesent outflow, u1,liq · n1 ≥ 0 and u1,vap · n1 ≥ 0, then the solution solu-
tion algorithm branches to a static outlet boundary condition in which the specified static
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back pressure, pb,liq and pb,vap, will be taken to be the value of their respective stagnation
pressures, i.e. pb,liq = p0,liq and pb,vap = p0,vap. The static outlet boundary condition will
be described in a later section.

Remark: Again, the nodal velocities, u1,liq and u1,vap, of the current solution iterate are
used solely as estimates to trigger branches in the solution algorithm indicating flow rever-
sals in either, or both, phases. They are not used in the calculation of any fluxes as this
would violate characteristic information flow, and therefore would be wrong.

To compute the phasic nodal pressures of the current solution iterate, the nodal specific
volumes (reciprical densities) and specific internal energies are computed from

v1,liq =
α1,liqA1

(αρA)1,liq

(399)

v1,vap =
α1,vapA1

(αρA)1,vap

(400)

e1,liq =
(αρEA)1,liq

(αρA)1,liq

− 1

2

(αρuA)2
1,liq

(αρA)2
1,liq

(401)

e1,vap =
(αρEA)1,vap

(αρA)1,vap

− 1

2

(αρuA)2
1,vap

(αρA)2
1,vap

, (402)

and then from the equations of state,

p1,liq = pliq(v1,liq, e1,liq) (403)
p1,vap = pvap(v1,vap, e1,vap) . (404)

The procedure developed for the single phase boundary condition is mimicked for the
7-equation two-phase flow to get the phasic inlet velocities for use in the flux calculations
that are consistent with physical principles, and which utilize the characteristic information
from the solution interior

ubc,liq = {2[h0,liq − eliq(s0,liq, p1,liq)− p1,liq vliq(s0,liq, p1,liq)]}
1
2 (405)

ubc,vap = {2[h0,vap − evap(s0,vap, p1,vap)− p1,vap vvap(s0,vap, p1,vap)]}
1
2 . (406)

In this calculation it is important to check first that the descriminant for each phase

h0,liq − eliq(s0,liq, p1,liq)− p1,liq vliq(s0,liq, p1,liq) ≥ 0 (407)
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and
h0,vap − evap(s0,vap, p1,vap)− p1,vap vvap(s0,vap, p1,vap) ≥ 0 , (408)

which usually corresponds to the conditions p1,liq ≤ p0,liq and p1,vap ≤ p0,vap, respectively.
If the descriminant inequalities enumerated above are not satisfied for a phase, then flow
reversal has occured for that phase for the current iteration. Again, this represents a branch
point whereby the algorithm switches to the specified static back pressure boundary condi-
tion, for that phase, wherein the static back pressure pb is taken to be the specified stagnation
pressure values, i.e. pb,liq = p0,liq or pb,vap = p0,vap, as appropriate, and as discussed above.

As with the single-phase case, before computing the inlet fluxes for node 1 for each
phase, an additional check must be performed to determine whether the inlet flow for each
phase could be supersonic. To do this, the local phasic sound speeds must be computed
using the equations of state for each phase

w∗liq = wliq(v
∗
liq, e

∗
liq) = wliq(vliq(s0,liq, p1,liq), eliq(s0,liq, p1,liq))

w∗vap = wvap(v
∗
vap, e

∗
vap) = wvap(vvap(s0,vap, p1,vap), evap(s0,vap, p1,vap)) . (409)

If ubc,k ≤ w∗k for k = {liq, vap}, the inlet flow is indeed subsonic for that phase and
the previous calculations for that phase are all correct. However, if ubc,k > w∗k for k =
{liq, vap}, the inlet flow is supersonic for that phase and the characteristic information for
that phase, that was used from the solution domain interior, is incorrect. If the inlet velocity
for either phase is supersonic, then the procedures described for single phase supersonic
inlet flow, in the previous section, should be followed for that phase.

To account for the seventh characteristic, corresponding to the volume fraction evolu-
tion equation, the interface velocity is computed from the phasic velocities

uint =
Zliqubc,liq · n1 + Zvapubc,vap · n1

Zliq + Zvap
− sgn(α1,liq − αbc,liq)

p1,liq − p1,vap

Zliq + Zvap
(410)

where Zk =
w∗k

vk(s0,k,p1,k)
for k = {liq, vap} is the phasic acoustic impedance. If uint ·n1 ≤ 0

the interface velocity is flowing into the duct and the specified boundary value of αbc,liq is
used, i.e. α∗liq = αbc,liq, which is handled as a Dirichlet boundary. If, on the other hand,
when uint · n1 > 0 the interface velocity represents interface flow out from the duct and
the specified boundary value of αbc,liq must not be used. In this condition, no boundary
condition is necessary and α∗liq = α1,liq from the current finite element solution iterate for
node 1.

If the inlet velocities are all subsonic, the fluxes for node 1 are
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(Fρ)1,liq =
ubc,liq

vliq(s0,liq, p1,liq)
α∗liqA1 (411)

(Fρu)1,liq =

[
u2
bc,liq

vliq(s0,liq, p1,liq)
+ p1,liq

]
α∗liqA1 (412)

(FρE)1,liq =

[
ubc,liq

vliq(s0,liq, p1,liq)
h0,liq

]
α∗liqA1 . (413)

(Fρ)1,vap =
ubc,vap

vvap(s0,vap, p1,vap)
α∗vapA1 (414)

(Fρu)1,vap =

[
u2
bc,vap

vvap(s0,vap, p1,vap)
+ p1,vap

]
α∗vapA1 (415)

(FρE)1,vap =

[
ubc,vap

vvap(s0,vap, p1,vap)
h0,vap

]
α∗vapA1 . (416)

If any of the phasic inlet velocities are supersonic, no information can be used from the
interior domain solution, and all of the information must come from the specified bound-
ary conditions. As with the single-phase case, an additional boundary condition must be
specified for each phase that is supersonic at the inlet. The reader can review the options
described in the single-phase description of the previous section. If it is assumed that the
specified additional condition is pbc,k for k = {liq and/or vap}, then hbc,k is obtained from

hbc,k = ek(s0,k, pbc,k) + pbc,kvk(s0,k, pbc,k) (417)

and ubc,k is again obtained from

1

2
u2
bc,k = h0,k − hbc,k . (418)

Then the fluxes are set for that phase with supersonic inflow, for node 1 to

(Fρ)1,k =
ubc,k

vk(s0,k, pbc,k)
α∗kA1 (419)

(Fρu)1,k =

[
u2
bc,k

vk(s0,k, pbc,k)
+ pbc,k

]
α∗kA1 (420)

(FρE)1,k =

[
ubc,k

vk(s0,k, pbc,k)
h0,k

]
α∗kA1 . (421)
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Remark: Though not described here, the weak boundary conditions (fluxes) specified above
for both subsonic and supersonic inlet flow for each phase can be replaced, respectively,
by their strong (Dirichlet) counterpart in a manner similar to that described for single-phase.

5.5 Static Pressure Outlet, Single-Phase

The static pressure outlet boundary condition is designed to approximate the effect of at-
taching a very large tank or volume of fluid, such as the atmosphere to the outlet of a duct
so that the flow may be absorbed or captured by this large volume. The tank or volume is so
large that its thermodynamic conditions do not change with this fluid addition. Especially
it is assumed that the static pressure of the tank or volume static pressure is temporally
invariant, and is therefore neccessarily specified, pb or pback. This specified static pressure
is sometimes called the back pressure. A complicating feature of this boundary condition
is that, while the duct may be outflowing at this boundary at steady state, during a transient,
waves of sufficient magnitude may reflect from this boundary so as to cause a temporary
flow reversal. Then the normal outlet becomes a temporary inlet until such time as the
flow reverses again, becoming an outlet once more. This is very much like the opposite of
that discussed for the stagnation inlet boundary above, and will be further elaborated upon
subsequently.

To begin this description, assume first that the static pressure outlet boundary (and
volume) is located at the terminus of a duct, at its last node nnd. For discussion sake, it is
imagined to be also at the right end of the duct, so that the normal flow direction in the duct
is from left to right. As with the closed end boundary condition, subscript nnd on a variable
indicates the value at the last elemental (terminus) node of the duct for the current solution
iterate. A superscript * denotes a generic value of the variable at this boundary node. A
subscript b denotes a supplied boundary condition value at the node that will be used in the
computation of fluxes.

From the method of characteristics it is known that at a subsonic outlet there are two
right running characteristics, a right running acoustic characteristic and a right running
material motion, particle path, or entropic characteristic. The material motion, particle
path, or entropic characteristic coming from the solution domain interior requires either

ρ∗ = ρnnd

or
p∗ = pnnd

while the acoustic characteristic coming from the solution domain interior requires either
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u∗ = unnd

or
p∗ = pnnd .

Furthermore, this is the only information that can be used from the solution’s interior do-
main. On physical basis, for a subsonic outflow the pressure at the outlet will be enforced
to be the specified back pressure value pb. This forces the following choice:

ρ∗ = ρnnd (fromnodal solution iterate) (422)
u∗ = unnd (fromnodal solution iterate) (423)
p∗ = pb (specified boundary condition) , (424)

where ρnnd and unnd are obtained from the current solution iterate

ρnnd =
(ρA)nnd
Annd

(425)

unnd =
(ρuA)nnd
(ρA)nnd

. (426)

Then the internal energy is determined from the equation of state

e∗ = e(v∗, p∗)

= e(
1

ρ∗
, pb) , (427)

and the sound speed is determined by either

w∗ = w(v∗, p∗)

= w(
1

ρ∗
, pb) , (428)

or (equivalently)

w∗ = w(v∗, e∗)

= w(
1

ρ∗
, e∗) . (429)
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At this point, the velocity is verified to be subsonic, i.e. if 0 < unnd ≤ w∗ then the fluxes
are set for node nnd as

(Fρ)nnd = (ρuA)nnd (430)

(Fρu)nnd =
(ρuA)2

nnd

(ρA)nnd
+ pbAnnd (431)

(FρE)nnd = (ρuA)nnd

[
e∗ +

pb
ρnnd

+
1

2

(ρuA)2
nnd

(ρA)2
nnd

]
. (432)

Thus the nodal fluxes depend implicitly upon the current element nodal solution iterate
(which provides characteristic information from the domain interior) and the supplied
boundary condition information (which replaces the “missing” characteristic information).
The exit Mach number can also be computed form Mexit = unnd

w∗
.

If, however, the outflow is supersonic, i.e. if unnd > w∗ then the characteristic infor-
mation that is used must be modified. In addition to the two right running characteristics
considered above for subsonic outflow, there is another right running characteristics coming
from the solution domain interior. Because the outflow is supersonic, pressure distrubances
cannot propagate upstream from the large volume or tank into the duct, and the pressure at
the exit no longer is required to match the specified pressure pb. This requires that

ρ∗ = ρnnd

or
p∗ = pnnd

from the material motion, particle path, or entropy characteristic; while the two acoustic
characteristics coming from the solution domain interior require both

u∗ = unnd

and
p∗ = pnnd .

Thus ρ∗ = ρnnd, u∗ = unnd, and p∗ = pnnd. For supersonic outflow, all of the fluxes are
computed from the interior finite element nodal solution information. That is, from the
current solution iterate
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ρnnd =
(ρA)nnd
Annd

(433)

unnd =
(ρuA)nnd
(ρA)nnd

(434)

e∗∗ = ennd =
(ρEA)nnd
(ρA)nnd

− 1

2

(ρuA)2
nnd

(ρA)2
nnd

(435)

and from the equation of state

p∗ = pnnd = p(
1

ρ∗
, e∗∗) (436)

w∗∗ = w(
1

ρ∗
, e∗∗) , (437)

the second of which can be used to determine the exit Mach number Mexit = unnd
w∗∗

. The
supersonic outflow fluxes at node nnd are then set as

(Fρ)nnd = (ρuA)nnd (438)

(Fρu)nnd =
(ρuA)2

nnd

(ρA)nnd
+ p(

1

ρ∗
, e∗∗)Annd (439)

(FρE)nnd = (ρuA)nnd

[
e∗∗ +

p( 1
ρ∗
, e∗∗)

ρ∗
+

1

2

(ρuA)2
nnd

(ρA)2
nnd

]
. (440)

Remark: For sonic or supersonic outflows, if pnnd > pb at solution convergence, the exit
flow is said to be underexpanded. If, on the other hand, pnnd < pb at solution convergence,
the exit flow is said to be overexpanded. If, at solution convergence, the supersonic flow has
pnnd = pb the flow is said to be perfectly expanded. Nuclear vessel, and other high-pressure
tank blowdowns are commonly underexpanded.

Last, but not least, the flow at the “exit” node must be checked to see if it has reversed,
i.e. the “outlet” has temporarily become an inlet. If unnd · nnnd < 0 and |unnd| < w∗ the
flow has become a subsonic inlet (here nnnd is the solution domain outward normal at node
nnd). If unnd ·nnnd < 0 and |unnd| > w∗∗ the flow has become a supersonic inlet. If either
of these conditions occurs during an iterate, the boundary condition should be changed
to stagnation inlet boundary condition with the specified back pressure pb becoming the
specified stagnation inlet pressure p0, i.e. p0 = pb. Obviously, a value for stagnation
temperature, T0, must also be specified, to be used only in this event. The stagnation inlet
boundary conditions were fully described in the previous two sections.
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5.6 Static Pressure Outlet, Two-Phase

Again the eigenstructure for the 7-equation two-phase model, without source terms, is like
that of two, separate instances of the single-phase model. The source terms which would
occur with the characteristic equations are accounted for in the solution of the element
equations. To physically and mathematically describe the static pressure outlet for the 7-
equation two-phase model, the procedure described in the previous section for a single
phase is duplicated for each of the two phases, except that the effective flow areas are
modulated by the local, phasic volume fractions. That accounts for six of the seven char-
acteristic equations. The effect of the additional characteristic which occurs due to the
volume fraction evolution equation for the 7-equation must also be taken into account.

As was done with the extension of the closed end and stagnation boundary conditions
from single-phase to the 7-equation two-phase equation set an additional subscript indicat-
ing the phase or interface is utilized. As with the single-phase version, the two-phase static
pressure outlet boundary for RELAP-7 would generally require the specification of a static
outlet pressure, or back pressure, for each phase, pb,k for k = {liq, vap}. However, it is
difficult to imagine a case where discharge of two-phase flow from a duct would occur due
to each phase responding to a separate receiver, i.e. pb,liq 6= pb,vap. So for subsonic outflow
of each phase, a common static outlet or back pressure pb is employed for both phases.

From the method of characteristics, for subsonic outflow of each phase

ρ∗liq = ρnnd,liq (fromnodal solution iterate) (441)

u∗liq = unnd,liq (fromnodal solution iterate) (442)

p∗liq = pb (specified boundary condition) , (443)

and

ρ∗vap = ρnnd,vap (fromnodal solution iterate) (444)

u∗vap = unnd,vap (fromnodal solution iterate) (445)

p∗vap = pb (specified boundary condition) , (446)

where ρnnd,k and unnd,k for k = {liq, vap} are obtained from the current solution iterate

ρnnd,k =
(αρA)nnd,k
(αA)nnd,k

(447)

unnd,k =
(αρuA)nnd,k
(αρA)nnd,k

. (448)
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Then the phasic internal energies are determined from the equation of state

e∗k = ek(v
∗
k, p
∗
k)

= ek(
1

ρ∗k
, pb) , (449)

and the phasic sound speeds are determined by either

w∗k = wk(v
∗
k, p
∗)

= wk(
1

ρ∗k
, pb) , (450)

or (equivalently)

w∗k = wk(v
∗
k, e
∗
k)

= wk(
1

ρ∗k
, e∗k) . (451)

From the seventh characteristic due to the volume fraction evolution equation, phase k vol-
ume fractions must come from the phase’s solution domain interior if uint · nnnd > 0, i.e.
they must also come from the finite element current solution iterate

αnnd,k =
(αA)nnd,k
Annd

. (452)

At this point, the phasic velocities are each verified to be subsonic, i.e. if 0 < |unnd,k| ≤
w∗k for each phase k = {liq, vap} then the fluxes are set for each subsonic phase, for node
nnd as

(Fρ)nnd,k = (αρuA)nnd,k (453)

(Fρu)nnd,k =
(αρuA)2

nnd,k

(αρA)nnd,k
+ pb(αA)nnd,k (454)

(FρE)nnd,k = (αρuA)nnd,k

[
e∗k +

pb
ρnnd,k

+
1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

]
. (455)

The exit Mach number for each phase is then Mexit,k =
unnd,k
w∗k

, for k = {liq, vap}.

If, however, the outflow for either phase is supersonic, i.e. unnd,k > w∗k, for k =
{liq, vap}, then the characteristic information that is used for that phase must be modified.
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In addition to the two right running characteristics considered above for subsonic outflow,
there is another right running characteristic for that phase coming from the solution domain
interior. Because the phasic outflow is supersonic, pressure distrubances cannot propagate
upstream in that phase from the large volume or tank into the duct, and the pressure for
that phase at the exit no longer is required to match the specified pressure pb. This requires
that, for each supersonic phase k, ρ∗k = ρnnd,k, u∗k = unnd,k, and p∗k = pnnd,k. For each
phase with supersonic outflow, all of the fluxes are computed from the interior finite ele-
ment nodal solution information. That is, for each supersonic phase at node nnd, from the
current solution iterate

ρnnd,k =
(αρA)nnd,k
(αA)nnd,k

(456)

unnd,k =
(αρuA)nnd,k
(αρA)nnd,k

(457)

e∗∗k = ennd,k =
(αρEA)nnd,k
(αρA)nnd,k

− 1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

(458)

and from the equation of state

p∗k = pnnd,k = pk(
1

ρ∗k
, e∗∗k ) (459)

w∗∗k = wk(
1

ρ∗k
, e∗∗k ) , (460)

the second of which can be used to determine the phase’s exit Mach number Mexit,k =
unnd,k
w∗∗k

. The supersonic phase’s outflow fluxes at node nnd are then set as

(Fρ)nnd,k = (αρuA)nnd,k (461)

(Fρu)nnd,k =
(αρuA)2

nnd,k

(αρA)nnd,k
+ pk(

1

ρ∗k
, e∗∗k )(αA)nnd,k (462)

(FρE)nnd,k = (αρuA)nnd,k

[
e∗∗k +

pk(
1
ρ∗k
, e∗∗k )

ρ∗k
+

1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

]
. (463)

Remark: In the discharge of a two-phase mixture from a duct into a receiver (large tank
or atmosphere, etc.), each phase can be subsonic, underexpanded, or overexpanded. That,
coupled with the complicated dynamics of the 7-equation two-phase model, with its multi-
ple inherent relaxation processes, in the element adjacent to the boundary, can lead to very
complicated discharge flows with complicated choking behavior.
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Lastly, as was done for single-phase, the flow for each of the two phases at the “exit”
node must be checked to see if it has reversed, i.e. the “outlet” has temporarily become an
inlet for that phase. If unnd,k · nnnd < 0 and |unnd,k| < w∗k the flow has become a subsonic
inlet for phase k. If unnd,k · nnnd < 0 and |unnd,k| > w∗∗k the flow has become a supersonic
inlet for phase k. If either of these conditions occurs for phase k during an iterate, the
boundary condition for that phase should be changed to a phasic stagnation inlet boundary
condition with the specified back pressure pb becoming the specified phasic stagnation inlet
pressure p0,k, i.e. p0,k = pb. Obviously, a value for the phasic stagnation temperature, T0,k,
and a value for the liquid phase volume fraction, αbc,liq, (αbc,vap = 1− αbc,liq) must also be
specified, to be used only in this event. The stagnation inlet boundary conditions were fully
described previously.

5.7 Specified Charging Rate, Single-Phase

The specified charging rate boundary condition, sometimes also refered to as an injection
boundary, joins the stagnation inlet boundary condition, discussed previously, as another
way to approximate an inlet flow boundary. With the specified charging rate boundary
condition the inlet mass flow rate is specified along with the stagnation enthalpy of the
inlet flow. This is a fairly strong physical condition in that it enforces the specified inlet
mass flow rate no matter what is happening inside the duct to which it is attached. It is
emphasized that, unlike the stagnation inlet boundary, no flow reversal can occur with the
specified charging rate boundary condition. In the following description it will be assumed
that these specified parameters are such as to produce a subsonic inlet flow condition.

It is assumed first that the specified charging rate boundary is located at the terminus
of a duct at its first node, node 1, which for discrussion sake will be imagined to be also
at the left end of the duct, so that the flow will be driven into the duct from left to right.
Subscripts on a variable will again indicate the variable at that finite element node number,
except that the subscript 0 will also unambiguously be use to indicate a stagnation value.
Superscript ∗ denotes a generic value of the variable at the boundary node.

From the method of characteristics it is known that for a subsonic inlet there is only
one left running acoustic characteristic coming from the solution domain interior which
requires either

u∗ = u1

or
p∗ = p1 , (464)

and this is the only information that can be used from the solution’s interior domain. For
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simplicity, the former, u∗ = u1, is picked. The other information which would be carried by
a right running acoustic characteristic, u∗ or p∗, and right running material motion, particle
path, or entropy characteristic, ρ∗ or p∗, is missing and must be supplied by the boundary
conditions. The choice of u∗ to come from the interior solution forces the following choice:

u∗ = u1 (fromnodal solution iterate)

p∗ (fromspecified boundary condition/solution)

ρ∗ (fromspecified boundary condition/solution) .

The missing information will be supplied from two physical approximations based on:
(1) From the energy equation, the stagnation enthalpy, h0, is invariant at the inlet and is
specified, and (2) From the specified mass flow rate, ṁ, at the duct inlet. This information
is embodied in the following two equations which must be satisfied simultaneously:

ρ∗u1A1 = ṁ

and the transcendental equation

h(ρ∗, p∗) +
1

2
u2

1 = h0 ,

where the nodal velocity, u1 is determined from

u1 =
(ρuA)1

(ρA)1

. (465)

These two equations can be simplified. From the first, an explicit expression of ρ∗ is ob-
tained

ρ∗ =
ṁ

A1

(ρA)1

(ρuA)1

, (466)

and from the second, a transcendental equation in p∗ only (with ρ∗ as a dependency) is
obtained

e(ρ∗, p∗) +
p∗

ρ∗
+

1

2

(ρuA)2
1

(ρA)2
1

= h0 , (467)

which, of course, must be solved iteratively for p∗. One way that this can be accomplished
for an iterative finite element solver (to avoid an iteration within an iteration) is to rearrange
this equation into the functional iteration form

p∗, ν+1 = ρ∗h0 − ρ∗e(ρ∗, p∗, ν)−
1

2
ρ∗

(ρuA)2
1

(ρA)2
1

(468)
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where superscripts ν + 1 and ν denote iterate levels. Thus the p∗ dependency in e(ρ∗, p∗, ν)
lags by one iteration level. However, at convergence, all the variables will be consistent to
with convergence tolerance.

With ρ∗, u∗, and p∗, ν+1 determined for the current solution iterate, the fluxes can be
computed as

(Fρ)1 = ṁ (469)

(Fρu)1 =
ṁ2

ρ∗A1

+ p∗, ν+1A1 (470)

(FρE)1 = ṁh0 . (471)

As with the previously described boundaries, the nodal fluxes again depend implicitly upon
the current element nodal solution iterate (which provides characteristic information from
the domain interior) and the supplied boundary condition information (which replaces the
“missing” characteristic information).

Remark: It is tempting to replace the weakly imposed boundary condition for momentum,
where flux (Fρu)1 is specified above, by the strongly imposed Dirichlet boundary condition
Residual = (ρuA)1 − ṁ ≈ 0. This approximation, however, violates the characteristic
conditions for a subsonic inlet because, in that case, all of the boundary condition informa-
tion would be coming from the specified information, and none of the information would
be coming from the solution in the domain interior.

5.8 Specified Charging Rate, Two-Phase

The specified charging rate boundary condition is designed to approximate an inlet in which
the mass flow rate is specified for each phase, ṁk, and the flow for each phase enters the
duct with a specified stagnation enthalpy, h0,k, k = {liq, vap}. As with the single-phase
version of this boundary condition, it is assumed that the conditions specified are such that
the inlet flow velocity for each phase is subsonic. No flow reversal can occur for either
phase. Subscripts and superscripts are identical to those for single-phase, except that an
additional subscript is added to variables to indicate that the variable applies to a particular
phase k, with k = {liq, vap}.

As with the other two-phase boundary conditions, because of the eigenstructure, the
two-phase models for each phase mimick those of the corresponding single phase. To ac-
count for the volume fraction evolution equation, a seventh characteristic condition requires
that a volume fraction of liquid be specified at the boundary, αbc,liq, if uint is directed into
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the duct and that the liquid volume fraction at the boundary comes from the interior of the
duct if uint is directed out of the duct.

From the method of characteristics it is known that for a subsonic inlet there is only
one left running acoustic characteristic for each phase coming from the solution domain
interior which requires either

u∗k = u1,k

or
p∗k = p1,k , (472)

for each k = {liq, vap}, and this is the only information that can be used from the solu-
tion’s interior domain. For simplicity, the former, u∗k = u1,k, is picked for each phase k.
The other information which would be carried by right running acoustic characteristics, u∗k
or p∗k for each k = {liq, vap}, and right running material motion, particle path, or entropy
characteristics, ρ∗k or p∗k for each k = {liq, vap}, is missing and must be supplied by the
boundary conditions. The choice of u∗k for each phase to come from the interior solution
forces the following choices for each k = {liq, vap}:

u∗k = u1,k (fromnodal solution iterate)

p∗k (fromspecified boundary condition/solution)

ρ∗k (fromspecified boundary condition/solution) .

In addition, the linear degenerate characteristic resulting from the volume fraction evolution
equation forces the following choice

α∗liq = αbc,liq if uint · n1 ≤ 0 (uint into duct) (473)

α∗liq = α 1,liq if uint · n1 > 0 (uint out from duct) , (474)

and, obviously, α∗vap = 1− α∗liq.

As with the single-phase case, the missing information will be supplied from the two
physical approximations for each phase (which must be satisfied simultaneously for each
phase)

α∗kρ
∗
ku1,kA1 = ṁk

and the transcendental equations

hk(ρ
∗
k, p
∗
k) +

1

2
u2

1,k = h0,k ,
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where the nodal velocities, u1,k are determined from

u1,k =
(αρuA)1,k

(αρA)1,k

, (475)

for each k = {liq, vap}. The interface velocity uint is determined from the phasic veloci-
ties and thermodynamic properties

uint =
Zliqu1,liq · n1 + Zvapu1,vap · n1

Zliq + Zvap
− sgn(α1,liq − αbc,liq)

p∗liq − p∗vap
Zliq + Zvap

(476)

where Zk = ρ∗kw
∗
k for k = {liq, vap} is the phasic acoustic impedance. If uint ≤ 0 the

interface velocity is flowing into the duct and the specified boundary value of αbc,liq is used,
i.e. α∗liq = αbc,liq, which is handled as a Dirichlet boundary. If, on the other hand, when
uint > 0 the interface velocity is interface flow out from the duct and the specified boundary
value of αbc,liq must not be used. In this condition, no boundary condition is necessary and
α∗liq = α1,liq from the current finite element solution iterate for node 1.

These equations can be simplified. From the first set, explicit expressions of ρ∗k are
obtained

ρ∗k =
ṁk

α∗kA1

(αρA)1,k

(αρuA)1,k

, (477)

and from the second set, transcendental equations in p∗k only for each phase k (with ρ∗k as a
dependency, respectively in each phase) are obtained

ek(ρ
∗
k, p
∗
k) +

p∗k
ρ∗k

+
1

2

(αρuA)2
1,k

(αρA)2
1,k

= h0,k . (478)

As with the single-phase version, for an iterative finite element solver, a way to handle the
additional iterative requirements of the transcendental equations is to rearrange them into
functional iteration form

p∗, ν+1
k = ρ∗kh0,k − ρ∗kek(ρ∗k, p

∗, ν
k )− 1

2
ρ∗k

(ρuA)2
1,k

(ρA)2
1,k

(479)

for each k = {liq, vap}, where superscripts ν + 1 and ν denote iterate levels.

With ρ∗k, u∗k, and p∗, ν+1
k for k = {liq, vap} determined, the fluxes for each phase can be

computed as

(Fρ)1,k = ṁk (480)

(Fρu)1,k =
ṁ2
k

α∗kρ
∗
kA1

+ α∗kp
∗, ν+1
k A1 (481)

(FρE)1,k = ṁkh0,k . (482)
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6 Flow Topology - Dependent Closure Models

The purpose of this chapter is to describe the correlations that close the equation system
for both the single- and two-phase flows. Because information was lost in the averaging
process used to homogenize the 1-D balance equations, some of this information must
be approximately reconstructed to restore closure of the governing equation systems. For
single-phase flow, closure correlations are required to describe the interaction between the
fluid and the wall, e.g., wall drag and wall heat transfer models. In addition to those types
of closures necessary for single-phase flows, two-phase flows require closures related to
the fact that interfaces, having dynamically changing topologies, are present between the
two phases. For two-phase flow, wall drag and wall heat transfer models, which now must
also include the phasic partitioning, are required to describe the interaction between the two
phases and the wall. Additional closure correlations to describe the interfacial interactions
between the two phases are also necessary to close the system, such as interfacial area
concentration and distribution, interfacial drag (friction) and interfacial heat/mass transfer
models. For two-phase flow, most of the closure correlations depend critically on the local
topology of the two-phase flow, for example bubbly flow in vertical pipes.

When a vapor-liquid mixture flows in ducts, pipes, or channels, the two phases may
distribute in a variety of patterns or topologies, often referred to as flow regimes. In general,
these patterns depend on the phasic flow rates, fluid properties, and channel geometries. In
two-phase flows, interfacial heat/mass and momentum exchanges vary greatly with these
topologies, so it is important to correctly identify the local flow regime in the simulations of
two-phase flow. For example, Fig. 5 shows the flow regimes in determining the interfacial
drag models used in the TRACE code [2]. In this particular case, the interfacial drag
models are considered for the dispersed bubble flow regime, the combined slug and Taylor
cap flow regime, and the annular/mist flow regime.

Many of these flow topology-dependent closure correlations have been extensively in-
vestigated and partially validated in existing system analysis codes, for example TRACE
[2]. For the current stage of RELAP-7 code development, the existing closure correla-
tions for vertical pre-CHF flows (i.e. for vertical flows before the critical heat flux state
is reached) from the TRACE code [2] are used exclusively. Thus for all references in this
chapter, the reader is referred to the TRACE code manual [2]. More details of the flow
topology-dependent closure models are discussed in the following subsections.
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Figure 5. Flow regimes in vertical pipes under the pre-CHF con-

ditions. From left to right, dispersed bubble, slug flow, taylor cap

bubble, and annular/mist [2].

6.1 Wall drag

The single-phase wall friction model is discussed first. For single-phase flow, the wall drag

coefficient is defined as

Cwall,k = fwall,k
2ρk
Dh

(483)

where the subscript k = {liq, vap} indicates the fluid phase, fwall the Fanning friction

factor, and Dh the hydraulic diameter. Similar to the TRACE code, the Churchill formula

is used to model the friction factor

fwall = 2

[(
8

Re

)12

+
1

(a+ b)3/2

]1/12

(484)

where

a =

⎧⎨⎩2.475ln

⎡⎣ 1(
7
Re

)0.9
+ 0.27

(
ε

Dh

)
⎤⎦⎫⎬⎭

16

(485)

and

b =

(
3.753× 104

Re

)16

(486)

with, ε, the surface roughness.
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The phasic Reynolds number is defined as

Rek ≡
ρk|uk|Dh

µk
(487)

for k = {liq, vap}, where µk is the phasic viscosity. The phasic Reynolds number is limited
to be greater than 10.

For the two-phase flow regimes, the two-phase multiplier concept is used to determine
the two-phase flow wall drag. By comparing the 7-equation model presented in the previous
chapter and the traditional 6-equation two-fluid model used in the TRACE code, it can be
observed that

Fwall friction,liq = ACwall,liquliq|uliq| (488)

and
Fwall friction,vap = ACwall,vapuvap|uvap| (489)

where Cwall,liq and Cwall,vap are the phasic wall drag coefficients used in the TRACE code.
A is the pipe cross-sectional area. uliq and uvap are the phasic velocities.

For two-phase flows in vertical pipes in the pre-CHF flow regimes, the wall drag of
both the bubbly and slug flow regimes are modeled the same,

Cwall,liq = fwall,liq
2ρliq
Dh

(1 + CNB)2 (490)

where the coefficient CNB is given as,

CNB = Min

{
2, 155

dB
Dh

[αvap(1− αvap)]0.62

}
. (491)

Here, αvap is the volume fraction of the vapor phase, dB the size of dispersed bubbles. The
wall drag coefficient for the liquid phase alone, fwall,liq, is modeled using the Churchill
formula. For the bubble size, dB, the size of a dispersed bubble is used, which will be
discussed in the interfacial drag model section. In the bubbly/slug flow regime, the gas
phase wall drag is assumed to be zero, i.e. Cwall,vap = 0.

In the annular mist flow regime, if the channel surface is considered to be fully covered
by liquid film, the wall drag coefficient for the liquid phase is modeled as

Cwall,liq = ffilm
2ρliq
Dh

(492)

where ffilm is the friction factor for the annular flow regime, and is given by a power law
combination of the laminar and turbulent values,

ffilm = (f 3
lam + f 3

turb)
1/3 . (493)
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Here the friction factor for the laminar regime is defined as

flam =

[
16 + 8

(
αvap−0.95

0.99−0.95

)]
Re2Φ,liq

, (494)

and the friction factor for the turbulent regime is defined as

fturb =
1{

3.6log10

[
6.9

Re2Φ,liq
+
(
ε/D
3.7

)1.11
]}2 . (495)

In both correlations, the Reynolds number,Re2Φ,liq, is calculated as a liquid volume fraction
weighted phasic Reynolds number

Re2Φ,liq =
(1− αvap)ρliq|uliq|Dh

µliq
= αliqReliq . (496)

The vapor phase wall drag is assumed to be zero, i.e. Cwall,vap = 0, if the channel surface
is fully covered by liquid film.

When the channel surface is considered to be partially covered by liquid film, taken as
the condition wherein liquid film is present with thickness smaller than 25 µm, the wall
drag coefficient for the liquid phase is modeled as

Cwall,liq = fwetffilm
2ρliq
Dh

(497)

where

fwet ≈
(1− αvap)Dh

4(25× 10−6)
. (498)

In this case, the vapor phase wall drag coefficient is no longer zero, and is modeled as

Cwall,vap = (1− fwet)f2Φ,vap
2ρvap
Dh

, (499)

with f2Φ,vap the vapor phase friction factor, wherein the two-phase condition is considered
to be flowing in the channel alone.

A transition from the bubbly/slug to the annular mist flow regime is also used. For vapor
volume fractions between 0.8 and 0.9, the liquid phase wall drag coefficient is modeled as

Cwall,liq = wfBSCwall,liq,BS + (1− wfBS)Cwall,liq,AM (500)

where the weight factor is defined as

wfBS =
0.9− αvap
0.9− 0.8

. (501)

This concludes the wall drag model for single- and two-phase flows in vertical pipes
for pre-CHF flow regimes.
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6.2 Interfacial drag

Again, by comparing the 7-equation model presented in the previous chapter and the 6-
equation two-fluid model used in the TRACE code [2], it can be obtained that

Ffriction,vap = −Ffriction,liq = ACiur|ur| (502)

where A is the pipe cross-sectional area, Ci the interfacial drag coefficient, and ur is the
relative velocity between the two phases,

ur = uvap − uliq . (503)

For the pre-CHF (Critical Heat Flux) regimes in vertical pipes/bundles, the interfacial
drags are modeled in three major regimes, namely, bubbly, cap/slug, and annular mist flow
regimes. The bubbly and slug flow regimes are grouped together using a similar approach.

For the combined bubbly/slug flow regime, the interfacial drag coefficient, Ci, is mod-
eled as

Ci,BS =
αvap(1− αvap)3g∆ρ

v̄2
gj

Ps (504)

where the subscript BS stands for the combined bubbly and slug flow regimes. PS is the
profile slip factor, and v̄gj is the weighted area-average value of the drift velocity. ∆ρ is the
density difference between the two phases, ∆ρ = ρliq − ρvap.

The profile slip factor is

Ps =

(
1−C0αvap

1−αvap uvap − C0uliq

)2

u2
r

. (505)

The distribution coefficient, C0, and the weighted area-average value of the drift veloc-
ity, v̄gj , are both flow regime dependent parameters, and will be discussed separately for
each flow regime.

For the dispersed bubbly flow regime, these two parameters are modeled as

v̄gj = (v̄gj)DB =
√

2

(
σg∆ρ

ρ2
liq

)1/4

(506)

and
C0 = 1.2− 0.2

√
ρvap
ρliq

(507)

where σ is the surface tension of the interface.
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For the cap/slug flow regime, the distribution coefficient, C0, is modeled the same as in
the dispersed bubbly flow regime. The weighted drift velocity is given by

(v̄gj)CS = v̄+
gj

(
σg∆ρ

ρ2
liq

)1/4

(508)

where the non-dimensional drift velocity is modeled as

v̄+
gj = 0.0019 (Min[30, D∗h])

0.809

(
ρvap
ρliq

)−0.157

N−0.562
µ,liq . (509)

Here the non-dimensional hydraulic diameter is given as

D∗h =
Dh√
σ
g∆ρ

(510)

and the liquid viscosity number is defined as

Nµ,liq ≡
µliq(

ρliqσ
√

σ
g∆ρ

)1/2
. (511)

The quantity
√

σ
gδρ

is a capillary number, Ca, which will recur subsequently, so for conve-

nience, this definition shall be made, i.e.

Ca =

√
σ

g∆ρ
.

A transition region is added between the dispersed bubbly and cap/slug flow regimes.
In this transition region, a simple linear interpolation is used to model the weighted drift
velocity,

v̄gj = wfDB (v̄gj)DB + (1− wfDB) (v̄gj)CS (512)

in which, the subscripts DB and CS denote the dispersed bubbly and cap/slug flow regimes,
respectively. The weighted drift velocity (v̄gj)DB and (v̄gj)CS are calculated from equa-
tions (506) and (508), respectively. The linear interpolation coefficient wfDB is calculated
as

wfDB =
αvap,CS − αvap

αvap,CS − αvap,DB
(513)

where

αvap,DB = 0.2 min

[
1,
Tsat − Tl

5

]
(514)
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and
αvap,CS = αvap,DB + 0.1 , (515)

with Tsat = Tint.

For the annular mist flow regime, the interfacial drag comes from two parts, i.e., the
interfacial drag between the liquid film and the vapor core, and the interfacial drag between
the liquid droplets and the vapor core. Considering the velocity difference between the
liquid film and the liquid droplets entrained in the vapor core, the overall interfacial drag
coefficient for the annular mist flow regime is modeled as

Ci,AM = Ci,film + Ci,drop
u2
r,d

(uvap − uliq)2
(516)

whereCi,film andCi,drop are the interfacial drag coefficients for the liquid film and droplets,
respectively, and ur,d is the droplet relative velocity. The interfacial drag coefficient for the
liquid film part is modeled as

Ci,film = fi,filmA
′′′
i,film

1

2
ρvap . (517)

Here the specific interfacial area (interfacial area per unit volume) is computed from

A′′′i,film =
4

Dh

√
αvap , (518)

and the friction factor for the liquid film is approximated by

fi,film = 0.005[1 + 75(1− αvap)] . (519)

For the liquid droplets part, the fraction of the liquid flow that is entrained as droplets
in the vapor core must to be estimated first. For small diameter pipes (Dh ≤ 3.2cm), the
entrainment fraction is modeled as

E∞ = tanh
[
7.25× 10−7We1.25

vap min(6400, Ref )
0.25
]

(520)

where the liquid film Reynolds number is defined as

Ref =
(1− αvap)ρliquliqDh

µliq
(521)

and the effective Weber number for entrainment is defined as

Wevap =
ρvapj

2
vapDh

σ

(
∆ρ

ρvap

)1/3

, (522)
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with jvap being the superficial velocity of the vapor phase. The superficial phasic velocities,
or phasic volumetric fluxes, are defined by

jk = αkuk

for k = {liq, vap}.

For large diameter pipes, (Dh > 3.2cm), the entrained fraction is modeled as

E∞ = 0.015 + 0.44log10

[
0.9245

(
π2

π2,crit

)2
]

(523)

where, π2 is the non-dimensional vapor velocity that is defined as

π2 =
jvapµvap

σ

√
ρvap
ρliq

(524)

and π2,crit = 2.46× 10−4 is the inception criteria for liquid droplet entrainment.

The interfacial drag coefficient for the droplets is modeled as

Ci,drop = CDA
′′′
d

1

2
ρvap (525)

= CD ρvap
3αcαd
4dd

(526)

where αc is the volume fraction of the annular core region (vapor + droplets), and αd is the
fraction of the annular core occupied by the droplets. For this equation the relation for the
projected area of droplets per unit mixture volume, A′′′d = 3

2

αvapαd
(1−αd)dd

has been used. The
drop drag coefficient, CD, is modeled as

CD =
24

Red

(
1 + 0.1Re0.75

d

)
(527)

with the drop Reynolds number defined as

Red =
ρvap|uvap − ud|dd

µm
. (528)

Here dd is the droplet Sauter mean diameter (discussed later) and the mixture viscosity is
given by

µm =
µvap

(1− αd)2.5
(529)

where ur,d = uvap − ud is the droplet relative velocity, to be given subsequently. The
fraction of the annular vapor core occupied by the droplets, αd, is approximated by

αd = E∞
jliq
jvap

(530)
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and is limited by
αd ≤ E∞(1− αvap) , (531)

where, again, jliq and jvap are the superficial velocities of the two phase. The Sauter mean
diameter is modeled as

dd = 0.008

(
σ

ρvapj2
vap

)
Re2/3

vap

(
µvap
µliq

)2/3(
ρvap
ρliq

)−1/3

(532)

where the gas Reynolds number is defined as

Revap =
ρvapjvapDh

µvap
. (533)

In addition, the Sauter mean diameter is limited to be

84µm ≤ dd ≤ 4mm. (534)

The drop relative velocity, ur,d, is modeled as

ur,d =

1.718
√
dd

[
g∆ρ
ρvap

]1/2

(1− αd)1.5 dd ≤ dd,Newton
√

2
[
σg∆ρ
ρ2
vap

]1/4

(1− αd)1.5 dd > dd,Newton

(535)

with

dd,Newton = 0.678

√
σ

g∆ρ
= 0.678Ca . (536)

Finally, in order to avoid a discontinuous change of the interfacial drag coefficient be-
tween the combined bubbly/slug flow regime and the annular mist flow regime, the interfa-
cial coefficient is averaged using a simple power law weighting scheme,

Ci =
√
C2
i,BS + C2

i,AM . (537)

This concludes the interfacial drag model in vertical pipes for pre-CHF flow regimes.

6.3 Interfacial heat transfer

In the pre-CHF regimes for vertical pipes, similar to the interfacial drag, the interfacial
heat transfer is modeled in the bubbly, cap/slug, annular/mist flow, as well as a transitional
regime. The flow regime map for vertical pipes under pre-CHF conditions is shown in
Fig. 6.
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Figure 6. Flow regime map in vertical pipes under the pre-CHF

conditions, for interfacial heat transfer [2].

For the bubbly flow regime, only the dispersed bubbles contribute to the interfacial heat

transfer, thus

(hliA
′′′
i )Bubbly = (hliA

′′′
i )DB . (538)

When evaluating interfacial heat transfer, the bubbly flow regime is defined as

αvap < αvap,DB (539)

where αDB is modeled as

αvap,DB =

⎧⎪⎨⎪⎩
0.3 G ≤ 2000(kg/m2s)

0.3 + 0.2
(

G−2000
2700−2000

)
2000 < G < 2700(kg/m2s)

0.5 G ≥ 2700(kg/m2s)

(540)

and G is the total mass flux of the two phases.

The interfacial area for the dispersed bubbles is simply modeled as

A′′′
i,DB =

6αvap

dDB

(541)
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where the diameter of the dispersed bubbles is approximated by

dDB = 2Ca = 2

√
σ

g∆ρ
(542)

where Ca is the Capillary number discussed in the last section.

According to the TRACE manual, this value is constrained in TRACE to lie within the
range of,

10−4(m) ≤ dDB ≤ 0.9Dh (543)

where Dh is the hydraulic diameter of the channel.

For the heat transfer between the liquid and bubble interface, in both evaporation and
condensation, the heat transfer coefficient is

hli,DB =
kliq
dDB

NuDB (544)

where the Nusselt number is given by

NuDB = 2.0 + 0.6Re
1/2
DBPr

1/3
liq (545)

and Prliq is the Prandtl number of the liquid phase.

The bubble Reynolds number, ReDB, defined as a function of the dispersed bubble
relative velocity, is

ReDB =
ρliqur,DBdDB

µliq
. (546)

The relative velocity between the dispersed bubble and liquid phase is limited to be smaller
than its terminal velocity, i.e.

ur,DB = min [|uvap − uliq|, uDB,term] . (547)

The terminal velocity can be calculated as

uDB,term = ur,∞(1− αvap)1.39 (548)

where ur,∞ is, for a single distorted particle,

ur,∞ =
√

2

(
σg∆ρ

ρ2
liq

)1/4

. (549)

The heat transfer between the vapor and bubble interface is simplified by using a con-
stant value

hvi = 1000(W/m2K) . (550)
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For the cap bubble/slug flow regime, defined by the boundary αvap,DB ≤ α ≤ 0.5, the
interfacial heat transfer consists of contributions of both small dispersed bubbles and of
large bubbles, i.e.

(hliA
′′′
i )CS = (hliA

′′′
i )DB + (hliA

′′′
i )LB . (551)

For the small dispersed bubbles, the heat transfer coefficient between the liquid and
the bubble interface is calculated the same way as in the bubbly flow regime. However,
in the cap bubble/slug flow regime, the interfacial area for the small dispersed bubbles are
calculated differently,

A′′′i,DB =
6αvap,DB
dDB

(
1− αvap

1− αvap,DB

)
. (552)

The interfacial area associated with the large bubbles is computed as

A′′′i,LB =
C∗

D∗

(
αvap − αvap,DB

1− αvap,DB

)
. (553)

Here the coefficient C∗ and the diameter D∗ depend on the channel hydraulic diameters,
i.e.

C∗ =

{
4.5; Dh < Dh,crit

16; Dh ≥ Dh,crit

(554)

and

D∗ =

{
Dh; Dh < Dh,crit

Dh,crit; Dh ≥ Dh,crit

(555)

where, Dh,crit ≈ 50Ca, and Ca is the Capillary number defined previously.

For these large bubbles, the heat transfer coefficient between the liquid and the bubble
interface is calculated as

hli,LB =
kliq
D∗

NuLB (556)

where the Nusselt number,NuLB, is calculated using equation (545). The bubble Reynolds
number is defined as

ReLB =
ρliqur,LBD

∗

µliq
. (557)

The relative velocity of the large bubbles is defined as

ur,LB = min [|uvap − uliq|, uLB,term] (558)
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and the terminal velocity for the large bubbles are calculated as

uLB,term =


ur,∞ d∗LB < 0.125

1.13ur,∞e
−d∗LB 0.125 ≤ d∗LB < 0.6

0.496ur,∞√
d∗LB

d∗LB ≥ 0.6 .

(559)

Here the non-dimensional bubble diameter is defined as

d∗LB =
D∗

Dh

(560)

and a relative velocity in an infinite medium is given by

ur,∞ =

√
2

2

√
g∆ρD∗

ρliq
. (561)

For the cap bubble/slug flow regime, the heat transfer between the vapor and the bubble
interface are calculated similarly to that from the liquid phase to the bubble interface, i.e.

(hviA
′′′
i ) = hvi(A

′′′
i,DB + A′′′i,LB) (562)

and the same constant value of 1000(W/m2K) is used for hvi.

For the annular/mist flow regime, the interfacial heat transfer consists of the sum of two
components, from the annular liquid film and entrained liquid droplets

(hliA
′′′
i )AM = (hliA

′′′
i )film + (hliA

′′′
i )drops . (563)

At first, the film thickness is computed as

δ =
Dh

2

(
1−√αvap

)
, (564)

and this value is limited to be greater than 10 µm. The interfacial area associated with
the liquid film is calculated as a function of the volume fraction of the vapor phase and
hydraulic diameter,

A′′′i =
4

Dh

√
αvap . (565)

For a special case where the surface is considered to be partially wetted by the liquid
film, the interfacial area is modified to consider the partially wetted condition, such that

A′′′i =
4

Dh

√
αvapfwet (566)
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where the fraction of the surface wetted by the liquid film, fwet, is estimated by

fwet =
(1− αvap)Dh

4(25× 10−6)
. (567)

The surface is considered to be partially wetted when the liquid film thickness reaches the
minimum critical value, 25 µm.

The liquid film to interface heat transfer, hli,film, is modeled by using a power-law
weighting of the turbulent and laminar regimes,

hli,film =
[
h2
li,film,lam + h2

li,film,turb

]1/2
. (568)

The correlation for the laminar regime is based on the well known Kuhn-Schroch-Peterson
correlation,

Nuli,film,lam = 2(1 + 1.83× 10−4Ref ) (569)

where the film Reynolds number is calculated as

Ref =
GliqDh

µliq
(570)

and Gliq is the liquid phase mass flux. For the turbulent regime,the Gnielinski correlation
is used with a multiplier,

Nuli,film,turb = 0.7NuGnielinski . (571)

The Gnielinski correlation will be discussed in the wall heat transfer section. For both the
laminar and turbulent regimes, the heat transfer coefficient is related to the Nusselt number
using the film thickness as reference length scale,

Nuli,film,lam/turb =
hli,film,lam/turbδ

kliq
. (572)

For the liquid film part, the vapor core to liquid film interface heat transfer coefficient
is modeled as

hvi,film =
kvap
Dc

Nuvi (573)

where Dc is the diameter of the annular vapor core approximated by

Dc ≈
√
αvapDh . (574)

The vapor-interface Nusselt number is modeled by the Dittus-Boelter correlation, and
is limited to be larger than 4,

Nuvi = max{4, 0.23Re0.8
c Pr0.4

vap} (575)
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where the Reynolds number for the annular vapor core is calculated as

Rec =
GvapDc

µvap
(576)

and Gvap is the mass flux of the vapor phase, and Prvap is the Prandtl number of the vapor
phase.

For the droplets, the volumetric interfacial area density is modeled as

A′′′i,drop =
6αvapαd

(1− αd)dd
(577)

for which αd is the fraction of the annular core region occupied by the droplets, and dd
is the droplet size. Both these two quantities have been discussed in the interfacial drag
model section.

The liquid to interface heat transfer coefficient for the droplets is modeled as

hli,drop = 2π2kliq
dd

. (578)

The vapor to interface heat transfer coefficient for the droplets part is modeled as

hvi,drop =
Nuvi,dropdd

kvap
(579)

where Nuvi,drop is the Nusselt number, modeled as,

Nuvi,drop = 2 +
√
u∗maxPe (580)

and where u∗max is the maximum dimensionless circulation velocity at the surface of the
drop. Here Pe is the droplet Peclet number, defined by

Pe ≡ ρvapCP,vapddur
kvap

(581)

where, ur is the drop relative velocity, defined as

ur = 2.462

√
g∆ρdd
2ρvap

. (582)

The maximum dimensionless circulation velocity at the surface of the droplet, u∗max, is
defined as

u∗max =
1.5

1 + 2.8(1+2λ)(2+3κ)

(2+3λ)
√
Red

(583)
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where
Red =

ρvapurdd
µvap

, (584)

λ =

√
ρliqµliq
ρvapµvap

, (585)

and
κ =

µliq
µvap

. (586)

The drop Reynolds number, Red, is limited to be in the range 0.5 ≤ Red ≤ 200. The
maximum dimensionless circulation velocity at the surface of the drop, u∗max, is limited to
be in the range 0.0001 ≤ u∗max ≤ 1.0.

For the transition region, i.e., 0.5 ≤ αvap ≤ 0.75, a simple linear interpolation is used
to determine the interfacial heat transfer coefficients

(hkiA
′′′
i ) = wfAM(hkiA

′′′
i )AM + (1− wfAM)(hkiA

′′′
i )BS (587)

where the weighting factor is defined by

wfAM =
αvap − 0.5

0.75− 0.5
. (588)

The value of (hkiA
′′′
i )AM is calculated using the annular/mist flow regime model. The

value of (hkiA
′′′
i )BS is calculated using either the dispersed bubble flow regime model or

the cap/slug model, depending on the two-phase flow mass flux (see Fig. 6).

This concludes the interfacial heat transfer model in vertical pipes for pre-CHF flow
regimes.

6.4 Wall heat transfer

The wall heat transfer model is described next, for both the single- and two-phase flow
regions.

For single-phase flow, either liquid or vapor, the wall heat transfer coefficient is calcu-
lated as

h = Nu
k

Dh

(589)

where Nu is the Nusselt number, k the thermal conductivity of the fluid (liquid or vapor),
andDh the hydraulic diameter. For single-phase flow in tube geometry, the Nusselt number
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uses the maximum value among the laminar flow, turbulent flow, and natural convection
flow values, i.e.

Nu = max{Nulam, Nuturb, NuNC} (590)

where subscript NC denotes natural convection. The Nusselt number for the laminar flow
is obtained analytically

Nulam =

{
4.36 for constant heat flux boundary condition

3.66 for constant temperature boundary condition .
(591)

The Nusselt number for the turbulent flow condition is obtained from the Gnielinski corre-
lation, given by

Nuturb =
(f/2)(Re− 1000)Pr

1 + 12.7(f/2)1/2 (Pr2/3 − 1)
(592)

where the friction factor, f , is modeled as

f = [1.58ln(Re)− 3.28]−2 . (593)

The fluid Reynolds number is defined as

Re =
GDh

µ
, (594)

and is limited to be greater than 1000. Pr is the Prandtl number of the fluid. This for-
mula is then corrected considering the difference between wall temperature and fluid bulk
temperature (for whichever phase is present),

Nu = Nu0

(
Prbulk
Prwall

)0.11

, (595)

where Nu0 is calculated from the original Gnielinski correlation, Prbulk is the bulk fluid
Prandtl number evaluated using the fluid bulk temperature, Prwall is the fluid Prandtl num-
ber evaluated using the wall temperature. The ratio between Prbulk and Prwall is limited to
be

0.05 ≤ Prbulk
Prwall

≤ 20 . (596)

The Nusselt number for natural convection is again defined as the maximum value of lam-
inar and turbulent values,

NuNC = max[NuNC,lam, NuNC,turb] (597)

where
NuNC,lam = 0.59 (GrPr)1/4 (598)

and
NuNC,turb = 0.13 (GrPr)1/3 . (599)
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For single-phase flow in tube bundle geometry, the Nusselt number is modeled in a sim-
ilar manner, wherein the maximum value of the forced convection and natural convection
is picked

Nu = max{NuFC , NuNC} . (600)

For the forced convection flow

NuFC = max{NuKL, Nulam, Nuturb} (601)

where NuKL is the Kim and Li correlation for fully developed laminar flow,

NuKL = −5.6605

(
P

DR

)2

+ 31.061

(
P

DR

)
− 24.473 (602)

where P is rod-to-rod pitch, and DR is rod diameter.

For both the laminar and turbulent forced convection flow conditions, El-Genk’s corre-
lations are used. In the laminar flow region

Nulam = AReBPr0.33 (603)

where
A = 2.97− 1.76(P/DR) (604)

B = 0.56(P/DR)− 0.30 (605)

and in the turbulent flow region

Nuturb = CEGRe
0.8Pr0.33

(
Prl
Prw

)0.11

(606)

where
CEG = 0.028

P

DR

− 0.006 . (607)

For natural convection conditions, Sarma’s correlation is used

NuNC = 0.7 (GrDPr)
1/4 (608)

where GrD is the Grashof number defined based on tube diameter.

In two-phase flows, depending on the wall temperature and vapor volume fraction, the
heat transfer mode can be nucleate boiling, two-phase forced convection, or film condensa-
tion. In all cases, it is assumed that all wall heat fluxs are applied to the liquid phase only.
The two-phase flow heat transfer models are also limited to vapor volume fraction values
smaller than 0.9999. Otherwise, the single-phase vapor heat transfer model is used, which
has been described in the single-phase heat transfer section.
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Two-phase forced convection is discussed first. Two-phase forced convection occurs
both for fluid heating, when TONB > Tw > Tliq, and for condensing flow, when Tw < Tsv,
where Tsv is the saturation temperature corresponding to the vapor pressure (if the gaseous
phase also contains an “inert” phase, then it is the saturation temperature corresponding
to the vapor partial pressure). In this region, according to the discussions in the TRACE
code manual, the single-phase liquid convection correlations can be directly used under
the condition that the two-phase liquid Reynolds number is used. The two-phase liquid
Reynolds number is defined as

Re2Φ =
ρliquliqDh

µliq
. (609)

In this region, when Tw < Tsv and αvap > 0.9, the two-phase flow heat transfer is modeled
as film condensation, which will be discussed in a later section.

Nucleate boiling occurs when the wall temperature exceeds a critical value, i.e. the so
called temperature for the onset of nucleate boiling (TONB). The wall superheat at the onset
of nucleate boiling, ∆TONB = Twall,ONB − Tsat(pliq), is modeled as

∆TONB =

√
2

F (φ)

(
σTsatq

′′
ONB

ρvaphfgkliq

)1/2

(610)

where F (φ) is a function of contact angle

F (φ) = 1− exp(−φ3 − 0.5φ) (611)

and φ is the contact angle (a constant value 38o is used). The wall heat flux at the onset of
nucleate boiling, q′′ONB can be obtained from the single-phase heat transfer model,

q′′ONB = hFC(Twall,ONB − Tliq) = hFC(∆TONB + ∆Tsub) (612)

where hFC is the single-phase force convection heat transfer coefficient, and

∆TONB = Twall,ONB − Tsat(pliq) (613)

∆Tsub = Tsat(pliq)− Tliq . (614)

Substitution of equation (610) into equation (612) results in

q′′ONB =

√
2hFC
F (φ)

(
σTsatq

′′
ONB

ρvaphfgkliq

)1/2

+ hFC∆Tsub . (615)

The wall heat flux at the onset of nucleate boiling, q′′ONB, can be solved as

q′′ONB =

[
1

2

(√
hFC∆TONB,sat +

√
hFC∆TONB,sat + 4hFC∆Tsub

)]2

(616)
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with
∆TONB,sat =

2hFC
F 2(φ)

σTsat
ρvaphfgkliq

. (617)

The wall temperature at the onset of nucleate boiling, TONB, can then be solved as

TONB = Tliq +
1

4

(√
∆TONB,sat +

√
∆TONB,sat + 4∆Tsub

)2

. (618)

The wall heat transfer model for nucleate boiling is discussed next. For continuity, the
heat transfer in the nucleate boiling region is modeled as

q′′NB =
[
(q′′FC)3 + (q′′PB − q′′BI)3

]1/3 (619)

where q′′PB is the heat flux modeled using the pool boiling model and q′′BI is the heat flux
modeled using the pool boiling model at the temperature for onset of nucleate boiling,

q′′BI = q′′PB(TONB) . (620)

The heat transfer coefficient for the pool boiling condition is calculated using the Gorenflo
correlation,

hPB =

(
h0FP
(q′′0)n

) 1
1−n

(Twall − Tsat)
1

1−n (621)

where, for water,
h0 = 5600(W/m2Co) (622)

q′′0 = 20000(W/m2) (623)

FP = 1.73P 0.27
r +

(
6.1 +

0.68

1− Pr

)
P 2
r (624)

n = 0.9− 0.3P 0.15
r (625)

with Pr being the reduced pressure

Pr =
P

Pcritical
. (626)

Film condensation is also considered in two-phase flows when vapor volume fraction is
larger than 0.9 and wall temperature is smaller than Tsv. For film condensation, the Nusselt
number is obtained from a power law average from the laminar and turbulent flow regimes

Nu =
√
Nu2

lam +Nu2
turb . (627)

For the laminar flow regime, the Nusselt number is modeled as

Nulam = 2(1 + 1.83× 10−4Ref ) , (628)
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and for the turbulent flow regime, the Nusselt number is modeled based on the Gnielinski
correlation,

Nuturb =
1

4
NuGnielinski . (629)

The length scale used for evaluating the film condensation heat transfer is the film thickness

δ =
Dh

2
(1−√αvap) , (630)

which is limited to be greater than 10 µm.

For Tw < Tsv, when the vapor volume fraction is between 0.8 and 0.9, a transitional
region is added between the two-phase forced convection and film condensation models
such that

hwl = wfannhann + (1− wfann)h2Φ (631)

with the weighting factor given as

wfann =
αvap − 0.8

αvap − 0.9
(632)

where hann is the film condensation heat transfer coefficient described above, and h2Φ is
the two-phase forced convection heat transfer coefficient described previously.
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7 Heat Conduction Model

7.1 Heat Conduction Model

The heat conduction model calculates the temperature distributions in the solid components
in the nuclear reactor system, such as the fuel, pipe walls, core barrel and core vessel, steam
generator tubes, etc. It consists of a single, simplified energy balance equation, i.e., the
transient heat conduction equation

ρCp
∂T

∂t
−∇ · (k∇T )− q′′′ = 0 (633)

where ρ, Cp, k are density, specific heat, and thermal diffusivity, respectively, of the solid
materials. q′′′ is the volumetric heat source. Boundary conditions include three general
types. The first type is the Dirichlet boundary condition, which provides a fixed boundary
temperature

Tbc = T0 . (634)

The second type is the Neumann boundary condition, which provides a heat flux boundary
condition

q′′bc = −k ∂T
∂n̂bc

= q′′0 . (635)

The third type is the Robin boundary condition, which provides the convective heat transfer
boundary condition

− k ∂T
∂n̂bc

= hconv(Tcoolant − Tbc) . (636)

Both 1-D and 2-D solutions for the heat conduction model are available in RELAP-7.

7.2 Material Properties

Thermal properties, such as thermal conductivity k, material density ρ, and specific heat
capacity Cp, for three materials are implemented in RELAP-7: uranium dioxide, the gas
of the gap between the fuel rods and their cladding, and zircaloy. The implementation
is consistent with values used in MATPRO [95] whenever possible. The constant room-
temperature densities (ρ) are stored and are multiplied by temperature-dependent specific
heat capacities (Cp) to generate the volumetric heat capacities. For all of the properties,
constant values are assumed beyond the specified temperature ranges. Arbitrary low and
high values of 5 and 5000K are included to avoid problems with out-of-range material
property data.
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7.2.1 Uranium Dioxide

The reference density for uranium dioxide is ρ = 10980 kg/m3. Its specific heat capacity
information is provided in Section 2.2 of the MATPRO manual. Assuming that the material
is pure UO2 (with no PuO2), and that the oxygen-to-metal ratio is 2.0,

Cp =
296.7× 535.2852

T 2
(
exp

(
535.285
T

)
− 1
)2 exp

(
535.285

T

)
+ 2.43× 10−2T

+
2× 8.745× 107 × 1.577× 105

2× 8.3143T 2
exp

(
−1.577× 105

8.3143T

)
.

The uranium dioxide thermal conductivity data are taken from Section 2.3 of the MATPRO
manual. The general equation for the thermal conductivity of solid fuel is

k =
D

1 + T ′(1−D)

Cv
(A+BT ′′)(1 + 3eth)

+ 5.2997× 10−3T exp

(
−13358

T

)[
1 + 0.169

(
13358

T
+ 2

)2
]

(637)

where k is thermal conductivity (W/m-K), D is the fraction of theoretical density (dimen-
sionless); a value of 0.95 is currently assumed. A is a factor proportional to the point defect
contribution to the phonon mean free path. Assuming an oxygen-to-metal ratio of 2.0, this
factor is 0.339 m-s/kg-K. B is a factor proportional to the phonon-phonon scattering con-
tribution to the phonon mean free path. Assuming no plutonium, this factor is 0.06867
m-s/kg-K. Cv is the phonon contribution to the specific heat at constant volume (J/kg-K).
For pure UO2, this is given by

Cv =
296.7× 535.2852

T 2
[
exp

(
535.285
T

)
− 1
]2 exp

(
535.285

T

)
(638)

eth is the linear strain term for temperatures above 300 K (dimensionless), which is given
by

eth =
∆L

L0

= 1.0× 10−5T − 3.0× 10−3 + 4.0× 10−2 exp

(
−6.9× 10−20

1.38× 10−23T

)
(639)

where T is fuel temperature (K). If the fuel temperature is less than 1364K, T ′ = 6.5 −
0.00649T . For temperatures greater than 1834 K, T ′ = −1. For values between these two,
interpolation is employed (between these two temperatures).
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7.2.2 Zircaloy

The reference density of zircaloy is 6551 kg/m3. Its specific heat capacity is obtained
by table look-up (see Table 4-2 in the MATPRO manual) with a temperature range of
300–1248 K. The zircaloy thermal conductivity is taken from Section 4.4 of the MATPRO
manual. The equation used is

k = a0 + a1T + a2T
2 + a3T

3 (640)

for 300 < T < 2098K, and k = 36 for T ≥ 2098K. The remaining ai parameters in (640)
are given in Table 8.

Table 8. Zircaloy thermal conductivity parameters.

a0 7.51
a1 2.09× 10−2

a2 −1.45× 10−5

a3 7.67× 10−9

7.2.3 Fuel Rod Gap Gas

Representative gap gas properties are developed for a combination of fill and fission product
gases. A 0.1066/0.1340/0.7594 mole fraction He/Kr/Xe mixture is modeled. A represen-
tative fuel rod internal pressure of 4.1 MPa is assumed to determine the gap gas density.
Using the perfect gas relation and a temperature of 300 K yields ρ = 183.06 kg/m3. Using
the perfect gas relation, the specific heat capacity is determined to be Cp = 186.65 J/kg-
K. From Section 12.1.1 of the MATPRO manual, the gas mixture thermal conductivity is
given by

kmix =
n∑
i=1

[
kixi

xi +
∑n

j=1(1− δij)ψijxi

]
(641)

where

ψij = φij

[
1 + 2.41

(Mi −Mj)(Mi − 0.142Mj)

(Mi −Mj)2

]
(642)

and

φij =

[(
1 + ki

kj

)1/2 (
Mi

Mj

)1/4
]2

2
2
3

(
1 + Mi

Mj

)1/2
(643)
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and n is the number of components in mixture. Mi is the molecular weight of component i
(kg), xi is the mole fraction of component i, and ki is the thermal conductivity of component
i (W/m-K). The thermal conductivities of the three elements are given by kHe = 2.639 ×
10−3T 0.7085, kKr = 8.247×10−5T 0.8363, kXe = 4.351×10−5T 0.8616. Using these equations,
thermal conductivity values are provided, as a function of the mixture temperature, for
temperatures from 300 to 3000K.
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8 Component Models

The RELAP-7 code is an advanced system analysis tool based on components to represent
the major physical processes in the reactor system. A real reactor system is very complex
and contains hundreds of different physical components. It is impractical to resolve the
real geometry of the entire system. Instead simplified thermal hydraulic models are used
to represent (via “nodalization”) the major physical components and describe the major
physical processes (such as fluids flow and heat transfer). There are three main types of
components developed in RELAP-7: (1) one-dimensional (1-D) components describing
the geometry of the reactor system, (2) zero-dimensional (0-D) components for setting
boundary conditions, and (3) 0-D components for connecting 1-D components.

8.1 Pipe

Pipe is the most basic component in RELAP-7. It is a 1-D component which simulates
thermal fluids flow in a pipe. Both a constant cross section area and a variable cross sec-
tion area options are available for the Pipe component. The wall friction and heat transfer
coefficients are either calculated through closure models or provided by user input. The
pipe wall temperature can be provided as the wall heat transfer boundary condition. All the
thermal fluid-dynamic models described in Chapters 2, 3, and 6 are available in the pipe
component which includes the isothermal flow model, single-phase non-isothermal flow
model, fully nonequilibrium 7-equation two-phase model, and the much simpler homoge-
neous equilibrium two-phase flow model.

8.2 Pipe Inlets and Outlets, and Closed Ends

Pipe or duct inlets and outlets, as well as pipe or duct closed ends are treated as zero-
dimensional (0-D) components for setting boundary conditions. Chapter 5 describes pipe
or duct boundary conditions in detail.

8.3 PipeWithHeatStructure

The PipeWithHeatStructure component simulates fluids flow in a 1-D pipe coupled with
1-D or 2-D heat conduction through the pipe wall. The adiabatic, Dirichlet, or convective
boundary conditions at the outer surface of the pipe wall are available. Either a plate type or
cylindrical type of heat structure can be selected. Volumetric heat source within the fluids
or solid materials can be added.
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8.4 CoreChannel

The CoreChannel component is a composite component designed to simulate the coolant
flow and heat conduction inside a fuel rod as well as the conjugate heat transfer between the
coolant and the fuel rod. In this component, the fuel rod is divided into the same number
of segments as that of the coolant flow pipe elements. Each fuel rod segment is further
simulated as 1-D or 2-D heat conduction model perpendicular to the fluid flow model.
Both plate type fuel rod and cylindrical fuel rod type can be simulated. The solid fuel part
is able to deal with typical LWR fuel rod with complex clad/gap/fuel pellet geometries.
The flow model and conjugate heat transfer model are fully coupled.

8.5 HeatExchanger

A Heat Exchanger component is a combination of two pipes with a solid wall in between.
Similar to the CoreChannel model, the fluids flow model and conjugate heat transfer model
are fully coupled. More complicated and realistic steam generator component will be de-
veloped in the future.

8.6 Junction/Branch

8.6.1 Lagrange Multiplier Based Junction Model

This model is implemented by the FlowJunction component. It uses a 1D mortar finite
element method to couple together the pipes which begin/end in the junction. The mortar
method is implemented using Lagrange multipliers. For the sake of simplicity, we don’t
give the full details of the mortar method here. Instead we list only the constraints that are
enforced by method:

g0 :
∑
i

ρiuiAin̂xi = 0

g1 :
∑
i

(pi + ρiu
2
i )Ain̂xi −

∑
i n̂xiAi

∑
i piAi∑

iAi
− 1

2
sgn(ui)Kiρiu

2
iAi = 0

g2 :
∑
i

ρiHiuin̂xiAi = 0 .

For more details on the mortar method see [96].
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8.6.2 Volume Branch Model

The volume branch model is a 0-D component representing a joint/junction model with
volume (inertia) effects considered. This model conserves the mass and energy among all
connecting components. The governing equations of the mass and energy conservation for
the VolumeBranch component are

d(ρvbVvb)

dt
+

N∑
i=1

(ρu)i · n̂iAi = 0 (644)

d((ρe)vbVvb)

dt
+

N∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (645)

where ρvb and Vvb are the density and volume of the VolumeBranch component respec-
tively. (ρu)i is the mass flux at the connecting nodes. ui is the fluid flow velocity at the
connecting nodes. Ai is the flow area of the connecting components. Pi is the pressure at
the connecting nodes. N is the number of connecting components. (ρe)vb is the internal
energy of the VolumeBranch component and (ρe)i is the internal energy at the connect-
ing nodes. The internal energy, instead of the total energy, is used in the energy equation
since the energy changes due to the work of all the forces is difficult to capture in the
VolumeBranch component and thus neglected (except the pressure). This assumption is
valid for low speed flow applications.

The momentum conservation is more difficult to model in this 0-D component. A
simplified model is used to account for various pressure losses in the VolumeBranch
component.

Pi = Pvb + ∆Pacc + s∆Pform + ∆Pg (646)

where the pressure loss due to acceleration is: ∆Pacc = 1
2
(ρu2)vb − 1

2
(ρu2)i. The variable

s = 1 if the fluids flow into the VolumeBranch component while s = −1 if the fluids
flow out of the VolumeBranch component. The pressure loss due to the form loss is:
∆Pform = 1

2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρvb∆H , and ∆H is the

height difference between the elevation of the center of the VolumeBranch component
and the elevation of the connecting components.

Note that the friction loss is neglected in this model. This is because the friction loss is
dependent on the flow path, and it is very difficult (and non-physical) to model the friction
loss in the 0-D component. On the other hand, the friction loss in a large volume is always
very small. If the friction loss has to be considered, the form loss coefficient can be adjusted
to account for it.

The above simplifications of modeling the momentum conservation works well as long
as the pressure propagation is much faster than the fluid transport, which is true for incom-
pressible flows and low speed compressible flows.
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8.7 Pump

The simplified pump model is based on three assumptions:

• quasi-steady state,

• incompressible flow,

• and 100% pump efficiency.

Currently, the RELAP-7 pump designed as one 0-D junction component which provides:

• one BC for upstream pipe: pressure

• two BCs for downstream pipe: pressure and total energy.

Only one scalar variable –pump pressure pJ is defined as the unknown for the pump model,
which uses the mass balance as the nonlinear equation:

(ρu)1A1n̂1 + (ρu)2A2n̂2 = 0 , (647)

where ρu is the momentum for the connecting pipes, A the cross-section area, and n̂ is the
direction normal (n̂ = 1 for the inlet and n̂ = −1 for the outlet). It is assuming that internal
energy does not change through a pump, so

eout = ein = eJ . (648)

Pressures at inlet and outlet are calculated with incompressible flow Bernoulli’s equation.
It is also assumed that the pump work is added to the fluid only in the entrance segment
and the loss in the exit segment is negligible. For normal flow

p1 = (pJ +
1

2
ρJu

2
J)− ρ1gH −

1

2
ρ1u

2
1 (649)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
ρ2u

2
2 (650)

where
ρJ = ρ(eJ , pJ) (651)

uJ =
ρ1u1A1

ρJAJ
(652)

g is the gravity constant and H is the pump head. H can be set as an input parameter which
can be changed through the control system to simulate dynamic process such as coastdown,
or H can be calculated by coupling with a shaft work, i.e., provided by a turbine,

H =
Ẇt

ρ1u1A1g
(653)
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where Ẇt is the turbine shaft power. Downstream total energy is calculated by

ρEbc = ρbc

(
eJ +

1

2
u2
bc

)
. (654)

For reverse flow, the pump is treated as a resistance junction. The reverse form loss coeffi-
cients for inlet (K1) and outlet (K2) are given by the user. The pressures at inlet and outlet
for reverse flow conditions are

p1 = (pJ +
1

2
ρJu

2
J)− 1

2
(1 +K1)ρ1u

2
1 (655)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
(1−K2)ρ2u

2
2 . (656)

The pump can also be simulated as a time dependent junction with given mass flow rate as
a function of time.

8.8 Turbine

A turbine is a device that converts energy contained in high-pressure and high-temperature
fluid into mechanical work. The complicated configuration of a turbine precludes a com-
plete first-principle model, at least for the purpose of system transient calculations. In
RELAP5 [23], quasi-steady state mass, momentum, and energy conservation equations are
used for flow across a turbine stage. However, several questionable assumptions, such as
constant density across the turbine blade stage, are used to derive the momentum equation.
For a complex curved flow path, it is almost impossible to derive an accurate 0-D momen-
tum equation. The force between the junction solid wall and the fluid is unknown due to the
lack of geometric definition in 0-D and no simple assumptions can be made. This is why
Bernoulli’s equation (or mechanical energy equation) is used instead for 0-D junction or
branch models in current reactor safety system codes such as RELAP5 [23], TRAC [97],
and TRACE [2]. However, for compressible flow in a turbine, Bernoulli’s equation for
isentropic compressible flow is identical to the total energy conservation equation. Hence,
the Bernoulli’s equation cannot be used for momentum.

Lacking an equation for momentum, we instead use turbine characteristics curves for
momentum, which is based on actual dynamical turbine performance data. Turbine charac-
teristics curves reflect the complex relationships of the non-dimensional turbine mass flow
rate and turbine efficiency with pressure ratio and the non-dimensional rotational speed.
Fig. 7 shows one example of turbine characteristics curves [3]. In the figure, subscript 03
indicates the upstream stagnation condition, subscript 04 indicates the downstream stag-
nation condition and N is the rotational speed. Note that the curves dynamically capture
the choking behavior. To further simplify the curves, a couple of assumptions are made:
(1) Turbine thermal efficiency is constant, and (2) Non-dimensional mass flow rate is not
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a function of non-dimensional rotational speed (by noting that all the curves for different

rotational speeds tend to collapse together). With these assumptions, an equation for rota-

tional speed is not needed, and only one characteristics curve for mass flow rate is sufficient

to establish the equation for momentum.

Figure 7. Turbine characteristics (credit of Saravanamuttoo,

Rogers, and Cohen [3]).

Based upon the aforementioned discussion, we developed a new simple turbine compo-

nent model as a junction without volume. Thermal inertia in the solid structures and fluid is

ignored, similar to that in RELAP-5. Fig. 8 shows the T -s diagram for a thermodynamical

process in a turbine. Point 1 represents inlet static condition and point 2 represents outlet

static condition; point 2s is the end point for a reversible process; point 01, 02, and 02s

represent the stagnation conditions corresponding to points 1, 2, and 02, respectively.

Because a quasi-steady state turbine is a 0-D component which provides

• one BC for inlet pipe: p1 (inlet pressure)

• two BCs for outlet pipe: p2 (outlet pressure), ρ2 (outlet density)

• turbine shaft power: Ẇt
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Figure 8. T -s diagram for a turbine.

four equations are needed to close the system. The first one is mass conservation Eq. (647).

The mass flow rate is calculated as ṁ = ρuA.

As discussed before, turbine characteristics are used for the momentum equation. As-

suming constant thermal efficiency and ignoring rotational speed effect, we have

ṁ
√
T01

p01

ṁmax
√
T01r

p01r

= f(p01/p02) . (657)

The subscript r denotes nominal design reference value and 0 denotes stagnation condition.

ṁmax is the nominal maximum design mass flow rate through the turbine. The turbine char-

acteristic curve f(p01/p02) should come from turbine vendors. According to reference [98],

the curve for a HP (High Pressure) steam turbine is defined as

f(p01/p02) =

√
1−

(
p02
p01

)2

. (658)

This equation matches the real test data very well. However, this curve is not valid when

the pressure ratio is equal or less than 1. Therefore, a similar smooth curve is used

f(p01/p02) = tanh

(
β

(
p02
p01

− 1

))
(659)

where β is a constant and is calculated by the following formula

tanh

(
β

(
p01r
p012

− 1

))
=

ṁr

ṁmax

. (660)
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Therefore, β is determined by the design pressure ratio and the ratio of nominal mass flow
rate at design point with the maximal mass flow rate. The energy equation for turbine is

η =
h01 − h02

h01 − h02s

(661)

where η is the turbine thermal efficiency, and h the enthalpy. Fig. 8 shows the location of
the thermodynamic states on a T -s diagram.

Turbine shaft work is calculated by

Ẇt = ṁ(h01 − h02) . (662)

Eqs. (647), (657) and (661) are used to solve for p1, p2, and ρ2, and Eq. (662) is used to
compute turbine power. To derive stagnation states, recognize that

h0 = h+
1

2
u2 (663)

where u is the velocity. Then assuming an isentropic process, from the static state, (h1, p1),
the stagnation state (h01, p01) may be found. For ideal gas, the following equations hold
(pages 54 to 56, ref [3])

p0 = p

(
1 +

γ − 1

γ

ρu2

2p

)γ/(γ−1)

(664)

T0 = T

(
p0

p

)(γ−1)/γ

(665)

where γ is the ratio of specific heats. h1, u1, and T1 are obtained from turbine inlet pipe
as coupled variables and p1 is a scalar variable unknown. h01 is calculated according to
Eq. (663). p01 is calculated according to Eq. (664). T01 is calculated according to Eq. (665).

The pressure p2 and density ρ2 are scalar variable unknowns. According to an EOS
(equation of state) relationship, h2 is evaluated

h2 = h (p2, ρ2) (666)

u2 is obtained from turbine outlet pipe as a coupled variable. h02 is calculated according
to Eq. (663). p02 is calculated according to Eq. (664). To derive h02s, we need two ther-
modynamic states at 2s. Note p2s = p2. We can obtain the density at 2s by following the
isentropic line from point 1 (see Fig. 8)

ρ2s

ρ1

=

(
p2

p1

)1/γ

. (667)

According to the EOS relationship, h2s is evaluated with p2 and ρ2s. Now h02s can be
calculated according to Eq. (663). When the stagnation pressure at the inlet is less than
the stagnation pressure at the outlet, the turbine is treated as a closed valve. Major physical
parameters for the turbine model include thermal efficiency, nominal mass flow rate, design
pressure ratio, and design stagnation inlet temperature and pressure.
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8.9 SeparatorDryer

Boiling Water Reactors (BWRs) use a steam separator to increase the quality of steam prior
to generation of mechanical energy in the turbine. A steam separator component is based
on the principle of centrifugal separation, where the liquid/gas phase separation occurs as
a mixture of water and steam flows upward in a vortex motion within vertical separator
tubes. Therefore, the outflows of the steam separator are a flow of steam from the top exit
and a flow of liquid water from the discharge to the bulk water surrounding the separator
barrel. Typically, the quality of the steam at the outlet of the separator is at least 90%. In
addition, steam dryers are used to further increase the quality of steam to ensure that the
steam is dry.

In RELAP-7 the separator dryer component is developed to model both the steam sep-
arators and moisture dryers together. Currently only an ideal separation model with perfect
steam separation has been implemented into RELAP-7. The mechanistic separator and
dryer models will be implemented in the future. The steam SeparatorDryer compo-
nent has one inlet and two outlets. Each connection has a form loss coefficient K, which
generally accounts for pressure loss due to expansion/contraction, mixing, and friction.

The conservation equations of mass and energy for the SeparatorDryer model are
the following:

V
dρsd
dt

+
3∑
i=1

(ρu)i · n̂iAi = 0 (668)

V
d(ρe)sd
dt

+
3∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (669)

where ρsd and (ρe)sd are the density and internal energy of the SeparatorDryer component
respectively. V is the volume of the SeparatorDryer component. (ρu)i is the mass
flux at the connecting nodes. ui is the velocity at the connecting nodes. Ai is the flow area
of the connecting component. (ρe)i is the internal energy of the connecting nodes. Pi is
the pressure at the connecting nodes.

An incomplete form of the momentum equation is used to account for the various pres-
sure losses in the SeparatorDryer component:

Pi = Psd + ∆Pacc + s∆Pform + ∆Pg (670)

where s = 1 if fluids flow into SeparatorDryer and s = −1 if fluids flow out of
the SeparatorDryer. Psd is the reference pressure of the SeparatorDryer which
is taken as the value in the center of SeparatorDryer. The pressure loss due to ac-
celeration is: ∆Pacc = 1

2
(ρu2)sd − 1

2
(ρu2)i. The pressure loss due to the form loss is:

∆Pform = 1
2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρsd∆H , and ∆H is
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the height difference between the elevation of the connecting pipe and the center elevation
of the SeparatorDryer component.

8.10 DownComer

The BWR pressure vessel down comer is a 0-D model with a large volume that connects the
feedwater pipe, the separator dryer discharge, the steam dome, and the down comer outlet.
The volume is filled with vapor at the top and liquid at the bottom. During transients,
the liquid level will increase or decrease (depending on the nature of the transient), which
affects the mass flow rate through the reactor core; therefore, it is important to track the
liquid level for transient analysis.

In the current model, it is assumed that there is no mass and energy exchange between
the liquid and vapor phase in the down comer. Additionally, the vapor phase pressure is
the same as that of the steam dome. Therefore, all the balance equations are solved for the
liquid phase only.

The mass and energy conservation for the liquid in the down comer model are

dρ`V`
dt

+
3∑
i=1

(ρu)i · n̂iAi = 0 (671)

d(ρe)`V`
dt

+
3∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (672)

where ρ` is the liquid density in the down comer component. V` is the liquid volume of
down comer. (ρu)i is the mass flux at the connecting nodes. Ai is the flow area of the
connecting pipe. (ρe)` is the internal energy of the liquid in the down comer and (ρe)i
is the internal energy at the connecting nodes. Pi is the pressure at the connecting nodes
between the down comer of other components.

The following pressure balance equation is used to calculate the liquid level:

Pdc = Pg +
1

2
ρ`gz (673)

where Pdc is the down comer reference pressure with its value taken at the center of the
liquid volume. Pg is the pressure in the vapor space of the down comer and z is the liquid
level relative to the bottom elevation of down comer.

For the case of liquid level above the pipe connection elevation, the incomplete form
of the momentum equation is used to account for the various pressure losses in the down
comer component

Pi = Pdc + ∆Pacc + s∆Pform + ∆Pg . (674)
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The pressure loss due to acceleration is ∆Pacc = 1
2
(ρu2)dc,`− 1

2
(ρu2)i. The variable s = 1 if

fluid is flowing into the down comer and s = −1 if fluid is flowing out of the down comer.
The pressure loss due to the form loss is ∆Pform = 1

2
K(ρu2)i. The pressure loss due to

the gravity is ∆Pg = ρ`g∆H , where ∆H is the height difference between the elevation of
the center of the liquid volume and the elevation of the connecting pipes. In contrast, if the
liquid level is below the pipe connection elevation, then

Pi = Pg . (675)

8.11 Valves

The current valve component developed in RELAP-7 is a simplified model to simulate
the fundamental functions (i.e. open and close) of generic valves. The valve component
is a junction type of components and it connects one pipe on each side. The valve is
initiated with a given user input (i.e., fully open or fully closed). It then starts to react (i.e.,
close or open) and is triggered either by a preset user given trigger time or by a trigger
event, which requires the RAVEN code control logic. In its opening status, either fully
open or partially open, it serves as a regular flow junction with form losses. In its fully
closed status, the connected two pipes are physically isolated. The current valve model
also includes the gradually open/close capability similar to a motor driven valve to simulate
the physical behavior of a valve open/close procedure. It also has the benefit of avoiding
spurious numerical oscillations that are caused by an instantaneous open/close procedure.
Additional, specific valve components to be developed in the future (e.g., gate valve and
check valve) are planned to enhance the RELAP-7 capabilities for engineering analysis.

8.12 Compressible Valve Models

The valve model introduced in the previous section is for low speed nearly incompressible
flow cases. For reactor safety simulations, there are cases where high speed compressible
flow models are needed. One such example is a safety/relief valve (SRV), which either is
activated by passive setting points such as pressure (safety valve mode) or by active control
actions through an electric motor or compressed air (relief mode). Normally, a SRV would
discharge pure gas or steam. However, there are transients in a LWR that can involve the
discharge of two-phase mixture or pure liquid through a SRV [99]. As an initial version of
simplified SRV model, only steam/gas is considered. Since the SRV always has the minimal
cross section area along the release line, it is assumed that choking always happens in the
throat of the SRV. To further simplify the model, is is further assumed that choking will
happen whenever the valve is open. Also, the steam/gas is currently treated as an ideal gas.

160



The Compressible Valve is designed as a single 0-D junction component which pro-
vides:

• one BC for upstream pipe: pressure (pi)

• two BCs for downstream pipe: momentum (ρu)o and total enthalpy (Ho).

Therefore three equations are needed to close the system. First consider the case when the
valve is open. The pi unknown will correspond to the mass conservation:

(ρu)1A1n̂1 − (ρu)oA2n̂2 = 0 (676)

where (ρu)1 is the coupled momentum for the connecting inlet pipe end,A the cross-section
area, and n̂ direction normal (n̂1 = 1 for the inlet and n̂2 = −1 for the outlet). The (ρu)o
unknown corresponds to the following equation for the choked condition

(ρu)oA2n̂2 − ṁc = 0 (677)

where ṁc is the critical mass flow rate calculated by the equation for isentropic ideal gas
flow [100]

ṁc = At(ρu)c = At (γpcρc)
1/2 (678)

where At is the cross-section area at the valve throat, which can be controlled by the valve
action, i.e., from 0 to the fully open area. The critical pressure pc and the critical density ρc
are determined by

pc
pi0

=

(
2

γ + 1

) γ
γ−1

(679)

ρc
ρi0

=

(
2

γ + 1

) 1
γ−1

(680)

where the subscript i0 indicates the stagnation condition for the inlet. For non-ideal choked
flow (not to be confused with non-ideal gas) through a valve, mc can be modified by mul-
tiplying the valve coefficient Cv [100] which is defined as the ratio of real mass flow rate
over the ideal mass flow rate. The valve coefficient model will be included in the near
future.

For ideal gas and isentropic flow, the steady state mass flow rate is calculated as

ṁsub = A2

{
2

(
γ

γ − 1

)
pi0ρi0

(
p2

pi0

) 2
γ

[
1−

(
p2

p0i

) γ−1
γ

]} 1
2

. (681)
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By comparing the subsonic mass flow rate and the choking mass flow rate, we can de-
termine whether choking happens. When ṁsub ≥ ṁc, Eq. (677) is used for momentum;
Otherwise subsonic flow momentum equation is used:

(ρu)oA2n̂2 − ṁsub = 0. (682)

The Ho unknown will correspond to the energy conservation:

(ρu)1A1n̂1H1 − (ρu)oA2n̂2Ho = 0 . (683)

When the valve is fully closed, the following equations are used for pi, (ρu)o, and Ho,
respectively

pi − p1 = 0 (684)
(ρu)o − (ρu)2 = 0 (685)

Ho −H2 = 0 . (686)

p1, (ρu)2, and H2 are coupled variables from the connecting pipe ends. The pipe end BCs
are treated as solid wall conditions when the valve is fully closed. Subsonic compressible
flow model, valve coefficient model, stiffened gas model, and two-phase critical flow model
will be included in a later version.

8.13 Wet Well Model

The wet well refers to the suppression chamber of a BWR reactor, which is composed of
water space and gas space. The 0-D wet well model simulates both spaces. Fig. 9 shows
the schematic of the simplified model. Major assumptions include: (1) the suppression
pool is well mixed; (2) the kinetic energy in both spaces is ignored, therefore the water
space pressure follows a hydrostatic distribution; (3) no mass transfer between water and
gas space; (4) gas space is filled with 100% nitrogen gas; (5) the geometry of the wet well
is rectangular; and (6) no steam venting from dry well to the suppression pool. The wet
well model developed with these assumptions is adequate to simulate slow transients such
as extended station black-out transients. However, the current model is not suitable for
LOCA analysis. With these assumptions, mass and energy balance equations apply for
both gas and water spaces. By assuming one pressure for the gas space, another equation
for the water level is obtained. The mass conservation equation for the gas space is

dmg

dt
= −ṁv (687)

where mg is the gas mass and ṁv is the venting mass flow rate to the dry well which is
obtained from the connected pipe controlled by the vacuum breaker.
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Figure 9. A simplified wet well model.

Energy conservation equation for the gas space is

d(me)g
dt

= Acα (Tw − Tg)− ṁvHv (688)

where (me)g is the total internal energy (also total energy since kinetic energy is assumed

to be 0) for the gas space, Ac the average cross section area for the wet well, α the effective

heat transfer coefficient given by user input, Tw and Tg are temperatures for water and gas,

respectively. Hv is the total enthalpy from upstream. The small pressure work due to the

change of the volume is ignored since the change of water volume is slow and small due to

its tremendous volume. The gravity change inside the volume is ignored due to low density.

The mass conservation equation for the water space is

dmw

dt
= ṁin − ṁout (689)

where mw is the total mass of water, ṁin is the inlet steam mass flow rate and obtained

from the connected steam pipe, and ṁout is the outlet water mass flow rate

ṁout = (ρu)outAout (690)

where (ρu)out the outlet momentum which is coupled from the connected water pipe, and

Aout the pipe cross section area.

163



The total energy conservation equation for the water space is

d(me)w
dt

= ṁin (Hin + (zi − 0.5Lw)g)

− ṁout (Hout + (zo − 0.5Lw)g)

− Acα(Tw − Tg)− q̇ (691)

where (me)w is the total internal energy for the water space, Hin is the total enthalpy
coupled from the connecting steam pipe, zi is the inlet steam pipe end elevation relative to
the pool bottom, Lw is the pool water level, zo, of the outlet water pipe end elevation relative
to the pool bottom, q̇ is the active heat removal rate from the immersed heat exchanger, and
Hout is the total enthalpy for the outlet water pipe which can be calculated for outflow as

Hout =
ρew + pw(ρw, 0, ρew)

ρw
+

1

2
u2
out . (692)

uout is the exit speed and is obtained from coupled water pipe end. The methods to calculate
the average water density ρw and specific volume energy ρew will be introduced shortly.
For inflow condition, Hout will be coupled from the pipe end. In Eq. (691), it is assumed
that the gravity center is at the half depth of the water pool. Reference pressure in the water
space is defined at the middle elevation of the pool

pw = pg +
1

2
Lwρwg (693)

where pw is the reference water pressure and pg the gas pressure. Pressure and temperature
are calculated from EOS relationships. The momentum of gas and water are assumed to be
0. Therefore, the total energy is

ρEt = ρe = ρ
me

m
. (694)

In the code implementation of the wet well model, mg, (me)g, mw, (me)w, and Lw are
designated as the primary variables to be solve for, with corresponding equations (687),
(688), (689), (691), and (693). Another set of auxiliary variables is defined to close the
system, which include gas density ρg and water density ρw. Gas density is calculated
according to

ρg =
mg

Ac(Lt − Lw)
(695)

where Lt is the total effective height of the wet well. Similarly, the average water density
is calculated according to

ρw =
mw

AcLw
. (696)

Initial conditions for the primary variables are calculated according to the initial water
level Lw(0), gas pressure pg(0), and gas temperature Tg(0). Boundary conditions for three
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connecting pipes are set similarly as for the reverse pump BCs. For example, the inlet
steam pipe needs one BC pin

pin +
1

2
(ρu2)in = pi +Kin

1

2
(ρu2)in (697)

where Kin is the form loss coefficient and pi is the water pressure at the elevation of inlet
steam pipe end

pi = pw + (0.5Lw − zi)ρwg . (698)

The other two pipe’s BCs are set in a similar manner.

8.14 SubChannel

A fully coupled subchannel channel model for the single-phase has been implemented into
RELAP-7. The single-phase subchannel model includes four balance equations: mass,
energy, axial momentum, and lateral momentum. The mass balance equation for the sub-
channel i is

Ai
∂ρi
∂t

+
∂(ρiuiAi)

∂x
+
∑
j∈K(i)

wi,j = 0 (699)

where i is the index of subchannel i. Ai is the flow area for subchannel i. j is the index of
a subchannel which is adjacent to subchannel i. K(i) is the set of lateral interfaces (gaps)
on the boundary of subchannel i. wi,j = ρulsk is the mass flow rate per unit length in the
lateral direction across the gap k between subchannels i and j. sk is the width of gap k.

The axial momentum balance for subchannel i is

Ai
∂ρiui
∂t

+
∂(ρiuiuiAi)

∂x
+ Ai

∂Pi
∂x

+ Aigρi +

1

2

(
f

Dh

+K ′i

)
ρiui|ui|Ai +

∑
j∈K(i)

wi,ju
∗ +

∑
j∈K(i)

wti,j(ui − uj) = 0 (700)

where f is the wall friction coefficient, Dh is the subchannel hydraulic diameter, and K ′i
is the form loss coefficient. u∗ is the lateral donor axial velocity at gap face k. If the flow
is into the subchannel i, then u∗ = uj , otherwise, u∗ = ui. wti,j is the turbulent mixing
mass flow rate per unit length in the lateral direction at gap face k. wti,j is the fluctuating
crossflow which is related to the eddy diffusely εt, by wti,j = εtρi

sk
lk

. In the current RELAP-
7 implementation, wti,j is calculated as wti,j = βskḠ, where β is the turbulent mixing
parameter and Ḡ is the average mass flux in the adjacent subchannels.

The lateral momentum balance for subchannel i is

∂wi,j
∂t

+
∂wi,jū

∂x
− sk
lk

(Pi − Pj) +
1

2

sk
lk
KG
|wi,j|
ρ̄s2

k

wi,j = 0 (701)
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where ū = 1
2
(ui +uj) and ρ̄ = 1

2
(ρi + ρj). sk is the width of lateral gap k. lk is the distance

between centroids of subchannels i and j. KG is the lateral loss coefficient which accounts
for the friction and form pressure loss caused by the area change.

The total energy balance equation for subchannel i is

Ai
∂ρiEi
∂t

+∇ · (ρiuiHiAi) + ρigAiui +∑
j∈K(i)

wi,jH
∗ +

∑
j∈K(i)

wti,j(Hi −Hj) +
∑
j∈K(i)

k

li
(Ti − Tj) +

∑
r∈M(i)

φi,rhwawAi(Ti − Tw,r) = 0 (702)

where H = E + P
ρ

is the total enthalpy and H∗ is the donor total enthalpy. k is the fluid
thermal conductivity. φi,r is the heated perimeter fraction associated with the subchannel
i. M(i) is the set of fuel rods that surround the subchannel i. hw is the convective heat
transfer coefficient and aw is the ratio of heat transfer surface area to the fluid volume. Ti
is the fluids temperature in subchannel i and Tw,r is the fuel rod wall temperature which is
obtained from the solution of the heat conduction equation.

8.15 Reactor

The reactor component is a virtual component to allow users to specify the reactor power
(i.e., steady-state power or decay heat curve) or heat source.
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9 Reactor Kinetics Model

There will be two options available for the computation of the reactor power in the RELAP-
7 code. The first option is the point kinetics model; this option has been implemented
into RELAP-7. The second option will be a multi-dimensional neutron kinetics model.
This option, which is not available yet, will be achieved through the coupling with the
RattleSnake code. RattleSnake is the Sn neutron transport code being developed at the INL
using the MOOSE framework. Chapter 8 has more in-depth discussions on this option.

The reactor point kinetics model is the simplest model that can be used to compute the
transient behavior of the neutron fission power in a nuclear reactor. The power is computed
using the space-independent, or point kinetics, approximation which assumes that power
can be separated into space and time functions. This approximation is adequate for cases
in which the space distribution remains nearly constant.

The point kinetics model computes both the immediate (prompt and delayed neutrons)
fission power and the power from decay of fission products. The immediate power is that
released at the time of fission and includes power from kinetic energy of the fission prod-
ucts and neutron moderation. Decay power is generated as the fission products undergo
radioactive decay. The user can select the decay power model based on the RELAP-7 exact
implementation of the 1979 ANSI/ANS Standard, the 1994 ANSI/ANS Standard, or the
2005 ANSI/ANS Standard.

9.1 Point Kinetics Equations

The point kinetics equations are the following:

dn(t)

dt
=
ρ(t)− β

Γ
n(t) +

Nd∑
i=1

λiCi(t) + S (703)

dCi(t)

dt
=
βfi
Γ
n(t)− λiCi(t), i = 1, 2, . . . , Nd (704)

where t is time (s), n is the neutron density (neutrons/m3), ρ is the reactivity (only the time-
dependence has been indicated, however, the reactivity is dependent on other variables). βi
is the effective delayed neutron precursor yield of group i and β =

∑Nd
i=1 βi is the effective

delayed neutron fraction. Γ is the prompt neutron generation time (s). λi is the decay
constant of group i (1/s). Ci is the delayed neutron precursor concentration in group i
(nuclei/m3). Nd is the number of delayed neutron precursor groups. fi = βi

β
is the fraction

of delayed neutrons of group i. S is the source rate density (neutrons/m3-s).
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The neutron flux (neutrons/m2-s) is calculated as

φ(t) = n(t)v (705)

where v is neutron velocity (m/s). The fission rate (fissions/s) ψ(t) is calculated as

ψ(t) = V Σfφ(t) (706)

where V is the volume (m3) and Σf is the macroscopic fission cross section (1/m). The
reactor power is calculated from

Pf (t) = Qfψ(t) (707)

where Pf is the immediate (prompt and delayed neutron) fission power (Mev/s) and Qf is
the immediate fission energy per fission (Mev/fission).

9.2 Fission Product Decay Model

The 1979, 1994, and 2005 Standards for decay power can be implemented by advancing
the differential equations, which become

dγαj(t)

dt
=
Fγaαj
λαj

Fαψ(t)− λαjγαj(t) j = 1, 2, . . . , Nα (708)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Standards.
The parameters a and λ were obtained by fitting to fission decay power data. The fitting for
each isotope used 23 groups (Nα = 23). For the 1979 Standard, data are presented for three
isotopes, U235, U238, and Pu239. For the 1994 and 2005 Standards, data are presented for
four isotopes, U235, U238, Pu239, Pu241. Fγ is an input factor to allow easy specification of
a conservative calculation. It is usually 1.0 for best-estimate calculations. Fα is the fraction
of fissions from isotope α. Summation of Fα over α is 1.0. The uncorrected decay power
is calculated as

P ′γ(t) =

NI∑
α=1

Nα∑
j=1

λαjγαj(t) (709)

where NI = 3 for the 1979 Standard and NI = 4 for the 1994 and 2005 Standards. ψ is
the fission rate from all isotopes.

The 1979, 1994, and 2005 Standards use a correction factor to the energy from fis-
sion product decay to account for the effects of neutron absorption. The equation for the
correction factor is the following:

G(t) = 1.0 + (3.24E − 6 + 5.23E − 10t)T 0.4ψg (710)
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where ψg is the number of fissions per initial fissile atom, T is the reactor operating time
including any periods of shutdown, and t is the time since shutdown. Limits on the quan-
tities are 1.0 ≤ ψg ≤ 3.0, T < 1.2614 × 108, and t < 104 seconds. The corrected decay
power is given by

Pγ = G(t)P ′γ . (711)

The RELAP-7 implementation of the 1979, 1994, and 2005 Standards is exact (i.e., not a
curve fit). The data for all standards are built into the code as default data, but the user may
enter different data.

9.3 Actinide Decay Model

The actinide model describes the production of U239, Np239, and Pu239 from neutron cap-
ture by U238 using the descriptive differential equations

dγU(t)

dt
= FUψ(t)− λUγU(t) (712)

dγN(t)

dt
= λUγU(t)− λNγN(t) . (713)

The actinide decay power is calculated as

Pα(t) = ηUλUγU(t) + ηNλNγN(t) . (714)

The quantity FU is user-specified and is the number of atoms of U239 produced by neutron
capture in U238 per fission from all isotopes. A conservative factor, if desired, should be
factored into FU . The λ and η values can be user-specified, or default values equal to those
stated in the 1979, 1994, or 2005 ANS Standards can be used. The first equation describes
the rate of change of atoms of U239. The first term on its right hand side represents the
production of U239; the last term is the loss of U239 due to beta decay. The second equation
describes the rate of change of NP 239. The production of Np239 is from the beta decay of
U239, and Pu239 is formed from the decay of Np239.

9.4 Transformation of Equations for Solution

The differential equations to be advanced in time are the point kinetics equations, fission
products decay equations, and actinide decay equations. Multiplying by V Σf andX which
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is the conversion factor from MeV/s to Watts, the equations become

d

dt

[
Xψ(t)

v

]
=

[ρ(t)− β]Xψ(t)

Γv
+

Nd∑
i=1

λiXV ΣfCi(t) +XV ΣfS (715)

d

dt
[XΣfCi(t)] =

βfiXψ(t)

Γv
− λiXV ΣfCi(t) i = 1, 2, . . . , Nd (716)

d

dt
[Xγαj(t)] =

FγaαjFαXψ(t)

λαj
− λαjXγαj(t) j = 1, 2, . . . , Nα (717)

d

dt
[XγU(t)] = FUXψ(t)− λUXγU(t) (718)

d

dt
[XγN(t)] = λUXγU(t)− λNXγN(t) (719)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Standards.
The total power PT is the sum of immediate fission power, corrected fission product decay,
and actinide decay power, and now in units of watts is

PT (t) = QfXψ(t) +G(t)

NI∑
α=1

Nα∑
j=1

λαjXγαj(t) + ηUλUXγU(t) + ηNλNXγN(t) (720)

where NI = 3 for 1979 Standard and NI = 4 for the 1994 and 2005 Standard. For solution
convenience, the following substitutions are made:

ρ(t) = βr(t) (721)
Xψ(t) = ψ′(t) (722)

XV ΣfΓvS

β
= S ′ (723)

XV ΣfvCi(t) =
βfi
Γλi

Wi(t) i = 1, 2, . . . , Nd (724)

Xγαj(t) =
FγaαjFα
λ2
αj

Zαj(t) j = 1, 2, . . . , Nα (725)

XγU(t) =
FU
λU

ZU(t) (726)

XγN(t) = ZN(t) (727)
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where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Standards.
The equations to be integrated are now

d

dt
ψ′(t) =

β

Γ

[
(r(t)− 1)ψ′(t) +

Nd∑
i=1

fiWi(t) + s′

]
(728)

d

dt
Wi(t) = λiψ

′(t)− λiWi(t) i = 1, 2, . . . , Nd (729)

d

dt
Zαjt = λαjψ

′(t)− λαjZαj(t) i = 1, 2, . . . , Nd (730)

d

dt
ZU(t) = λUψ

′(t)− λUZU(t) (731)

d

dt
ZN(t) = FUZU(t)− λNZN(t) (732)

where α = 1, 2, 3 for the 1979 standard and α = 1, 2, 3, 4 for the 1994 and 2005 standards.
The total power is given by

PT (t) = Qfψ
′(t) +G(t)

NI∑
α=1

Nα∑
j=1

FγaαjFαZαj(t)

λαj
+ FUηUZU(t) + ηNλNZN(t) (733)

where NI = 3 for the 1979 standard and NI = 4 for the 1994 and 2005 Standards.

9.5 Reactivity Feedback Model

The reactivity feedback model implemented in RELAP-7 is the same as the separable
model used for RELAP5. In the separable model, each effect is assumed to be independent
of the other effects. The model assumes nonlinear feedback effects from moderator (ther-
mal fluids) density and fuel temperature changes and linear feedback from moderator and
fuel temperature changes. The separable model defining reactivity is defined as:

r(t) =
ns∑
i=1

rsi(t)+

nρ∑
i=1

[WρiRρ(ρi(t))+aMi∆TMi(t)]+

nF∑
i=1

[WFiRF (TFi(t))+aFi∆TFi(t)]

(734)

The quantities rsi are obtained from input tables defining ns reactivity (scram) curves
as a function of time. Rρ is a table defining reactivity as a function of the current moderator
density of fluid ρi(t) in the thermal fluids volume i (density reactivity table). Wρi is the
density volume weighting factor for volume i. ∆TMi(t) is the spatially averaged modera-
tor fluid temperature difference between the current time t and the start of the transient for
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volume i. aMi is the volume fluid temperature coefficient (not including density changes)
for volume i and nρ is the number of thermal fluids volumes in the reactor core. The quan-
tity RF is a table defining the Doppler reactivity as a function of the heat structure plume
average fuel temperature TFi(t) in the heat structure. ∆TFi(t) is the difference between
the current time t and the start of the transient. WFi and aFi are the fuel temperature heat
structure weighting factor and the heat structure fuel temperature coefficient, respectively,
for heat structure i. Finally, nF is the number of fuel volumes in a reactor core.

Boron feedback is not provided, but will be added in a later version. The separable
model can be used if boron changes are quite small and the reactor is near critical about
only one state point.
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