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        The Risk-Informed Safety Margin Characterization 
(RISMC) approach is developing an advanced set of 
simulation-based methodologies in order to perform 
Probabilistic Risk Analyses. These methods randomly 
perturb (by employing sampling algorithms) 
timing/sequencing of events and uncertain parameters of 
the physics-based models in order to estimate stochastic 
outcomes such as off-normal and damage states of the 
facility. This modeling approach applied to complex 
systems such as nuclear power plants requires the analyst 
to perform a series of computationally-expensive 
simulation runs given a large set of uncertain parameters. 
One issue is related to the fact that the space of the 
possible solutions can be sampled only sparsely and this 
precludes the ability to fully analyze the impact of 
uncertainties on the system dynamics. This paper 
describes how we can use novel methods that optimize the 
information generated by the sampling process by 
sampling unexplored or risk-significant regions of the 
issue space; we call this approach adaptive (smart) 
sampling algorithms. These methods infer the system 
response using surrogate models constructed from 
existing samples and predict the best location of the next 
sample. Thus, it is possible to understand features of the 
issue space with a smaller number of carefully selected 
samples. In this paper, we present how it is possible to 
perform adaptive sampling using the RAVEN statistical 
tool and highlight the advantages compared to more 
classical sampling approaches such as Monte-Carlo.  
 

 
I. INTRODUCTION 

 
The Risk-Informed Safety Margin Characterization 

(RISMC) [1] Pathway (as part of the Light Water 
Sustainability (LWRS) Program [2]) aims to develop 
simulation-based tools and methods to assess risks for 
existing Nuclear Power Plants (NPPs). 

This Pathway, by developing new simulation-based 
methods, is extending the Probabilistic Risk assessment 
(PRA) state-of-the-practice methods [3] which have been 
traditionally based on logic structures such as Event-Trees 
(ETs) and Fault-Trees (FTs) [4]. In more detail, the 

RISMC approach uses stochastic frameworks (i.e., 
RAVEN [5]) coupled with deterministic codes that model 
specific physical aspects of the plant (e.g., thermo-
hydraulic and thermo-mechanic using RELAP5-3D [6] or 
RELAP-7 [7], and GRIZZLY [8] respectively). 

One research direction is the use of surrogate models, 
also known as Reduced Order Models (ROMs), as 
possible substitutes for one or more of the needed 
physical aspects. The use of ROMs can greatly reduce the 
computational cost of a single multi-physics simulation 
run. This advantage is relevant when many simulation 
runs need to be performed according to the desired 
stochastic analysis (usually through a stochastic sampling 
process). 

 
II. RISMC APPROACH 

 
A single simulation run can be represented as a single 

trajectory in the phase space. The evolution of such a 
trajectory in the phase space can be described as follows: 

𝜕𝜽 𝑡
𝜕𝑡

=𝓗 𝜽, 𝒔, 𝑡  (1) 

where: 
• 𝜽 = 𝜽(𝑡)  represents the status of the system as 

function of time t; 𝜽(𝑡) represents a simulation run  
• 𝓗 is the actual simulator code that describes how 𝜽 

evolves in time 
• 𝒔 = 𝒔(𝑡)  represents the status of components and 

systems of the simulator (e.g., status of emergency 
core cooling system, AC system) 

By using the RISMC approach, the PRA analysis is 
performed by following these four steps (see Fig. 1): 
1. Associating a probabilistic distribution function (pdf) 

to the set of parameters 𝒔 (e.g., timing of events) 
2. Performing stochastic sampling of the pdfs defined in 

Step 1 
3. Performing a simulation run given 𝒔 sampled in Step 

2, i.e., solve Eq. (1) 
4. Repeating Steps 2 and 3 M times and evaluating user 

defined stochastic parameters such core damage (CD) 
probability (𝑃!"). 



III. RAVEN FRAMEWORK 
 

•

•

•
•

IV. SURROGATE MODELS 
 

IV.A. Model Based ROMs 
 

•
•

IV.B. Data Based ROMs 
 

•



•

V. ADAPTIVE SAMPLING 
 

•

•

V.A. Objective Functions: Limit Surface 
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V.B. Convergence Criteria 

 

VI. TEST CASES 
 

VI.A. Single Region 
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VI.B. Multiple Regions 

∼

VI.C. Convex Region 
 

Iteration Sample Locations Estimated Limit Surface 
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VI.D. RELAP-7 Test Case 

Iteration Sample Locations Estimated Limit Surface 



 
Fig. 11. Convex limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

3. At a certain time the DGs fail and, thus, conditions of 
SBO are reached; ECCS systems is subsequently off-
line. Without the ability to cool the reactor core, its 
temperature starts to rise 

4. In order to recover AC electric power, a plant 
recovery team is assembled in order to recover one of 
the two DGs 

5. If AC power is recovered prior reaching code damage 
condition (CD), the auxiliary cooling system (i.e., 
ECCS system) is able to cool the reactor core and, 
thus, core temperature decreases 

In this case, we limit the analysis to two stochastic 
variables: 
1. Time of loss of diesel generators (DGs) after LOOP 
2. Recovery time of DGs 

The RELAP-7 PWR model has been set up based on 
the parameters specified in the OECD main steam line 
break (MSLB) benchmark problem [20]. The reference 
design for the OECD MSLB benchmark problem is 
derived from the reactor geometry and operational data of 
the TMI-1 Nuclear Power Plant (NPP), which is a 2772 
MW two loop pressurized water reactor (see the system 
scheme shown in Fig. 12). An example of PWR SBO 
scenario generated using RELAP-7 is shown Fig. 13. 

For the scope of this article we wanted to show one 
of the capabilities of RAVEN to generate ROMs and 
perform statistical analysis on them. For this case we 
collected the actual simulated data by RELAP-7 in [18], 
generated a ROM from such data and performed adaptive 
sampling on the ROM instead of the RELAP-7 code. In 
more detail, we performed the following steps: 
1. Retrieved the hdf5 data generated by sampling 

RELAP-7 in [18] 
2. Trained a ROM given the data retrieved in Step 1 
3. Sampled on a 2-dimensional Cartesian grid the ROM 

obtained in Step 2 
4. Performed adaptive sampling and limit-surface 

search 

 
Fig. 12. Scheme of the TMI PWR benchmark. 

We performed the adaptive sampling analysis for this 
test case following an initial 6×6 Cartesian grid sampling 
for training. The sample locations and the estimated limit 
surface are shown for different steps of the sampling 
process, i.e. at iteration 1, 10, 30, 60, 100, 150 and 185 
(see Fig. 14) past the training sampling. For each iteration 
note how the sample locations are quickly approaching 
the exact location of the limit surface and the estimated 
limit surface is converging.  
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Table 4 compares the number of samples required to 
evaluate this limit surface by using classical Monte-Carlo 
and adaptive sampling. 

We repeated the analysis for the case where the 
reactor power is set to 120% (i.e., a 20% power uprate). 
The scope of evaluating this new limit surface is to 
determine the reduction of the time to recovery for DGs. 
 

 
Fig. 13. Example of LOOP scenario followed by DGs failure to 

run using the RELAP-7 code.

TABLE 4. Number of samples required to evaluate the RELAP-
7 PWR SBO limit surface by using classical Monte-Carlo and 
adaptive sampling (convergence in value is equal to ) 

 Number of Samples 
Monte-Carlo ∼107 

Adaptive 185 
 

A 20% reactor power increase implies that clad 
temperature is increasing at a higher rate and thus the clad 
is reaching its melting temperature (2200 F) much faster. 
We performed Steps 1 though 4 for the new data set and 
evaluated the new limit surface for the 120% test case and 
the results are shown Fig. 15. 

 
Fig. 14. Limit surface obtained for two different levels of core 

power: 100% and 120%. 

 
Fig. 15. RELAP-7 limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

VII. CONCLUSIONS 
 

In this report we have given an overview of adaptive 
sampling techniques that can be used to perform PRA 
analyses using the RISMC toolkit. Classical simulation 
based approaches rely on either stochastic (e.g., Monte-
Carlo or LHS) or deterministic (e.g., DET) sampling. As 
part of the RISMC Pathway, the type of results that can be 
obtained via simulation goes beyond the evaluation of 
probability of occurrence of certain events such core 
damage and containment breach.  
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The RISMC approach aims to determine observable 
outcomes in order to understand potential vulnerabilities 
and the limitations of the system under consideration. In 
order to do so, there is a need to deeply explore the space 
of possible events.  

For complex systems such as nuclear power plants, 
such exploration may require a large number of 
computationally expensive simulation runs which can be 
infeasible unless very large high-performance computing 
resources are used. 

Adaptive sampling techniques aim to reduce the 
computational costs of this kind of analysis by carefully 
selecting what are the most meaningful simulation runs to 
be performed. We have shown how such reduction can be 
achieved for both analytical and more complicated cases. 
In addition we have shown the kind of information that 
can be obtained by employing system simulator codes 
(e.g., RELAP-7) and stochastic analysis tools (e.g., 
RAVEN) that is unavailable if classical PRA tools (event-
tree and fault-tree based) are used.  

Classical PRA tools give a limited representation of 
the system under consideration, for example the timing 
and sequencing of events is only loosely considered. In 
[21] we have performed a comparison on classical and 
RISMC PRA analyses for a BWR SBO test case and we 
have shown not only the greater amount of information 
that can be obtained using the RISMC approach but also 
major differences regarding probability of occurrences of 
certain event sequences.  
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