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SUMMARY 

Research conducted at the INL has demonstrated the synergistic extraction of americium using 
solvents comprised of bis(o,o-(trifluoromethyl)phenyl) dithiophosphinic acid (DPAH “1”) and 
trioctylphosphine oxide (TOPO), butyl bis(2,4,4-trimethylpentyl) phosphinate (BuCy272), or dibutyl 
butylphosphonate (DBBP). One potential drawback of this separations scheme is that soft metals such as 
silver, cadmium, or palladium and fission products such as zirconium are well extracted by these solvents. 
Several potential scrubbing reagents were examined. Of the scrubbing reagents studied, cysteine and 
methione exhibited some ability to scrub soft metals from the loaded solvent. More conventional scrub 
reagents such as ammonium fluoride or oxalic acid were not effective. Reagents like Bimet and CDTA 
were not soluble at the acidities used in these studies. Unfortunately, these results indicate that the 
identification of effective scrubbing reagents for use in a flowsheet based upon the INL DPAH is going to 
be very difficult.  
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ACRONYMS 
“1”  bis-(o,o-trifluoromentylphenyl)dithiophosphinic acid 

Bimet   ((2S,2’S)-4,4’-(ethane-1,2-diylbis(sulfanediyl)) 

BuCy272  Butyl ester of bis(2,4,4-trimethylpentyl)phosphinic acid 

Cyanex 272 bis(2,4,4-trimethylpentyl)dithiophosphinic  acid 

DBBP   Dibutyl butylphosphonate 

DPAH   Dithiophosphinic acid 

CDTA   1,2-diaminocyclohexanetetraacetic acid 

FCRD   USDOE Fuel Cycle Research and Development program 

INL   Idaho National Laboratory 

STAAR  Sigma Team for Advanced Actinide Recycle 

TOPO  tri-n-octylphosphine oxide 
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1. Introduction 
The development of processes for MA separations is driven by the potential benefits:  

reduced long-term radiotoxicty of waste placed in a geologic repository, reduced timeframe of 
waste storage, reduced repository heat load, the possibility of increased repository capacity, and 
increased utilization of energy potential of used nuclear fuel.[1-3]  The research conducted within 
the Sigma Team for Advanced Actinide Recycle (STAAR) framework is focused upon the 
realization of significant simplifications to aqueous recycle processes proposed for MA 
separations.  In particular, this report describes the development of a flowsheet concept for the 
separation of MA which is based upon the dithiophosphinic acid (DPAH) extractants previously 
developed at the Idaho National Laboratory (INL).   

The interest in the use of solvent extraction reagents containing soft donor groups such as N 
or S for highly efficient MA separations is based upon the proposed differences in the extent of 
covalent bonding occurring within the 5f-ortibals for the actinides, relative to the 4f-orbitals of 
the lanthanides.[4-8] The resulting slightly greater degree of covalent bonding for actinides 
permits effective, selective MA isolation by soft donor ligands.  Studies have shown a much 
enhanced differentiation between trivalent actinides and trivalent lanthanides when substituted 
alkyl DPAH reagents are utilized as the active phase transfer reagents.[5, 9] The focus of this 
research project during FY 2015 is to continue development of a solvent extraction process for 
minor actinide recovery from acidic solution based upon the use of INL’s dithiophosphinic acid 
compounds and a synergist.  A successful solvent extraction process would exhibit a 
combination of adequate extractant stability and actinide separation factors that permit the 
treatment of dissolved fuel raffinates at approximately 0.5 M total acidity in a single process 
step.  This development work will focus upon the use of bis(o-trifluoromethylphenyl) 
dithiophosphinic acid (Lig “1”) and a synergist dissolved in trifluoromethylphenyl sulfone (FS-
13). 

     

2. Significance 
The current baseline flowsheet for the treatment of dissolved nuclear fuel requires several 

processing steps in order to realize the desired separations.  At least two processes (i.e., TRUEX 
followed by TALSPEAK) are required for the selective separation of the minor actinides (Np, 
Am, and Cm) from a UREX-like or COEX-like raffinate containing lanthanides and other fission 
products.  By utilizing a process based upon the combination of hard and soft donor compounds, 
a single process may serve to replace the combination of the TRUEX and TALSPEAK 
processes.  In fact, simple batch extraction tests demonstrated that the combination of 0.5 M Lig 
“1” / 0.1 M TOPO / FS-13 can recover uranium, neptunium, plutonium, americium, and curium 
from a simulated UREX raffinate adjusted to 0.5 M HNO3.   The ability to operate a solvent 
extraction process at 0.5 M HNO3 would represent a significant simplification in process control 
requirements. 
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3. Approach 
The dithiophosphinic acid extractant was prepared following a literature procedure.[10]  

Trioctylphosphine oxide (Aldrich, 99%) was further purified[11] by a series of washes with 
sodium carbonate and de-ionized water to remove acidic impurities. Dibutyl butylphosphonate 
(Aldrich ≥99.0%) was used as received. The butyl ester of bis(2,2,4-
trimethylpentyl)dithiophosphinic acid was synthesized using a modification of the synthetic 
procedure reported by Barnard.[12] The scrub reagents DL-methionine (Aldrich (99%), DL-
cysteine (Aldrich 97%), oxalic acid (Aldrich ≥99%), ammonium fluoride (Aldrich 99%), 
mannitol (Aldrich ≥98%), and 1,2-diaminocyclohexanetetraacetic acid (CDTA) (Aldrich 
≥98.5%) where used as received. The scrub reagent ((2S,2’S)-4,4’-(ethane-1,2-
diylbis(sulfanediyl)) (Bimet), was synthesized by the procedure published by Aneheim and co-
workers.[13] Trifluoromethylphenyl sulfone, FS-13, (Marshallton Research Laboratories) was 
used as received.  

A series of distribution ratios were collected to identify optimal conditions for the proposed 
separations.  Metal extraction was quantified by the distribution ratio, D, calculated as the ratio 
of the equilibrium concentration of the metal ion in the organic phase to that in aqueous phase.  
A phase volume of 0.5 mL was used for all distribution ratio determinations.  The organic 
solutions of the extractant were thrice pre-equilibrated with equal volumes of aqueous electrolyte 
solutions immediately prior to use.  An aliquot of the pre-equilibrated organic phase was then 
contacted with an equal volume of the identical aqueous phase spiked with radiotracers.  While 
kinetic experiments demonstrated equilibrium in the biphasic system was established in less than 
two minutes, for convenience, the two phases were vigorously shaken using a large capacity 
mixer (Glass-Col) for 1 hour at room temperature, 20 ± 2 ºC.  The samples were centrifuged to 
facilitate phase separation and an aliquot of each phase was taken for radiometric measurements 
using gamma spectroscopy (HPGe).  The distribution of stable metal species was determined by 
inductively coupled mass spectrometry. 

Radionuclide stock solutions of 243Am (HPGe) and 154Eu (HPGe) were used to trace the 
behavior of metals in liquid-liquid systems.  Radiotracers were obtained from laboratory stocks, 
except for Eu-154 (20 µCi/mL in 0.1 M HCl) which was obtained from a commercial source 
(Eckert & Ziegler).  Typically, 1 – 10 µL aliquots of each radiotracer stock solution were used.   

The aqueous mixture of lanthanides, alkali and alkaline earth metals entitled “AFCI 
(Advanced Fuel Cycle Initiative) Simulant” was obtained from INL’s QC Laboratory.  This 
solution has been prepared to mimic aqueous raffinate composition expected after an initial 
separation of uranium as envisioned in a UREX-type process for treatment of UNF.  The 
concentration of nitric acid in the simulant mixture was adjusted to desired levels by the addition 
of appropriate volumes of concentrated nitric acid. 

 

4. Summary of results 
Continuous variation experiments were performed[14] in the latter part of FY-2014 to confirm 

synergistic interactions between the DPAH and trioctylphosphine oxide (TOPO), butyl bis(2,4,4-
trimethylpentyl) phosphinate (BuCy272), or dibutyl butylphosphonate (DBBP).  The continuous 
variation experiments were performed using FS-13 as the diluent and an aqueous phase 
composition of 0.1 M HNO3. These experiments were repeated in order to determine an optimal 
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ligand and synergist composition for the INL DPAH solvent.  The optimal solvent compositions 
are listed in Table 1. 

Table 1. Optimal ligand and synergist concentrations for the INL DPAH solvent.  Aqueous 
phase:  0.1 M HNO3, Organic phase:  FS-13. 

Synergist [Synergist], mol/L [“1”], mol/L 

TOPO 0.23 0.37 

DBBP 0.20 0.40 

BuCy272 0.20 0.40 

 

Previous results generated at the INL have demonstrated that the INL DPAH solvents extract 
several fission products.[15] The extraction of soft metals such as silver, cadmium, or palladium 
and other metals such as zirconium represents a serious limitation to the implementation of the 
INL DPAH solvent extraction process for the recovery of minor actinides from acidic solutions. 
Several different scrubbing reagents were examined in order to identify a reliable means of 
selectively scrubbing extracted fission products out of the loaded solvent.   

A combination of radiochemical and inductively coupled plasma mass spectroscopy 
experiments were used to determine the scrubbing efficiency of solutions of 0.01 M solutions of 
methionine, cysteine, oxalic acid, ammonium fluoride, mannitol dissolved in 0.5 M HNO3. The 
CDTA and Bimet were not soluble at this concentration in 0.5 M HNO3. The Bimet and CDTA 
reagents did not exhibit sufficient solubility at 0.5 M HNO3 (solubility < 0.001 M) to justify 
further testing. The various organic solvents (see Table 1) were loaded with fission products by a 
single contact with aqueous UREX-like raffinate containing soft metals, and adjusted to 0.5 M 
HNO3.[15] For the remaining reagents, the values of DAm remained well above one during 
scrubbing, but the fission products were not scrubbed from the loaded solvent. Unfortunately, 
these results indicate that the identification of effective scrubbing reagents for use in a flowsheet 
based upon the INL DPAH process was not successful. 
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