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Abstract

Laboratory experiments have suggested that thermoacoustic engines can be in-
corporated within nuclear fuel rods. Such engines would radiate sounds that
could be used to measure and acoustically-telemeter information about the op-
eration of the nuclear reactor (e.g., coolant temperature or fluxes of neutrons
or other energetic particles) or the physical condition of the nuclear fuel itself
(e.g., changes in temperature, evolved gases) that are encoded as the frequency
and/or amplitude of the radiated sound [IEEE Measurement and Instrumen-
tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it
is important to characterize the vibroacoustical environments within reactors.
Measurements will be presented of the background noise spectra (with and with-
out coolant pumps) and reverberation times within the 70,000 gallon pool that
cools and shields the fuel in the 1 MW research reactor on Penn State’s campus
using two hydrophones, a piezoelectric projector, and an accelerometer. Sev-
eral signal-processing techniques will be demonstrated to enhance the measured
results. Background vibrational measurement were also taken at the 250 MW
Advanced Test Reactor, located at the Idaho National Laboratory, using ac-
celerometers mounted outside the reactor’s pressure vessel and on plumbing will
also be presented. The detectability predictions made in the thesis were validated
in September 2015 using a nuclear fission-heated thermoacoustic sensor that was
placed in the core of the Breazeale Nuclear Reactor on Penn State’s campus.
Some features of the thermoacoustic device used in that experiment will also be
revealed. [Work supported by the U.S. Department of Energy.]
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Abstract

This thesis reports the first quantitative measurements of the vibroacoustic background

noise levels and the reverberation time in the 70,000 gallon (265 m3) pool used to cool the

Breazeale Nuclear Reactor on Penn State’s University Park campus. These measurements

are used to provide an estimate for the detectability of a pure tone generated by a thermoa-

coustic engine that will be placed in the E-6 fuel position within that reactor’s core to act

as a self-powered, acoustically-telemetered thermoacoustic sensor (TAC Sensor) capable of

measuring coolant temperature (based on the radiated frequency) and neutron flux (based

on the radiated amplitude).

Background noise levels within the pool were measured with two hydrophones placed

at the bottom of the pool. Vibration levels were measured with a single-axis accelerometer

mounted on a partially-submerged instrumentation tower. An underwater sound source was

also placed at the bottom of the pool and was used to radiate pure tones from 1.4 kHz to

2.4 kHz and broadband (white) noise. The decay of those tones allowed estimation of the

reverberation time, which is approximately 140 ± 50 ms in the frequency range between 1.2

kHz and 2.4 kHz. The first 100 lowest frequency standing wave normal modes of the pool

were calculated. The measured reverberation times were used to estimate the Schroeder

frequency (fc = 230 Hz) that was well below the design frequency of the TAC Sensor.

Therefore, the sound field created by a TAC Sensor should be dominantly diffuse, rather

than modal, at distances greater than the critical distance from the reactor core (rc ≈ 1.6

m = 5.25 ft).

In addition to real-time display of all three vibroacoustic sensor outputs on an oscil-

loscope and a 4-channel dynamic signal analyzer, all signals were recorded digitally at

CD-quality (16-bit, 44.1 kilosamples/second) for subsequent analysis. Custom analyses

using power spectral density techniques, spectrograms, and waterfall plots are described.
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High-pass analog filtering of sensor signals prior to recording is recommended to reduce

background noise below 1 kHz, thus increasing the available dynamic range of the digi-

tal recorder. Narrow-band filtration of the digitized signal is recommended for tracking

the TAC Sensor signal’s frequency and amplitude, especially if multiple TAC Sensors are

frequency-division-multiplexed in the future to simultaneously monitor several positions

throughout a reactor’s core.

This thesis concludes that a TAC Sensor’s signal should be detectable in the Breazeale

Reactor based on the design detailed in the Idaho National Laboratory Technical Report

No. INL-LTD-15-34228 (March 2015). The technical report outlines many of the necessary

conclusions drawn from the calculations and measurements made in this thesis, and serves

as the impetus for fabrication of the TAC sensor and how it will behave in the Breazeale

acoustic environment.
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Chapter 1

Introduction

1.1 Motivation

On March 11, 2011, the Fukushima Prefecture of Japan experienced one of humankind’s

largest recorded disasters. The Great East Japan Earthquake marauded along the Japanese

coast with a magnitude larger than anything the country had previously recorded. The

Fukushima Daiichi Nuclear Power Plant, located on the country’s eastern shore (see Fig.

1.1), was operating three of its six nuclear reactors when the earthquake struck. Reac-

tors 1-3 were in operation during the seismic activity, and all three were properly shut

down in accordance with typical emergency shutoff procedures. Backup generators and

reactor cooling began; however, within 45 minutes of the earthquake a 15 meter tsunami

hit the city coast and disabled nearly all electrical power. Reactors 1, 2, and 4 lost all

electrical power immediately following the tsunami, and reactor 3 had a complete station

blackout where only DC power remained. Within one day, reactor station 1 suffered a

hydrogen explosion due to the inability to monitor and properly vent gas buildup in the

reactor’s core. Stations 3, and 4 also experienced these hydrogen explosions, and each sub-

sequently released harmful radiation into the atmosphere and surrounding environment.

The Fukushima Daiichi Plant was deemed a “major accident,” the most severe rating on

the International Nuclear and Radiological Event Scale [10][12].

A myriad of scientific papers were published on the disaster in Japan, and one in par-

ticular guided the research discussed in this thesis. As far back as March 2011, research

on the feasibility of a nuclear powered acoustic resonator was conducted at Idaho Na-

tional Laboratory and The Pennsylvania State University [22]. This resonator would be

manufactured to resemble a fuel pin that could be placed in a nuclear reactor’s core. The

“fuel-rod resonator” would be thermally powered by nuclear fuel (or other fissionable mate-

rial or gamma absorber) and have no electrical components or moving parts. This unique

characteristic of the acoustic device was a response to the Fukushima accident, which was

exacerbated by the inability to monitor the reactors after the tsumani caused power out-

ages across the entire complex. The resonator would be part of the fuel assembly just as

any other fuel pin, except that it would resonate and emit a single audible tone. This

unique tone would allow reactor operators to monitor the behavior of the reactor without
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electrical power, and ultimately determine whether a disaster is imminent.

As this thesis will demonstrate, the Breazeale Nuclear Reactor provided the perfect

venue to test the first nuclear powered acoustic resonator. To ensure that the resonator’s

radiated sound would be detectable above the background noise, measurements of the Breazeale

reactor pool needed to be conducted to characterize the acoustic environment. Once the

acoustic environment is characterized, the resonator’s detectability can be estimated. This

may eventually lead to the monitoring of a nuclear reactor using an acoustic resonator.

Figure 1.1: Fukushima Daiichi Nuclear Power Plant diagram showing the location of the
reactors and the layout of the natural disaster prevention system. The anti-earthquake
system, the emergency response center, and the breakwater partitions were constructed to
prevent nuclear disasters of the type experienced on March 11, 2011 [12].

1.2 Background Overview

The Breazeale Nuclear Reactor is located on the eastern perimeter of Penn State’s Univer-

sity Park campus. It is a research reactor capable of producing 1 MW of thermal power.

This low-power design (typical commercial reactors can be 500 MW or more [5]) and op-

erating restriction permits the study and testing of nuclear power at the university level

without the risks involved with a high-power commercial reactor used by electric utility

companies. The Breazeale reactor is a light water reactor cooled by a 70,000 gallon (265

m3) pool with a free surface. If the Breazeale reactor were pressurized, the acquisition
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of acoustical data would be more difficult.

If the acoustic resonator is to be powered by nuclear fuel it must first meet the cri-

teria for thermoacoustic engines. The resonator is a hollow cylinder that will be closed

at both ends to contain a pressurized gas mixture. It will contain a hot heat-exchanger

and a “stack.” This type of thermoacoustic engine is called a prime mover, since heat

energy (from nuclear fission) is converted to mechanical work (acoustic power) [18]. The

half-wavelength standing-wave resonance frequency will be determined by the length and

closed-end design of the resonator, along with the gas mixture’s sound speed.

The resonance frequency of the thermoacoustic engine will also depend on the appro-

priately averaged temperature of the gas mixture. Randall Ali and Steven Garrett, at

the Pennsylvania State University, investigated the effects of a thermoacoustic resonator

submerged in a calorimeter. These experiments conducted by Ali and Garrett, also with

support from Idaho National Laboratory, involved the manufacture and testing of the ther-

moacoustic resonator shown in Fig. 1.2 [2]. The resonator in Ali’s thesis used an elec-

tric heating element instead of nuclear fuel. A frequency vs. temperature relation was

obtained. The results confirmed the resonator’s ability to encode the average temperature

of the surrounding water as the resonance frequency [3]. Westinghouse Electric Company

then suggested that the amplitude of the sound radiated by the thermoacoustic resonator

could also be correlated to the flux of energetic particles (i.e. neutrons or gamma rays) [8]

[9]. Since the neutron flux of a nuclear reactor is related to its power output, the acoustic

amplitude can be used to monitor reactor power. The Breazeale Nuclear Reactor proved

to be the perfect initial test site for Westinghouse, Idaho National Lab, and Penn State.

Acoustic characterization of the reactor pool was necessary for determining the feasibility

of detecting sound generated by the fuel rod resonator.

An electrically driven underwater sound source acted as a mock resonator by emitting

various acoustic tones, while hydrophones and an accelerometer picked up the response

of acoustic excitation in the reactor pool. This method of excitation and detection was

shown to be suitable for these studies in an environment as complex as a nuclear reactor.

1.3 Thesis Scope

The primary function of this thesis is to act as a bridge between the research conducted

by Ali and Garrett using an electrically heated engine and the future work involving the

placement of a TAC sensor in the core of a nuclear reactor. The thesis consists of four

parts: theoretical calculations, experimentation, comparison of theory and measurements,

and a summary followed by a discussion of future work. The acoustic environment of the

reactor pool is the focus of this work. A nuclear was developed by Penn State and IST

Mirion [1], and was successfully tested in the Breazeale Reactor Pool; however, publication

of those measurements will be published after the completion of this thesis.

First, the shape of the Breazeale reactor pool is described. A few assumptions are made
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Figure 1.2: Photo of the resonator used for Ali and Garrett’s experiments [2]. The heating
element is the NiCr wire glowing in the foreground, and the stack is the larger honeycomb-
like material to the right of the heater wire. This device is a simplified version of the
thermoacoustic fuel rod resonator that will be placed in the Breazeale reactor, but served as
the first step in showing the relation between the temperature and frequency of a resonator
submerged in water.

to simplify its characterization. Once its geometry is established, the modal character of

the space is explored using classical acoustic theory assuming lossless conditions [13]. The

pressure-release boundary between the air and water of the reactor pool is important for

characterizing not only the modes of the pool, but the ability to monitor acoustic signals

in the pool. This pressure-release boundary permits the easy insertion of hydrophones in

water, whereas in normal reactors, the pressurization makes this extremely difficult due

to potential leakage of irradiated water.

Next, the energy of the acoustic field is related to acoustic losses. Absorption in the

reactor pool determines the steady-state acoustic energy. The energy absorbed by the pool

walls or transmitted through its boundaries will directly influence the measured sound

pressure levels produced by the resonator within the pool. Measurements of values such

as reverberation time are used to quantify those losses.

The assumption of dipolar acoustic radiation from a resonator is also examined in that

chapter. The focus in this thesis is not on resonator design, which is detailed in a separate

Technical Report by Steven Garrett for Idaho National Lab [21].

The resonator was replaced with an underwater sound source for the vibroacoustic

measurements reported in this thesis, and the frequency spectra of the reactor’s pump

noise was obtained under a variety of reactor operating conditions. In short, the under-

water sound source was used as a surrogate fuel rod resonator in the Breazeale reactor
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pool. This permitted the study of the acoustic field in an operating nuclear reactor.

On November 12, 2014 and December 04, 2014, acoustic measurements were taken at

Breazeale using two hydrophones and an accelerometer. First, both hydrophones were lo-

cated on the far end of the reactor pool away from the core. During these measurements,

both hydrophones were equally spaced on either side of the underwater sound source. The

main reactor pumps were deactivated to acquire background noise levels. Once the back-

ground noise was measured, a coolant pump was activated and the measurements were

repeated. The coolant pump did not raise the noise floor by much, but it did result in a

detectable amount of broadband acoustic energy. Reverberation measurements were taken

while the coolant pump was deactivated to determine the absorptive behavior of the walls

of the reactor pool. The measurements showed that the hydrophones were placed too close

to the underwater sound source (see Sec. 3.1.4).

After realizing that the hydrophones were picking up direct instead of reverberant en-

ergy, Hydrophone-008 was relocated across the pool. During the subsequent series of mea-

surements (taken December 04, 2014) one hydrophone, Hydrophone-007, was about 6 ft.

(1.83 m) from the sound source and the other, Hydrophone-008, was roughly 27 ft. (8.2

m) from the sound source. Upon reconfiguration of the hydrophone setup, reverberation

measurements were retaken and yielded useful results. The reverberation measurements,

in combination with energy absorption theory of the reactor pool, determine the neces-

sary radiated acoustic power output needed to produce pressure amplitudes that could

be detected over the background noise in the pool.

The radiated frequency of the fuel rod resonator is determined by the temperature

of the gas in the resonator, and consequently the temperature of the water in the pool.

With this in mind, measurements of various frequencies were taken. A frequency sweep

was used to mimic frequency excursions of the resonator. With high signal-to-noise ra-

tio, this experiment showed positive results after signal processing of the recorded signals.

Similar signal processing showed that several frequencies are able to be distinguished si-

multaneously, proving that multiple resonators could be placed in a reactor core. This

frequency-division multiplexing assumes that each resonator’s frequency is spaced suffi-

ciently far from any other resonator’s frequency.

On November 12th and December 4th, recordings were made of single frequency, multi-

frequency, and frequency sweep excitations. Later analyses were conducted with the inten-

tion of developing software for characterizing frequency and amplitude data taken from a

thermoacoustic resonator placed within the Breazeale reactor pool. Section 3.3 focuses on

post-acquisition analysis of measured acoustic signals. When the resonator begins emitting

sound, signal processing methods will be of paramount importance during the real-time

analysis of the received signals to ensure accurate understanding of the resonator and how

its properties, i.e. frequency and amplitude, relate to what is happening in the surround-

ing nuclear environment. Several filtering techniques are explored in this thesis, as well
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as the need for a two-factor analysis scheme for characterizing the resonator’s frequency

and amplitude.

A data acquisition system must be able to measure frequency and amplitude contin-

uously. This is why the spectrogram and power spectrum are important for monitoring

the frequency and amplitude content. The necessity for both analysis tools is discussed

in detail in Sec. 3.3.3. A waterfall plot is also mentioned as a possible solution to the

spectrogram/power spectrum requirement, however, it is not fully explored. The signal

processing in this thesis is limited to the detectability of the signals emitted by the under-

water sound source. Windowing, averaging, and overlap methods were all used to produce

most of the plots provided in this thesis. It is likely that more complex methods of fil-

tering, windowing, and processing methods can be developed, if required.

Chapter 4 uses the measurements and theory to characterize a fuel rod resonator. Sig-

nal processing methods are also being developed by Idaho National Laboratory. The con-

clusions made in the final chapter focus on the success of the vibroacoustic characterization

of the Breazeale reactor using assumptions about the pool.
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Chapter 2

Reactor Pool Sound Field Analysis

2.1 Reactor Pool Geometry

Acoustic characterization of any environment requires certain generalizations to be made

about the behavior of sound in both the given geometry and at the frequencies of interest.

In the case of the Breazeale Nuclear Reactor pool, sensor frequencies were chosen such

that their wavelengths in water were much smaller than any given dimension of the pool.

This analysis begins with calculation of the lowest 100 standing wave modes. At the fre-

quencies of interest, the density of modes becomes sufficiently high that the statistical

energy analysis of Sabine is useful [19]. Geometry, frequency, and energy simplifications,

together provide a better understanding how an acoustic environment behaves during ex-

citation. In the following calculations, these techniques will be used to characterize the

sound field within a rigid-walled rectangular pool with a free surface at the air-water in-

terface that is excited by a single dipolar source.

2.1.1 Architectural Overview

The Breazeale reactor pool (BRP) has a 2-D hexagonal floor plan and an inner geom-

etry that contains a partition and several other obstructions. The top of the pool is a

pressure-release surface (free), while the other six sides and bottom are composed of steel-

reinforced concrete. The low acoustic impedance of the free surface eliminates acoustic

pressure oscillations at the water-air interface. Figure 2.1 shows a simplified model of the

reactor pool’s geometry.

The BRP is approximately 14 ft (4.27 m) wide and 30 ft (9.14 m) long. 24 ft (7.32 m) of

depth gives an overall volume of more than 70,000 gallons (265 kL), this volume provides an

ample amount of water for cooling the reactor during normal operation. The pool consists

of a north and a south bay, connected through a 5ft (1.5 m) wide opening. The north

bay is considered the storage or drainage section, while the south bay acts as the primary

operation area. All of the walls and partitions, with the exception of the southernmost

wall labeled -4- in Fig. 2.1, are made of 1.5 ft (.46 m) thick concrete. The south wall (wall

4) is reinforced by 3.5 ft (1.07 m) thick high-density concrete to shield the neutron beam

ports next to the reactor. A removable aluminum gate that can be inserted between the
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Figure 2.1: Simple geometric representa-
tion of the Breazeale Nuclear Reactor pool.
The depth of the pool is 24 ft (7.32 m) and
its sides are made of steel-reinforced con-
crete 1.5 ft (0.46 m) thick. The southern-
most wall located in the south bay, labeled
-4-, is 3.5 ft (1.07 m) thick to shield the neu-
tron beam ports. Typically, the core is lo-
cated near the center of the south bay, la-
beled -6-.

north and south bays in the 5 ft (1.5 m) gap that divides the two. The gate is usually

absent to allow the two bays to mix. That gap is treated as open for the calculations

that follow.

2.1.2 Geometric Assumptions

As a first step toward simplification of the acoustic environment, its partly hexagonal floor

plan is approximated as rectangular with the same cross-sectional area. Using the mea-

surements from Fig. 2.1, the approximate area of the 5 ft (1.5 m) gap between the two

pools is 7.5 ft2 (.7 m2), and the area of the irregular polygon in the south pool is 71.8 ft2

(6.7 m2). Figure 2.2 depicts the resulting adiabatic transformation from irregular to rect-

angular area (labeled A to B) [7]. Sections in red denote changes, while all other dimen-

sions remain unchanged. Since the depth is unaltered and the overall area remains the

same ( 397 ft2 (36.9 m2)), the volume is conserved as well. Drawing B in Fig. 2.2 is the

working model for acoustic analysis of the Breazeale reactor pool that follows.
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Figure 2.2: Simple geometric representation showing the adiabatic transformation from
hexagonal to rectangular floor plan.

2.2 Identifying a Suitable Frequency Band

The Breazeale reactor pool (BRP), with its simplified geometry represented in Fig. 2.2(B),

is treated as a “rectangular room.” Furthermore, approximations and assumptions must

be made about the acoustic environment with regard to propagation of sound in water. A

perfect pressure-release surface is assumed for the BRP analysis. Absence of thermal, vis-

cous, relaxation, transmission, and scattering energy losses are also assumed in the water

and at the pool boundaries. These assumptions will later be modified to include losses,

but their immediate neglect does not invalidate the derivations that follow. Lastly, it is

assumed that the steel-reinforced concrete walls are sufficiently rigid that ideal standing-

waves are formed with no normal fluid velocity at any boundary except the free surface.

Through superposition of the aforementioned requirements, modal frequency information

can be recovered for the desired geometry, therefore, facilitating further analysis of the

acoustic environment [6] [15].

2.2.1 Rigid and Pressure-Release Boundaries

For the reactor pool, interpretation of boundary conditions and modal behavior requires

that a three-dimensional wave equation be solved. To begin, p is designated as the acoustic
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pressure. It is a function of position and time. c is a constant defined as the speed of

sound in the fluid. The spatial and temporal variation of p is governed by the linearized,

non-dissipative wave equation:

∇2p =
1

c2
∂2p

∂t2
(2.1)

Equation 2.1 can be expressed in rectangular coordinates:

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

1

c2
∂2p

∂t2
(2.2)

Since p is a function of x, y, z, and t, it can be separated into the product of four sepa-

rate functions by utilizing the Helmholtz equation, each labeled in terms of its respective

coordinate [15].

p(x, y, z, t) = X(x)Y (y)Z(z)T (t) (2.3)

Plugging Eq. 2.3 back into Eq. 2.1, the solution results in a sinusoidal pressure distri-

bution in terms of position and time (using i =
√
−1 as the unit imaginary number):

p(x, y, z, t) = Ax,y,ze
i(kxx+kyy+kzz−ωt) (2.4)

ω = c
√
k2x + k2y + k2z = c |k| (2.5)

At this point, Ax,y,z is the amplitude, kn is defined as a cartesian component of the acous-

tic wavenumber, and ω is called the angular frequency: ω = c |k|. Values of kx, ky, kz are

predetermined by the boundary conditions set by the geometry and architecture of the

pool. Each modal frequency can then be calculated using the definition of the wavenum-

ber. If the lengths of the walls of the pool are labeled Lx, Ly, Lz, respectively for each

dimension, then relations between boundary conditions and wavenumbers can be imposed.

Due to the rigid-walled assumption, the normal component of the fluid velocity must be

identically zero at a rigid boundary (i.e. concrete). Using Euler’s equation, a relation be-

tween particle velocity and pressure can be established.

ρ
∂u

∂t
= −∇p (2.6)

u = −1

ρ

∫
∇p dt =

1

ρ

kn
ω
p = 0 [for rigid boundary] (2.7)

∂u

∂t
= −1

ρ
∇p = − ikn

ρ
p = 0 [for pressure-release boundary] (2.8)

A Cartesian coordinate system is assumed, with x and y in the directions parallel to

the bottom of the pool, and z in the direction vertically from the bottom of the pool

toward the pressure-release surface. The origin of the coordinate system is assumed to

be at x = y = z = 0 at the bottom of the pool where the three perpendicular planes
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intersect. The lengths of the sides of the pool are Lx, Ly, andLz, corresponding to its sub-

scripted direction. The actual dimensions calculated previously will be used in the mode

calculation, but are not necessary for the derivation.

The x and y pressure solutions are easily found through symmetrically rigid boundaries

at x = y = 0 and x = Lx, y = Ly. The z-direction is different because it requires a rigid

surface at z = 0, but a pressure released surface at z = Lz. Eqs. 2.7 and 2.8 for z-direction

can be solved using the solution from Eq. 2.4:

p(x, y, z, t) = Ax,y,ze
i(kxx+kyy+kzz)e−iωt → u =

1

ρ

kn
ω
p = 0 [rigid boundary] (2.9)

p(x, y, z, t) = Ax,y,ze
i(kxx+kyy+kzz)e−iωt → ∂u

∂t
= − ikn

ρ
p = 0 [soft boundary] (2.10)

Euler’s formula is employed using complex numbers to gain intuitive understanding into

the behavior of sound waves at each boundary. The real part of each trigonometric func-

tion corresponds to the physical phenomena. Although sine or cosine are chosen based

on a specified boundary, both must be incorporated for the complete solution [13]. The

results derived for the z-direction are shown below using the sine function.

u(0, 0, 0, t) =
1

ρ

kz
ω
p(0, 0, 0, t) =

1

ρ

kz
ω

sin(kz · 0) = 0 (2.11)

u(0, 0, Lz, t) = − ikz
ρ
p(0, 0, Lz, t) =

kz
ρ

cos(kzLz) = 0 (2.12)

Equation 2.11 indicates that for all values of kz the boundary condition is met. Equation

2.12, however, requires all values of kzLz be an odd multiple of one-half multiplied by

π.

kz =
(2nz − 1)π

2Lz
(2.13)

fz =
c

2π

(2nz − 1)π

2Lz
=

c

4Lz
(2nz − 1) (2.14)

(nz = 1, 2, 3, 4 ...)

This accounts for the modes in the z-direction. Now, the same technique must be used

to find the modes in the x and y directions.

kx =
nxπ

Lx
, ky =

nyπ

Ly
(2.15)
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fx =
c

2Lx
nx, fy =

c

2Ly
ny (2.16)

(nx, ny = 0, 1, 2, 3 ...)

Invoking the definition of ω from Eq. 2.5, kx, ky and kz from Eqs. 2.15 and 2.13, and

the relation ω = 2πf ,

fnx,ny ,nz =
c

2

√(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
(2nz − 1)

2Lz

)2

(2.17)

This is an important result that relates the geometry of a rectangular enclosure to the

standing-wave frequencies produced during steady-state excitation. Each value for nx, ny

and nz will produce a modal frequency for the given geometry.

2.2.2 Modal Characteristics of the Pool

Implementation of Eq. 2.17 begins with substitution of allowed integer values for nx, ny, andnz.

The speed of sound in fresh water is c ' 1500 m/s (at 25◦C), the lengths of the sides

of the pool given in Fig. 2.2B are: Lx = 8.65m, Ly = 4.27m, and Lz = 7.32m. The nine

lowest frequency modes of the BRP are displayed in Table 2.1 with their corresponding

integer indices.

Reactor Pool Modal Frequencies

f0,0,1 f1,0,1 f0,0,2 f1,0,2 f2,0,1 f0,1,1 f1,1,1 f2,0,2 f0,1,2

nx 0 1 0 1 0 1 1 2 0

ny 0 0 0 0 1 1 1 0 1

nz 1 1 2 2 1 1 1 2 2

Frequency [Hz] 51 101 154 177 181 183 203 232 234

Table 2.1: First nine modal frequencies of the Breazeale reactor pool. Three types
of modes are demonstrated: axial (only one non-zero index), tangential (only one
zero index), and oblique (no zero indices). Mode types are important for accurate
room acoustic calculations in spaces inhabited by humans to establish perception
and hearing, however, the current analysis does not necessitate distinction between
them.

The frequency separation between neighboring peaks decreases as the indices increase, thus

resulting in a larger density of modes at higher frequencies. At sufficiently high frequen-

cies, a statistical theory of energy distribution can be used to characterize properties of

reverberant spaces. The total volume, V , surface area, S, and volumetric perimeter, Ltot,

are used to approximate the number of modes, N , in a room below a particular frequency,

f [14].
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N '
(

4πf3V

3c3

)
+

(
πf2S

4c2

)
+

(
fLtot

8c

)
(2.18)

For the Breazeale reactor pool, the following values are used:

V ' 267m3; S ' 260.5m2; Ltot ' 80.5m

Using this approach, the number of modes below 1 kHz is approximately 433 for the BRP

geometry. Using a simple MATLAB R© routine, 408 modes were calculated, putting the

approximation within 6% of the exact result. The discrete values and Eq. 2.18 converge

as the frequency increases, causing the error to decrease.

Eq. 2.18 can also be used to calculate the density of modes within a specified band-

width, df , by taking the derivative with respect to f :

dN

df
'
(

4πf2V

c3

)
+

(
πfS

2c2

)
+

(
Ltot
8c

)
(2.19)

Eq. 2.19 is solved as a quadratic equation for f . For example, if the goal was to find

the frequency where 10 modes per 1 Hz bandwidth existed, then the modal density can

be set to dN/df = 10. In that case, one would arrive at a frequency around 3,063 Hz,

using the dimensions of the Breazeale pool. A quick check in MATLAB R© confirms that

around 3,063 Hz there are roughly 10 modes within each 1 Hz bandwidth.

Consideration of the modal density permits a smooth transition from frequency to en-

ergy considerations in a reverberant environment. Manfred Schroeder suggested a cutoff

frequency, later renamed the eponymous “Schroeder frquency,” that marks the transition

between discrete resonance frequencies with resolvable peaks and resonant modes that over-

lap sufficiently that they can be modeled statistically. This cutoff frequency can also be

used in conjunction with energy analysis to characterize the acoustic energy in the re-

actor pool [20]. Based on empirical observations, Schroeder defined his cutoff frequency

as the frequency where three modes exist within the -3dB bandwidth of a single mode.

2.3 Energy in the Acoustic Environment

Energy losses through walls play an important role in the characterization of dissipation

throughout the reactor pool’s acoustic environment. The inclusion of these losses is the

next logical step in the modal analysis, and will eventually connect experimental values

with the steady-state acoustical energy distribution. The geometric and pressure-release

assumptions still hold, however, the rigid-walled approximation no longer holds due to

non-zero absorption and transmission mechanisms at the boundaries. For the Breazeale

reactor pool, bulk thermoviscous losses are negligible because of the frequencies of interest

and the short distances traveled by the acoustic waves. This will be covered in more detail

in the next section.
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An enclosure can be thought of as a series of small resonators excited by a source,

each relating to a standing wave frequency that will decay once the source is turned off.

This behavior can be analyzed in the same way that statistical mechanics relates to classi-

cal mechanics. In classical mechanics, it is assumed that large bodies follow conservation

laws individually, based on specific properties, whereas statistical mechanics relies on the

grouping of large quantities of particles that produce statistical behavior. An example of

this is frequently seen in acoustics with the treatment of air as a large group of particles

moving together to create a wave. An extension of this analogy is applied to a different

phenomenon in acoustics where the equal distribution of energy among modes that are

very closely spaced in frequency treat modes as individual particles.

2.3.1 Conserving Energy through Absorption

The power density associated with an acoustic wave is often expressed as a sum of the

time derivative of the kinetic and potential energy densities and the divergence of a flux.

In acoustics, this energy flux is the acoustic intensity, I [15]:

∂w

∂t
+∇·I = 0 (2.20)

Integrating Eq. 2.20 over a specified volume gives the total power for sources emitting

a band of frequencies:

d

dt

∫∫∫
ws dV = Πs −Πs,d (2.21)

ws =
1

2
ρ0v

2
s +

1

2

p2s
ρ0c2

; I = pvs (2.22)

The variables ps and vs are functions of x and t and represent source conditions. Πs and

Πs,d are the radiated and dissipated power of the source, respectively, and ws describes

the mechanical energy density of the system produced by the sources.

Time average functions of Πs, Πs,d, and ws are represented as Π̄, Π̄d, and w̄, respec-

tively, and require that the values of each average be independent of location. This stems

from Sabine’s statistical analysis of reverberant rooms, which requires that any wavelength

be much smaller than any fundamental dimension of the enclosure. The averaged “dissi-

pated power,” Π̄d, can be approximated by assuming all energy loss is due to transmission

through the boundaries.

Π̄d =
c

4
Aabsw̄ (2.23)

Equation 2.23 relates the absorption of sound in a room to the energy produced by the

source, w̄, through an equivalent absorptive area, Aabs. Substituting Eq. 2.23 into Eq.

2.21 results in a differential equation relating the average energy output, average power
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output, and absorptive area at the enclosure’s boundaries:

d

dt

∫∫∫
w̄ dV = Π̄− c

4
Aabsw̄ (2.24)

Π̄ = V
dw̄

dt
+
c

4
Aabsw̄ (2.25)

Equation 2.25 states that the total power of a source will be broken into the sum of the

average energy density and the absorption proportional to the average energy density in

the system. Upon cessation of the source output (Π̄ = 0), the differential equation in 2.25

can be solved using a simple exponential decay solution:∫
1

w̄
dw̄ =

∫
− c

4V
Aabsdt (2.26)

ln

(
w̄

w̄0

)
= − c

4V
Aabst → w̄ = w̄0e

−t/τ (2.27)

τ =
4V

cAabs
(2.28)

Equation 2.28 is often used to calculate the time it takes for the energy in a system to

decrease by 60 decibels. This 60 dB decrease was chosen by Sabine as the time it took

for sound in a room to decay to an inaudible level.

decibel = 10 log10

(
prms

2

pref2

)
(2.29)

−60 = 10 log10

(
w̄60

w̄0

)
→ w̄60 = w̄0 10−6 (2.30)

The specific subscripted w̄60 is designated as the 60 decibel decay from the original

power level. The insertion of w̄60 and w̄0 as squared-pressures stems from the definition

of the energy density in Eq. 2.22 and its dependence on the pressure, p. Through Euler’s

equation (Eq. 2.6), the velocity in Eq. 2.22 can also be written in terms of the pressure,

if sinusoidal sources are assumed, as is the case here. Now if the second of Eq. 2.30 is

used to calculate a value for t, the result is widely recognized as the “reverberation time,”

T60, and can be determined through experimentation.

et/τ = 106 → t = 6 ln(10) τ (2.31)

T60 = 6 ln(10) τ = 13.82 τ (2.32)

Equations 2.32 and 2.28 use the time it takes for a signal’s power to decrease by 60

decibels to infer the effective absorptive area of an enclosure. It is often used to character-
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Figure 2.3: Illustration showing the effects of absorption on a system. The power output is
a constant sound source emitting ‘sound power droplets’ into a bucket that represents the
acoustic environment. An average sound level is produced, based on an average absorption.
The power absorbed and the average measured sound power add to equal the total acoustic
power input [21].

ize the clarity of speech in a room, but more importantly in our case, it helps determine

how quickly energy escapes from an enclosure. Figure 2.3 is a cartoon that depicts an

acoustic system, such as the Breazeale reactor pool, and simplifies the concepts of power

output, average sound level, and average absorption. It also prompts a discussion of the

steady-state level.

A method for calculating the time average of two complex variables is generally given

by the relation:

(UV )av =
1

2
Re{UV ∗} (2.33)

Eq. 2.33 is an identity for the time-averaged product of two complex variables, U and V .

As previously mentioned in Eq. 2.22, ws contains kinetic and potential energy densities.

If assumptions are made about the pressure waveform, namely, that they are sinusoidal

in space and time (see Eq. 2.4), then the kinetic and potential energy densities are equal

when averaged over an integer number of cycles [15].

w̄ =
1

4
ρ0v v

∗ +
1

4

p p∗

ρ0c2
=

1

2

|p|2

ρ0c2
≈ p2rms
ρ0c2

(2.34)

Figure 2.3 illustrates the three mechanisms that determine the steady-state amplitude

in an acoustic enclosure: A calibrated output power, an average sound power level, and
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an absorbing power. A microphone, or hydrophone in the case of water, is typically used

to measure a root-mean-square pressure (prms) within the enclosure. The rms pressure is

then squared to give an average sound power level using Eq. 2.34 and 2.25. The absorption

power is then calculated from the subtraction of these two to give an average absorption

in the system.

For water, bulk thermoviscous absorption exhibits a quadratic frequency dependence:

αtv =
ω2ν

2c30

[(
4

3
+
µB
µ

)
+
γ − 1

Pr

]
(2.35)

In pure water, the bulk viscosity, µB, can be ignored along with thermal losses since γ ' 1.

The kinematic viscosity is ν and c0 is the sound speed here. Using experimental values for

ν and c0 result in a compact equation solely in terms of frequency. For sound attenuation

in fresh water at 20◦C, the bulk thermoviscous absorption coefficient can be written as[4]:

αtv ≈ 2.17× 10−13 f2 dB/m (2.36)

For the BRP, the maximum length of any side is 8.54 m. Therefore, if each pressure wave

travels two lengths of the pool, and there is only 0.1 dB of attenuation over that distance,

the lowest frequency to achieve that amount of loss is approximately 164 kHz. Accord-

ingly, frequencies below 160 kHz experience less than 0.1 dB of loss over two lengths of

the longest side of the pool. And at frequencies below 20 kHz in fresh water at 20◦C,

thermoviscous attenuation can be entirely neglected [4].

Conversely, sound waves in large enclosures filled with water experience dissipation

governed primarily by wall losses. Equation 2.23 defines the equivalent absorptive area,

Aabs, as a ratio of the average power dissipated to the average energy in a system. Aabs has

units of area, and is treated as a sum of all absorptive surfaces within the given geometry.

Aabs =
∑
i

αiAi (2.37)

The variable αi in Eq. 2.37 is usually based on empirical data, but an average overall

absorption will be assumed in the following analysis due to the linear nature of the losses

at the walls. This will characterize an approximate energy dissipation from all boundaries,

and will specify the average energy density in the enclosure. Now, Equations 2.25, 2.34,

and 2.37 can combine to give a full expression for the energy in the Breazeale reactor

pool:

Π̄ =
d (ΨV )

dt
+
cΨ

4

∑
i

αiAi (2.38)

Ψ is defined as the solution to Eq. 2.38, but is simply the potential energy density from Eq.

2.34. Under the assumption that p̄(0) = 0, an exponential evolution can be determined:
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Ψ(t) =
p2rms
ρ0c2

=
4Π̄

c
∑
i
αiAi

(
1− e−t/τ

)
(2.39)

τ =
4V

c
∑
i
αiAi

(2.40)

Pressure amplitude measurements are assumed independent of position because due

to averaging conditions stated previously and employed in Eq. 2.34. Several conclusions

will be drawn from Eq. 2.39. The result will help formulate a ‘diffuse field’ analysis of

the BRP, which assumes that the energy reaches a steady-state value when time, t, sur-

passes τ and approaches infinity. Additionally, the equivalent absorptive area of the pool

boundaries can be calculated if the sound speed of the medium, the volume of the enclo-

sure, and the exponential decay time, τ , are measured. This method provides a bridge

between theoretical calculations and experimental results.

2.3.2 Steady-State Condition

Determination of acoustic amplitudes and frequencies within a rectangular enclosure is

greatly simplified under the assumption that a ‘steady-state’ condition has been attained.

This steady-state condition assumes all transient disturbances have decayed, and that the

average energy over a long period, t� τ , remains constant.

Ψ(t =∞) =
4Π̄

c
∑
i
αiAi

(2.41)

And since Ψ is the average potential energy density from Eq. 2.34, it is easy to relate

the acoustic steady-state pressure to the average input power, Π̄:

Ψ(t) =
p2rms
ρ0c2

=
4Π̄

c
∑
i
αiAi

(
1− e−t/τ

)
→ prms(t =∞) =

√√√√ 4ρ0cΠ̄∑
i
αiAi

(2.42)

Substitution of τ from Eq. 2.28 results in:

prms(t =∞) = c

√
τρ0
V

Π̄ (2.43)

Previously, the variable τ was calculated from a 60 dB drop in energy (see Eq. 2.32).

This allows Eq. 2.43 to be written as a function of the conventional architectural quantity,

T60.

prms(t =∞) = c

√
ρ0T60

13.82V
Π̄ (2.44)
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Equation 2.44 permits a relation between steady-state pressure amplitude and a known

power output and T60 measurement; and conversely, an output power can be determined

from a measured steady-state pressure amplitude and T60 measurement.

Equation 2.44 is also the basis for determining how far a measurement device must

be from the source to be in the ‘diffuse field.’ The critical distance, rd, is defined as the

distance at which the energy density from a spherically-spreading omni-directional sound

source is equal to that of the reverberant energy density. Ψs is the energy density of the

source at a distance r, whereas Ψr is the energy density of the reverberant room derived

in Eq. 2.41.

Ψs =
Π̄

4πr2c
= Ψr =

T60
13.82V

Π̄ (2.45)

rd =

√
13.82V

4πcT60
(2.46)

Equation 2.46 designates the minimum distance a measurement device must be placed

from a sound source to be in the diffuse sound field and has units of [20].

Section 2.2.2 derived the modal properties of the pool, and specifically, Eq. 2.19 gave

insight into the modal density per 1 Hz bandwidth as a function of frequency. Manfred

Schroeder suggested a transition between low and high frequencies where the resolution

of frequency peaks changes from easily resolvable to statistically blurred.

Schroeder defines a width between two points that equal half the maximum power

of a single frequency peak.

B =
1

2πτ
(2.47)

Equation 2.19 is then used to equate the half-power bandwidth, B, to a frequency spacing

per mode (the inverse of modal density, see Eq. 2.19). Schroeder suggested that three

times the frequency spacing per mode, δf , could be equated to the -3dB bandwidth of

a single mode to obtain an expression for a cutoff frequency. Once above this cutoff fre-

quency, statistical methods would predict the behavior of sound waves emitted from a

source.

δf ≡ df

dN
≈ c3

4πf2V
(2.48)

B =
1

2πτ
= 3δf = 3 · c3

4πf2V
(2.49)

fc = c

√
3cτ

2V
= c

√
3 c T60

2 (13.82)V
(2.50)
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Figure 2.4 demonstrates high modal density within the first 100 modes of the reactor pool.

This suggests that the Schroeder frequency will fall below the thermoacoustic resonator’s

resonant frequency of about 1.6 kHz; however, since τ is inversely proportional to the

absorption, the Schroeder frequency could vary. Consequently, it is difficult to determine

a Schroeder frequency without some experimentation or previous knowledge of the dis-

sipation mechanisms in a reverberant space.

Garrett also indicates that the Schroeder frequency and the critical distance are in-

terrelated through absorption, and accordingly, both characterize a diffuse environment

where acoustic detection and monitoring are not specifically mode dependent [21]. The

connection between critical distance and Schroeder frequency is evident upon substitu-

tion of the definition of τ (Eq. 2.40) into the critical distance (Eq. 2.46) as well as the

Schroeder frequency (Eq. 2.50).

rd =

√√√√∑i αiAi
16π

; λc =
c

fc
=

√√√√∑i αiAi
6

(2.51)

Figure 2.4: First 100 calculated modes of the BRP. The different colors distinguish between
adjacent modes and the modal amplitudes are arbitrary. Notice that the modes begin to
crowd as early as 180 Hz, and are densely overcrowded by the 500 Hz mark. For the reactor
pool, it is evident that the Schroeder frequency should be lower than the thermoacoustic
sensor’s resonance frequency.

The connection between the Schroeder frequency and critical distance further deter-

mine the frequencies of interest within a given enclosure. And in the case of the BRP,

this will help designate an acceptable starting frequency to ensure that the sound source

will be emitting frequencies that create a diffuse sound field in the pool. Under this as-
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sumption, the amplitude and frequency will be easy to monitor during temperature and

neutron flux measurements.

All of the geometry, frequency, and energy considerations made thus far have contributed

to the determination of the diffuse sound field parameters, i.e. critical distance, equiv-

alent absorptive area, and suitable frequency band. The theory thus far has focused on

detection of an acoustic sound source placed within the reactor pool, and indicate that

information regarding power output and absorption from walls will influence the feasibil-

ity of an acoustic resonator used as a sensor within a nuclear reactor. Implementation of

such a resonator within a reactor core is limited by sensitivity of materials to radiation

that could limit the effectiveness of such a resonator. Below, optimization designs for a

nuclear fuel rod resonator are explored.

2.4 Thermoacoustic Fuel-Rod Resonator

Now that the acoustic environment of the Breazeale reactor pool has been analyzed from a

modal and a reverberant perspective, the feasibility of the proposed thermoacoustic sensor

can be explored. The proposed resonator is a form of thermoacoustic engine that functions

by converting heat energy to acoustic energy within a given working fluid. There are two

types of acoustic heat engines: the prime mover and the heat pump. Heat is added to

a prime mover engine, which results in energy flow from hot to cold temperatures. This

causes work to be done by the engine. Conversely, work is done on a heat pump, where

heat is removed from low temperature and redeposited to higher temperature. Heat pumps

are typically called refrigerators, whereas prime movers are generally referred to as heat

engines. Appropriately, the thermoacoustic fuel rod resonator is considered a prime mover

due to the acoustic work being done by the system as a result of the heat flow [23].

Randall Ali published his Master’s thesis in May of 2013 on the fabrication and ini-

tial testing of a thermoacoustic sound source. Ali’s thermoacoustic sound source was sub-

merged in a small calorimeter filled with water and heated at one end by NiCr wire. It

contained a Celcor R© material called a “stack” that functioned as the second thermody-

namic medium that could exchange thermal energy with the “working fluid.” In Ali’s case,

the working fluid was air pressurized above atmospheric pressure. The stack material’s

primary function is to exchange heat with the gas through the four processes illustrated

schematically in Fig. 2.5. The four processes are: 1. movement of gas toward the hot

end of the stack, accompanied by compression of gas; 2. transfer of heat from the stack

to the gas; 3. movement of gas from the hot toward the cold end of stack, accompanied

by expansion of gas; 4. transfer of heat from the gas to the stack. The cyclic processes

of compression and expansion occur with a phasing that increase the amplitude of the

standing wave of the gas inside the resonator [2]. This process was first described by J.W.

Strutt, known as Lord Rayleigh, where he explained that heat-maintained acoustic oscil-

lations were governed by the proper phasing of heat transfer and gas compression [17]:
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“If heat be added to the air at the moment of greatest condensation, or be

taken from it at the moment of greatest rarefaction, the vibration is encour-

aged.”

Figure 2.5: Illustration of a half-wavelength resonator that shows a zoomed-in view of the
compression and expansion of a gas within the resonator’s stack material. Four processes
take place within the stack: 1. movement of gas toward the hot end of the stack, accompa-
nied by compression of gas; 2. transfer of heat from the stack to the gas; 3. movement of
gas toward the cold end of stack, accompanied by expansion of gas; 4. transfer of heat from
the gas to the stack. The stack is designed so that the pores have gaps only a few thermal
diffusion distances, δκ, to permit ample thermal interaction. The heat exchangers promote
oscillation by removing and adding heat to the ends of the stack [2].

The results produced by Ali et al. [3] stimulated the interest of acoustic monitoring

within a reactor core. His results successfully demonstrated acoustic resonance and the

potential for a submerged, heat-driven acoustic sensor to measure the temperature of the

surrounding water and encode that information as the frequency of the standing wave.

This sensor, photographed in Fig. 1.2, shows the heat supply and stack removed from the

resonator. It is a prime mover, closed at both ends, and produces a resonance frequency

with a wavelength that is approximately twice the length of the enclosure. The left side

of the photo is the hot end of the resonator while the right side is the ambient (cold) end.

This closed-closed condition forces a standing-wave resonance based on the geometry of

the resonator, the gas, and the temperature of the gas. The gas, stack pore size, stack

length, and stack position in the standing wave are parameters that can be optimized

to produce the most efficient and dependable resonator.

The oscillatory motion of gas within the resonator causes the entire resonator to move

in reaction, and it moves in opposition to the gas motion. The volume of the resonator
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remains constant, but the forces that the gas motion exerts on the resonator can excite

dipolar acoustic radiation if the resonator is free to move. Details regarding the dipole

radiation of an acoustic resonator experiencing simple harmonic motion are presented in

the Idaho National Laboratory Technical Report referenced in the bibliography [21].
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Chapter 3

Breazeale Reactor Vibroacoustic Measurements

On November 12th and December 4th of 2014, experiments were conducted to acoustically

characterize the Breazeale Nuclear Reactor pool. The goal was to experimentally verify

that single-frequency emitted sine waves could be resolved in the reactor pool with back-

ground noise produced from mechanical pumps. This required the placement of two hy-

drophones, an underwater sound source, and a single axis accelerometer within the reactor

pool. Both hydrophones and the sound source were submerged at the bottom of the pool,

while the accelerometer was mounted atop an instrumentation dolly directly in contact

with the water. A dynamic signal analyzer, oscilloscope, amplifier, and digital recorder

were used as data acquisition tools during those measurements. The data taken by the

digital recorder, in conjunction with MATLAB R© computational software, were used to

produce the figures and graphics included in this summary.

3.1 November 12, 2014

Three measurement sets were taken under different operating conditions: two without the

coolant pump running and one with the coolant pump running. The first two sets in-

cluded the emission of three single-frequency sine waves (1234 Hz, 1579 Hz, 2345 Hz), one

without the coolant pump running and one with the coolant pump running. The third set

acquired six different reverberation measurements (1.6 kHz, 1.8 kHz, 2 kHz, 2.2 kHz, 2.4

kHz, broadband white-noise) using the steady-state cut-off method without the coolant

pump running [15]. Figure 3.1 shows the locations of the transducers for the experiments

that follow. Figure 3.2 is a 3-D rendering of the transducer positions. Throughout this the-

sis, the underwater sound source is labeled USS, and the two hydrophones and accelerom-

eter are labeled H-007, H-008, and Accel, respectively. Both hydrophones were HTI-96

models and the accelerometer was a PCB-321A02. Their sensitivities and calibrations are

summarized in Appendix A.
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Figure 3.1: Transducer placement in
the Breazeale reactor pool during the
November 12, 2014 measurements. The
red ovals represent the respective trans-
ducer. All except the accelerometer were
placed at the bottom of the pool. The
accelerometer was placed on an instru-
mentation dolly that was in direct con-
tact with the water (see Fig. 3.9). A 3-
dimensional rendering of the source and
sensor locations is provided in Fig. 3.2.
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Figure 3.2: Transducer placement in the Breazeale reactor pool during the November 12,
2014 and December 04, 2014 measurements. The left-hand side of the figure represents the
north bay and the right-hand side the south bay. The red objects represent the respective
transducer. H-008(1) represents the hydrophone placement on November 12th, and H-008(2)
represents the hydrophone after it was move for the December 4th measurements. For more
information on the reactor pool visualization refer to the Fig. 3.10 and Appendix B.
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3.1.1 Coolant Pump Deactivated

The reactor coolant pump is just one of three major pumps used in the reactor pool. It is

used to circulate water throughout the pool to cool the reactor core. The coolant pump,

along with the Nitrogen-16 diffuser pump, are the main sources of noise that interfere with

the sensors’ ability to achieve high signal-to-noise. As a result, measurements with and

without the coolant pump were taken. Later, measurements with the 16N diffuser pump

were also taken. The third pump, the filtration pump, does not introduce a significant

amount of noise and will therefore be included as part of the total noise when the 16N

diffuser pump is activated. To start, the coolant pump was deactivated, as well as all other

significant noise sources that were not needed for “normal operation” of the Breazeale

reactor.

The underwater sound source was a Lubell-LT9162T. It was driven by a 2.7 Volt (rms)

voltage source with three simultaneous frequencies produced by an HP-8904A multifunc-

tion synthesizer at 1234 Hz, 1579 Hz, and 2345 Hz. This resulted in measured pressure

levels between 100 Pa - 500 Pa, or underwater sound pressure levels (SPL) of 160 dB

- 173 dB re 1 µPa.

Figure 3.3 shows the received time series of all three transducers in the reactor pool.

The top two plots are the hydrophones H-008 (upper) and H-007 (middle) and the bottom

plot is the accelerometer. Figure 3.4 is a plot of the power spectra of Fig. 3.3 above to

show the frequency content and amplitude of the received signals. The power spectra are

represented in terms of root-mean-square pressure amplitudes. This was done by multi-

plying the double-sided power spectrum by the frequency separation between frequency

bins. This product was then square-rooted and plotted to produce a rough estimate of the

amplitude of a sine wave at a given frequency. This method, of course, does not account

for signal processing phenomena such as leakage or attenuation due to windowing.

Figures 3.5 - 3.7 show zoomed-in views of each individual transducer’s power spectrum.

Since this was the first measurement, the accelerometer performance was surprisingly good,

considering the arbitrary choice of mounting location (see Fig. 3.9). The spectrogram in

Fig. 3.8 shows three very clear tonal signals, signifying that hydrophone-008 had a high

signal-to-noise ratio.
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Figure 3.3: Time series of tri-tone frequencies while the coolant pump was deactivated.
From top to bottom: hydrophone-008, hydrophone-007, and the accelerometer. The long
time series was recorded to ensure ample signal-to-noise ratio.

Figure 3.4: Power spectra from the time records of Fig. 3.3 for all three transducers while
the tri-tone was emitted during the coolant pump deactivation. Each tonal frequency was
more than two orders of magnitude above the noise for all three transducers.
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Figure 3.5: Power spectrum of a 23 second time window measurement of hydrophone-008
during the pump off measurement based on the time history of Fig. 3.3.

Figure 3.6: Power spectrum of a 23 second time window measurement of hydrophone-007
during the pump deactivation measurement based on the time history of Fig. 3.3.
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Figure 3.7: Power spectrum of a 23 second time window measurement of the accelerometer
during the pump deactivation measurement based on the time history of Fig. 3.3.

Figure 3.8: Spectrogram of a 23 second time window measurement of hydrophone-008 with
the coolant pump deactivated. A 0.37 second Hann window (2.7 Hz frequency bin) and
85% overlap between time records was used to enhance smoothing. No averaging between
power spectra was done.
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Figure 3.9: Accelerometer placement on the instrumentation dolly in the Breazeale reactor
pool.
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3.1.2 Coolant Pump Activated

Figure 3.10 is a model of the reactor pool indicating the primary pump noise locations.

The coolant pump is located a few feet below the surface of the pool and is labeled “coolant

pump outlet” in the figure. The coolant pump represents the primary noise source for

the following measurements.

Figure 3.11 is a plot of the 226 second time series recording for all three transducers

after the activation of the coolant pump. Hydrophone-007 experiences some interference

over time and was due to the interaction between the hydrophone’s cable and a nearby

bobbing iron pole in the water. The interference modulated the amplitude of the time

series, as is evident in Fig. 3.11, but the frequency domain was only minimally affected.

Notice that the effect present in the time series only minimally affects the spectrogram

data. This verifies the theory of the broadband interference, and therefore, allows further

analysis of the data despite the interference. A Hann window 0.186 second long (5.38 Hz

bin) and 50% overlap between time records was used to produce the frequency vs. time

spectrogram of H-007 in Fig. 3.13. The chosen length of the Hann window and percentage

of overlap were chosen such that frequencies in the 2 kHz range could cycle at least 5-10

times before new data points were introduced.

The three tones (1234 Hz, 1579 Hz, 2345 Hz) are resolved clearly in the spectrum,

despite the obvious rise in background noise caused by the coolant pump. Figure 3.12

shows the power spectrum for each transducer. The activation of the coolant pump does

not obscure the tonal frequencies in the spectrum. Figures 3.14-3.16 show the individ-

ual power spectrum for each transducer. The underwater sound source operated under

conditions identical to that of the pump deactivation, and produced high SNR despite

the increased background noise level. In the next section, the frequency content of the

added pump noise will be explored, and in later sections a few methods for filtering and

isolating the signals will be presented.
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Figure 3.10: AutoCAD R© rendering of the primary noise sources due to pump fluid flow. The
left side of the figure represents the south bay where the reactor core is typically located.
The 16N pump discharges toward the top of the core assembly, while the filtration pump
discharges from the bottom of the pool. The coolant pump discharges from the north bay
where the transducers were located.
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Figure 3.11: Time series of tri-tone frequencies after coolant pump activation. The axes are
identical to those in Fig. 3.3, from top to bottom: hydrophone-008, hydrophone-007, and
the accelerometer. Notice the fluctuations in H-007. This was due to interaction between
the hydrophone’s cable and a nearby randomly-bobbing pipe. Some interference caused the
time series to fluctuate greatly, but the frequency domain is minimally impacted by the
slow amplitude modulation, as shown Fig. 3.13.
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Figure 3.12: Power spectrum of each transducer after the pump activation. No debilitating
effects are present when the coolant pump is running. Each transducer still shows a high
signal-to-noise ratio.

Figure 3.13: Spectrogram of a 200 second time window measurement of hydrophone-007
after the pump activation. A 0.186 second long (5.38 Hz bin) Hann window was implemented
without averaging and 50% overlap between time records was used to enhance smoothing.
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Figure 3.14: Power spectrum of a 226 second time window measurement of hydrophone-008
while the coolant pump was operating.

Figure 3.15: Power spectrum of a 226 second time window measurement of hydrophone-007
while the coolant pump was activated.
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Figure 3.16: Power spectrum of a 226 second time window measurement of the accelerometer
while the coolant pump was activated.

3.1.3 Frequency Content of Pump Noise

The operation of the coolant pump raised the noise floor without introduction of tonals

that interfere with the sensor frequencies (f > 1.2 kHz). This is demonstrated by Figs.

3.17-3.22. The first three Figs. (3.17-3.19) contain the power spectra for each transducer

with a frequency range from 0 Hz to 4 kHz. The second half of the plots (Figs. 3.20-3.22)

are expanded views of the prominent noise (below 1 kHz).

The activation of the coolant pump raised minimal concern after comparing the re-

sponses from pump-on and pump-off measurements. The pump tripled the rms background

noise power level. However, the original pump noise was low enough that the signal-to-

noise ratio (SNR) remained adequate for detection of the tonals. Figures 3.19 and 3.22

are the accelerometer’s response to the pump activation. The accelerometer measurement

sensitivity was a big surprise in this measurement. It had a response comparable to the hy-

drophones, despite having been placed in an arbitrary location. While both hydrophones

experienced a linear rise in the noise floor, the accelerometer appeared to experience more

high-frequency noise. Figure 3.19 shows a rise in noise floor between 2.5 kHz and 3.5 kHz.

This could be attributed to a mechanical vibration mode of the instrumentation dolly

upon activation of the coolant pump. Also, for a fixed displacement amplitude, x, the

sensitivity of any accelerometer increases quadratically with increasing frequency by the

relation: a = ω2x. Overall, the pump noise was dominant in the low frequency region for

the hydrophones, far enough below the sensor frequencies to be filtered without attenua-

tion of the sensor frequencies. Insertion of a high-pass filter, with a -3 dB frequency in the
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range of 800 Hz, between the sensor and the first stage of signal-conditioning electronics

will improve the dynamic range of the data acquisition and analysis without significant

impact on the tonals of interest. Filtering and isolation of these frequencies will be covered

in later sections (see Sec. 3.3.2).

Figure 3.17: Power spectra for H-008 during pump-on and pump-off measurements. The
noise floor is raised when the coolant pump is activated, but the tri-tone frequencies are
seemingly unaffected and remain resolvable.

Figure 3.18: Power spectra for H-007 during pump-on and pump-off measurements. The
noise floor is raised when the coolant pump is activated, but the tri-tone frequencies are
unaffected and remain resolvable.
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Figure 3.19: Power spectra for the accelerometer during pump-on and pump-off measure-
ments. The noise floor is raised when the coolant pump is activated, but the tri-tone
frequencies are well above the noise floor. It appears that a high frequency contribution to
the noise exists between 2.5 kHz and 3.5 kHz. This may be attributed to vibrational modes
of the instrumentation dolly and to the nonlinear increase in accelerometer response with
increasing frequency.

Figure 3.20: Low frequency power spectra for H-008 during pump-on and pump-off mea-
surements. The broadband noise floor absorbs most tonals in the low frequency range. This
low frequency noise can be high-pass filtered to prevent saturation of the signal-conditioning
and data acquisition electronics for future measurements.
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Figure 3.21: Low frequency power spectra for H-007 during pump-on and pump-off mea-
surements. The broadband noise floor absorbs most tonals in the low frequency range. This
low frequency noise can be high-pass filtered to prevent saturation of the signal-conditioning
and data acquisition electronics for future measurements.

Figure 3.22: Low frequency power spectra for the accelerometer during pump-on and pump-
off measurements. The broadband noise floor absorbs most tonals in the low frequency
range. This low frequency noise can be high-pass filtered to prevent saturation of the
signal-conditioning and data acquisition electronics for future measurements.

3.1.4 Reverberation Measurements

The reverberation time measurement allows quantification of the losses in the pool and

prediction of the steady-state amplitude of the sound produced by the acoustical power
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radiated from the fuel rod resonator under the assumption that the resultant sound field

is diffuse. One way to characterize reverberant behavior is to use the steady-state cutoff

method [15]. This involves sending a steady signal into an enclosure, such as the reactor

pool, and then abruptly terminating the signal. Earlier in Sec. 2.3.2, the reverberation

time was utilized to calculate the critical distance and the Schroeder cutoff frequency. Fig-

ure 3.23 shows six different periods of the steady-state cutoff, each produced by excitation

at a different frequency. The first five records were excited by frequencies ranging from

1.6 kHz to 2.4 kHz in steps of 200 Hz, and the sixth record consisted of broadband white

noise. Figure 3.24 is the power spectra for the whole time series, and Fig. 3.25 shows a

frequency spectrogram. The frequency peaks, despite being taken from short time bursts,

are clear and easily detectable.

Table 3.1 shows all six steady-state T60 values. T60 is defined in Eq. 2.32 as the time

it takes for a signal to decay 60 dB from its peak amplitude after the drive signal is ter-

minated. Figure 3.26 is an example of the 2 kHz time record that was used to calculate

its corresponding value in Table 3.1. The T60 values were extrapolated from the logarith-

mic amplitude of each decay period to determine an equivalent 60 dB drop. Most of the

amplitudes did not drop 60 dB from their original amplitude because the noise floor was

generally within 15 dB or 10 dB of the amplitude, so 15 dB or 10 dB drops were used to

extrapolate the 60 dB decay time. These decay times can then be used to approximate

equivalent sound absorption area of the walls of the reactor (see Eq. 2.28 and 2.32).

The reverberation times in Table 3.1 were due to the close proximity of the hydrophones

and the source. It is possible that those “reverberation times” were actually the time it

took the underwater sound source to decay after cutoff, rather than characterizing the dif-

fuse sound field environment. To escape this artifact, hydrophone-008 was relocated across

the length of the pool where it would be sufficiently far from any directly transmitted

sound from the underwater sound source. In the next section, the results of the relocated

hydrophone are more representative of the diffuse sound field in the reactor pool.
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Figure 3.23: Time series of reverberation measurements without the coolant pump running.
Each group of waveforms represents a separate steady-state excitation and its corresponding
cutoff. The first five periods were frequencies ranging from 1.6 kHz to 2.4 kHz in steps of
200 Hz, and the sixth period was excited by broadband white noise.

Figure 3.24: Power spectra showing the five frequency peaks from 1.6 kHz - 2.4 kHz in steps
of 200 Hz for all three transducers.
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Figure 3.25: Time series spectrogram of H-008 for the reverberation measurements with a
0.37 second (2.7 Hz bin) Hann window (no averaging) and 80% overlap between time records.
The change in bin size varied based on visual inspection for smoothing in the spectrogram.
Each slice in time represent a separate steady-state excitation and the corresponding cutoff.
The first five periods between 0s and 130s correspond to excitation at frequencies ranging
from 1.6 kHz - 2.4 kHz in steps of 200 Hz. The sixth period from 180s to 230s corresponds
to broadband white noise.

Table 3.1: Reverberation times for hydrophone-007. The low reverberation times suggested
that the hydrophone was experiencing direct sound decay from the sound source, rather
than representative behavior of the diffuse sound field in the reactor pool. In Sec. 3.2.1,
hydrophone-008 is relocated and longer T60 values are calculated.
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Figure 3.26: An example of the time series cutoff of H-007 during the 2 kHz reverberation
measurement. The red line indicates the time when the sound source was cutoff, and
everything after is considered the decay and reverberation of the reactor pool.
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3.2 December 04, 2014

Further background measurements were taken in the Breazeale reactor using the same

two hydrophones, but no accelerometer. Hydrophone-008 was moved to the opposite end

of the reactor pool to acquire non-direct sound decay measurements. The new location of

H-008 is shown in Fig. 3.2. Two methods of measurement were used: a steady-state cut-

off reverberation measurement with five different frequencies (1.6 kHz - 2.4 kHz in steps

of 200 Hz); and a linear frequency sweep from 1 kHz - 3 kHz. The Lubell underwater

sound source and both hydrophones were again used for these measurements. Figure 3.27

illustrates the relocation of hydrophone-008 in the reactor pool.

3.2.1 Reverberation Measurements After Relocation of Hydrophone-008

Figure 3.28 shows the time series during the reverberation measurements. Hydrophone-

008 shows a significantly smaller amplitude than H-007. Since the transmission loss is

negligible due to low absorption of sound waves in water (see Eq. 2.36), this decrease in

amplitude can be attributed to absorption from the walls of the reactor and other phe-

nomena not fully explored (reflection effects, scattering, etc.).

Hydrophone-008 also shows very high SNR, and the lengthened time decay (see Table

3.2) for each frequency burst validates the original hypothesis that the hydrophone mea-

surements on November 12, 2014 were picking up direct sound from the sound source.

Figure 3.31 shows the time series and cutoff point for the 2 kHz reverberation measure-

ment. The longer time window and slower decay represents the diffuse sound field in the

pool, rather than the direct transmission from source to receiver.

A spectrogram (Fig. 3.30) was then plotted to demonstrate the ability to monitor fre-

quencies and amplitudes over time. The ability to monitor frequency changes over time

is analogous to temperature monitoring over time, something that is critical to reactor

monitoring in the nuclear industry.
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Figure 3.27: Transducer place-
ment in the Breazeale reac-
tor pool during the December
04, 2014 measurements. The
red ovals represent the labeled
transducer. H-008 has been re-
located to decouple it from the
direct path to the sound source.
Note: the accelerometer was not
required for these reverberation
time measurements.

Figure 3.28: Time series for each reverberation segment after H-008 was relocated. Each
time interval represents a separate steady-state drive and its corresponding cutoff. The five
periods contained frequencies ranging from 1.6 kHz - 2.4 kHz in steps of 200 Hz.
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Figure 3.29: Power spectra showing the five frequency peaks from 1.6 kHz - 2.4 kHz, in
steps of 200 Hz, for all three transducers.

Figure 3.30: Time series spectrogram of H-008 for the reverberation measurements after
relocation. A 0.37 second Hann window (2.7 Hz frequency bin) with 80% overlap between
time records was used. No averaging between power spectra was done. Each slice in time
represents a separate steady-state setup and its corresponding cutoff. The five records were
driven at frequencies ranging from 1.6 kHz - 2.4 kHz in steps of 200 Hz.
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Table 3.2: Reverberation times and the corresponding critical distances for hydrophone-008
after relocation. The longer reverberation times suggest that this hydrophone experienced
effects not fully understood in its previous location, such as low side lobes due to a directional
sound source or back-scattering attenuation. Each critical distance is based on the measured
reverberation time in the previous column. The average critical distance was 1.26 m. All of
the sensors were farther than 1.26 m from any noise or sound source, therefore concluding
that the measurements were made in a diffuse sound field, and it is possible that the original
assumption - that low reverberation times were a result of direct sound decay from the sound
source - was incorrect.

Figure 3.31: Example of the time series cutoff of H-008 during the 2 kHz reverberation
measurement after the hydrophone was relocated. The red line indicates the time when the
sound source was cut off, and everything after is the decay characterizing the reverberation
in the reactor pool.
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3.2.2 Frequency Sweep Measurement

A swept-sine signal was provided to the source to mimic the frequency variations over

time that would indicate a monotonic increase of coolant temperature, expressed by a

TAC sensor, in a nuclear reactor. A Nitrogen-16 (16N or N-16) diffuser pump was active

during these measurements. The 16N diffuser pump is designed to distribute, hence di-

lute, the radioisotope of Nitrogen produced during normal reactor operation before it can

reach the pool surface. This also means that all possible pump noise was present and

active during the acquisition of this frequency sweep measurement. Figure 3.32 shows the

frequency being swept from 1 kHz to 3 kHz over approximately 3 minutes. Despite the

noise introduced by the 16N pump, the high SNR confirms the potential for reactor tem-

perature monitoring. The amplitude and frequency tracking will be explored later in Sec.

3.3.3 when the spectrogram and power spectrum are compared with one another.

Figure 3.32: Time series spectrogram of H-008 for the swept sine measurement after reloca-
tion. A 0.186 second long (5.38 Hz bin) Hann window (no averaging) and 95% overlap was
used. 95% overlap with a 0.186 second long window was used to capture enough cycles of
the frequencies of interest, but smooth them enough to be able to observe subtle changes
with high time resolution, which will be important for quick changing processes such as a
frequency sweep. Subsequently, the sound source was swept from 1 kHz to 3 kHz to simu-
late a rapid rise in coolant temperature. The clarity of the sweep is a good indicator of the
ability to monitor temperature in a nuclear reactor. Even in the low frequency end amidst
the pump noise (f < 1.5kHz), a clear signal evident at the chosen drive level.

3.3 Reverberation Analysis and Frequency Filtration

This section provides examples of the reverberation time analysis that produces the values

of T60 in Table 3.2. There is also a brief calculation of the propagation delay between
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hydrophone-007 and hydrophone-008 that demonstrates that the paths are understood.

Pump noise filtering and measurement display techniques are then presented in Sec. 3.3.2.

3.3.1 Reverberation Time and Direct Sound Decay

T60 values were measured once Hydrophone-008 was relocated across the pool. For room

acoustics in air, the standard for calculation of reverberation time involves terminating

the sound emission source, and calculating the time it takes to drop from 5 dB below its

peak value to either 25 dB below or 35 dB below that peak value [11]. Unfortunately,

for the measurements in the Breazeale reactor pool, noise levels were so high that the

maximum signal amplitude never exceeded 15 dB above the noise level. As a result of

this, decibel levels vs. time were plotted on a linear axis and fitted with a straight line

to calculate a single T60 value. This would emulate the extrapolation technique used in

room acoustics for 20 dB and 30 dB drops [16]. An example of this process is shown in

Figs. 3.33 and 3.34 using the 2 kHz tone. Figure 3.33 shows a longer time record for the

same event as shown in 3.34. The decay was quite complex for many of the cutoff records,

and as a result the T60 values are only approximate. The slope that accounted for the

most linear decay was used to determine the reverberation time for each measurement.

After fitting a straight line to the decay, the slope of that line is divided by 60 to obtain

the time it takes for a signal to decay 60 dB. The values in Table 3.2 were calculated

using this approach.

The average T60 value was roughly 144 ms with a standard deviation of 58 ms, rep-

resenting a standard error of about 40%. This error will propagate into the calculations

for the minimum power output needed for a detectable pressure amplitude. Since the T60

value is under a square root with the power term (see Eq. 2.43), the error could be as

high as 65%. However, the error propagation is not large enough that it is of concern

in the calculations of the predicted pressure amplitude. This is due to the highly vari-

able nature of the nuclear power, and the approximations made under countless variables

included in the resonator physics (See Ref. [21]).
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Figure 3.33: Example of the decibel level vs. time cutoff method applied to the signal from
H-008 during the 2 kHz reverberation measurement after the hydrophone was relocated.
The line approximates the slope of the energy decay. The slopes were approximated by
using a slope-intercept method at two different points on the decay curve.

Figure 3.34: A longer view of the time series cutoff for H-008 during the 2 kHz reverberation
measurement (after hydrophone-008 was relocated). The line indicates the slope of the
amplitude decay after the cutoff that characterizes the losses in the pool.

3.3.2 Filter Techniques

After the inspection and study of the pump noise from Secs. 3.1 and 3.2, it is evident

that the majority of interference introduced by the pumps remains below 1 kHz for the

hydrophones. Above 1.5 kHz, the noise floor remains fairly constant. Figure 3.35 clearly il-
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Figure 3.35: Time series spectrogram of H-008 during the activation of the 16N diffuser
pump. A 0.37 second (2.7 Hz bin) Hann window (no averaging) and 90% overlap of time
records was used. The sound source was generating a 1.6 kHz sine wave when the pump
was activated. The activation of the pump is seen right before the 4 second mark. Notice
the low frequency content of the pump signal. The frequency content after the 4 second
mark is representative of the largest amount of noise during normal reactor operation.

lustrates the change in background noise upon activation of the 16N diffuser pump. Hydrophone-

008 is within a few feet of the diffuser outlet pump and still manages to resolve a clear

tonal. In Fig. 3.36 a bandpass filter was used on the same data set. Comparison of the

two reveals a more uniform background noise level due to filtration. Figure 3.36 utilized

a 3rd order, bandpass, butterworth filter with a cutoff at 1.2 kHz and 20 kHz. The cutoff

frequency smoothly transitions between attenuation and cut-on. Consequently, almost no

amplitude reduction is introduced at the 1.6 kHz tone. The butterworth filter cutoff was

chosen because of its minimal effects on the 1.6 kHz tonal amplitude. Figure 3.37 shows

the response for three different conditions: no filter, a simple single-pole highpass filter

(with cutoff at 1.2 kHz), and the 3rd order butterworth bandpass filter. The bandpass

filter is a good idea in this case because the interesting frequencies lie within a few kHz

of 1.5 kHz. There is less opportunity for electrical power mains noise (60 Hz) or pump

tonals to interfere with the analysis when those (primarily) low frequency components are

filtered out. A passive highpass filter will likely be added between the analog ouput of

the hydrophones preamplifier and the recording device. This configuration permits the

increase of the input sensitivity of the recorder without risking saturation due to large

amplitude, low-frequency pump noise.

After attenuation of low frequency noise, narrow-band single-frequency filtering is ex-

plored. An “octave filter” specifies a center frequency, calculates the two frequencies above
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Figure 3.36: Low-frequency filtered time series spectrogram of H-008 during the activation
of the 16N diffuser pump. A 0.37 second (2.7 Hz bin) Hann window (no averaging) and
90% overlap of time records was used, as well as a 3rd order butterworth bandpass filter
that rolls off at 1.2 kHz and 20 kHz. The sound source was generating a 1.6 kHz sine wave
while the pump was activated. When compared to Fig. 3.35, the effect of the filter makes
the background noise nearly independent of frequency.

and below it that constitute an “octave,” and implement a bandpass filter over that range.

A similar method was used with the center frequencies chosen above (1.6 kHz - 2.4 kHz),

but a 1/15-octave bandwidth was utlitized to better isolate tonal frequencies from neigh-

boring peaks. Figure 3.38 shows a 1/15-octave filter applied to the 1.6 kHz reverberation

measurement after relocation of H-008 in Sec. 3.2.1. A peak-detection algorithm was also

used to isolate single frequencies with amplitudes above a certain threshold. This analysis

emulated five possible acoustic resonators, each with a different frequency and amplitude.

The ability to distribute resonators with different frequencies allows simultaneous monitor-

ing of more than one region in a reactor core. An individual frequency and its amplitude

could telemeter information about temperature and flux to a reactor operator, indicating

performance and safety conditions.

Table 3.3 compares the amplitudes of each frequency peak before and after the 1/15-

octave filter implementation. The amplitude attenuation could be corrected using signal

processing techniques, but for the current analysis only the amplitude ratio is considered

before and after the filtering.
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Figure 3.37: Comparison of different filters for the power spectra of the five frequency peaks
(1.6 kHz - 2.4 kHz) during reverberation measurements of H-008. The first plot at the top
is the unfiltered power spectrum. The plot in the middle is a simple single-pole high-pass
filter with a -3 dB cutoff frequency at 1.2 kHz, and the last plot is a butterworth bandpass
filter that has cutoffs at 1.2 kHz and 20 kHz.

Table 3.3: Amplitude comparison before and after 1/15-octave filtering. The amplitude
attenuation can be reduced by increasing the filter bandwidth, but only a simple peak-
detection algorithm and narrow filter are used here.
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Figure 3.38: 1.6 kHz signal after narrow-band filtering. The amplitude has been attenuated
(see Table 3.3). This method of 1/15-octave filtering can be used to track relative amplitudes
of a specific frequency as it changes with time.

3.3.3 Spectrogram vs. Power Spectrum

A pure tone is characterized by only two parameters: its frequency and its amplitude.

Frequency changes can be monitored on a spectrogram, and the amplitude can be tracked

using a power spectrum. Real-time measurements may become complicated since a power

spectrum requires a time record of non-zero length. Figure 3.39 shows the swept-sine power

spectrum output from 1 kHz-3 kHz (Sec. 3.2.2). Determination of frequency resolution

will play an integral role in the resolvable temperature resolution, however, for the current

analysis visual and temporal resolution were prioritized to mimic the needs of a reactor

operator monitoring a TAC signal in real time. There is no direct indication that a tonal

signal is present in the power spectrum data of Fig. 3.39 since the frequency is changing

continuously. However, Fig. 3.40 utilizes a spectrogram to depict the time and frequency

information simultaneously.

A power spectrum provides a two-dimensional snapshot in time of the frequency and

amplitude, but it is not capable of tracking the signal’s evolution over time. A spectro-

gram like the one in Fig. 3.40, on the other hand, monitors frequency variations quite

clearly. The spectrogram is also capable of following amplitudes using its colorbar. This

can be seen in Fig. 3.41, where the power spectrum and spectrogram are plotted above

one another.

The pump activation measurement is a prime example why both power spectrum and

spectrogram are complementary. The amplitude of the peak would be difficult to resolve

without the power spectrum, and any complex frequency behavior produced by the pumps

would be difficult to characterize without the spectrogram. Figure 3.42 shows the com-
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Figure 3.39: Power spectrum showing the indistinct frequency sweep. There is no clear
differentiation between the noise and the energy of the signals because the frequency of the
tonal is increasing continuously during acquisition of the time record.

Figure 3.40: Spectrogram of a frequency sweep from 1 kHz - 3 kHz. The spectrogram
functions as a better method for illustrating frequency changes, whereas the power spectrum
is not useful if there are significant frequency changes during acquisition of the time record.

bination of both using a waterfall plot; however, pinpointing particular data on this plot

is quite difficult. A 3-D interactive waterfall plot could be particularly useful in the ap-

plication of monitoring all three variables: time, amplitude, and frequency.
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Figure 3.41: Top: power spectrum during the 16N pump activation. Notice that the lack of
time discrimination makes it nearly impossible to see that the pump was activated within
the measurement period. Bottom: spectrogram showing the frequency behavior over time.
It is easy to see that there was a broadband disturbance that started around the 3.5 second
mark. Both power spectrum and spectrogram are important for the tracking and monitoring
of acoustic signals.
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Figure 3.42: Waterfall plot showing the 16N diffuser pump activation. The waterfall method
shows frequency, time, and amplitude values. This type of plot could be useful to a reactor
operator monitoring the reactor in real time looking for simultaneous frequency-amplitude
changes over time.

3.3.4 Propagation Delay Between Hydrophones

After relocating hydrophone-008 across the length of the pool, the propagation time be-

tween hydrophones was calculated using the reverberation results from Sec. 3.2. Figure

3.43 represents the propagation path from the underwater sound source to hydrophones

-007 and -008. Using the known speed of sound in water, the distance between path A

and B can be used to calculate the approximate value for the time delay between both

hydrophones, verifying that a direct path of propagation exists from the underwater sound

source to each hydrophone. The time delay between the two hydrophones can be calcu-

lated using the simple relation:

τ =
∆d

vwater
(3.1)

The variable τ (not to be confused with Eq. 2.28 in Sec. 2.3.1) represents the time delay

between hydrophone-007 and hydrophone-008. The ∆d is the path length difference from

the sound source to H-007 and H-008, and the speed of sound in water at T = 20◦ is
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Figure 3.43: Sound propagation path in
the Breazeale reactor pool. Path A shows
the direct path from the underwater sound
source to hydrophone-008 (after reloca-
tion), and Path B shows the direct path
from the sound source to hydrophone-007.
The propagation distances are approxi-
mated for each path in Eqs. 3.2 and 3.3.

given by vwater. The variables can be approximated from Fig. 3.27:

duss→007 ≈ 6 ft ≈ 1.83 m (3.2)

duss→008 ≈ 27 ft ≈ 8.23 m (3.3)

vwater = 1481
m

s
(3.4)

τ =
duss→007 − duss→008

vwater
≈ −4.32 ms (3.5)

The exact delay is difficult to determine even with the cutoff method from the time

series data. Figures 3.44 and 3.45 suggest that a time delay of 4.8 ms results in an over-

lay of the time records of the two hydrophones. This delay was applied manually and

falls between 4 and 5 milliseconds. This is in good agreement with Eq. 3.5 since there

are miscellaneous influences that could to be accounted for (i.e., structures, temperature,

reflections, etc.).
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Figure 3.44: Time series showing the overlay of hydrophone-007 and -008 during the ini-
tiation of a reverberation measurement. The time delay between the hydrophones was
approximated to be 4.8 ms.

Figure 3.45: Time series showing the overlay of hydrophone-007 and -008 during the cut-
off of a reverberation measurement. The time delay between the hydrophones was again
approximated to be 4.8 ms. Notice the complex nature of the waveform after cutoff.
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Chapter 4

Feasibility of Thermoacoustic Sensor Signal

Detection

The goal of the research at Penn State’s Breazeale Nuclear Reactor is to determine if

the frequency and amplitude of sound radiated from the thermoacoustic nuclear powered

sensor (TAC Sensor) will be detectable above background noise levels created by pumps

and machinery during normal operation. Previously in Chapter 3, background noise mea-

surements were acquired using hydrophones placed at the bottom of the reactor’s 70,000

gallon (265 m2) tank. Now, the largest question is whether the sound produced by a TAC

sensor will be discernible among the predicted noise levels in the reactor pool. This chap-

ter focuses on the power, pressure, and nuclear specifications cited previously in Chapter

2, and utilizes the measurements of Chapter 3 to design a sensor to produce enough sound

to telemeter frequency and amplitude levels to emulate temperature and neutron flux in-

formation.

4.1 TAC Sensor Description

The expected acoustical power output from such a TAC Sensor is calculated based on the

design detailed in the Idaho National Laboratory Technical Report No. INL-LTD-15-34228

(March 2015) [21]. That sensor will contain two 7.2% enriched 235UO2 pellets within a heat

exchanger that is contained inside the thermoacoustic resonator. Each 235UO2 pellet is

approximately 5.0 mm in diameter and 10.0 mm long. The resonator will be pressurized to

2.0 MPa (290 psia) with a mixture of 80% helium gas and 20% argon gas. The TAC sensor

will be suspended resiliently within a cylinder that has the same dimensions as a Breazeale

Reactor fuel-pin (28.4 in = 72.1 cm long with an outside diameter of 1.446 in = 3.67 cm)

so it can be placed within the reactor’s core among the other fuel pins. Figure 4.1 shows

the section of the fuel pin that will contain the thermoacoustic resonator suspended at

either end by two six-legged leaf springs. Figure 4.2 shows the details of the TAC Sensor’s

thermal core (i.e., stack and hot heat exchanger) and the surrounding thermal insulation

space, without the SiO2 floss that suppresses buoyance-driven convection of the air trapped

therein at atmospheric pressure. Figure 4.3 shows one of the suspension’s leaf springs and
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Figure 4.1: Full model of the thermoacoustic resonator to be tested in the Breazeale reactor
pool. The ends of the resonator pictured show the leaf spring suspension system that
connects the inside resonator to the slotted fuel pin. The fuel pin is slotted to permit sound
propagation into the surrounding water. The stack and nuclear fuel enclosure are pictured
on the right end of the resonator.

Figure 4.2: A zoomed-in view of the resonator shown in Fig. 4.1. The inner resonator is
very similar to that of the Ali apparatus, apart from the heating element. The slotted outer
shell is shown in contact with the leaf spring suspension system. This allows the resonator
to oscillate without interference from the slotted outer shell.

the details of one-half of the heat exchanger that contains the UO2 pellets.
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(a) Leaf spring (b) Fuel enclosure

Figure 4.3: Leaf spring and fuel enclosure drawings for the fuel rod resonator. The leaf
spring acts as the suspension system that allows the resonator to freely oscillate inside the
slotted fuel pin. The fuel enclosure acts as both a casing for the nuclear pellets and a heat-
exchanger on the flowing gas in the resonator. The leaf spring is the connecting component
between the resonator and the fuel pin.

4.2 TAC Sensor Output Power and Detectability

Heat is supplied to the thermoacoustic engine by the fission of the 235U as described by

the following typical nuclear reaction, initiated by the capture of a thermal neutron:

n+ 235
92 U→ 141

56 Ba + 92
36 Kr + 3n+ 202.5 MeV (4.1)

This reaction produces 19.54 × 1012 J/mole of 235U.

Thermoacoustic oscillations of the gas are driven by the heat produced by the nuclear

fission and will maintain an acoustic standing wave within the thermoacoustic resonator.

That standing wave corresponds to about one half-wavelength of sound within the res-

onator, as shown in Fig. 4.4. The oscillatory momentum of the gas exerts a force on the

resonator which will execute simple harmonic motion in the direction along the cylindrical

resonator’s axis. The motion is determined by the moving mass of the resonator and the

entrained water outside the resonator. The stiffness of the suspension is sufficiently small

that the amplitude of the resonator’s oscillatory motion is controlled by the momentum

of the gas and the mass of the resonator.

Another way to think about the motion of the resonator, caused by the standing acous-

tic wave, is to notice that the amplitude of the pressure at the ends of the resonator,

indicated by the black line in Fig. 4.4, has opposite signs at opposite ends. Therefore,

at one phase of the cycle, the pressure on the top end of the resonator is positive and on
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Figure 4.4: Acoustic standing wave predicted by DELTAEC within the nuclear-powered
thermoacoustic sound source with an overall resonator length of 21 cm (10 in). The green
line is the gas-filled cross-sectional area (×104 m2), pink is absolute temperature (×10−2 K),
black is pressure amplitude (×10−4 Pa), purple is acoustic power (watts), and dashed blue
is acoustic volume velocity (×103 m3/s), all as a function of position within the resonator.
The model predicts that the gas exerts a peak force of 57 N on the resonator at a frequency
of 1,566 Hz.

the bottom end is negative. At that time, the top of the resonator is “pushed” up and

the bottom of the resonator is “sucked” up. A half-cycle later, the forces on the ends of

the resonator are reversed. This shakes the resonator at the frequency of the standing

wave.

The behavior of the resonator was modeled using the Los Alamos National Labora-

tory’s Design Environment of Low-Amplitude Thermoacoustic Energy Conversion (DELTAEC)

[25]. One such model predicts a resonance frequency of 1,588 Hz (ω = 10,000 rad/s) when

25 watts of heat is delivered to the stack by the hot heat exchanger. The peak magni-

tude of the oscillatory force that the gas exerts on the resonator is about F1 = 57 N. If

the moving mass of the resonator (including the entrained waters hydrodynamic mass)

is mres = 0.25 kg, then the acceleration of the resonator a1 = F1/mres = 228 m/s2, cor-

responding to an oscillatory displacement amplitude x1 = a1/ω
2 = 2.3 x 10−6 m = 2.3

microns.

The resonator’s volume is constant, so the resonator’s translational oscillations gen-

erate a dipolar radiation field with the two ends of the resonator acting as two simple
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sources, oscillating 180◦ out-of-phase, separated by the length of the resonator which is

about d = 25 cm ∼= 10 in. At 1,588 Hz, the wavelength of the sound in the water is

λ = c/f ∼= 1,492 m/s ÷ 1,588 Hz ∼= 94 cm. With the “sources” (i.e., the ends of the

resonator) separated by about a quarter-wavelength of the sound in water, the dipole ra-

diation approximation should be fairly accurate, despite the fact that the resonator is in

contact with the surrounding water through slots in the fuel pin.

The radiated dipole power, Π, assuming an infinite medium, can be calculated by in-

tegration of the radiated pressure over all angles [14]:

Π =
ρω4 (dU1)

2

12πc3
=
ρω2V 2

res

12πc3

(
F1

mres

)2

(4.2)

The right-hand version of Eq. 4.2 expresses the total radiated power in terms of the

resonator’s volume, Vres, and the density, ρ, and sound speed, c, of the water [21]. Using

F1 = 57 N and mres = 0.25 kg, the total radiated acoustic power for a stack heat input

power of 25 W is Π = 150 µW.

The root-mean-square steady-state diffuse pressure within the Breazeale Reactor’s pool,

prms(t =∞) can be related to the total radiated power using Eq. 2.43 that is re-written

below in terms of the exponentially determined energy relaxation time, τ = T60/13.82 ∼=
8 ms and the volume, V , of the Breazeale Reactors pool. Again, ρ is the density of water.

prms(t =∞) = c

√
τρ0
V

Π̄ (4.3)

Under these conditions (i.e., 25 W of stack heating), this corresponds to a diffuse steady-

state acoustic pressure of 3.3 Pa. Based on the background noise measurements reported

in Chapter 3, this signal should be detectable within the reactor pool by a hydrophone

placed on the bottom of the pool. After comparison of the average noise levels measured

in the Breazeale Reactor Pool, which rarely exceeded 0.1 Pa, and the calculations done

by S. Garrett in the technical report for Idaho National Laboratory (INL/LTD-15-34228

[21]), the signal-to-noise ratio is predicted to be at least a factor of ten. And under the

assumption that the 235U pellets are heated at full reactor power (1.0 MW), in the E-6

core location shown in Fig. 4.5, 120 W of thermal heating is expected for the pellets.

Consequently, more than half of that maximum power will be deposited to the stack that

should result in detectable acoustic resonance.
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Figure 4.5: Fuel pin locations in the core of the Breazeale Nuclear Reactor. The TAC
Sensor will be placed in the E-6 location.
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Chapter 5

Concluding Remarks

5.1 Summary

The material presented in this thesis serves as a bridge between the measurements of the

resonator fabricated by Ali and Garrett and a resonator that to be fabricated and inserted

into the Breazeale reactor core. Ali also laid the groundwork for the thermoacoustic sen-

sor: showing that it could track temperature fluctuations of the reactor’s coolant using

a resonator’s frequency modulated resonance frequency (see Fig. 5.1). Ali’s work ended

with the modeling, fabrication, and initial testing of a thermoacoustic resonator in a con-

trolled environment; however, he was not able to test the device in the Breazeale reactor

[2].

Ali showed that thermoacoustic resonance can function while being electrically heated

and immersed in a calorimeter full of water. The theory and experimentation conducted

here have taken his experiment a step further by placing a sound source in the Breazeale

reactor’s pool and testing acoustic behavior with active background noise sources. The

theoretical and experimental results were then unified to create a singular prediction for

the behavior of a nuclear powered, thermoacoustic, fuel rod resonator. The nuclear and

thermoacoustic estimates made in Chapter 4 predict the onset of acoustic oscillations for

a TAC Sensor to be placed in the Breazeale reactor pool. The detection of an acoustic

signal produced by such a device in the reactor pool will prove the long-coming hypothesis

made by S. Garrett in March 2011 - that a thermoacoustic resonator can be powered by

nuclear fuel and detected in the harsh environment that is a nuclear reactor.

The Fukushima disaster triggered the original research on nuclear powered thermoa-

coustic resonators, but the convenience and availability of the Breazeale reactor was the

impetus that sparked Ali’s work toward full-scale implementation. In a pressurized wa-

ter reactor the study of acoustic behavior would be difficult due to the sealed enclosure;

whereas the open-pooled design of the Breazeale pool makes the theoretical and experi-

mental processes manageable. This pressure-release boundary was one of many important

distinctions in the Breazeale reactor, as well as its accessibility and low-danger environ-

ment.

First, a rectangular geometry was assumed before the prediction of modal behavior
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Figure 5.1: Plot made by R. Ali for a thermoacoustic resonator in a calorimeter. Tempera-
ture and frequency are shown in red and blue, respectively. The resonator was electrically
heated and showed linearity in both frequency and gas temperature. The ability to track
these changes suggested an auspicious future and motivated this current thesis.

inf the pool, which was important for identifying an appropriate frequency range for the

fuel rod resonator. The modal density of the pool indicated that the acoustic resonator’s

frequency would not be disturbed by large structural resonances, an indication that the

resonance frequency of the resonator would fall in the statistical domain of the pool modes

(diffuse sound field). Consequently, an investigation of statistical energy mechanisms in

the pool established distinct parameters such as: τ , T60, and Aabs. The absorption in the

enclosure was studied so that average energy approximations could be made for the sys-

tem. This would return the efficiency of the thermoacoustic resonator’s output power and

indicate the detectability of the sensor.

A steady-state analysis of the pool was used to determine the critical distance, rd,

which is used as the region where the statistical regime dominates over direct sound prop-

agation between source and receiver. It was proposed that when a receiver is placed in the

diffuse field, the reactor pool would have an equal influence on frequencies being emitted.

Following the critical distance, the Schroeder frequency was found and the acoustic char-

acterization of the reactor pool was complete. The focus then shifted to basic resonator

design and the considerations involved in making the TAC device.

The dipole assumption is an approximation for the resonator’s radiation characteristics.

It was found that the total radiated sound power from the resonator is proportional to

the heat input and pressure of the gas inside the resonator. The radiated sound power is

also inversely proportional to the molecular mass of the gas and the mass of the resonator

68



[21].

The optimization of the resonator power shaped the fabrication of the fuel rod res-

onator. For example, a higher pressurization of the internal gas is likely, a gas with a

small atomic mass will likely be used, and the resonator will be designed such that its

mass is as small as possible. These design parameters and optimizations helped bring the

theoretical discussion to a close. The attention then shifted toward the experiments to

be conducted in the Breazeale reactor pool. The experiments served as the link between

the theory and future experimentation with the resonator in the reactor pool.

On November 12, 2014, background noise measurements proved that hydrophones sub-

merged in the Breazeale reactor pool were capable of measuring calibrated acoustic signals.

It was also concluded that the noise produced by various pumps is generally broadband

with some low frequency tonals. This low frequency content will likely be filtered out using

an analog filter so that the low frequency amplitudes don’t cause clipping during measure-

ment. The accelerometers and hydrophones showed very good signal-to-noise ratio during

the different measurements.

The first series of measurements involved the emission of three separate tones that were

not harmonically related. The first measurements were designed to view the average noise

level of the different pumps. The greatest amount of noise (with the most pumps running)

never exceeds 0.5 Pa (and rarely exceeds 0.1 Pa) at the hydrophones. The detectability of

an acoustic signal in the Breazeale reactor pool is therefore dependent upon the signal’s

ability to overcome this background noise. The tri-tone configuration suggested that a

dipolar acoustic sound source is capable of being detected with maximal background noise

in the reactor pool.

Following the tri-tone measurements, a reverberation analysis was conducted by using

the steady-state cutoff method. This involved the emission of a particular frequency for

an extended period of time. The goal was to set-up the steady-state field of the enclosure.

Then, the signal is abruptly terminated, and the subsequent decay is recorded. This decay

information characterized the energy absorption in the reactor pool and helped find an

average energy expression for the resonator.

Chapter 3 concludes with a discussion of various data analysis techniques and signal

processing options. Section 3.3.1 focuses on the challenges involved in obtaining reverber-

ation times for the original hydrophone configuration. The direct sound decay was ob-

served and then resolved by the relocation of hydrophone-008 to a location in the pool

distant from local noise sources. Filtering techniques and a peak-finder algorithm results

are shown, followed by the discussion of real-time analysis methods. The spectrogram and

power spectrum are both essential tools for monitoring acoustic signals, and in the ab-

sence of either, the complete characterization of a potential time varying frequency signal

is difficult. A short analysis of time delay is also included as the last section in Chapter

3.
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Finally, Chapter 4 connects both Chapter 2 and Chapter 3 through exploration of the

thermoacoustic nuclear fuel rod resonator. Scale drawings of the proposed resonator are

shown, while a short synopsis of the nuclear and acoustic calculations were included as

well. Chapter 4 is important because it brings R. Ali’s resonator one step closer toward

implementation inside a nuclear reactor, while also incorporating the theory and experi-

ments produced here in this thesis. The predictions and expected performance of the fuel

rod resonator are addressed in the Idaho National Laboratory Technical Report [21]. The

majority of the work presented here functions as a bridge connecting the work conducted

by Ali and Garrett, to the future fabrications and testing of the thermoacoustic resonator

in the Breazeale reactor core. Correspondingly, the nuclear powered acoustic resonator

is currently being fabricated for insertion into the Breazeale reactor core at Penn State.

This thermoacoustic device was proved operational in September of 2015.

5.2 Conclusion and Future Work

The thermoacoustic fuel rod resonator began as a response to the devastating Fukushima

disaster, but quickly developed into a potential revolution in the nuclear industry. This

thesis serves as a bridge between the experiments conducted by R. Ali and S. Garrett and

the future testing of a thermoacoustic resonator inside the Breazeale reactor core. Ali and

Garrett worked with an electrically heated resonator that they submerged into a calorime-

ter filled with water. They were able to show that the resonance frequency of the resonator

changed as the surrounding coolant temperature changed. These results encouraged the

exploration of the Breazeale reactor and its acoustic properties. And consequently, the

acoustic characterization of the Breazeale reactor pool was initiated.

The predictions in the INL technical report [21] were calculated using the experiments

and derivations in this thesis. These predictions also guided the design of the resonator

shown in Fig. 4.1, which was fabricated and then tested in the Breazeale reactor in Septem-

ber 2015. This resonator will operated above the background noise levels in the reactor

pool, and will be further studied using advanced signal processing in the future. Each

nuclear fuel pellet is predicted to supply approximately 55 W of heating power, and con-

sequently, high optimism resulted in the onset of acoustic oscillations.

Upon acoustic onset, the results from Chapter 2 and 3 become highly relevant in the

analysis of the acoustic signals. The diffuse field distance (i.e., the critical distance, rd)

will be used as the minimum distance a sensor must be placed from the resonator. The pre-

dicted dipolar behavior will also be taken into account during measurement, which could

affect the recorded amplitude depending on the measurement angle. Additionally, the res-

onance frequency and amplitude of the device will need to be tracked with high accuracy.

In the recent past, a thermoacoustic fuel rod resonator was fabricated and tested in

the Breazeale nuclear reactor at Penn State. The resonator resembled the drawings in

Figs. 4.1 and 4.2. This resonator was placed in the E-6 position of the core (see Fig. 4.5).
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Once acoustic oscillations began, a data acquisition system, designed by Idaho National

Laboratory, recorded the signal in real time. The power spectrum, spectrogram, and time

series will be utilized to monitor the signals.

Once the sensors produce signals, it is imperative that the signal processing utilizes

proper tracking of frequency as well as amplitude. It is likely that Idaho National Lab

and the Pennsylvania State University will work together to produce a proper software

program to track and monitor the signals, and therefore, both temperature and neutron

fluxes in a reactor.

In closing, the acoustic environment studied in this thesis suggested that TAC sensor

signals would be detectable. As a result of this, a full-scale nuclear fuel rod resonator

was fabricated and verified experimentally. The signal processing techniques implemented

in this thesis proved to be essential tools for tracking and monitoring different processes

in a nuclear reactor, based solely on the frequency and amplitude behavior of the ther-

moacoustic resonator. Nonetheless, acoustic resonance in the Breazeale reactor pool is not

only feasible, but possible. And in the future the thermoacoustic nuclear powered res-

onator will continue to be explored and will likely be evaluated using of the techniques

developed in this thesis.
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Appendix A

Sensor Calibration

Table A.1 lists the transducers that were used during the experiments. Sensitivity mea-

surements were conducted before and after the experimentation, and all calibrations re-

mained stable within experimental uncertainty. There were no equipment failures. The

calibration sensitivities were averaged and used to convert the measured voltages to pas-

cals (for the hydrophones) and acceleration to Gs (for the accelerometer).

The accelerometer was calibrated using a B&K-4294 exciter. The exciter provided 10

m/s2 (±2%) at 1,000 rad/s = 159.2 Hz. The hydrophone calibration required the use of

a reference microphone, an ACO Pacific 1/2 in., with a sensitivity that was validated us-

ing a B&K-4228 Pistonphone. The Pistonphone created 31.0 Parms at 250 Hz. The hy-

drophones were inserted into a coupler along with the ACO 1/2 in. microphone and at-

tached to another B&K Pistonphone (type-4223). The Pistonphone created 134.9 Pa at

250 Hz.

Table A.1: Calibration and instrumentation for the November 12, 2014 and December 4,
2014 experiments. The top four transducers were used in the experiments, and the bottom
three were used as calibration devices before and after the experiments.

73



Appendix B

Instrumentation used for Reactor Vibroacoustic

Measurements

To ensure repeatability of the experiments in the reactor pool, a block diagram of the

instrumentation has been included, as well as a 3-D AutoCAD R© drawing of the reactor

pool. The outputs of the transducers were monitored in real time on a Kikisui cos6100A

oscilloscope, and an Agilent 35670A 4-channel dynamic signal analyzer. All signals were

recorded at CD quality (44.1 ks/s, 16-bit) and were recorded simultaneously by a 4-channel

Roland R-44 digital recorder. Fig. B.1 outlines the data flow and setup during the exper-

iments in the reactor pool. After the experiments on November 12th and December 4th,

Figure B.1: Data flow during the Breazeale Reactor Pool measurements. The oscilloscope,
digital signal analyzer, and digital recorder were hardware that were cross referenced for
real-time monitoring and post-processing analysis.

the data from the Digital Signal Recorder was taken and compared with that of the HP

Digital Signal Analyzer (DSA). After concluding that the data from the Roland and DSA

agreed, MATLAB R© was used to produce the plots seen in this thesis. Figures B.3-B.6

map out the experiments conducted, and also give approximate locations for the noise

sources such as pump outlets, suction inlets, and a discharge header. The reactor drawings

also show the reactor core (where the fuel rod resonator will eventually be placed).
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Figure B.2: Classic drawing of the Breazeale Reactor [24]. The figure shows all of the
essential functions of an open-pooled research reactor. It was also a model for the drawings
made in Figs. B.3-B.6.

Figure B.3: AutoCAD R© drawing of the Breazeale Reactor Pool with the floor, walls, and
main infrastructure.
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Figure B.4: AutoCAD R© drawing of the Breazeale Reactor Pool with the sides taken down.
This view allows one to view the pumps, transducers, and the core.

Figure B.5: Labeled transducers with the reactor core and pumps in view. This is identical
to Fig. 3.2 in Sec. 3.2.1.
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Figure B.6: Labeled pumps and their location in the reactor pool. The N-16 diffuser pump
was the most significant noise source of the three pumps (see Sec. 3.2).
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