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SUMMARY 

The original development work leading to this report was focused on the 
non-destructive three-dimensional (3-D) characterization of nuclear graphite as a 
means to better understand the nature of the inherent pore structure. The pore 
structure of graphite and its evolution under various environmental factors such 
as irradiation, mechanical stress, and oxidation plays an important role in their 
observed properties and characteristics. In order for graphite research to 
transition from an empirical understanding of graphite behavior to a predictive 
mechanistic understanding, the pore structure must be well characterized and 
understood. As the pore structure within nuclear graphite is highly interconnected 
and truly 3-D in nature, 3-D characterization techniques are critical. 

While 3-D characterization has been an excellent tool for graphite pore 
characterization, it has also been applied with success to a broad number of 
materials systems over many length scales. Given the wide range of applications 
and the highly quantitative nature of the tool, it is quite surprising to discover 
how infrequently this analysis is used in nuclear material research. 

The report is divided into three main sections. The first section introduces the 
potential usefulness of 3-D image analysis in materials characterization. Section 
2 provides an overview of some of the key principals and concepts needed to 
extract a wide variety of quantitative metrics from a 3-D representation of a 
material microstructure. The discussion includes a brief overview of 
segmentation methods, connective components, morphological operations, 
distance transforms, and skeletonization. 

Section 3 focuses on the application of concepts from Section 2 to relevant 
materials research at Idaho National Laboratory. In this section, detailed 
microstructural features within a variety of material (nuclear graphite, TREAT 
low-enriched uranium conversion program, and tristructural isotropic fuel 
particles) are resolved using quantitative methods described in Section 2. 
Different materials have been used other than nuclear graphite to demonstrate the 
potential in identifying a range of microstructure features and to provide a broad 
perspective of the applicability of quantitative image analysis to relevant 
materials of interest. 
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Initial Assessment of X-ray Computed Tomography 
Image Analysis for Material Defect Microstructure 

1. INTRODUCTION 
Understanding the behavior of materials often begins with the ability to visualize its various levels of 

structure. Consequently, it is not surprising that imaging has and will play an essential role in the 
understanding of materials. While humans have examined objects under microscopes for centuries, the 
birth of modern image processing and analysis began in the early 1960s with the availability of computers 
powerful enough to carry out meaningful automated processing tasks. The first significant use of such 
processing was likely made by the Jet Propulsion Laboratory. Jet Propulsion Laboratory digitally 
processed pictures of the moon, taken by Ranger 7, to correct for known distortions in the on-board 
television camera. 

Now, a little more than a half-century later, major leaps in computer performance and the widespread 
availability of personal computers have made image processing and analysis accessible to the vast 
majority of researchers. For example, many traditional (two-dimensional [2-D]) microscopy software 
programs come standard with some built-in processing and analysis capabilities to make measurements 
such as particle size, morphology, and volume fraction estimates of features and defects within a material. 
While such 2-D measurements can provide valuable insight, it is important to question the validity of 
measurements taken from a 2-D cross-section of a 3-D material can be. In short, assumptions have to be 
made regarding the shape and curvature of the 3-D objects outside the field of view. Even when the 
assumptions are fairly reasonable, the derived information must be used with caution. To illustrate, two 
relatively simple examples are given in Figures 1 and 2. 

   
1a 1b 1c 

Figure 1. 3-D image analysis - Example 1. 

Figure 1 is an illustration to demonstrate the shortcomings of 2-D image processing and analysis of a 
3-D structure. Figure 1a is a binary image of a graphite microstructure with two separate pores (defects) 
highlighted. Figure 1b is the same image, but uses 3-D image processing and analysis to group voxels into 
objects, thus illustrating that the “separate” pores are actually part of a larger interconnected defect pore 
structure rather than two separate pores as assumed in Figure 1a. Figure 1c is a 3-D volume subset of the 
pore structure demonstrating the interconnectivity as shown in Figure 1b. 
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As a first example, Figure 1 shows a binary image of NBG-18 graphite (SGL, Germany) derived from 
a single 2-D tomographic slice of a µX-ray computed tomography (CT) scan. NBG-18 is a candidate 
graphite for application in the next generation of high-temperature gas-cooled nuclear reactors. Two pores 
(defects) are highlighted in red and green, respectively. The two colored pores are assumed separate. 
While separating the pores, it is assumed both have only positive curvature with no re-entry angles. In 
other words, they are not connected. However, by interrogating the sample volumetrically, the assumption 
of positive curvature is shown to be false. The individual pores shown in Figure 1a are actually two 
branches of a large defect pore that runs across the entire length of the sample (Figures 1b and 1c). 

The second example, Figure 2, illustrates a 2-D slice of a hypothetical microstructure containing 
11 precipitates of a secondary phase. From Figure 2a, the precipitates appear to exhibit elliptical 
morphology and consequently inferences can be made regarding the size and aspect ratio of the 
precipitates; however, the precipitates are not elliptical at all. Examination of the same microstructure in 
3-D reveals that the precipitates are actually right cylinders dispersed throughout the primary phase with 
small degrees of misalignment from the vertical direction of Figure 2b. 

  
2a 2b 

Figure 2. 3-D image processing - Example 2. 

Figure 2 is a synthetic example illustrating a shortcoming of 2-D image processing and analysis of a 
3-D volume. Figure 2a is a cross section of the 3-D image shown in Figure 2b. All cylinders are right 
cylinders with the same diameter with various degrees of rotational misalignment. Figure 2b is the full 
3-D volume of the synthetic material. 

While 2-D imaging and analysis is relatively quick and simple, it is plagued with many limiting 
assumptions that make it difficult to understand the true 3-D nature of a material. Utilization of a 3-D 
dataset removes all of the restrictive assumptions needed in a 2-D quantitative analysis, thus 3-D analysis 
can be a powerful technique for the quantitative interrogation of structural features on a wide range of 
scales. Today, there are many microscopy and characterization techniques capable of producing 
volumetric datasets that can be analyzed with 3-D image analysis. Some examples include, X-ray CT, 
transmission electron microscope-based tomography, Local Electrode Atom Probe, serial sectioning via 
focused ion beam followed by automated image collection, and even 3-D Atomic Force Microscope 
tomography where the same probe used to examine the surface is also used to scrape it away layer by 
layer. 
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Until recently, many of these techniques were highly limited or impractical due to the size and 
computing time needed to make the desired calculations. Substantial increases in random access memory, 
multicore central processing units (and increase in their speed), as well as Graphics Processing Unit 
computing have increased the feasibility of performing these types of calculations on large dataset in 
reasonable time frames. 

It should be noted that a majority of current 3-D volumetric data are used for only qualitative 
comparisons and informative analysis despite (1) powerful and non-restrictive quantitative analysis 
capabilities, (2) relatively easy access to tomographic instrumentation, and (3) available resources of 
modern computing. When quantitative analysis is applied to 3-D structures, the resulting data and 
conclusions regarding the material structures are exceptional.1,2,3,4,5,6,7,8,9,10,11,12,13 It is the authors’ shared 
opinion that the underutilization of quantitative 3-D analysis for materials stems from a lack of 
knowledge by materials researchers regarding the basic tools and principles of image processing and 
analysis needed to achieve meaningful quantitative results. This is quite understandable as many of the 
basic tools and principles are deeply rooted in computer and electrical engineering. 

This report seeks to illustrate the potential of 3-D image analysis by providing a broad overview of 
some of the basic principles and concepts in image processing and analysis to a variety of materials. 
These principles and concepts will then be used to demonstrate the extraction of quantitative 
measurements from the microstructures of different materials characterized using µX-ray CT systems. 

2. PRINCIPLES AND CONCEPTS 
Image Analysis includes a wide range of principles and concepts. In this report, five primary subjects 

will be discussed briefly: Image Segmentation, Connective Components, Morphological Operations, 
Distance Transforms, and Skeletonization. Image segmentation and connective components are image 
processing techniques used to isolate the desired features in the image volume. The remaining three are 
tools for data manipulation that allow for extraction of meaningful geometric measurements within the 
microstructure from the volumetric data. This section pulls heavily from basic image processing and 
analyses texts, such as Gonzalez and Woods’ textbook, “Digital Image Processing,”14 and Soille’s book, 
“Morphological Image Analysis Principles and Applications.”15 There are many texts available and the 
interested reader should examine references such as these for a more detailed description of the follow 
discussions.16,17 

2.1 Segmentation 
Segmentation in terms of 3-D material volumes can be defined as a subdivision of material into 

different regions of interest. This could imply simply dividing a solid into its constituent phases, isolating 
carbide precipitates from a metal alloy along a grain boundary, or even dividing a single-phase 
polycrystalline material into its individual grains. Hypothetically, any signal reconstructed in 3-D that 
provides spatial information about a material can be used for segmentation. Commonly the signal is 
directly related to density, chemical composition, or crystallographic orientation. 

Image segmentation is often the most challenging hurdle to overcome in attempting to extract quantitative 
information from a material. If an accurate segmentation of the object(s) of interest cannot be achieved, 
the quantitative information obtained will have little-to-no real value. A plethora of algorithms and 
methodologies exist for separating features within images. It is not the intent of this report to 
comprehensively cover this subject; rather, a concise overview with examples will be given to leave the 
reader with an understanding of some basic methodologies to build upon. 

2.1.1 Global Thresholds 
Thresholding is arguably the easiest and most commonly used method in image segmentation. It is 

easily implemented when the intensity of the features of interest vary significantly from the background, 
Figure 3. Thresholding is often performed globally over the entire image (Figures 3a and 3b). When the 
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intensity of the region of interest (ROI) or the background does not vary significantly, a global threshold 
is easily determined (Figure 3a–3c). In real material microstructure systems, noise and variation within 
the ROI can make global thresholding more difficult. For example, Figure 3d is identical to Figure 3c 
with the exception of Gaussian white noise that has been added randomly to each pixel. This produces a 
final segmentation image that is not ideally clean and crisp, Figure 3e. The issue for this global 
segmentation is that intensity ranges of the various features overlap each other. When an intensity 
threshold is set, some pixels will be classified incorrectly as members of the incorrect ROI. While this is 
inevitable, additional processing steps, including filtration and morphological operations, can be used to 
“clean up” the image to better approximate the ideal image. 

The global threshold can easily be set manually; however, in doing so, user bias can become an 
appreciable factor in the final outcome. A simple automated method for choosing a global threshold is 
known as Otsu’s method. In Otsu’s method, the intensity of each region of interest is assumed to be 
Gaussian in nature. At each possible threshold value (for example, 0-255 for an 8-bit gray scale image), 
integer binning of intensity values is used to calculate the class conditional distribution. The threshold 
value that maximizes the variance of the system is chosen to be the optimum threshold. This corresponds 
roughly with the local minimum between intensity peaks. Otsu’s method can also be used to optimize 
multiple thresholds when features of interest vary in intensity (Figure 3f).  

  
3a 3b 

  
3c 3d 

  
3e 3f 
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Figure 3. Global thresholding. 

Figure 3 contains examples of Otsu’s method applied to various modified forms of the Idaho National 
Laboratory (INL) logo. Figure 3a contains an original gray-scale image of the INL logo. Figure 3b is a 
binary image resulting from the application of Otsu’s method to Figure 3a. Figure 3c is the INL logo with 
four levels of intensity to simulate multiple ROI. Figure 3d is the same image as Figure 3c with Gaussian 
noise added to the image. Figure 3e is the result of applying Otsu’s method to Figure 3c using three global 
thresholds. Figure 3f is the gray-scale intensity histogram corresponding to Figure 3d. The three red lines 
indicate the “ideal” threshold values determined via Otsu’s method for the three global thresholds. 

2.1.2 Local Adaptive Thresholds 
A global threshold method such as Otsu’s method breaks down when there is a significant local 

variation in image intensity (Figures 4a and 4b). To handle spatially varying intensities, methods such as 
locally adaptive thresholds have been developed. In these methods, threshold criteria are based on 
information contained within a local kernel, rather than the entire image. Some simple local adaptive 
thresholding techniques include a moving average and multivariable thresholds based on the sample 
kernel’s mean and standard deviation.  

   
4a 4b 4c 

Figure 4. Local adaptive threshold. 

Figure 4 demonstrates the shortcomings of global thresholding in the presence of significant local 
variation in image intensity and the ability of local adaptive methods to overcome such issues. Figure 4a 
contains alpha-numeric characters embedded within an image with significant local variation in intensity. 
Figure 4b is a binary image resulting from application of a global threshold (determined via Otsu’s method) 
to Figure 4a. Figure 4c is the result of a Sauvola local adaptive threshold algorithm applied to Figure 4a 
illustrating the ability of locally adaptive threshold techniques to differentiate between the image and 
alpha-numeric characters. 

2.1.3 Texture Based Segmentation 
Intensity may not always be an appropriate distinguishing feature for image segmentation in some 

materials applications (for instance, an examination of coarse pearlite microconstituents in steel). In such 
cases, it is the local texture of the image that should be used for segmentation. Many of the methods used for 
texture segmentation are based on statistical/entropic/anisotropic approaches to describing differences in the 
image. Basic segmentation methods include using the local standard deviation for segmentation rather than 
intensity, averaging of horizontal and vertical discrete cosine transform coefficients, and the use of 
morphological filters of varying sizes. 

An example of texture based segmentation is demonstrated in Figure 5. Figure 5a is an image composed 
of two different circle sizes arranged to roughly resemble the Boise State University logo. Small circles 
make up the “B,” while the background is composed of larger circles. Intuitively, since Figure 5a is a binary 
image, a typical threshold method will not work, however, the size and spacing of the circles that make up 
the “B” are different from the background. This differentiation can be used for segmentation. In a simple 
illustrative case such as this, morphological operators (described in Section 2.3) can be used to isolate the 
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ROI from the background. The boundary of the ROI is outlined in red in Figure 5b and the ROI is shown as 
a segmented binary object in Figure 5c.  

   
5a 5b 5c 

Figure 5. Texture-based segmentation. 

Figure 5 visually demonstrates texture-based segmentation. Figure 5a is an artificial textured image 
representing the Boise State University logo. The image is comprised of duplicates of two different 
circles. The diameters differ by a factor of approximately three. The red line in Figure 5b is used to 
indicate the boundary extracted between the two “phases” of different textures. Figure 5c is a binary 
image resulting from the texture-based segmentation to extract the Boise State University “B” from 
Figure 5a. 

2.2 Connected Components 
While most readers are probably familiar with a pixel and its 3-D equivalent, a voxel, it is important 

to briefly define their role in image analysis. In a 2-D image, a pixel is the smallest element within the 
image. Each pixel contains information representative of a small local area of the image. In photography, 
the pixel value is proportional to the intensity of light coming from that particular location of the image. 
While the signal detected varies from application to application, in all cases, pixels represent a spatial 
location and a detected response of that particular location to a probe. Voxels are the 3-D equivalent of 
pixels for 3-D images, representing the smallest volume element within the image. Similar to a pixel in 
photography, the voxel value can be interpreted to be representative of the intensity of the interrogation 
technique used to construct the 3-D image (i.e., X-ray intensity, Scanning Electron Microscope [SEM] 
electron intensity, or even individual atoms in Atom Probe Tomography). 

Pixels (voxels) are most commonly represented as squares (cubes) because of the simplicity of the 
system and the ease of representing their coordinates with two (three) orthonormal vectors as the basis. 
Other shapes and coordinate systems can be used, but this leads to more complicated spatial calculations 
that limit the application of different shapes and coordinate systems to specialized applications. 

In 2-D and 3-D image analysis of material microstructures, there is often more than one object to be 
characterized after segmentation. When more than one object exists, the question becomes how to define 
which pixels (voxels) are connected together so each object is recognized separately by the computational 
software. The answer is to define connectivity for neighboring pixels (voxels). To define connectivity, 
connected components (the application of graph theory to image processing and analysis) is a simple way 
of setting rules regarding which neighboring pixels or voxels are allowed to be connected together into 
separate objects. Figure 6 demonstrates connected components with a 2-D example. Figure 6a shows a 
pixel (2,2) with its surrounding neighbors. Pixel (2,2) has two types of neighbors: those that share an edge 
with (2,2) are shown in red and those sharing a corner are shown in green. The neighbors of pixel (2,2) 
can thus be defined solely as the red pixels in Figure 6a, solely as the green pixels, or as the union of these 
two sets. The definition used for neighboring pixels can strongly influence the number of objects as well 
as their shape and size, as demonstrated in Figure 6b with a small 5 × 5 pixel binary image with white 
pixels representing the ROI. If the neighboring pixels are defined solely as the red pixels in Figure 6a, 
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there are 5 unique objects (Figure 6c). If neighboring pixels are defined by the union of the red and green 
set in Figure 6a, there are only two unique objects (Figure 6d). 

In 3-D, connectivity for voxels is very similar to that shown in Figure 6a, except there are three types 
of neighbors. Neighboring voxels can either be connected at cube faces, cube edges, or cube corners. 
Common connectivity rules for voxels are the six cube face neighbors, the six cube face neighbors plus 
the 12 cube edge neighbors, or all 26 surrounding neighbors. These configurations are shown in 
Figures 7a–c by the lines protruding from the representative cubic voxels. 

The ability to connect neighboring voxels together is quite powerful. It allows the user to define 
unique objects and begin to assess each object individually within the imaged volume. Establishing 
connectivity is absolutely necessary for any statistically based analysis of material features as it defines 
the set of voxels belonging to each unique object. 

  
6a 6b 

  
6c 6d 
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Figure 6. 2-D example of pixel connectivity. 

Figure 6 visually demonstrates the application of 2-D connected components. Figure 6a illustrates the 
two types of neighboring pixels: face sharing (red) and corner sharing (green). Figure 6b is a synthetic 
image with labeled coordinates. Figure 6c illustrates the results of using just face-sharing neighbors to 
define connectivity within Figure 6b. Five objects result from this definition. Figure 6d is the result of 
defining all eight surrounding pixels as connected components. In this case, only two objects exist. 

   
7a 7b 7c 

Figure 7. 3-D visualization of voxel connectivity. 

Figure 7 provides a visual representation of different connectivity rules in discrete 3-D space. 
Figure 7a represents six adjacent neighbors. The neighboring voxels are only connected on the six faces 
of a voxel. Figure 7b represents 18 adjacent neighbors. The neighboring voxels are connected along the 
six faces plus 12 voxel edges. Figure 7c represents all 26 adjacent neighbors. Neighboring voxels consist 
of the eight voxels touching at corners in addition to the 18 shown in Figure 7b. 

2.3 Morphological Operations 
Morphological operations are powerful image analysis techniques derived from mathematical 

morphology and are well-suited for the analysis of material structure. Morphological operators can be 
used to perform a wide variety of image processing and analysis functions including filtration, 
segmentation, image measurements, and a variety of other tasks such as minimal path detection. In this 
report only the two most basic operators (erosion and dilation) will be described as the other 
morphological operators can be obtained by the application of basic set theory to combinations of the 
erosion and dilation operators. For a more detailed coverage of morphological image analysis, the reader 
is referred to texts such as Pierre Soille’s “Morphological Image Analysis.”15 

Prior to describing the basic morphological operators, three definitions should be given. The first is a 
structure element that describes a shape or sub-image used to investigate morphological properties of 
interest within an image. Figures 8a–f shows five structure elements within the Z2 domain. Structure 
elements 8c and 8d are commonly used in 2-D image processing, but structure elements can have 
arbitrary size and shape. 

The second definition is the structure element reflection, denoted as 𝐵𝐵� , and can be defined as follows: 

𝐵𝐵� = {𝑤𝑤|𝑤𝑤 = −𝑏𝑏, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏 ∈ 𝐵𝐵} (1) 

In other words, if B is a set of pixels within an image, then 𝐵𝐵�  represents a similar set of pixels where 
the coordinates change from (𝑥𝑥,𝑦𝑦) to (−𝑥𝑥,−𝑦𝑦). In Figure 8, Figure 8B is the reflection of Figure 8A. 
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The final definition needed to describe the basic morphological operations is translation. Translation, 
denoted as (𝐵𝐵)𝑧𝑧, can be defined as follows: 

(𝐵𝐵)𝑧𝑧 = {𝑐𝑐|𝑐𝑐 = 𝑏𝑏 + 𝑧𝑧, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏 ∈ 𝐵𝐵} (2) 

In the translation of 𝐵𝐵 by 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2), if the coordinates (𝑥𝑥,𝑦𝑦) belong to 𝐵𝐵 then the equivalent point 
in (𝐵𝐵)𝑧𝑧 has the coordinates (𝑥𝑥 + 𝑧𝑧1,𝑦𝑦 + 𝑧𝑧2), so (𝐵𝐵)𝑧𝑧 shifts the image by (z1,z2). 

 
Figure 8. Structure elements. 

Figures 8 a–f represent possible structure elements for use in morphological operations. The black 
circles represent the origin of the structure element. The origin does not have to be in the center of the 
structure element. Structure elements can have any size or shape, but are commonly significantly smaller 
than the image on which they operate. Figure 8c and 8d are commonly used structure elements in 2-D 
image processing. 

2.3.1 Morphological Erosion and Dilation 
Morphological erosion is defined as: 

Erosion: 𝐴𝐴⊖ 𝐵𝐵 = {𝑧𝑧|(𝐵𝐵)𝑧𝑧 ⊆ 𝐴𝐴}  (3) 

In words, erosion of 𝐴𝐴 by 𝐵𝐵 is the set of all points z for which the structure element 𝐵𝐵 lies entirely 
within 𝐴𝐴. An example of erosion is shown in Figure 9b, where Figure 9a represents 𝐴𝐴, and 𝐵𝐵 is the 
Figure 8C. Another way to think of erosion is replacing the value at the origin of the structure element by 
the minimum value observed within the kernel. Thinking of erosion in this way allows for proper 
execution of morphological erosion on a grayscale image. In Figure 8b, any location within the object 
where the structure element touches a white pixel (denoting zero) is replaced by zero and the original 
object is eroded away. 

Complimentary to erosion is the dilation operator 𝐴𝐴⨁𝐵𝐵. 

Dilation: 𝐴𝐴⨁𝐵𝐵 = �𝑧𝑧��𝐵𝐵��𝑧𝑧 ∩ 𝐴𝐴 = ∅� (4) 

Equation (4) states that the dilation of 𝐴𝐴 by 𝐵𝐵 is the set z for which at least one element of 𝐵𝐵�  lies within 𝐴𝐴 
(Figure 9c). The other way to think of dilation is replacing the value at the origin of the structure element 
with the maximum local value for that element. The dilation operation takes zeros along the edge of the 
object (Figure 9a) and replaces them with ones (Figure 9c) and the object appears to dilate relative to the 
original. Erosion and dilation can be useful by themselves for estimating the effects of uniform 
morphological change to objects, but they are also the building blocks for a majority of morphological 
operations. Several additional morphological operations are defined below with a brief description of their 
uses. 
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9a 

 
9b 

 
9c 

Figure 9. Illustration of elementary morphological operators: erosion and dilation. 

Figure 9 visually demonstrates the basic morphological operations of erosion and dilation. Figure 9a 
is the initial object image represent by A in Equations (3–9). Figure 9b is the result of binary 
morphological erosion of Figure 9a by the structure element in Figure 8c. The dark pixels represent the 
remaining pixels after erosion. The light pixels represent those that have been removed by erosion 
from A. Figure 9c is the result of binary morphological dilation of Figure 9a by the structure element in 
Figure 8c. The darker pixels represent those added via dilation. The lighter pixels are the subset of the 
resulting image that belonged to the original image, A. 
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2.3.2 Common Morphological Operations of Practical use in Materials 
Applications 

Figure 10 can be used to demonstrate the morphological operations of opening, closing, and boundary 
extraction. 

Opening: 𝐴𝐴 ∘ 𝐵𝐵 = (𝐴𝐴⊖ 𝐵𝐵)⨁𝐵𝐵 (5) 

Opening will smooth surface contours, eliminate objects smaller than structure element 𝐵𝐵, and is 
capable of breaking small narrow interconnections between objects. 

Closing: 𝐴𝐴 ⋅ 𝐵𝐵 = (𝐴𝐴⨁𝐵𝐵) ⊖𝐵𝐵 (6) 

Closing, like opening, can smooth contours, patch small holes (roughly the size of 𝐵𝐵), and connect 
objects spaced closely together. 

As can be seen from Figures 10b and 10c opening and closing can remove objects or holes within the 
image without significantly affecting other features. Erosion and dilation alone would have removed the 
white circles and the small black circles, respectively, but in doing so would have significantly changed 
the size of all remaining features. 

Boundary Extraction: 𝛽𝛽(𝐴𝐴) = 𝐴𝐴 ∩ (𝐴𝐴⊖ 𝐵𝐵)𝑐𝑐  (7) 

Boundary extraction isolates the surface of objects within a data set. (𝐴𝐴⊖ 𝐵𝐵)𝑐𝑐 represents the 
compliment of 𝐴𝐴⊖ 𝐵𝐵 (e.g., the boundary of Figure 10a is shown in Figure 10d). 

  
10a 10b 

  
10c 10d 

Figure 10. Illustration of morphological operators: opening, closing, and boundary extraction. 
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Figure 10 visually demonstrates morphological operations of opening, closing, and boundary 
extraction. Figure 10a is the original image and represents A in Equations (5–7). Figure 10b represents the 
morphological opening of Figure 10a. In Figure 10b and 10c, B is a circular kernel with dimensions 
approximately equal to the size of the small black and white circles in Figure 10a. Figure 10c represents 
the morphological closing of Figure 10a. Figure 10d represents the morphological extraction of pixels on 
the boundary of each object. B for Figure 10d is identical to Figure 8D. 

Hit-or-Miss Transform: 𝐴𝐴⊛ 𝐵𝐵 = (𝐴𝐴⊖ 𝐵𝐵1) ∩ (𝐴𝐴𝑐𝑐 ⊖ 𝐵𝐵2)  (8) 

The Hit-or-Miss transform is a basic tool for the detection of shapes. It is extremely useful when 
looking for very specific objects or features within an image. 𝐵𝐵1 is the object/shape you are looking for in 
the image, and 𝐵𝐵2 = 𝐵𝐵1𝑐𝑐, where the c denotes the complimentary image. 

Thinning: 𝐴𝐴⊗ 𝐵𝐵 = 𝐴𝐴 ∩ (𝐴𝐴⊛ 𝐵𝐵)𝑐𝑐  (9) 

Thinning is useful for the reduction of objects, similar in many ways to pruning a tree or a bush. 
Pruning, which is a subset operator of thinning, can be used to remove parasitic branches from skeletons. 
An example of 3-D pruning is shown in Section 2.5, Figure 18. 

Filling: 𝑋𝑋𝑘𝑘 = (𝑋𝑋𝑘𝑘−1⨁𝐵𝐵) ∩ 𝐴𝐴𝑐𝑐     𝑘𝑘 = 1, 2, 3, … (10) 

Finally, filling can be used to remove holes from objects. There may be some instances where 
artificial holes exist within objects due to the segmentation and these must be removed to properly 
analyze the object. In other cases, objects may inherently possess porosity or some other secondary phase 
that needs to be ignored in an analysis.  

Equation (10) is an iterative process that continues until no additional changes can be made. In 2-D, 𝐴𝐴 
represents the original binary image and 𝐵𝐵 is a symmetric structure element given by Figure 8C. The 
original array, 𝑋𝑋0, is an array of zeros the same size as 𝐴𝐴. During the morphological operation, a single 
pixel/voxel with a value of 1 is placed in 𝑋𝑋0 at coordinates corresponding to a pixel/voxel representing the 
hole to be filled. 

2.4 Distance Transforms 
Distance transforms are useful in image analysis as they provide a means for measuring distance 

within an image. There are two general types of distance transforms used in image processing and 
analysis, the Euclidean and geodesic distance transform. A good way to visualize the difference between 
these two transforms is the use of a simple maze. Distance between the maze entrance at p and the center 
at point q has two meaningful measures the Euclidean and geodesic distance. The Euclidean distance is 
easily defined as: 

𝑑𝑑𝐸𝐸 = ‖�⃗�𝑝 − �⃗�𝑞‖  (11) 

where �⃗�𝑝 and �⃗�𝑞 are the position vectors of points p and q on the maze and ‖ ‖ represents the ℓ2 norm. 
For the maze shown in Figure 11a, 𝑑𝑑𝐸𝐸 = 511 pixel lengths. 

The geodesic distance, on the other hand, represents the shortest distance someone would need to 
travel through the maze to go from p to q. Figures 11b and 11c show two possible paths through the 
maze. The path in Figure 11b is the shortest path with a length of 2,148 pixels; therefore it is the geodesic 
distance. The path in Figure 11c is feasible, but it is not the shortest path with a length of 3,055 pixels. By 
definition, this path is not the geodesic distance between points p and q. The geodesic distance transform 
is excellent for determining the shortest path through a ROI, but longer paths, such as the one in 
Figure 11c, are difficult to extract without a significantly larger computational investment. 
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11a 11b 11c 

Figure 11. Comparison of Euclidean and geodesic distances. 

Figure 11 provides an illustration to compare Euclidean and geodesic distances. Figure 11a represents 
a “theta” maze with multiple distinct pathways from Point p to Point q. Points p and q labeled with red 
and green circles, represent the maze entrance and finishing point, respectively. In Figure 11a, the blue 
dashed line between Points p and q represent the Euclidean distance between p and q. Figure 11b 
represents the geodesic distance between p and q. Figure 11c is an alternative path through the maze 
between Points p and q with a significantly longer path length. The pathways displayed are based on a 
“chessboard” distance map (discussed in Section 2.4.1). The colormap superimposed onto the pathways is 
calculated from a “quasi-Euclidean” geodesic distance transform seeded at Point q. 

Distance transforms are convenient for measuring distance between points from a Euclidean or 
geodesic perspective. For a Euclidean distance transform, distance is calculated from the interior of the 
ROI to the nearest pixel of the background. Figure 12a is the Euclidean distance transform of Figure 3b. 
In this case the Euclidean distance transform calculates how far each pixel of the INL logo is from the 
image background. For a geodesic distance transform (Figure 12b), the ROI is usually defined as the 
allowable set through which the transform can propagate. The user must also specify seed location, the 
origin point(s), for the resulting distance transform. The seed location will depend greatly upon the 
specific application and the feature to be measured. For the maze in Figure 11, the ROI is the interior 
white space of the maze and the seed point is the red dot (p) at the top of the image near the maze 
entrance (Figure 11). 

  
12a 12b 

Figure 12. Distance transforms. 
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Figure 12 visually shows the results of Euclidean and geodesic distance transforms. Figure 12a 
representation of the Euclidean distance transform corresponding to Figure 3b. The color map represents 
the distance, in pixel lengths, from a black pixel to the nearest white pixel. Figure 12b is the resulting 
geodesic distance transform of Figure 11a with the seed location at point p. 

2.4.1 Distance Metrics 
A final consideration for the distance transform is how to determine distance. In discrete space, there 

are generally four standard metrics for distance. The metric used should consider computational expense 
as well as the accuracy with which the measurement must be made. This is especially important to 
consider for 3-D data sets as a significant amount of memory (tens to hundreds of GB) and computation 
time must be invested for large data sets. The first distance metric, often referred to as “city block” only 
advances to neighboring pixels (voxels) sharing a face. Referring back to Figure 6a, a distance transform 
seeded at (2,2) will advance to the red pixels in a first step and to green pixels in a second step. The 
distance traveled to reach the red pixels is 1 pixel length, while the distance traveled to reach the green 
pixels is two pixel lengths. The city block distance transform is illustrated in Figure 13a and Figure 14a 
for 2-D and 3-D, respectively. The city block distance transform is relatively inexpensive 
computationally, but is rather inaccurate along a diagonal. 

Figures 13b and 14b visually demonstrate the results of the distance metric commonly referred to as 
“chessboard.” As in the city block metric, the chessboard metric advances in units of one, but advances in 
a (1,1) equivalent direction in 2-D and (1,1,1) equivalent direction in 3-D space. The chessboard metric is 
significantly more accurate along the diagonal, while minimizing computational expense. The accuracy of 
the chessboard approach does suffer along a straight line. 

“Quasi-Euclidean,” the metric shown in Figure 13c and 14c, is a common method used for accurate 
determination of geodesic distances in constrained systems. Its distance front advances in units of one 
from pixel faces, and units of √2 from the pixel corners. As illustrated in Figure 14c, at relatively short 
distances its polyhedron nature is obvious; however, at longer distances (inset of Figure 14c) it appears 
nearly spherical. Figure 13d shows the Euclidean distance metric calculated as defined in Equation (10). 
The Euclidean distance metric is significantly more expensive, computationally, relative to the other 
distance metrics. 

Figure 13 gives a visual representation of the four common distance metrics used two propagate a 
distance transform. Figure 13a represents the distance metric “city block” propagated outward three 
points within the image. Figure 13b represents the distance metric “chessboard” propagated outward from 
three points within the image. Figure 13c the “quasi-Euclidean” distance metric. Figure 13d represents the 
Euclidean distance metric. The actual distance transforms are represented by a gray-scale images with 
white representing the largest distance and black representing a distance of 0. Contour lines are shown at 
distance increments of 50 pixel lengths for Figure 13a–d. 
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13a 13b 

  
13c 13d 

Figure 13. Distance metrics 2-D. 

Figure 14 displays visual representations of the four common distance metrics used two propagate a 
distance transform. Figure 14a is an isosurface at a value of 150 for the distance metric “city block” 
propagated outward from the center of the image volume. Figure 14b is an isosurface at a value of 150 for 
the distance metric “chessboard” propagated outward from the center of the image volume. Figure 14c is 
an isosurface at a value of 50 for the “quasi-Euclidean” distance metric propagated outward from the 
center of the image volume. The inset in Figure 14c is the same propagated distance transform showing 
an isosurface at a value of 150. Figure 14d is an isosurface at a value of 150 resulting from a Euclidean 
distance metric used for propagation of the distance transform. 
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14a 14b 

  
14c 14d 

Figure 14. Distance metrics 3-D. 

2.4.2 Watershed Segmentation 
As a brief aside, there are some cases where typical segmentation works very well, but does not actually 

separate individual objects touching 3-D space. A visual example is shown in Figure 15a, which is a 3-D 
data set imaging 299 mullite milling media bead suspended in an epoxy resin. The major obstacle to image 
analysis for cases such as this is the fact that many objects are touching one or more others, making the 
analysis in this case of the individual beads impossible without further processing. A technique called 
watershed segmentation can be used to separate touching objects to allow further analysis. This technique is 
discussed here rather than in Section 2.1 because watershed segmentation relies on the use of a Euclidean 
distance transform as the initial input. Figure 15b shows the milling media separated into different objects 
allowing individual beads to undergo additional image processing and analysis separately (Figure 15c and 
15d). 
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Watershed segmentation in many ways is analogous to its namesake. A watershed is a region or area 
bounded peripherally by a divide and draining ultimately to a particular watercourse or body of water. In 
other words, all water that falls within a particular watershed will ultimately flow to the same location. 
Using a Euclidean distance transform, an artificial elevation map can be created to help separate touching 
objects. 

Figure 16 visually illustrates the general process of watershed segmentation. Figure 16a shows 12 
overlapping ellipses. A Euclidean distance transform is used to determine the distance from each white pixel 
within the object to the nearest black pixel (Figure 16b). Figure 16c is essentially a 3-D surface 
representation of Figure 16b, but shows that the distance transform can be used as an artificial elevation map 
where the distance away from the object edge represents a depth. The actual details behind watershed 
segmentation are beyond the scope of this report, but it is sufficient to say that the watershed algorithm can 
determine boundaries between different watersheds. The watershed boundaries are often a good 
representation of borders between overlapping objects in 2-D (Figure 16d) and touching objects in 3-D. 

  
15a 15b 

  
15c 15d 

Figure 15. Segmentation of milling media using watershed segmentation. 
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Figure 15 demonstrates the application of watershed segmentation to identify individual milling 
media beads within the scanned 3-D volume. Figure 15a is a reconstructed 3-D projection of 299 mullite 
milling media beads. Figure 15b is the same 3-D projection, after watershed segmentation has been 
applied to separate individual particles. A false color map is applied to highlight that beads are no longer 
connected. Figure 16c shows a 3-D projection of a randomly selected bead from the compact. Figure 16d 
shows a similar randomly selected bead with 3 slices shown. The slices show the inherent porosity of the 
beads which could be further analyzed with respect to each bead. The slices are orthogonal to the x, y, and 
z axis. 

  
16a 16b 

  
16c 16d 

Figure 16. Watershed segmentation 2-D illustration. 
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This figure demonstrates a basic watershed segmentation algorithm. Figure 16a is a synthetic image 
of 12 ellipses superimposed upon each other and offset by 30-degree rotations about the center of the 
image. Figure 16b is the corresponding Euclidean distance transform of Figure 16a. The color map 
represents the distance measured in pixel lengths from each white pixel in Figure 16a to the nearest black 
background pixel. Figure 16c is a topographical representation of the Euclidean distance map in 
Figure 16b. Figure 16d is a colored image representing each indexed object after applying a watershed 
segmentation algorithm. The color map defines the color of the indexed object. 

2.5 Skeletonization 
The final subject discussed in this section is skeletonization. Skeletonization is the reduction of an 

object to its essential framework, in some sense it is a center-lined minimalistic “sketch” of the object. 
Skeletonization is a useful tool in image analysis because it provides a compact object representation, yet 
still conserves much of the object’s character (size and shape) and connectivity. A human silhouette and 
its skeleton, or medial axis, is shown in Figures 17a and 17b. 

Skeletonization is used extensively in pattern recognition and shape analysis to extract information on 
the object’s shape. Quite often the skeleton is used to detect branch points, end points and closed loops, 
which are in turn used for object classification into a shape category. In Figure 17c, the end points of the 
skeleton and nearest branch points were used to identify and label appendages of the original silhouette. 
Skeletonization has obvious utility in materials science for materials with network-like structures, such as 
interconnected porosity where the number and locations of closed loops and branch points may be of 
quantitative interest. 

   
17a 17b 17c 

Figure 17. Skeletonization. 

Figure 17 represents skeletonization and possible extracted information. Figure 17a is a binary image 
showing the silhouette of a human male. Figure 17b is the skeleton of Figure 17a. The skeleton is dilated 
to enhance visibility. Figure 17c shows highlighted branches of the skeleton in Figure 17b indicating 
limbs or appendages. 
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Skeltonization in both 2-D and 3-D is often quite sensitive to slight changes in curvature that may 
exist due to “noise” at the object/background interface at segmentation. While many algorithms take 
measures to reduce this sensitivity, inevitably unwanted (and erroneous) artifacts known as parasitic 
branches are produced during skeletonization. Morphological smoothing pre-filters can be used to reduce 
the amount of parasites, but ultimately morphological pruning is needed to remove the remaining 
erroneous branches. Figure 18a and 18b show the skeleton of a SiC foam structure pre- and post-pruning. 
The results of pruning here are visually quite apparent. 

  
18a 18b 

Figure 18. Silicon carbide foam skeleton. 

Figures 18a and 18b shows the skeleton of a SiC foam structure before and after morphological 
pruning. The large objects within Figures 18a and 18b are hollow regions within the SiC foam. 

2.6 Summary of Principles and Concepts for 3-D Image Analysis 
The principles and concepts discussed previously are some of the primary building blocks for image 

analysis. Image segmentation (Section 2.1) and connected components (Section 2.2) are paramount as 
they must be successfully implemented prior to almost any conceivable analysis. Image segmentation in 
many respects is the critical step in image analysis once the fundamentals of image processing and 
analysis are understood since getting a computer to duplicate what the human eye segments automatically 
can at times be technically very difficult. 

It is also the opinion of the authors that morphological operators, distance transforms, and 
skeletonization techniques are particularly useful in quantitatively examining 3-D material volumes. With 
few exceptions, nearly all physical measurements can be performed using these three tools individually, 
or in a plethora of unique combinations. 

Section 3 is dedicated to real application of these tools to characterize a variety of materials of interest 
to the nuclear materials community. The examples in Section 3 implement a number of principles and 
concepts from Section 2 illustrating the increased information available from 3-D analysis of the 
volumetric data. The first example material utilizes Image Segmentation and Connected Component 
principles.  The second example material utilizes distance transforms in addition to image segmentation 
and connected components. Finally, the third material example incorporates all techniques introduced in 
Section 2 to illustrate the complexity that can be achieved with a 3-D analysis. 
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3. NUCLEAR MATERIALS APPLICATIONS 
3.1 Overview 

In Section 2, several principles and concepts were briefly covered to provide basic understanding of 
some of the common tools used for segmentation and ultimately the extraction of quantitative information 
from a 3-D volume representing a material. Section 3 focuses on the application of these fundamental 
principles and concepts to INL’s relevant nuclear materials. This section is meant to give the reader 
practical examples of quantitative image analysis. 

Three nuclear materials from three INL programs have been chosen as example materials to provide 
practical demonstrations of 3-D image analysis. Each material system was selected in order to illustrate 
different capabilities and the quantitative data available from a 3-D image analysis. To illustrate the 
progressive application of the various analysis techniques the complexity of the analysis is increased with 
each subsequent material example 

The initial example uses relatively simple image segmentation and connived components techniques 
applied to preliminary surrogate TREAT fuel compacts to discern particle size distribution and crack 
formation from processing. Additional analysis techniques (segmentation, connected components, 
morphological, and distance transforms) are required to investigate fuel compacts containing TRISO fuel 
particles being developed for the ART AGR program. Finally, the complex microstructure and detailed 
analysis of nuclear graphite requires the full complement of analysis techniques including skeletonization 
to map out the complex defect pore structures in a graphite sample. A brief introduction is provided for 
each example material system outlining the importance the importance of the material and the value of the 
analysis. This is followed by a short description of the analysis itself and an outline of the basic 
processing steps needed to complete the analysis. 

It should be noted that the practical material examples discussed in this report are quite significant in 
size; therefore, significant computing resources are needed. For this report, INL researchers made use of 
the High Performance Computing Center at INL, which is supported by the Office of Nuclear Energy of 
the U.S. Department of Energy (DOE). Funding for analysis of TREAT fuel compacts was provided by 
the National Nuclear Security Administration’s (NNSA) Office of Material Management and 
Minimization Reactor Conversion Program.  Funding for AGR compact, AGR TRISO particles, and 
nuclear graphite was provided by the Advanced Reactor Technology (ART) program. 

3.2 Preliminary Transient Reactor Test Facility Low Enriched 
Uranium Conversion Fuel Compact 

The development of new accident-tolerant nuclear fuels, new fuel designs, and proliferation resistant 
nuclear fuel forms has created an increased need to test these fuels under nuclear accident conditions. The 
DOE is updating the USA’s capability to conduct transient testing of nuclear fuels. During transient 
testing, nuclear fuel and materials are subjected to short bursts of intense, high-power radiation inside the 
cores of specifically designed test reactors. The fuel and material is then analyzed to determine the effects 
resulting from various levels of exposure. 

The TREAT reactor at INL is being re-established and updated to support this needed 
capability. TREAT was designed and built specifically to support transient testing of nuclear fuels and 
materials. It is capable of “stress testing” nuclear fuels with quick, high-energy neutron pulses that mimic 
accident conditions. Previously it has been used to design durable nuclear fuels, establish performance 
limits, validate design codes, and assist in defining safety limits for new nuclear reactor core designs. 

TREAT has not been operated for over 20 years and the original core was designed and built 
before 1959. After such a long period since operation, significant modifications to the entire facility are 
necessary to resume transient testing. One of the most significant modifications anticipated is conversion 

http://www.energy.gov/sites/prod/files/TREAT%20Fact%20Sheet.pdf
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of TREAT fuel to low-enriched uranium (LEU). The fuel will essentially consist of a diluted mixture of 
fine low-enriched UO2 particles in a carbonaceous/graphitic matrix. During transient operation, the core 
design must permit rapid transfer of fission energy into the graphite and carbon, resulting in a rapid and 
uniform heat up of the moderator (carbon and graphite). The uniform heating of the moderator material 
results in a nearly instantaneous, negative-temperature coefficient of reactivity, and hence, self-limiting 
nuclear transients. 

X-ray CT and image analysis have been employed at INL to non-destructively assess the 
microstructure of preliminary batches of surrogate compacts. The main features of interest were the fine 
ZrO2 particles used as a fuel surrogate for UO2 and identification of crack formation during the 
compaction and subsequent heat treatment (Figure 19a and 19b). A particle size analysis was used to 
assess agglomeration of the surrogate particles during compact production and a Hotelling transform 
(known in other fields as a principal components analysis) was used to assess the size, shape, and 
orientation of cracks produced during the fabrication process. For more detailed information, refer to the 
2016 article published in Nuclear Engineering and Design by Kane et al.18 
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19a 19b 

  
19c 19d 

Figure 19. Treat fuel compact microstructure. 

Figure 19 shows the structure of a scanned preliminary TREAT fuel compact and the segmented 
surrogate fuel kernels and voids. Figure 19a is a 3-D image of 3-D slices from the x, y, and z planes that 
intersect the center of the 3-D volume. Figure 19b is the 2-D image of the z plane shown in Figure 19a. 
Figures 19c and 19d are the resulting selective segmentations of the surrogate fuel kernels and voids, 
respectively. 

3.2.1 Particle Size Distribution 
Prior to fabrication, a substantial amount of modeling and simulations efforts were undertaken to 

determine a maximum allowable particle size for the LEU UO2 fuel. The maximum particle size for the 
fuel design was set at 44 μm, equivalent to the approximate opening of a 325-mesh sieve. A uniform 
spatial distribution of particles with a diameter less than this specified engineering limit, will allow the 
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fuel blocks to achieve the desired performance levels while still providing a significant margin of error for 
removal of heat from the individual particles. As a particle’s size increases, the expected maximum 
temperature of the particle will increase substantially. By providing engineering limits on the maximum 
particle size, several life-limiting concerns, including melting of the particles during operation, are 
avoided. 

While the ZrO2 surrogate powder was sieved to exclude particles with a diameter greater than 44 μm, 
agglomeration could result during manufacturing leading to effect diameters greater than the maximum 
specified in the design. A particle size distribution was used to assess the degree of agglomeration that 
occurred under a variety of fabrication conditions. A representative particle size distribution is shown in 
Figure 20a and a comparison of mean values for various batches is shown in Figure 20b. A particle size 
distribution was obtained from the data volume using the following methodology: 

1. An automated global threshold routine was used to segment the ZrO2 particles (Section 2.1.1). 

2. A connected components algorithm was used to identify individual particles (Section 2.2). The 
connectivity used was equivalent to Figure 6c. 

3. The number of voxels belonging to each object was determined from the unique index of each object. 

a. This was converted to a volume using calibrated voxel dimensions 

4. An effective particle diameter was determined by assuming each object was spherical. 

  
20a 20b 

Figure 20. Analysis particle size distribution in preliminary TREAT LEU fuel fabrication process. 

Figure 20a show a typical particle size distribution resulting from the examination of TREAT 
preliminary surrogate fuel compacts. Figure 20b shows slight variations in the amount of agglomeration 
observed in each preliminary batch. 

From the information collected from 32 preliminary compacts from four different batches with 
varying processing parameters, an estimate of the amount of agglomeration was determined. Based on 
this information, a wetting agent was used in subsequent production to reduce the degree of 
agglomeration. 

3.2.2 Size, Shape, and Orientation Analysis of Cracks 
As shown in Figure 21a and 21b, cracks produced during the compaction and subsequent heat 

treatment are rather aspherical and appear to have a preferred orientation within the structure. The size, 
shape, and orientation of these cracks were of interest as they are considered detrimental to the 
mechanical properties of the compact. Depending on their origin, the cracks could increase in size as the 
fabrication process was scaled up. 
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The shape of the cracks observed in these compacts was ideally suited for analysis via a Hotelling 
transform. The Hotelling transform essentially fits an ellipsoid to each object from which information 
regarding its length, shape, and orientation can be extracted. The Hotelling transform was essentially 
implemented as follows: 

1. An automated global threshold was routine and was used to segment cracks from the surrounding 
matrix material (Section 2.1.1). 

a. Prior to segmentation, filtering was necessary to maximize accuracy of segmentation. 

b. Post segmentation, morphological filling (Section 2.3.2) was used to remove small non-physical 
holes within the segmented cracks. 

2. A connected components algorithm was used to identify individual particles and extract the 
coordinates of each voxel belonging to a specific crack (Section 2.2). 

3. Coordinates were translated so the crack center of mass was at the origin 

4. The covariance matrix, a 3 × 3 matrix, was formed from the translated coordinates of a cracks voxels. 

a. Refer to any linear algebra textbook for details. 

5. Eigen values and Eigen vectors of the covariance matrix were determined 

a. Eigen values are directly proportional to the length of the three principle axes of the 
corresponding ellipsoid that best fits the crack 

b. The Eigen vectors correspond to the orientation of the three principle axes of the best fitting 
ellipsoid. 

Figure 21a and 21b show 3-D projections of the 100 largest cracks within a TREAT preliminary fuel 
compact. Figure 21c is a histogram showing the probability of having a crack of a given size. Figure 21d 
shows the orientation distribution of the primary, secondary, and tertiary axes of the ellipsoid that best fits 
the crack. 

 

  
21a 21b 
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21c 21d 

Figure 21. Shape and orientation analysis. 

3.3 Advanced Gas Reactor Fuel Compacts and Tristructural Isotopic 
Particles 

The Advanced Reactor Technologies (ART) AGR fuels program is the largest research activity within 
the high-temperature reactor (HTR) program. The HTR concept is a helium-cooled, graphite moderated, 
thermal neutron spectrum reactor with a design goal outlet temperature of 750°C to 1000°C (i.e., the very 
high temperature design). The graphite-based core can be either a prismatic graphite block type core or a 
pebble bed core design. The HTR is designed to produce both electricity and process heat for chemical 
processes such as hydrogen generation. The reactor thermal power and core configuration is designed to 
assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle is a 
once-through very high burnup LEU fuel cycle. 

The fuel for the HTR builds upon the potential of the TRISO coated particle fuel design. The TRISO 
coated particle is a spherical layered composite about 1 mm in diameter. It consists of a kernel of uranium 
oxycarbide (UCO) surrounded by a porous graphite buffer layer that absorbs radiation damage, allows 
space for fission gases produced during irradiation, and resists kernel migration at high temperature. 
Three additional layers surround the buffer layer: a layer of dense pyrolytic carbon, a SiC layer, and a 
dense outer pyrolytic carbon layer, Figure 22c and 22d. The pyrolytic carbon layers shrink under 
irradiation and provide compressive forces that act to protect the SiC layer, which is the primary pressure 
boundary for the TRISO micro-sphere. The inner pyrolytic carbon layer also protects the kernel from 
corrosive gases that are present during the deposition of the SiC layer. The SiC layer acts as a primary 
containment vessel for fission products generated during irradiation and under accident conditions. Each 
TRISO micro-sphere acts as a mini pressure vessel—a feature that is intended to impart robustness to the 
gas reactor fuel system. 

For the pebble bed version of an HTR, the coated particles are over-coated with a graphitic powder 
and binders. These over-coated particles are then mixed with additional graphitic powder and binders and 
molded into a 5-cm sphere. An additional 0.5-cm fuel-free zone is added to the sphere prior to isostatic 
pressing, machining, carbonization, and heat-treating. 

For the prismatic version of the HTR, a similar process is used where the over coated particles are 
mixed with graphitic powder and binders to form a cylindrical compact approximately 5 cm long and 
1.25 cm in diameter. After final heat treatment, these compacts are inserted into specified holes in the 
graphite fuel blocks Figure 22a and 22b. 

Understanding the effects of processing and fabrication on microstructure is vitally important to 
successfully qualifying fuel for an HTR. Additionally, the fuel for both the prismatic and pebble bed 
design will undergo significant microstructural change under the extreme temperature and neutron 
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irradiation conditions of the HTR. To successfully license HTR technology and take full advantage of the 
very high burnup fuel cycle for 40+ years, microstructural changes will need to be quantified using 
modelling efforts. 

Three-dimensional image processing and quantitative analysis is capable of probing the 
microstructure of the fuel and individual TRISO particles to quantify the initial microstructures as well as 
changes in microstructure after irradiation in a reactor environment. Section 3.3.1 and Section 3.3.2 will 
discuss a few of the many possible ways to quantitatively characterize fuel and individual TRISO 
particles, respectively. In the following sections the fuel compacts have Al2O3 particles as surrogates for 
the TRISO fuel and the TRISO particle example contains an Al2O3 kernel. The characterizations 
discussed can provide valuable and previously inaccessible information for the ART AGR fuels program 
as demonstrated by other material researchers using 3-D characterization techniques.19 

Figure 22a shows a gray-scale slice across an AGR compact. Figure 22b is a 3-D projection of the 
surrogate particles and cracks within the volume of the compact. Figure 22c is a slice of a single TRISO 
particle with a fuel surrogate composed of Al2O3. Figure 22d is a 3-D projection of the TRISO particle 
shown in Figure 22c. 
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22a 22b 

  
22c 22d 

Figure 22. AGR surrogate fuel compact and AGR surrogate TRISO particle. 

3.3.1 AGR Surrogate Fuel Compacts 
The 3-D analysis of AGR compacts has the potential to provide a significant amount of 

microstructural information to researchers in the ART fuels program, specifically, information regarding 
the particle size distribution, crack size shape, and orientation, and information regarding the local 
packing fraction distribution within the compact. As shown for the preliminary TREAT compacts 
(Section 3.2.1), particle size distributions can be determined free of the assumptions needed when 
attempting to make similar measurements from cross-sections. The cracks within the matrix, similar to 
TREAT can also be characterized. Since these types of analyses have already been discussed in 
Section 3.2, this section will focus on determining spatial distributions of surrogate particles within the 
AGR compact. 

Determining a property over a local region can be accomplished with relatively ease using a discrete 
3-D correlation. The 3-D discrete correlation takes the mathematical form 
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𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ⋆ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ∑ ∑ ∑ 𝑤𝑤(𝑠𝑠, 𝑡𝑡,𝑢𝑢)𝑓𝑓(𝑥𝑥 + 𝑠𝑠,𝑦𝑦 + 𝑡𝑡, 𝑧𝑧 + 𝑢𝑢)𝑐𝑐
𝑢𝑢=−𝑐𝑐

𝑏𝑏
𝑡𝑡=−𝑏𝑏

𝑎𝑎
𝑠𝑠=−𝑎𝑎  (12) 

where 𝑤𝑤 represents a 3-D kernel or filter and 𝑓𝑓 represents the data volume to be analyzed. Additionally, 

𝑎𝑎 = (𝑚𝑚 − 1) 2⁄  (12a) 

𝑏𝑏 = (𝑛𝑛 − 1) 2⁄  (12b) 

𝑐𝑐 = (𝑝𝑝 − 1) 2⁄  (12c) 

and 𝑚𝑚, 𝑛𝑛, and 𝑝𝑝 represent the dimension of 𝑤𝑤. For notational and computational convenience, 𝑚𝑚, 𝑛𝑛, and 
𝑝𝑝 are assumed to be odd integers. If f represents a binary 3-D volume (in this specific case a binary 
volume of surrogate particles) allowing 𝑤𝑤 to equal a 3-D matrix of ones, the discrete correlation 
effectively counts the number of voxels equal to 1 within 𝑓𝑓 over a region specified by 𝑤𝑤. With minor 
manipulation this can be interpreted as a local packing fraction. For this specific correlation, w is 
symmetric, and thus the correlation is identical to a discrete convolution. Many numerical computation 
software programs such as MATLAB® contain discrete convolution functions within their built-in 
libraries. 

1. Determine a reasonable kernel size for w, the average particle size distribution was determined 
(Section 3.2.1) 

a. The dimensions of 𝑤𝑤 were set to that of a face-centered cubic structure with close packed spheres 
equal in diameter to the maximum particle diameter within the compact. 

2. Masked the volume over which the analysis was pertinent and the correlation was determined. 

a. This step is valuable when there are regions within the 3-D volume that are not pertinent to the 
analysis. In this particular case, regions of air outside the actual compact needed to be eliminated 
from the correlation. 

b. By applying a correlation to the mask, the local volume pertinent to the analysis is found and 
provides a basis to normalization of the local volumes. 

3. Determine the discrete convolution of f by 𝑤𝑤. 

4. Divide the result of Step 3 by the results in Step 2 voxel by voxel to obtain a spatially resolved 
packing fraction.  

Figure 23a shows a 3-D projection of alumina surrogate particles in a graphitic matrix material. The 
matrix is composed of graphite flake, resin binders, and graphite particles. Upon close inspection of the 
outer perimeter, the particles in this region appear to have a significantly higher packing fraction. 
Figure 23b shows the distribution of local packing fraction within the compact. Figure 23c shows 
variation within the compact perpendicular to the compaction direction. Figure 23d shows variation in 
packing fraction along the compaction and radial (vertical and horizontal) directions, respectively. 
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23a 23b 

  
23c 23d 

Figure 23. AGR surrogate fuel compact: spatial distribution of packing fraction. 

Figure 23 visually shows the results of packing fraction analysis. The packing fraction within the 
compact appears normally distributed with a mean value of 0.364 and a standard deviation of 0.053 
(Figure 23a). On close inspection of Figure 23b, a “rind” of closely packed particles can be seen around 
the outer rim of the compact. Figure 23c confirms this, but also suggests that the packing fraction roughly 
appears to oscillate in the radial direction between high and low packing fractions. The high packing 
fraction in the outer rind has been observed visually and qualitatively noted, but this analysis to the best 
of our knowledge is the first quantitative measurement of the high packing fraction rind. Finally, 
Figure 23d may suggest that the particles are not uniformly dispersed in the compaction direction of the 
compact. These variations could have important implications in terms of the neutron physics and heat 
transfer within the compact. 

3.3.2 Surrogate Tristructural Isotopic Particle 
Ideally, TRISO particles should be perfectly spherical. While a great deal of effort has gone into 

optimizing the complex fabrication process, Figure 22c clearly shows that small deviations do exist from the 
ideal spherical shape. It is important that asymmetry in the particles is understood and well characterized for 
the final fabrication conditions since the extreme conditions of an operating HTGR core could exacerbate 
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the asymmetries over time and ultimately lead to failure. The uniformity and thickness of the various layers 
are particularly important to understand. Some potential issues may include (1) thermodiffusion of the 
kernel in a thermal gradient amplified by thinner and thicker regions of particle longer and shorter paths for 
heat removal, as well as other relatively minor issues including (2) non-uniform dimensional change with 
irradiation and/or temperature in the buffer and inner- outer- pyrolytic carbon layers, and (3) weak regions 
in the SiC layer leading to failure upon build-up of fission product gases and CO from the interaction of the 
fuel with carbon.19 

This section will demonstrate a simple methodology for measuring the radius of the kernel and the 
thickness of the SiC layer (Figure 24a and 24c) as well as analyze any spatial variation (Figure 24b and 
24d). The methodology for determining the kernel radius and SiC thickness are quite similar with only 
minor variations. For completeness, both are described separately. 

  
24a 24b 

  
24c 24d 

Figure 24. TRISO particle diameter and thickness measurements. 

Figure 24a shows a histogram of 3-D kernel diameter measurements extracted from an X-ray CT scan 
represented by Figure 22c and 21d. Figure 24b shows the variation of kernel diameter as a function of 
position in 3-D space. The colormap represents the diameter variation in terms of standard deviations 
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from the mean measurement value, µ = 437 µm and σ = 5 µm. Figure 24c, similar to Figure 24a, 
represents the variation in thickness measured for a single TRISO particle µ = 31.3 µm and σ = 0.7 µm. 
Figure 24d shows variation in the thickness of the SiC layer as a function of 3-D position. Like 
Figure 24b, the colormap representing the layer thickness is normalized to standard deviations. A value of 
+1 means the local thickness is one standard deviation greater than the mean measurement thickness. 

To determine the kernel radius: 

1. The kernel was first segmented using an automated global threshold (Section 2.1.1) 

a. For distinguishing the similar density buffer and inner pyrolytic carbon layers a global threshold 
does not properly distinguish between layers. Figure 25 shows a TRISO particle slice after 
applying a 3-D entropic filter, a basis for texture based segmentation (Section 2.1.3). 

 
Figure 25. TRISO particle entropic filtering. 

Figure 25 shows the results of applying an entropic filter to the X-ray CT slice shown in Figure 22c. 
Entropic filtering is an alternative method to intensity-based segmentation and may be classified as a 
texture-based segmentation method. 

2. The kernel contained open porosity near the surface and closed porosity within the interior. 

a. Morphological closing (Equation [6]) followed by morphological filling (Equation [10]) removed 
the porosity and smooth the interface between the kernel and buffer layer. 
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3. A Euclidean distance transform was determined within the bounds of the kernel volume (Section 2.4). 

a. The kernel centroid was used as the seed point. 

4. The outer surface of the kernel was extracted using morphological boundary extraction (Equation [7]) 

a. Indices of boundary voxels were extracted using a search algorithm. 

5. The Euclidean distances of the boundary voxels correspond directly to the radius of the kernel. 

To determine the SiC layer thickness: 

1. The layer was segmented using a global threshold algorithm (Section 2.1.1). 

2. Small holes were removed using a morphological filling (Equation [10]). 

3. Inner and outer surface were extracted using morphological boundary extraction (Equation [7]). 

4. A connected component algorithm was used to distinguish between the inner and outer boundary 
voxels. 

5. A Euclidean distance transform was determined for the volume seeded at the inner boundary voxels 

6. The Euclidean distances at the outer boundary of the SiC layer are equivalent to the locally measured 
layer thickness. 

To determine spatial variation of measurements: 

1. Coordinates of relevant boundaries were determined relative to the kernel center. 

2. Position vectors were transformed from Cartesian to spherical. 

a. This was done to reduce dimensional degrees of freedom from 3 to 2. 

3. Values were tabulated similarly to binning for a histogram and plotted (Figure 24b and 24d). 

3.4 Nuclear Graphite 
High purity graphite manufactured for the qualification of reactor grade graphite in the next 

generation of HTRs is of significant interest to the ART program for application in the next generation of 
HTRs. In HTRs graphite is used as a moderator, reflector, and high-temperature structural component. 
Volumetrically, graphite accounts for the majority of an HTR core, thus its performance is vitally linked 
to the reactors long-term performance. Under the extreme materials environment of an HTR, the reactor 
lifetime is limited by the phenomena of irradiation-induced creep in permanent graphite blocks within the 
core. Irradiation-induced creep occurs under the simultaneous application of high temperatures, neutron 
irradiation, and applied stresses within a graphite component. Significant internal stresses within the 
graphite component can arise from a second phenomenon, irradiation-induced dimensional change, where 
graphite component physically changes: first by shrinking and eventually by expanding as greater levels 
of irradiation dose are achieved. The disparity in component volume change can induce significant 
internal stresses within the graphite component. Irradiation-induced creep assists in the removal of these 
large internal stresses, ultimately reducing the probability of crack formation and component failure. 
Obviously, higher levels of irradiation creep tend to relieve more internal stress, giving a graphite 
component a longer practical lifetime within an HTR core. 
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As these phenomena effectively limit the life of an HTR core, it is extremely important that 
experimental work exists to validate that a particular graphite can be safely used in an HTR core over its 
lifetime without significant risk of a graphite component failing. The AGC irradiation experiments are 
currently being conducted to provide this valuable information to potential reactor designers. The AGC 
experiments were designed to provide an extensive irradiation program to assess irradiation creep within 
nuclear graphites. The graphites selected for this program encompass multiple nuclear graphite grades, 
fabrication methods, and carbon feedstock types. In addition, the AGC experiments also provide 
information regarding thermal, mechanical, and physical property changes in graphite with increasing 
neutron irradiation dose. 

In assessing the data collected from the AGC experiments, it is also critical to develop an 
understanding of the underlying mechanism(s) controlling graphite behavior under irradiation. 
Unfortunately, even if a graphite grade was to be qualified today, there is no guarantee that it would be 
available a decade later to build a reactor. This is primarily due to carbon feedstocks primarily coming 
from geological sources and variability in the carbon feedstock (even from the same mine but lower in a 
stratum) having an appreciable effect on the properties of graphites produced by identical processing 
methods. An example of this includes the current candidate nuclear graphite grade PCEA. PCEA was 
made to reproduce the historical grade H-451 used in Fort St. Vrain as closely as possible. While PCEA 
behavior is quite similar to historic H-451, it does not behave identically in terms of its irradiation 
performance. 

Figure 26a is an optical micrograph of cross-sectioned sample of IG-110 graphite. Figure 26b is an 
optical micrograph of cross-sectioned sample of PCEA graphite. Red is used for both Figure 26a and 26b 
to highlight large filler particles. Figure 26c and 26d represent tomographic reconstructions of IG-110 and 
PCEA graphite samples, respectively. Both datasets were collected using µX-ray CT. 
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26a 26b 

  
26c 26d 

Figure 26. Visual examples of IG-110 and PCEA nuclear graphites. 

Nuclear graphites are complex graphite-graphite composites formed from a mixture of calcined filler 
particles of various sizes and a pitch-like binder-matrix. The mixture is formed by the manufacturer, 
baked, and then graphitized at temperatures in excess of 2500°C. Optical micrographs highlighting the 
filler particles in IG-110 and PCEA nuclear graphites are shown in Figure 26a and 26b, respectively. It is 
quite apparent from these optical micrographs as well as the µX-ray CT reconstructions shown in 
Figure 26c and 26d that nuclear graphites are by nature highly porous (~17–20% porosity). 

The porosity is inherent to the manufacturing process and exists as a complex network of 
interconnected macroporosity (≥50 nm), mesoporosity (≥2 nm, <50 nm), and microporosity (<2 nm). 
The complex pore structures of nuclear graphites in turn influence the resulting bulk properties ultimately 
of interest to an HTR designer. To better understand differing properties between graphite grades as well 
as changes in performance due to environmental factors such as irradiation and oxidation the pore, 
structure of nuclear graphites can be assessed non-destructively via X-ray CT. The subsections below 
describe multiple methodologies for quantitatively assessing various aspects of the pore structure within 
various nuclear graphites. 
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3.4.1 Quantitative Assessment of Pores Using Geodesic Tortuosity Mapping 
As stated previously, the pore structures of nuclear graphites are quite complex. The pore structure of 

most nuclear graphites is quite large (~17–20% porosity by volume), they exist across several orders of 
magnitude in length, and the pore structures are highly interconnected (see Figure 26c and 29b). The 
interconnectivity especially can make quantitative analysis of the graphite pore structures quite complex 
simply because there is actually only one large object (the interconnected pore) rather than a discrete 
number of objects to characterize. 

One relatively easy quantitative metric to describe how the pore structure winds through graphite is 
called geodesic tortuosity. Geodesic tortuosity is essentially a geodesic distance normalized to the 
Euclidean distance between the corresponding endpoints. For highly porous interconnected pores 
structures such as those existing within nuclear graphites, defining a value or distribution of tortuosity can 
be a useful quantitative description of the pore structure in terms of its overall shape and alignment. 

The calculation of geodesic tortuosity is directly related to the geodesic distance transform discussed 
in Section 2.4. The exact value of geodesic tortuosity can be heavily influenced based upon how the user 
calculates resulting value. The values presented below correspond to the shortest path between two 
parallel user defined surfaces normalized by the Euclidean distance between those two surfaces. 

A tortuosity map can be calculated for a given pore structure as follows: 

1. Determine seed planes (designated as SP 1 and SP 2 below) 

a. For a binary representation of graphite this could ideally be the first and last image in a 3-D 
tomographic stack, SP 1 and SP 2, respectively. 

b. Recall, from Section 2.4, that distance transforms require seed locations for propagation. The 
authors prefer to use an accurate multi-stencil fast marching algorithm. 

2. Calculate distance transform using SP 1. 

a. Account for numerical round off error. 

3. Calculate distance transform using SP 2. 

a. Account for numerical round off error. 

4. Add both distance transforms together and divide by the Euclidean distance between the two seed 
planes. 

The result of step four can be interpreted as the shortest geodesic distance to pass from SP 1 through 
the voxel of interest to SP 2. Figure 27a shows the 3-D geodesic tortuosity map resulting for a small 
sample of PCEA. PCEA is an extruded graphite grade and the geodesic tortuosity map reveals a 
semi-quantitative view of the alignment of porosity within the grade. For PCEA, there are large, relatively 
straight pores, aligned nearly perpendicular to the extrusion direction. These pores have a very low 
tortuosity. There are also a number of pores branching off the large straight pores. They are far more 
tortuous and appear to have very little preferred alignment. These pores consequently have a much higher 
tortuosity. This is quantitatively described in Figure 27b. 
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Figure 27. Geodesic tortuosity of nuclear graphites. 

Figure 27a is a visual representation of the geodesic tortuosity throughout the open pore structure of 
the PCEA. Figure 27b corresponds directly to the values represented by a false color map in Figure 27a. 
The false coloring in Figure 27a is representative of the local value of tortuosity within the pore structure. 
Dark blue represents the lowest tortuosity, approaching 1, while pores falsely colored red represent 
tortuosity values approaching 5. The color map used is a standard jet color map. The physical volume 
represented is roughly 5 × 5 × 5 mm3. Figure 27c shows tortuosity distributions for various graphite 
grades. Figure 27d estimates effective diffusivity via Equation 13. 

Figure 27c shows typical distributions of tortuosity found within several graphite grades. The shape 
and average value appears to be correlated, at least indirectly, by the nominal grain size of the graphite 
specified by the manufacturer. In general, this analysis indicates the mean tortuosity and range of 
tortuosity values increases with an increase in the nominal grain size. There are exceptions as indicated by 
the histograms shown for PCEA and NBG-17. Both have a maximum nominal grains size of 800 µm but 
significantly different tortuosity values. This suggests that the fabrication process strongly influences the 
graphite microstructure. 
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Finally, calculations of the geodesic tortuosity can be used to estimate the effective diffusion 
coefficient of a gas passing through a porous material using Equation (13), where 𝐷𝐷𝐴𝐴𝐴𝐴 is the binary 
diffusion coefficient of a gas pair, 𝜀𝜀, is the open porosity, 𝜎𝜎 is a constriction factor, and 𝜏𝜏 represents the 
geodesic tortuosity. When combined with experimental diffusivity data an estimated value based on 
geodesic tortuosity can provide some insight into the relative importance of macropore diffusion 
(compared to Knudsen diffusion) within a particular graphite. In general, the effective diffusivity 
decreases with increasing grain size (Figure 27d). Similar to the tortuosity distributions shown in 
Figure 27c, there is some dependence on the shape and alignment of the porosity as well. 

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐷𝐷𝐴𝐴𝐴𝐴𝜀𝜀𝜀𝜀 
𝜏𝜏2

 (13) 

3.4.2 Assessing Macropore Evolution Under Uniform Oxidation 
In addition to neutron irradiation effects, the oxidation of graphite in an extreme accident scenario 

could degrade the structural integrity of graphite components. Although accident scenarios are extremely 
unlikely, understanding the effects of acute oxidation of graphite structural components is vital to 
predicting the resulting degradation of a graphite component due to oxidation. Prediction of the oxidation 
rate of nuclear graphite is complicated by several factors, including complex gas-solid reaction kinetics, 
multiple paths for gaseous mass transport to occur, and the evolution of pore structure with oxidation 
(depicted in Figure 28). The evolving pore structure gradually changes parameters, such as pore volume, 
available surface area, and effective mass diffusivity, which control the measured rate of oxidation, thus 
the apparent rate of oxidation changes with the evolution of pore structure. These parameters can be quite 
difficult to measure in a static system much less a dynamic time-dependent system, which the estimation 
of such microstructurally dependent factors are quite valuable. 

Figure 28 shows a small graphite cube approximately 5 mm in length with increasing levels of 
oxidation. Oxidation was simulated with an isotropic morphological erosion of the open porosity. Each 
figure shows the exterior volume as well as three slices from the x, y, and z planes intersecting at the cube 
center. The conversion levels for Figures 28a–f are nominally 0, 15, 30, 50, 60, and 70%, respectively. 



 

 39 

  
28a 28b 

  
28c 28d 
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Figure 28. Nuclear graphite and the modelled erosion of the microstructure. 

Performing an artificial uniform oxidation of the porosity within a 3-D representation of a particular 
graphite can provide some preliminary understanding of how a pore structure is expected to evolve with 
continued oxidation. This can easily be accomplished by combining basic concepts discussed in Section 2 
of this report. The procedure is outlined below. 
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1. Porosity must be segmented (Section 2.1) 

a. Automated global threshold routine is well suited for nuclear graphite (Section 2.1.1) 

(1) Little to no preprocessing is needed if a high quality scan was collected 

b. Represent pores as 0 and graphite material as 1. 

2. Pad volume in all three dimensions. 

a. The pad only needs to be one voxel thick. 

b. All pad voxels should have a value of 0. 

3. Apply connected components algorithm to padded volume (Section 2.2). Extract the indices of the 
largest pore. 

a. The largest pore is equivalent to the open porosity available for oxidation. 

b. Create a new volume equivalent in size to the padded volume. 

(1) All voxels should have a value of 1 initially. 

c. Replace values corresponding to indices of largest pore with 0. 

d. Remove pad layer. 

4. Apply morphological erosion to graphite material (Section 2.3.1, Equation [3]). 

a. B from Equation (3) should be a 3 × 3 × 3 matrix of ones 

b. Boundaries should be treated as mirrors. 

The volume resulting after Step 4 in the above procedure is roughly equivalent to uniformly oxidizing 
away a layer of graphite one voxel thick anywhere oxygen can penetrate into the sample. By iteratively 
applying Steps 2–4 the pore structure can be estimated at various levels of oxidation. Once Step 3 is 
accomplished, the modified volume can be used to estimate parameters, such as total open porosity, 
surface area, and geodesic tortuosity as a function of oxidation (Figure 29). The percent of open porosity 
in the graphite volume is simply determined by dividing the total number of voxels with a value of zero 
after Step 3 by the total number of voxels. 

Extracting estimates of the surface area of open porosity can be estimated in a number of ways, the 
authors personally prefer to use a discrete form of the Cauchy-Crofton theorem as its implementation is 
relatively inexpensive from a computational standpoint. Essentially this method determines surface area 
by counting the number of intersects made by a large number of lines with the objects surface, a relatively 
simple task, and then assigns each intersection an area based on the orientation of the line in 3-D space. 
The calculation of geodesic tortuosity and indirectly effective diffusivity was discussed in Section 3.4.1. 

As stated previously, the simulated evolution of pore structure can provide preliminary estimates of 
how macroporosity evolves within a particular graphite. It should be noted that this analysis is limited in 
two respects: (1) it does not have the resolution to resolve meso- and micro- porosity that strongly 
influences each graphite grade’s apparent oxidation rate, and (2) it implicitly assumes all surfaces are 
equally important in terms of oxidation potential, which is a poor assumption on the atomic length scale. 
While these measurements have value, their direct use for interpreting the oxidation of graphite must be 
carefully considered. 
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29a 29b 29c 

Figure 29. Quantitative analyses of nuclear graphite as a function of simulated oxidation. 

Figure 29 plots the quantitative analyses performed on a 5 × 5 × 5 mm3 sample volume PCEA 
graphite. Figure 29a–c plot the evolution of open and total porosity, relative available surface area, and 
mean tortuosity, respectively, against fractional conversion of graphite. Fractional conversion is simulated 
by morphological erosion of the graphite. 

3.4.3 Extracting Branches in Highly Interconnected Pore Structures 
Figure 30a represents a 3-D X-ray tomography scan of fine grain nuclear graphite IG-110 scanned 

with a resolution of approximately 600 nm. The scan detected 13.6% porosity by volume, a little over half 
of the total porosity found within this nuclear grade (remainder is meso- and microporosity). Of the 
13.6% porosity detected, >85% of it was interconnected (Figure 30b). Pore segmentation and 
representation as a binary volume substantially filters the total amount of information, but as can be seen 
from Figure 30b, the amount of information available even for the single largest pore within a graphite 
can be quite overwhelming. 

So far the examples shown in Section 3 have focused on analyzing various “well-defined” features of 
individual objects of interest. For the complex pore structures of nuclear graphites, this is not easily 
accomplished with the techniques discussed so far in Section 3. The pore structure needs to be filtered 
further. For nuclear graphites, the pore structure is further distilled a network of primary 
branches/pathways through the pore structure (Figure 30c), which have varying degrees of branching 
themselves (Figure 30d). This method is highly reliant initially on the skeletonization of the pore 
structure. The procedure for determining primary branches along a given direction in a pore structure is 
outlined below and visually illustrated in a 2-D example with Figure 31. 
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30c 30d 

Figure 30. Reduction of pore structure information to a skeletal backbone. 

Figure 30a is a visual representation of fine grade graphite IG-110. Figure 30b corresponds to the 
single-largest pore segmented within the volume represented in Figure 30a. Figure 30c represents the 
primary pathways to traverse through the segmented pore structure in Figure 30b. Figure 30d shows the 
secondary branches (red) of one primary branch (green) to other primary branches (black). The analyzed 
volume was cylindrical (shown in Figure 30a) with a length of 580 µm and a diameter of 580 µm. The 
voxel size was 600 nm. 
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1. Isolation interconnected porosity. 

a. Segmentation porosity from initial data volume (Section 2.1). 

(1) A global threshold is adequate for most graphite X-ray CT scans (Section 2.1.1). 

b. Apply connected components algorithm to extract the largest pore (Section 2.2). 

2. Skeletonization of pore structure (Section 2.5). 

a. Parasitic branches should be removed via morphological pruning (Section 2.3.2). 

(1) A 3-D example of a skeleton before and after pruning is shown in Figure 18. 

3. Determine the geodesic distance map (Section 2.4). 

a. Procedure is nearly identical to that discussed in Section 3.4.1 with the exception that the 
resulting map does not need to be normalized to the distance between seed planes. 

4. Morphologically erode the geodesic distance map (Section 2.3.1) 

a. Use a 3 × 3 × 3 voxel kernel of ones. 

b. The value of all zero elements in the distance map should be forced to equal a value greater than 
the maximum value observed in the volume prior to erosion. 

5. Take the difference element-wise between the result of Step 3 and Step 4. 

a. The voxels with a value greater than two cannot be primary branches 

6. Use a connected components algorithm to find all possible primary branches (Section 2.2) 

7. Define primary branches as the objects from Step 6 that intersect both seed planes used in Step 3. 

The procedure described above can be modified slightly to isolate sub-branches.  

Figure 31a is a synthetic 2-D pore structure with a single primary branch (green) and three secondary 
branches (red). Figure 31b is the geodesic distance map of Figure 31a and represents Step 3. Figure 31c 
represents the morphological erosion of the distance map in Figure 31b and represents Step 4. Figure 31d 
shows the result of subtracting Figure 31c from Figure 31b element by element and represents Step 5. 
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31a 31b 

  
31c 31d 

Figure 31. 2-D illustration of primary branch extraction. 

3.4.3.1 Using Branching to Extract Additional Quantitative Measurements of the Pore 
Structure. The branching technique described above has direct application for quantitatively describing 
the pore structure. For instance, being able to quantify how many sub-branches each branch has 
(Figure 30c and 30d), could be used as a basis to estimate the fractal dimension of the pore structure. The 
fractal dimension could then be used to make inferences regarding the nature of the meso- and 
microporosity. 

The following are examples of preliminary results from single X-ray CT scans of IG-110 and PCEA 
and the results are meant only to show the potential for further development. First, the fracture mechanics 
of graphite is strongly influenced by the size and number of large pores per unit volume. The current U.S. 
fracture model requires microstructural inputs, such as quantified through 3-D image analysis, to 
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accurately predict the fracture strength of candidate nuclear graphites.18 Figure 32a shows a Voronoi 
diagram of the 12 primary branches identified for IG-110 in the previous section. On average, each 
primary branch occupies an area with an equivalent radius of roughly 50 µm, which corresponds to 
approximately 140 primary pore branches per square millimeter for the IG-110 grade. The number 
density of primary branches in IG-110 is more than 390 times greater than the number density for PCEA. 
Thus, the number of potential sites for the initiation of crack growth is significantly larger for IG-110 than 
it is for the PCEA grade. 

The branched structure resulting from Section 3.4.3 can be used as a basis to determine the pore size 
of different branches in a graphite volume. Figure 32b shows the size distribution of a single primary pore 
branch of PCEA, while Figure 32c shows how three different primary branches vary in size with length. 
The mean pore size, from Figure 32b, is approximately 35 µm. From Figure 32c, the mean pore size does 
not appear to vary significantly between the three tabulated primary pore branches, but does appear to 
oscillate somewhat between larger and smaller pore sizes. 

 

 

32a 32b 

 
 

32c 32d 

Figure 32. Example quantitative analyses utilizing the methodology from Section 3.4.3. 
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Figure 32a is a Voronoi diagram of the primary pore branches for IG-110 shown in Figure 30c. The 
black circle around the perimeter has a diameter of 580 µm. Figure 32b is a histogram representing pore 
size in a single primary branch of PCEA. The pore size is represented here as the length from the skeletal 
position of the branch to the pore surface. Figure 32c represents a changing pore size along the lengths of 
three primary pore branches for PCEA. Figure 32d shows primary (green) and secondary (red) branches 
for PCEA graphite along the extrusion axis. 

Finally, branching can be used to further break down the tortuosity analysis from Section 3.4.1. This 
is important to help understand the role different branches may have on the effective diffusion rate of 
gases into a specific graphite microstructure during oxidation. In PCEA for example, the primary 
branches are most likely the major route by which oxygen can penetrate deep into the structure, but these 
pores are rather large and the density of active sites as a function of path length for oxygen reaction will 
be lower. The majority of the reactive surface area is contained within higher-order sub-branches of the 
pore structure and the effective rate of oxygen transport to these pores will be much more important for 
graphite oxidation. For the volume of PCEA represented in Figure 22a, the volume averaged tortuosity 
was 1.45 with a standard deviation of 0.6. Extracting tortuosity values only from regions within primary 
pore branches, the mean tortuosity is 1.16 with a standard deviation of 0.05. For secondary branches, the 
mean tortuosity is 1.70 with a standard deviation of 0.46 implying that most oxidation will occur in these 
secondary branches, which is what is observed experimentally. 

The pore size determined for Figures 31b and 31c is a minimum pore radius. The method used for this 
pore size determination artificially dilates a sphere centered at a particular point on a pore branch until it 
touches the surface of a pore. This method is relatively simple to implement and computationally 
inexpensive, but as seen from the insets of Figures 31b and c, it may not be a highly accurate description 
of pore size. Work is currently underway to more accurately determine pore size as well as determine 
local orientation of a pore by using geometric spatial transforms to obtain local pore cross-sections 
orthogonal to the local tangential vector of a pore branch. This will be extremely valuable in determining 
irradiation induced creep strain and pore generation during tertiary creep in graphite. 

4. CONCLUSIONS 
Scientists and engineers in the field of materials will always seek to understand a materials structure 

to predict and understand its behavior and develop new or “better” materials. Three-dimensional image 
analysis can be a powerful quantitative tool in the field as it provides physical measurements of 
microstructural features without the restrictive assumptions bounded by feature examination in 2-D. 
While the application of 3-D analysis of materials is beginning to gain momentum in some areas of 
materials research, the authors believe a majority of the research community is not aware of the great 
potential 3-D image analysis can offer. This report was written in part to increase awareness of the 
powerful quantitative capabilities of image analysis for microstructure characterization for the materials 
research community in general, but more specifically for those in the field of nuclear materials research. 

After a brief introduction to image analysis in Section 1, Section 2 covered several basic concepts, 
principles, and analysis tools commonly used in image analysis. Section 2 is intended to give the reader 
an elementary understanding of the basic steps and concepts used in more advanced 3-D materials 
applications. The reader interested in pursuing the subject matter in more detail is encouraged to consult 
established texts on 2-D image processing and analysis.14,15,16,17 

Section 3 took the concepts discussed in Section 2 and used them to demonstrate actual quantitative 
measurements of real 3-D microstructures collected via µX-ray CT. This section provided the reader a 
brief overview of a few of the many types of quantitative measurements that can be extracted from 3-D 
data sets along with the basic steps needed to extract the information. Since specialists in the field of 
nuclear materials were a target audience, three materials from different INL program were selected to 
illustrate quantitative image analysis: the TREAT LEU conversion program (Section 3.2), the ART AGR 
Fuels Program (Section 3.3), and the ART Graphite Research and Development Program (Section 3.4). 
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Each subsection provided a short summary of the materials application and brief explanation regarding 
the value of the 3-D analysis. As current INL expertise in 3-D image processing and analysis evolved out 
of the ART Graphite Research and Development Program, Section 3.4 gives more detail than Sections 3.2 
and 3.3 regarding the importance of the quantifications and the usefulness of the quantified values for 
developing various predictive models. 
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