Transmutation Fuel Fabrication-Fiscal Year '16

Fuel Cycle Research & Development Advanced Fuels Campaign

Randall Fielding Blair Grover

> Prepared for U. S. Department of Energy Office of Nuclear Energy

December 2016

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Transmutation Fuel Fabrication- Fiscal Year '16

Randall Fielding Blair Grover

December 2016

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

ABSTRACT

Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscal year 2016.

INTENTIONALLY BLANK

ABST	FRACT	V
1.	INTRODUCTION	1
2.	ARC MELTINGING. 2.1 Casting Laboratory Fuel Casting	2
3.	FY16 FUEL CASTING	9
4.	CONCLUSIONS/DISCUSSION	1
5.	Acknowledgements	2
1.	Appendix A- Arc Melter Hardware Sketches	1
2.	Appendix B- Completed FRM-1598	3

1. INTRODUCTION

Metallic transmutation fuels are currently being developed under the Fuel Cycle Research and Develop program by the Advanced Fuels Campaign. Metallic fuels have been shown to be a feasible fuel type via long term use in reactors and numerous irradiation tests. One of the advantages of metallic fuels is ease of fabrication by casting. During the EBR-II fuel fabrication campaigns, thousands of fuel pins or slugs were cast. However, during those fabrication campaigns fuel was cast on the kilograms scale in lengths of approximately 38 cm. This scale is much too large for laboratory scale irradiation testing such as is used for the AFC series of irradiation tests. In early 2001 the metal fuel fabrication team chose arc casting as the method of casting transmutation test and characterization fuels. Arc melting is the process of melting a charge of material, usually on either a actively cooled or passively cooled copper hearth, through means of an electric arc. It is often used in the materials industry to produce small batches of specialty materials in gram to a few kilograms quantities. Arc casting is essentially the same as arc melting although after the material is molten it is cast into a specific shape, in the case of the AFC tests, a rod. Arc melting was chosen based on its applicability to lab scale quantities of a tens of grams, very fast heating rates (necessary for americium retention), and its ability to produce homogenously mixed alloys or mixtures.

During early technique development stainless steel was used as a surrogate fuel material in casting studies. Stainless steel is non-radioactive and has a similar, though somewhat higher melting point than the U-10Zr and U-TRU-Zr alloys. Using stainless steel, rods of over 30 cm could be cast which is, much longer than necessary for AFCI testing. However, when the arc melter was transferred into a glovebox and used for melting/casting of radiological material casting did not progress as well. Several problems were encountered such as alloying the fuel with the copper hearth, molten material not flowing into the quartz mold, or flowing into the mold but resulting in fuel slugs that were hollow (tube), or had excessive exposed and unexposed porosity. Since this original development effort many different techniques and configurations have been attempted, although much of the development has not been adequately documented. This report will serve as an initial attempt to capture some of this history and development of arc casting and to document the technique which is currently used for casting of transmutation fuels. It will also summarize the transmutation alloys cast in the fiscal year 2016. Because many of the descriptions of previous work were at best qualitative, a number of the descriptions herein will be approximate, but they will still provide valuable information.

2. ARC MELTINGING

A Centorr 5SA arc melter has been used for most of the AFC irradiation and characterization fuel specimen fabrication. Typically this type of arc melter uses a non-consumable tungsten electrode and a water cooled housing and copper hearth. However, because of the added complications caused by using water cooling in a transuranic glovebox environment, the water cooling was not installed in the arc melters used for this work. In the typical arc melting process the materials to be melted are loaded onto a copper hearth with a slightly rounded depression machined into the surface. This depression serves to both contain the molten alloy and to shape the molten pool. Fuel alloys are generally made up of materials with widely varying melting points and densities, such as uranium, zirconium, and plutonium. In this example melting points vary from 1855°C for Zr to 639°C for plutonium while densities vary from 6.5 g/cm^3 for zirconium to 19.8 g/cm^3 for plutonium. The materials to be melted are placed on the hearth melted in the electric arc forming a "button". After the initial melt is done and the solid materials are melted together the button is flipped over and melted again. This process is repeated for at least two flips and three melting cycles. Figure 1 shows a typical example of the arc melter, along with a buttoning and casting hearth. The casting hearth is similar to the buttoning hearth except that a quartz mold is inserted up through the bottom of the hearth and brought to just below the upper surface. An opening into the guartz mold is machined into the surface of the hearth. The guartz mold is generally held in place by means of a stainless steel or copper tube or chamber.

Figure 1- Typical arc melter and buttoning insert and casting hearth. Note the casting hearth is inverted to highlight the quartz mold chamber.

2.1 Casting Laboratory Fuel Casting

The initial transmutation fuels were cast in the Casting Laboratory glovebox, which is a purified argon atmosphere glovebox, where the Integral Fast Reactor program transuranic bearing fuel was also cast on a larger scale. The first castings were done using the basic setup similar to Figure 1, although a buttoning hearth was used instead of an insert. The first issue encountered with the transmutation fuel was fuel material not flowing into the quartz mold. While the fuel could be melted and buttoned with no issue, after it melted it would not flow into the quartz tube. It was reasoned that this lack of flow was due to excessive gas pressure in the mold. A stainless steel plug was placed in the end of the quartz to prevent the molten alloy from flowing too far. The initial endplugs were generally approximately 25 µm smaller in diameter than the inside diameter of the quartz. It was reasoned that if the endplug fit too tightly the gas pressure which prevented the material from flowing into the mold. In order to mitigate this issue a number of plugs of different diameters and with various gas flow paths were used in the quartz molds. If an alloy would not flow into the mold a smaller diameter plug was used. If an alloy flowed into the quartz but produced a hollow tube or several large voids, a tighter plug was used to slow down the gas flow slightly.

The simplicity of the arc casting equipment makes it well suited for use inside a glovebox. However, the simplicity of the design also means there is no pressure, time, or temperature feedback to the operator. The chamber of the arc melter is not sealed; therefore, the pressure is only controlled by the ambient glovebox pressure, although a gas purge can be applied to the chamber if necessary. Temperature in an arc melter is controlled by the amount of amperage applied to the arc. Although the operator can control the amperage, the correlation between applied amperage and heat built up in the material is complicated

and therefore temperature cannot be directly controlled. As with temperature, time is controlled by how long an operator applies an electric current. If too much is heat is applied it is possible to alloy the fuel material with the copper hearth, and if not enough heat is applied the melt may not be fully molten or will cool before it has flowed into the mold. In general, once the material is fully molten and flows slightly, for example towards the mold opening, if it doesn't fully flow into the mold it will freeze off too soon. The amount of heat is further complicated because the material to be melted is sitting on a large copper hearth, which must be maintained at a substantially lower temperature than molten fuel material to prevent alloying with the fuel.

During the early casting campaigns it was reasoned that additional superheat was needed in the melt to allow it to fully flow into the mold. In order to achieve this greater heat input an additional copper plate, or insert, was placed on top of the normal hearth. The gap between the hearth and this copper insert provided a thermal barrier allowing the insert and alloy to build up slightly more heat, although it was necessary to be careful to not alloy the melt with this additional copper plate. Initially the insert was quite thin with an approximate mass of 55 grams. When casting results were still inconsistent, the thickness was increased to approximately 4 mm, which essentially doubled the total mass of the copper insert. The original insert had a mold opening slightly larger than the quartz inside diameter, however, the quartz was mostly covered by the insert. This opening was increased to 5.9 mm which was just less than the outside diameter of the quartz, in hopes this would allow more material to flow into the mold. Despite these changes casting was still inconsistent. The next variable changed was the angle of the hearth. Initially, the quartz was placed in the center of the hearth. A new hearth was fabricated in which the mold was off to one side and the surface of the hearth was machined such that it tapered towards the mold opening. The taper angle was further increased by setting the arc melter on an angle during melting, and at times even slightly shaking the arc melter frame in order to overcome the material surface tension. All of these changes resulted in melts that were only sometimes successful. This variability remained constant throughout the casting campaigns.

The next change made to the process attempted to deal with the pressure variable. The changes made were reminiscent of the traditional injection casting used during the EBR-II fuel campaigns. Suction casting was developed in order to better control the amount of super heat put into the system, the total time the charge was molten and to overcome any possible surface tension issues. This technique employed a hearth similar to the buttoning hearth, although the depression was slightly deeper and the upper support of the arc melter was modified to include an opening which would accommodate insertion of a quartz mold. After the charge was melted and buttoned three times following the standard process the button was melted in the slightly deeper hearth. Once the button was fully molten the quartz tube was inserted from above though the upper support plate into the molten pool and a slight vacuum applied by means of small syringe connected to the quartz with a flexible hose. As the reduced pressure was applied, molten material was drawn into the quartz mold. Figure 2 shows a photo of the arc melter and the quartz mold being inserted into the molten pool. Efforts to cast using this suction method were met with moderate success, although inconsistent results still plagued many of the attempts. Some of the variability may be explained by the simplicity of the design. Because reduced pressure was applied by pulling the plunger on a simple syringe a consistent amount of draw was difficult to obtain. If pressure was reduced too much a gas bubble could be drawn into the mold, resulting in significant voids throughout the rod. If the plunger was pulled back too quickly material would flow too quickly and not remain in a "slug form" due to the fact some of the molten charge would be pulled further up into the quartz, where it would solidify and possibly block off further flow before the bulk of the liquid was drawn into the mold. This could be thought of as a turbulent flow as opposed to a more controlled laminar flow where the whole of the liquid front moved consistently. Also of concern with this process was the large amount of heel left in the hearth. The heel was necessary because if the open end of the quartz is exposed gas is sucked into the casting, resulting in voids. However, this means that the charge size had to be increased, and often pieces of quartz remained remains in the heel. Although, every attempt was made to remove the quartz before recycling the material, it is possible some quartz remained which would add further SiO₂ contamination to the recycled final fuel composition. In many of the fuel samples cast under the AFC program silicon contamination was observed throughout the sample. Although much of this was likely from the quartz mold, a small amount of quartz entrained into the recycled heel may have had a significant contribution as well. Because the suction casting method appeared to be the most consistent method of casting it was used for several casting campaigns, including the FUTURIX tests as well as the associated characterization alloys. Despite this improvement, consistent casting behavior was still an issue and therefore some casting was done using the more traditional gravity casting using the casting insert.

Figure 2- Arc melter set up to perform suction arc casting. Not pictured is the flexible hose and syringe connected to the quartz.

In an attempt to further improve the casting technique additional modifications were made. The next change was to move to a pseudo-continuous casting technique. In continuous casting the material is withdrawn directly from the crucible through a die, which is usually water chilled, and then it is cooled. This method of casting is very common in the aluminum industry as well as other industries where it is done on a very large scale. To employ this method using the arc melting system a plug was placed into the quartz mold and extended all the way to the surface of the casting hearth. Once the fuel alloy was fully molten and heated the plug was withdrawn. Several variations of this basic set-up were attempted using various plug withdrawal rates with no success. Therefore, this method of casting was never transferred to the glovebox environment.

The next design modification, like the last, was an attempt to allow more superheat into the fuel alloy. Based on the extensive use of the copper casting insert a similar graphite casting insert was fabricated and used in place of the copper insert. The graphite insert, like the copper insert, was in direct contact with the copper hearth, but because the thermal conductivity of the graphite is substantially less than that of copper the graphite hearth removed less heat from the molten material. The disadvantage of using a graphite insert was the likelihood of increasing the carbon contamination in the final fuel form. Some evidence of this was seen in the presence of carbide precipitates in the fuel microstructure. In general, contamination was controlled by controlling the amount of time the alloy was kept molten. Just as with the copper hearths once the material was molten it flowed easily; therefore, the time could not be increased substantially. In order to further increase the amount of super heat and to control when the material flowed toward the mold, the taper to the center of the hearth and mold opening insert was decreased to 15°. Although the reduction of the taper angle did allow more heat input into the material before flow towards the mold began, the overall success of the graphite insert was marginal. Improvements observed from this modification were less than those obtained with suction casting. Also, the risks of excessive carbide formation or bonding with the graphite were disadvantages over the use of the copper insert. Records indicate that several charges did bond with the graphite, and the bonded graphite had to be mechanically removed from the button. Due to the limited improvements coupled with the increased failure risks , the casting campaigns largely reverted back to the suction method although that method was still less than ideal.

As seen throughout this report the major focus of the casting system modifications has been to increase the possible superheat of the melt. The method of arc casting used by the AFC program, implicitly limited super heat by using the "cold" copper or graphite hearths and inserts. The final modification made to the system in the casting laboratory prior to the majority of the casting work being transferred to a similar system in another facility, was again an attempt to increase the superheat. The final modification involved fabricating a ZrO_2 insert, or crucible, that would sit on top of the hearth. As with the graphite inserts, by changing to a less thermally conductive material, less heat is transferred to the copper hearth and thus more heat could build up in the fuel alloy. There are two major differences between the graphite or copper inserts and the ZrO_2 inserts. The first is the ZrO_2 is not electrically conductive and has a much lower thermal conductivity and the second, is that ZrO_2 is much less reactive, although not totally inert, with the fuel alloys. A simple measure of "inertness" is an Ellingham diagram comparing free energy or formation of the various oxides, as shown in Figure 3. Although this is based on equilibrium thermal dynamics which is a simplification, it is still useful.

Temperature (C)

Figure 3- Ellingham diamgram showing free energy of formation of various oxide phases. Note- the more negative the value the more stable the oxide. Graph is provided courtesy of Dr. Brian Westphal, INL (A. Roine et al., "Outokumpu HSC Chemistry" Version 6, 2007).

As shown in Figure 3 ZrO_2 is more stable than PuO_2 and very similar to UO_2 . ZrO_2 was chosen based on its commercial availability of a castable product. The inserts were shaped with a roughly 35° taper toward the center of the insert that provided a deeper molten pool of material. A small opening at the bottom of the taper was incorporated into the insert design in order to expose a small amount of copper to the metallic charge thus providing an electrical contact. The inserts were made by casting or pressing the precursor slurry or powder material into a die, which provided a green structure. The green structure was then fired at a high temperature to remove any binders and provide structural integrity. Figure 4 shows a fuel button contained in the ZrO_2 insert loaded into an arc melter.

Figure 4- Arc melter configured for suction casting using a ceramic insert.

Although the ceramic insert is not completely inert the casting process is very quick, therefore significant reactions are prevented from occurring. This particular modification resulted in the highest success rate of those that have been discussed. As such, this is the configuration that was transferred to the AFCI glovebox in the Fuel Manufacturing Facility (FMF). Although it was successful in that it provided more consistent casting behavior and results, it still had some disadvantages. The first disadvantage was although reaction with the ZrO₂ was reduced by the short heat cycles some reaction was still present. This disadvantage was further compounded by the inherent need to have a significant heel at the end of the casting process. Because the insert was not completely inert, recycling of that heel was often impossible. Many times during the casting process the heel would start to bond to the ZrO_2 , the ZrO₂ would be slightly reduced by the melt, or and the melt would infiltrate the porous insert. The second main disadvantage was do to the extreme heat of the arc and speed of heating. This would cause the inserts to receive thermal shocks, which would break off ceramic particles. These particles were then incorporated into the heel, thereby changing the overall chemical composition and rendering recycling of the material nearly impossible. Therefore, if a casting was not successful on the first casting attempt, the material was heavily contaminated which made further casting success unlikely and the overall allow composition was changed due to reduction of the ceramic. Also, often the melt material was not retrievable form the insert. In spite of these disadvantages the technique was the most successful and was transferred to the AFCI glovebox in FMF.

2.2 FMF/FASB Fuel Casting

After fuel casting was moved to the AFCI glovebox, casting continued using the ceramic insert. Although it was more successful, the suction technique was complicated because it generally required two people; one to control the arc and observe the pool while the second person would insert the quartz and draw material into the mold when conditions appeared favorable based on the first operator's visual observations. The necessity to have two people working simultaneously is difficult in a glovebox set up due to space limitations and glove port locations. To simplify the casting operation the hearth and insert were slightly modified for gravity casting. The casting hearth was modified to allow a quartz mold to be inserted from the bottom while still maintaining electrical contact with the charge through the small opening at the center of the insert. An additional step was added to the buttoning process to shape the button to fit into the tapered ceramic insert in order to ensure electrical contact could be made at the bottom of the insert. Utilizing this process was quite successful and the technique was used for characterization alloys as well as irradiation test specimen fabrication. Throughout the casting campaigns different operators found different heating techniques to be most successful. The most favored technique was to heat the alloy button slowly by sweeping the arc over the button using a low amperage, but concentrating the most heat at the center of the button. As the center of the button continued to heat and just started to melt, the amperage applied was increased to the maximum amount very quickly and the entire button melted and was cast. Although this was successful the concerns over melt contamination by the ceramic insert and the inability to recycle failed casting remained.

As the AFC program moved away from transuranic bearing fuel alloys to binary uranium based alloys casting was moved into the Fuel and Applied Science Building (FASB). With the move to FASB the decision was made to return to copper inserts in order to maintain the cleanliness of the alloys and to continue the re-use of alloys from failed castings. The new copper hearths included a buttoning hearth, shaping insert, and casting insert. The buttoning process was the same as previously described in this document. The shaping and casting inserts were based on the ceramic insert taper and diameter. The differences between the two inserts were that the casting insert was open on bottom to allow flow into the quartz mold and the shaping insert was closed. After the charge was buttoned it was shaped using the shaping insert, the resulting button was shaped much like an upside down (apex down) short and squat cone. The cone was then placed in the casting insert with the apex up. This cone shape was kept from the ceramic insert in order to maximize separation of the button from the hearth during heating. In general the heating process was the same; a lower amperage was applied to heat the button concentrating on the cone

apex, after the center started to melt the amperage was increased and the material melted and flowed into the casting insert and quartz mold. Although results were less consistent i.e. sometimes the casting would flow into the quartz and sometimes it would simply pool in the insert, the alloys were less contaminated, because there was no ZrO₂ or graphite and contact with the quartz while heating is minimized. Also, the melts could be re-used if the casting failed. A number of variations in heating techniques were tried which included; heating slowly with the heat concentrated in the center, heating the material quickly all over, heating the material quickly concentrating in the center, centering the shaped button or laying the shaped button on the tapered side, and varying gas purge rates, or combinations of techniques. Varying amounts of success was obtained from each heating technique. It appeared that for different casting batches, even those with the same composition, a different technique might be more successful. Over the course of several fabrication campaigns it was determined that the original casting insert taper was too steep and would not allow the material placed on the side of the taper to be heated to an adequate superheat. A new insert was fabricated with a slightly less shallower taper that was used in most of the casting campaigns. However, even though several techniques were developed, a consistently successful technique was not identified. It was left up to the operator experience to determine which of the techniques may work based on the molten materials behavior. It was found to be more of an art than a science making reproducibility nearly impossible.

Recently the AFC program has again included transuranic fuel in the latest irradiation test and additional transuranic bearing alloys were needed to support the current revision of the Metals Fuel handbook. Due to the need for transuranic alloys casting operations have restarted in FMF. Due to the levels of success seen with the copper casting and shaping insert, this method was chosen for implementation in FMF in order to avoid any additional melt contamination resulting from the ceramic insert. During the fabrication of the AFC-3F irradiation test alloys, 3F-2 through 3F-4, casting again presented a challenge. Personnel changes and changing from the ceramic insert to the all copper technique required process development. The basic configuration remained the same; however, several alloy compositions would not drop into the mold to form a solid rod of sufficient length for testing. One of the first changes made was removal of the plug inserted into the bottom of the quartz mold. The quartz tube was instead placed on a hexagonal standoff with gas pathways machined onto the top surface to ensure gas movement during the casting process. As development continued the success of the technique seemed to depend largely on operator experience. The taper angle of the casting insert was reduced further to 10°. At this amount of taper, once the material is fully molten additional heat could be briefly applied before the charge began to flow to the mold opening. This change appeared to be the most significant. The current hearth set up is shown in Appendix A Sketch 1-5. These sketches will serve as the starting point for continued technique or hearth development. Shown in sketches 1-5 are the overall hearth assembly, casting hearth, casting insert for 4-5 mm diameter quartz, buttoning insert, and the mold supporting components.

In addition to AFC-3F alloys, several characterization alloys were also cast. Characterization alloys are generally used for chemical, microstructure, and thermal analysis. The size requirements for these samples are less stringent than those for irradiation testing samples. Because of the relaxed size requirement another casting technique was introduced; casting into a split copper mold. Buttoning and shaping were done essentially the same way, but instead of casting into a quartz tube, the material was cast into a split block with the appropriate size cavity machined into it along with a gas relief. Sketches of the split block molds are shown in Appendix A Sketch 6-10. The sketches show a split block mold for pins 4-6 mm in diameter and 10 mm in diameter. Also shown is a shaping insert used to produce a flatter, less conical button. In addition, the sketches show other molds made to change the height of the molten pool in the arc melting chamber. Because the glovebox configuration is not standardized as far as arc melter location is concerned some arc melters may use a higher hearth than others depending on operator comfort and experience.

Using the above modifications, technique development, and the hardware documented in Appendix A several transmutation alloys were successfully cast in FMF. In addition to the transmutation alloys listed in the following section, additional optimized and integral FCCI barrier fuel specimens were cast using the techniques and hardware documented in this report in the FASB facility.

3. FY16 FUEL CASTING

During the FY16 transmutation fuel casting campaign 7 transmutation alloys were cast, including 3 optimized fuel alloy compositions. Three AFC-3F irradiation test alloys were also cast. Casting parameters of the individual alloys are recorded on INL Form-1598. These forms have been included in Appendix B of this document. Table 1 below summarizes the casting parameters and resulting masses. Unless noted on the Form-1598, all individual components are placed on the wire brushed buttoning hearth together and buttoned. During melting of some alloys an unknown soot type material was left on the hearth and in the arc melting chamber. This soot was wire brushed off between melts to maintain cleanliness. All molds were coated with a slurry of ZrO₂ powder and ethyl alcohol. The coating was applied using a cotton swab. The ZrO₂ powder is from a legacy EBR-II stockpile; however, the label shows the material to be from Ferro Corporation (www.ferro.com). No measurements are taken of the ZrO₂, because it is quite thin and fragile. Again, based on individual experience it has been found that a thinner coating was better because a thick coating might leave pockets of alcohol which would evaporate quickly when contacted by the flowing metal and this would affect the surface finish of the pin at a minimum and might dramatically affect the flow of the material. A thick coating might also transfer the surface roughness to the finished pin. A subjective thickness gauge was made based on the visual appearance of the coating; a coating thin enough to be seen, yet not totally opaque was determined to be adequate. As mentioned earlier often during the casting process casting attempts were made, but the alloy did not flow fully into the mold or form a solid usable rod. Whenever possible the alloy was re-buttoned and casting was attempted again. The disadvantage of recycling the failed castings is the possible buildup of contaminates such as oxygen, nitrogen, etc. Although no direct correlation has been made, it is expected that the more times an alloy is melted the more likely contaminates are to build up which may affect casting, irradiation, and general characterization behavior. During casting operations the number of melts was recoded on Form-1598 or other appropriate documentation. Table 2 below shows a summary of the number of times each alloy was melted.

Casting ID	Composition (wt%)	Mold Used	Initial Mass (g)	Final Mass (g)	Final Use
AFC-P10Z-1015- SLUG1	90Pu-10Zr	5 mm copper	22.01	21.649	characterization
AFC-P30Z-1015- SLUG1	70Pu-30Zr	5 mm copper	16.992	16.899	characterization
AFC-U20P-10Z- 1115-SLUG1	70U-20Pu-10Zr	4.3 mm quartz	19.924	19.749	ANDE [†]
AFC- U20P2A3N10Z- 115-SLUG1	65U-20Pu-10Zr- 2Am-3Np	4.3 mm quartz	27.013	26.886	ANDE†
AFC-U20Pu10Z- 3.86Pd-1215- SLUG1	66.14U-20Pu- 10Zr-3.86Pd	5 mm copper	11.991	11.951	Optimized alloy characterization
AFC-U20Pu10Z- 3.86Pd-4.3Ln- 1215-SLUG1	61.84U-20Pu- 10Zr-3.86Pd- 4.3Ln*	5 mm copper	12.994	12.936	Optimized alloy characterization
AFC-U19P7Z- 4.3T-5M-1215- SLUG1	71U-19Pu-0.7Zr- 4.3Ti-5Mo	5 mm copper	13.009	12.960	Optimized alloy characterization
AFC-3F-2	90U-10Zr**	4.3 mm quartz	14.96	14.945	
AFC-3F-3	70U-20Pu- 10Zr**	4.3 mm quartz	24.152	23.925	
AFC-3F-4	90U-10Zr**	4.3 mm quartz	15.044	15.001	

Table 1- Summary of FY16 transmutation fuel casting campaign

**- U was made up of DU and HEU pieces

+- ANDE- Advanced Non Destructive Evaluation development at Los Alamos National Laboratory

Casting ID	# buttoning	# of casting	Total	
		attmpts	Melts	
AFC-P10Z-1015-SLUG1	4	2	6	
AFC-P30Z-1015-SLUG1	8	6	14	
AFC-U20P-10Z-1115-	6	4	12	
SLUG1				
AFC-U20P2A3N10Z-	4	2	6	
115-SLUG1				
AFC-U20Pu10Z-3.86Pd-	Not Recorded-Specific alloying sequence			
1215-SLUG1	S	ee Appendix B		
AFC-U20Pu10Z-3.86Pd-	Not Recorded	I-Specific alloying	sequence	
4.3Ln-1215-SLUG1		see Appendix		
AFC-U19P7Z-4.3T-5M-	Not Recorded	I-Specific alloying	sequence	
1215-SLUG1	see Appendix			
AFC-3F-2	5	3	8	
AFC-3F-3	6	4	10	
AFC-3F-4	3	1	4	

Table 2- Summary of the number of times each transmutation alloy was melted

4. CONCLUSIONS/DISCUSSION

Arc casting has been used to cast AFC samples since 2002 and has been used to cast nearly all AFC irradiation tests and characterization samples. The only notable departure from arc melting was the casting of the AFC-3A/B alloys. During the course of these casting campaigns a number of modifications were made to the original casting technique. Technique development has included several changes in hardware design, multiple materials, and multiple heating rates. Nearly all of these changes were made during the casting campaign itself and were accompanied by minimal documentation. An attempt has been made through this document to capture some of the historical developments. Throughout these changes improvements seemed to be quite variable, depending on the composition of the alloys to be cast, original feedstock forms and/or source, glovebox atmosphere, and most importantly, operator experience. Anecdotally it has been reported that during some tests only one casting operator could successfully cast alloys, while during the next campaign only another could successfully cast. Although this statement is not wholly supported by accompanying documentation, the arc casting process is very operator dependent, and substantial experience is needed to be consistently successful. It is only through experience that an operator learns what modifications need to be made or when and how to apply appropriate heat. While results were slightly more consistent when a ceramic insert was used, this introduces an unacceptable risk of high contamination. The variability of the process stems from the lack of temperature feedback and the inability to control the amount of superheat applied to the alloys.

Appendix A contains sketches of the currently used arc melting hardware for both quartz and copper molds. These will be used as an informal configuration control method going forward. Improvement may be made on the existing systems. Various monitoring systems exist that can will record arc amperage and voltage. If these parameters are recorded versus time, successful casting could be compared to unsuccessful casting and differences determined. During FY17 casting campaigns the feasibility of incorporating such a system will be investigated. A significant finding of the most recent casting campaign is the importance of the casting insert angle. This was previously alluded to in laboratory notebooks, however, had not been passed onto new personnel. Based on results from the most recent casting campaign the angle is a very important parameter that can be modified through additional

hardware changes. Improvements can also be made to the process by changing the heat input method. The nature of the arc metlting process presents certain advantages and disadvantages. The main advantage is the ability to quickly produce lab scale quantities of a number of small fuel alloys, while maintaining even volatile elemental compositions. However, because of the difficulty in controlling the arc temperature and hearth material contamination concerns control of the casting process is limited. Other methods of heating may provide adequate mixing, especially if the starting material is an arc melted master alloy, quick heating times, and controllable heating rates and hold times and temperatures. During FY17 a conceptual design will be developed to investigate if induction heating can meet these requirements. If it is deemed feasible a prototype system will be fabricated and casting development initiated.

5. Acknowledgements

The authors would like to gratefully acknowledge contributions of various casting operators in the Casting Laboratory, FMF, and FASB. Without the previous and ongoing improvements of all these skilled personnel casting could not take place, which would bring the on-going research to a stand-still.

1. Appendix A- Arc Melter Hardware Sketches

- 1. ROUND ALL SHARP CORNERS AND EDGES.
- 2. PROVIDE ALL MATERIALS.
- 3. DOWEL PIN, McMASTER CARR PART # 97395A452.
- 4. MAKE COPPER ITEMS FROM ALLOY 101 102, 110 OR CUSTOMER APPROVED.
- 5. MAKE STAINLESS ITEMS FROM 304 OR 316 SST.

ARC MELTING HEARTH ASSY

SCALE 7/8

SKETCH A REV 6 SHEET 1 OF 10 April 5, 2016 Blair Grover NOTES:

1. ROUND ALL SHARP CORNERS

AND EDGES.

2. FABRICATE FROM COPPER.

SCALE 2/1

CASTING HEARTH

SCALE 2/1

SKETCH A REV 6 SHEET 2 OF 10 April 5, 2016 Blair Grover

SKETCH A REV 6 SHEET 4 OF 10 Blair Grover

ADJUSTMENT TUBE

SCALE 3/2

SKETCH A REV 6 SHEET 5 OF 10 April 5, 2016 Blair Grover

SPLIT BLOCK CASTING HEARTH ASSEMBLY

SKETCH A REV 6 SHEET 6 OF 10 April 5, 2016 Blair Grover

NOTES:

- 1. MAKE FROM COPPER.
- 2. ROUND ALL EDGES AND CORNERS.
- 3. PROVIDE BEST SURFACE FINISH POSSIBLE ON INTERIOR MATING SURFACE OF ARC HEARTH TO SPLIT BLOCK INSERT.

SKETCH A REV 6 SHEET 7 OF 10 April 6, 2016 Blair Grover

- 1. MAKE FROM COPPER.
- 2. ROUND ALL EDGES AND CORNERS.
- 3. PROVIDE BEST SURFACE FINISH POSSIBLE ON ALL SURFACES.

(1.632) 75.0°±.5° .125 1.500 R.188 X .03 DEEP, TYP -.04 GROOVE TO EXTERIOR, ONE SIDE ONLY. Ø.125 @ € ONE SIDE .25 DEEP Ø.126 @ € OF MATING BLOCK .25 DEEP A .250 .574

SCALE 3/2

SKETCH A REV 6 SHEET 8 OF 10 April 5, 2016 **Blair Grover**

SCALE 1/1

PARTING SLOT

VENT HOLE

ONE SIDE ONLY

- 1. MAKE FROM COPPER.
- 2. ROUND ALL EDGES AND CORNERS.

HEARTH INSERT

- 3. PROVIDE BEST SURFACE FINISH POSSIBLE ON ALL SURFACES.
- 4. INSERT ROLL PIN IN ONE HALF OF INSERT.

HEARTH

SHEET 9 OF 10 April 5, 2016 Blair Grover

SKETCH A REV 6 SHEET 10 OF 10 April 5, 2016 Blair Grover

2. Appendix B- Completed FRM-1598

		1400
*		1/14
	6	. 0

METAL FUEL FABRICATION PARAMETERS

Alloy Fabrication Required			🗷 Yes 🛛 No	
Unique ID (SPM No., SADZ No., etc.)		AFC-P10Z-1015-5	(')	
Total Batch Weight:	844		5ADZ 336 SECATA 3ADZ 343 (SLUC)	
Alloy Formulae		Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium	an tan La juli		²³⁵ Uranium % Enrichment	
²³⁸ Uranium	1		235Uranium/Zirconium Alloy	
Plutonium	90		²³⁸ Uranium	
Americium			Plutonium	19.8 ± .01
Neptunium	10		Plutonium/Americium Alloy	
Zirconium	10	,, .	Americium	
Rare Earth			Neptunium	
			Zirconium	2.2 ± .01
1 I I I N W	2501		Rare Earth	
separations process b. Other naturally occur Uranium resulting fro c. All Pu shall be count allows the Pu in the d. Am242m guantities r	ies used to cre irring isotopes om U-233 pro ted as Pu239 glovebox to c may be conse	eate the listed isotopes are s of uranium (U-234, U-238) duction activitles is not peri . Plutonium resulting from F consist of any mixture of we) are permitted and do not count against this limit, mitted. Pu-238 production activities is not permitted. This apons or reactorgrade Pu isotopes. of the total Am241 present. As a result of its	
Arc:Melting Barameters	3:			
Amperage adjust setting				
Inner Mold diameter: 5				
Mold: ZrO2 coated cop	per			
Hearth: Copper				

Fuel Casting Parameters:

Total cast length (minimum): 1.5 in (38.1 cm)

Slug length (minimum): 1.5 in (38.1 cm)

METAL FUEL FABRICATION PARAMETERS

Page 2 di J

3

Sample length (minimum): Sample length will be determined after casting

Batch Information:						
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date		
²³⁵ Uranium % Enrichment	. <u> </u>					
235Uranium/Zirconium Alloy						
²³⁸ Uranium				l		
Plutonium	19.807	TN	235	11-15-15		
Plutonium/Americium Alloy						
Americium						
Neptunium						
Zirconium	2.203	Ja/	1753	11-19-15		
Rare Earth		7				
	<u>.</u>					
Total Weight (grams)	22.01	J-V	12:55	11-17-15		
Weight of Alloyed/Casted Material (grams)	21.649	Ter	12-33	11-15-15		
Material Difference (grams)	- 0.361	1 Ta	1255	11-13-15		
Material Accountability by: (MBA Custodian)		2	Date: [1-19-,	15		

Slug No.	Weight aftercutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date
1	4 970	0.195	0.77"	1235	RS	12-15-15
2227 2	Chem Sample D 411			JN	1005	1-27-16
57-3	PH4+ 0-695	5. 02 mm	2.71 pm	52	135	1-27-16
4						e.
5						
6						
7						

Total weight aftercutting (grams)	21,453	Atter Chem	Simple	16-375-44407K	= 21 :	
Total weight of alloyed/casted ma	aterial (grams):	21.6495		~	1 153,2	21.4
Material differences (grams):		0,196			6.1089	
Material Accountability by: (MBA Custodian)			2	Date:	12-15-15	
Balance Information:	Fisher Scientific/	L.E. I D. COLLS /	20 # 723566 CA	L 4.6-15 Due	4-6-16	ļ

08/21/14 Rev. 0		BRICATION PARAM	ETERS Page 3 of 3
Manufacturer:	Model No:	Serial No:	Calibration Due Date:
Caliper Information:			
Manufacturer:	Model No:	Serial No:	Calibration Due Date:
Narrative:	g by g and a strain and a strain	Are the second	
Alloy shall be melted a minim	um of 3X before ca	sting. Record the numb	per of time the alloy is melted.
			surface discoloration, dross, etc.
Note the number of times the			
Sample Faren.	0.427 Po Fred	stocie	
Sample Faren. (11-19-15:			
BUTTONED 3 T.	THES		
ATTEMPED DROP	> ~		
BUTTONES 1 TT	2		
DRuppen-			
14ED Sour HARTH.			

	F7591598
۰.	08/21/14
	A

B/21/34 ev. 0 METAL FUEL FABRICATION PARAMETERS			Page 1 of 3	
Alloy Fabrication Requir Unique ID (SPM No., SAD etc.)	the state of the s	I Yes I No SLUG1	(2)	
Total Batch Weight:		17 grams	SADZ 340	
Alloy Formulae	Weight %	Component Mass*	grams ± tolerance value	
²³⁵ Uranium		235Uranium % Enrichment	and a second	
²³⁸ Uranium		²³⁵ Uranium/Zirconium Alloy		
Plutonium	70	238Uranium		
Americium		Plutonium	11.9 ± .01	
Neptunium		Plutonium/Americium Alloy		
Zirconium	30	Americium		
Rare Earth		Neptunium	-	
		Zirconium	5.1 ± .01	
and a second		Rare Earth	<u>0.1 ± .01</u>	
 separations processe Other naturally occurr Uranium resulting from All Pu shall be counted allows the Pu in the g Am242m quantities m 	is used to create the listed isotopes are ring isotopes of uranium (U-234, U-238 m U-233 production activities is not per ed as Pu239. Plutonium resulting from F lovebox to consist of any mixture of we	are permitted and do not count against this limit, mitted. Pu-238 production activities is not permitted. This apons or reactorgrade Pu isotopes. of the total Am241 present. As a result of its		
Arc Melting Parameters: Amperage adjust setting Inner Mold diameter: 5 Mold: ZrO2 coated copp	n: 300			
Hearth: Copper	S:			

Total cast length (minimum): 1.5 in. (3.8 cm)

Slug length (minimum): 1.5 in (3.8 cm)

Sample length (minimum): Sample length will be determined after casting

Batch Information:				
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
235Uranium % Enrichment				
235Uranium/Zirconium Alloy				
²³⁸ Uranium	11-19-15 Jaco H. 903 11.901			
Plutonium	11.903 11.901	52	103	11-30-15
Plutonium/Americium Alloy				
Americium				
Neptunium	11-19-15 105			
Zirconium	11-19-15 105 -5.106 5.091	- Th	1003	11-32-15
Rare Earth			1-97	
	11-19-15 125			
Total Weight (grams)	17.009 16.992	- T-	1:55	11-30-15
Weight of Alloyed/Casted Material (grams)	16.8993	J	1555	11-70-15
Material Difference (grams)	0.093,	ta	63	11-30-15
Material Accountability by: (MBA Custodian)	Date: 11 - 30 - 15			

	Slug Inform	nation:			and the second sec	and a second sec	
	Slug No.	Weight aftercutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date
5902	31-3-17:15	4087 4073	A. 185 1253	0.771 11	1555	RS	12.15-15
	2		0-202				
5402	227 3	il.355			(N)	1.55	1-27-14
	31- 4		504 mm	0.285 hm	STN	135	1-27-16
	5		1223				
	6						
	7						

Total weight aftercutting (grams)):	16.730	ifther Chen Sc	myle	16.635
Total weight of alloyed/casted m	aterial (grams):	16.899			16.736
Material differences (grams):		0.1693			0.095
Material Accountability by: (MBA Custodian)	R	-A-		Date:	12-15-15
Balance Information:	Fisher Scien	hhc / L.F. = 0.	ects / 20 H 723566	CAL 4-	6-15/Dec 4-6-
25RM/1598					

08/21/34					
Rev. 0					

Manufacturer:	Model No:	Serial No:	Calibration Due Date:
Caliper Information:			
Manufacturer: Starrett	Model No:	Serial No: "/250	Calibration Due Date:
St			
Narrative:			
Alloy shall be melted a minimu			
		/heating process i.e.	surface discoloration, dross, etc.
Note the number of times the	casting is attempted.		
11-19-15			
-			
BUTTOWED 3 TO ATTEMPTICO BLOG			
ATTEMPED DROP	· · · · · · · · · · · · · · · · · · ·		
11-24-15	<u> </u>		
BUTTON			
	DROP		
BUTTON	2~0/	<u> </u>	
ATTEMPTED	DRo		
11-30-15			
BUTTON			
ATTENTED	PROP		
BUTTAN	1. CV		
ATTEMPTER BUTTAN DRUP -			
<u>1/:0 • p</u>			
	-		

2	FRM ₃ 1598	
	68/21/14	

FRM ₃ 1598 68/21/14 Rev. 0	META	AL FUEL FAB	RICATION PARAMETERS	Page 1 of 3
Alloy Fabrication Requi	red		Yes 🗆 No	
Unique ID (SPM No., SAD etc.)	Z No., AF	C-U20P10Z-111	15-SLUGI (LANL-4)	(3)
Total Batch Weight:			20 grams	SADZ 349
Alloy Formulae		Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium			²³⁵ Uranium % Enrichment	
²³⁸ Uranium	70		²³⁵ Uranium/Zirconium Alloy	
Plutonium	20		²³⁸ Uranium	14 ± .05
Americium		<u></u>	Plutonium	4 ± .05
Neptunium			Plutonium/Americium Alloy	
Zirconium	10		Americium	
Rare Earth			Neptunium	
			Zirconium	2 ± .05
			Rare Earth	
The mass of radioactive process mate limits are not exceeded: <u>lsotope</u> ^a U-235 ^b Np-237 Pu-239 ^c Am-241 <u>Am-242m^d</u> a. Radioactive contamin separations processe b. Other naturally occurr Uranium resulting from C. All Pu shall be counte allows the Pu in the g d. Am-242m quantities p	Mass (g) 350 100 225 50 6.5 ants associated v s used to create t ing isotopes of ur n U-233 production d as Pu-239. Plut lovebox to consist nay be conservation	vith isotopes listed in the he listed isotopes are als anium (U-234, U-238) ar on activities is not permitt tonium resulting from Pu- t of any mixture of weapo	e permitted and do not count against this limit, red. 238 production activities is not permitted. This ons- or reactor-grade Pu isotopes. The total Am-241 present. As a result of its	s, provided that the individual mass
Arc Melting Parameters:				
Amperage adjust setting	: 300			
Inner Mold diameter: 4.3	3 mm			
Mold: ZrO2 coated quart	z			
Hearth: Copper	-			

Fuel Casting Parameters:

Total cast length (minimum): 1.5 in (38.1 cm)

Slug length (minimum): 1.5 in (38.1 cm)

Sample length (minimum): Sample length will be determined after casting

Batch Information:				- 4
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment				
²³⁵ Uranium/Zirconium Alloy				
²³⁸ Uranium	13.952	Ja/	1253	11-30-15
Plutonium	13.952 - 4.009 -	- Tr	1033	11-30-15
Plutonium/Americium Alloy	/	5		
Americium				
Neptunium				
Zirconium	1.963g	(Tr	1235	11-30-15
Rare Earth	1			
Total Weight (grams)	(9.924g	TV	133	11-30-15
Weight of Alloyed/Casted Material (grams)	19.7499	Ta	, 153	11-30-15
Material Difference (grams)	0.175	Tr.	153	11-30-15
Material Accountability by: (MBA Custodian)		2	Date: 11-30-1	5-

	Slug Inform	ation:					
	Slug No.	Weight after-cutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date
		1.040	0.165	0.765	J.V	655	12-16-15
×402	2	4.114	0.164	0.750	Th.	-055	12-16-15
SOL	227 3	chem simple 0.291			TN	1535	1-27-16
	374 4	met sample 0.612	4.13 mm	3.00 mm	SAL	135	1-27-14
	5						
	6						
	7						

Total weight after-cutting (grams):	/9.391		
Total weight of alloyed/casted material (grams):	19 7496		
Material differences (grams):	0,3585		
Material Accountability by: (MBA Custodian)	, _ <	Date:	12-14-15

08/2:1/14 Rev. 0

Balance Information:	Fisher Scientific		
Manufacturer:	Model No: Acce - 413	Serial No: 723566	Calibration Due Date: 4-6-16
Caliper Information:	Digimatic Absolu	te	
Manufacturer:	Model No: co-6" ASX	Serial No: 731345	Calibration Due Date: 1-13-17
Narrative:		<u>an 1214</u>	and the second
Melt alloy a minimum of 3X bei	ore casting to shape, re	cord total number of ti	mes alloy is melted or casting is
		loy appearance after r	nelting, especially multiple times,
i.e. darker surface color, visible	dross, etc.		
11- Zu - AKIL HEAVE			
11-30-15: NEW 144007 Влтанер 3 Т DRuppeo - 1.5" от	HARE JAMES	ATTEMPTED LITH	ao Hantil
David 21	JMES		
URMACO - 1.5 TR	up But NOT A	VERY CLEAR SI	16
RE-BITTURO			
BUTTON			
ATTEMPTED Dell			
BUTTON			
Drop.		<u> </u>	
	·······		
		·	
	<u>_</u>		
	<u></u>		
		······	
<u> </u>			
		<u> </u>	
		7. 74. 2.	
	<u> </u>	<u> </u>	

_ ⊢หฺм-ารุษช "ัปช้/21/14
- D

	IV	IETAL FUEL FABRI	CATION PARAMETERS	Page 1 of 3
Alloy Fabrication Requi	red		Yes 🗆 No	
Unique ID (SPM No., SAD etc.)	Unique ID (SPM No., SADZ No., AFC-U20P2A3N10Z-1115-SLUG1 (LANL-5)		(4)	
		Use 150-80-61646-6	6764 for Pu/Am alloy	
Total Batch Weight:			27 grams	s:402 323
Alloy Formulae		Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium			²³⁵ Uranium % Enrichment	
²³⁸ Uranium	64	.4	²³⁵ Uranium/Zirconium Alloy	
Plutonium	20	.1	²³⁸ Uranium	17.387 ± .05
Americium	2.3	<u>}</u>	Plutonium	2.7 ± .05
Neptunium	2.9)	Plutonium/Americium Alloy	6.913 ± .05*
Zirconium	10	.3	Americium	
Rare Earth			Neptunium	
			Zirconium	
			Rare Earth	
Imits are not exceeded: Isotope ^a U-235 ^b Np-237 Pu-239 ^c Am-241 <u>Am-242m^d</u> a. Radioactive contamin separations processe b. Other naturally occurr Uranium resulting from c. All Pu shall be counted allows the Pu in the g d. Am-242m quantities r	Mas 350 100 225 50 6.5 sused to ing isotop n U-233 p id as Pu-2 lovebox to nay be co	s (g) ciated with isotopes listed in the tab create the listed isotopes are also p pes of uranium (U-234, U-238) are p production activities is not permitted 39. Plutonium resulting from Pu-23 o consist of any mixture of weapons	ermitted and do not count against this limit. 8 production activities is not permitted. This - or reactor-grade Pu isotopes. 2 total Am-241 present. As a result of its	s, provided mat the individual mass
Arc Melting Parameters:				
Amperage adjust setting		<u></u>		
Inner Mold diameter: 4.				
Mold: ZrO2 coated quar	tz			
Hearth: Copper				
Fuel Casting Parameter	S:			
Total cast length (minim	um): 1	.5 in (38.1 cm)		- · · · · · · · · · · · · · · · · · · ·
Slug length (minimum):	1.5 in ((38.1 cm)		

Sample length (minimum): Sample length will be determined after casting

METAL FUEL FABRICATION PARAMETERS

15	- 1 et
Page	e 2 of 3"

4

Batch Information:				<u> </u>
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment				
235 Uranium/Zirconium Alloy				
²³⁸ Uranium	17.3769	SN	183	12-2-15
Plutonium	2.7249	\square	1253	12-2-15
Plutonium/Americium Alloy	6.913	J. J.N	1835	12-2-15
Americium				
Neptunium				
Zirconium				
Rare Earth				
Total Weight (grams)	27.013	5N	1533	12-2-15
Weight of Alloyed/Casted Material (grams)	26.286	JN	1233	12-2-15
Material Difference (grams)	0.127	J2	153	12-2-15
Material Accountability by: (MBA Custodian)	l		Date: 12-2-15	ŧ

Slug Inform	mation:					
Slug No.	Weight after-cutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date
1	4.2595	0.167"	0.748"	ND .	Ass	1-6-16
2	4.218	0.168 "	0.757 "	(TA)	133	1-6-16
342 3	Shem. Sample 0.232			TAI	133	1-6-16
15 4	pret sample C.636	4.31 mm	2.96 mm		1055	1-4-16
5						
6						
7						

Total weight after-cutting (grams):	26.519		
Total weight of alloyed/casted material (grams):	26.886		
Material differences (grams):	0.347		
Material Accountability by: (MBA Custodian)	22	Date:	1-6-16

FRM-1598 08/21/14 Rev. 0

METAL FUEL FABRICATION PARAMETERS

Balance Information:	Fisher Scientific		
Manufacturer:	Model No: Accu-413	Serial No: 723566	Calibration Due Date: 4-6-16
Caliper Information:	Digimetic Absolu	ite	
Manufacturer:	Model No: CO-U" ASX	Serial No: 731245	Calibration Due Date: 1- 13-17
Narrative:			
*150-80-61646-66764 con	tains appropriate Am, Zr, ar	nd Np amounts, but 2.7	a of additional Pu will be
needed. 150-80-61646-66	6764 is contained in SADZ-F	MF-323	

Melt alloy a minimum of 3X before casting to shape, record total number of times alloy is melted or casting is attempted but didn't drop. Also note any changed in alloy appearance after melting, especially multiple times, i.e. darker surface color, visible dross, etc.

11-30-15- USED OLD HEARTH BUTTONED 3 TENES Shr up

ATTERPTAD Droo

12-2-15- BUTJUNED USED NEW Hurrit Stor UP.

DRODED

1	1000
-1	1598
2	405115
R	ev. 1

Total Batch Weight:

METAL FUEL FABRICATION PARAMETERS

13 grams

 Alloy Fabrication Required
 Image: Yes
 Image: No

 Unique ID (SPM No., SADZ No., etc.)
 AFC-U20P10Z3.86Pd-1215-Slug1

(5 SFIDZ- 341

Alloy Formulae Weight % **Component Mass*** grams ± tolerance value 235Uranium ²³⁵Uranium % Enrichment 238 Uranium 66.14 235Uranium/Zirconium Alloy Plutonium 20 8.598 ± 0.01 8,538 238Uranium 2.6±0.01 Q, 597 Americium Plutonium Neptunium Plutonium/Americium Alloy Zirconium 10 Americium Rare Earth Neptunium Palladium 3.86 1.3±0.01 1.3095 Zirconium Rare Earth Palladium 0.501 ± 0.01 * AC 5.404.11 AFCI Glovebox Radioactive Material Mass Limit Net Aft. Cost : 12.936 The mass of radioactive process material in the AFCI glovebox enclosure shall be limited to any combination of the following isotopes, provided that the individual mass limits are not exceeded:

Np237	100	
Pu239*	225	
Am241	50	
Am242m*	6.5	

Other naturally occurring isotopes of uranium (U-234, U-238) are permitted and do not count against this limit. Uranium resulting from U-233 production activities is not permitted.

c. All Pu shall be counted as Pu239. Plutonium resulting from Pu-238 production activities is not permitted. This allows the Pu in the glovebox to consist of any mixture of weapons or reactorgrade Pu isotopes.

d. Am242m quantities may be conservatively counted as 0.5% of the total Am241 present. As a result of its properties, Am242m cannot be chemically or isotopically separated from Am241.

Arc Melting Parameters:

Amperage adjust setting: 300

Inner Mold diameter: 5mm

Mold: ZrO2 coated Copper

Hearth: Copper

Page 1 of 4

Page 2 of 4

Fuel Casting Parameters:

Total cast length (minimum): 1.25 inches (31.75 mm)

Slug length (minimum): 1.25 inches (31.75 mm)

Sample length (minimum): sample length will be determined after casting

Batch Information:			建物的生产的	
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment				
²³⁵ Uranium/Zirconium Alloy				
²³⁸ Uranium	8588	(IV)	1735	12-2-15
Plutonium	2.597	UN _	1055	12-2-15
Plutonium/Americium Alloy				
Americium				
Neptunium				
Zirconium	1 3095	JN_	1E.S.	12-2-15
Rare Earth				
Palladion	0.5001	JN	133	12-2-15
Total Weight (grams)	12.9946.	J.	1235	12-2-15
Weight of Alloyed/Casted Material (grams)	12 936 -	5N	12.35	12-2-15
Material Difference (grams)	0.0576	NO N	1.55	12-2-15
Material Accountability by: (MBA Custodian)		<u> </u>	Date: 12-2	2-1.5

81 1 1 Slug Information: ESTA STATE Weighed/ Measured by Verified by Weight aftercutting Diameter Length **FMH** (inches/mm) (inches/mm) **FMH** Date Slug No. (grams) 0.194" 0.74" 5.153 52410 n 5.male 1-26-16 milz 3 58 155 1 NR 71 Z 6.74 " chen C33 1-26-14 2 0.354 2.53 mm met sengile ÉRS 1-26-16 ,15 4.72 min ,102 3 \wedge 265 4 1-26-14 :53 Total 12.652 5 5 1-26-16 6 0.2780 Difference 7

12.1.58

Total weight aftercutting (grams):

E d

FRM1598	1
1_35715	
Rev. 1	

Total weight of a joyed/casted ma	aterial (grams):	12.936			
Material differences (grams):		0.278			
Material Accountability by: (MBA Custodian)			-	Date:	1-26-16
Balance Information:			· · · · · · · · · · · · · · · · · · ·		·
Manufacturer:	Model No:	Serial No:	Calibration	Due Date:	
Caliper Information:					
Manufacturer:	Model No:	Serial No:	Calibration [Due Date:	
Narrative:					
Alloy according to the buttoning s	equence below, record	total number of times	alloy is melted or ca	asting is at	tempted
but didn't drop. Also not any char					
color, visible dross, etc.	<u> </u>				
Buttoning Sequence					
1) Alloy U and Pd, flip and re	emelt 1X				
2) Add Zr to the U+Pd butto	n, flip and remelt 1X				
Add Pu to the U+Pd+Zr b	utton, flip and remelt 3	X			
Initial cut to square ends only leav	vina length as long as r	ossible			
initial out to square ends only leav	ving length as long as p		<u></u>		
<u>_</u>					
· · · · · · · · · · · · · · · · · · ·					
			<u>,</u>		
	· · · · · · · · · · · · · · · · · · ·				
				······································	
			· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
				_	

FRM1598 1.503,15 Rev. 1	MET	AL FUEL EAF	BRICATION PARAMETERS	
				Page 1 of 3
Alloy Fabrication Required		-	🖾 Yes 🛛 No	
Unique ID (SPM No., SADZ N	lo., etc.)	AFC-U20P10Z	3.86Pd-4.3Ln-1215-Slug1	(4)
Total Batch Weight:			12 grams	SADZ-167
Alloy Formulae		Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium			235Uranium % Enrichment	<u>y and y contraction to </u>
²³⁸ Uranium	61.84	<u> </u>	235Uranium/Zirconium Alloy	
Plutonium	20	<u> </u>	238Uranium	7.421 ± 0.01 7, 421
Americium			Plutonium	2.4 ± 0.01 2, 3 10
Neptunium			Plutonium/Americium Alloy	
Zirconium	10		Americium	
Rare Earth	4.3		Neptunium	
Palladium	3.86		Zirconium	1.2±0.01 1-2070
Lanthanum			Rare Earth	
			Palladium	1
			Lanthanum	0.463 ± 0.01 <i>0.4644</i>
			Landiandin	
		<u></u>		
·		5.0		
The mass of radioactive process materia		Material Mass Limit glovebox enclosure shal	I be limited to any combination of the following isotope	es, provided that the Individual mass
limits are not exceeded:	Mass (g)		Ν	et wt. Aft. Cost = 11.951g
U235°	350	· · · ·		10.13
Np237	100			
Pu239*	225			
Am241	50			
Am242m ^e	6.5	Luith instance lists of all		
separations processes L	sed to create	a the listed isotopes are a		
 Other naturally occurring Uranium resulting from I) isotopes of J-233 produc	uranium (U-234, U-238) a tion activities is not permi	are permitted and do not count against this limit. itted.	

All Pu shall be counted as Pu239. Plutonium resulting from Pu-238 production activities is not permitted. This c. allows the Pu in the glovebox to consist of any mixture of weapons or reactorgrade Pu isotopes.

d. Am242m quantities may be conservatively counted as 0.5% of the total Am241 present. As a result of its properties, Am242m cannot be chemically or isotopically separated from Am241.

Arc Melting Parameters:

Amperage adjust setting: 300

Inner Mold diameter: 5mm

Mold: ZrO2 coated Copper

Hearth: Copper

Fuel Casting Parameters:

Total cast length (minimum): 1.25 inches (31.75 mm)

Slug length (minimum): 1.25 inches (31.75 mm)

Sample length (minimum): sample length will be determined after casting

Batch Information:				
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment				
235Uranium/Zirconium Alloy				
²³⁸ Uranium	7.421	JA	13	12-7-15
Plutonium	2.390	<u> </u>	1.35	12-7-15
Plutonium/Americium Alloy				
Americium				
Neptunium				
Zirconium	1.2670		1833	12-7-15
Rare Earth	0.509	<u>J</u>	A.SS_	12-7-15
Palladium	0.46.44	5TN	£33	12-7-15
				-
Total Weight (grams)	11.9914-	LJV	1.33	12-7-15
Weight of Alloyed/Casted Material (grams)	11.951	Th	1653	12-7-15
Material Difference (grams)	0.0404	$\langle \cdot \rangle$	10055	12-7-15
Material Accountability by: (MBA Custodian)			Date:	

	Slug Inform	ilug Information:					
			Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date	
AD Z 409	1	5.077 ilup Show Simple	0 192"	0.751"	RS	1003	1-26-16
	362-2	then simple 1.470			RD	1sh	1-26-16
4.02	375 3	O. (c)	4.92,0000	2. Imm		Res	1-16-16
	4				×		
	5						
	6						
	7						

Total weight aftercutting (grams):	11.659	

FRM1598
12/03/15
Rev. 1

.

Total weight of alloyed/casted	material (grams):	11.951			
Material differences (grams):		0.292			
Material Accountability by: (MBA Custodian)				Date:	1-26-16
Balance Information:				<u> </u>	
Manufacturer:	Model No:	Serial No:	Calibration [Due Date:	
Caliper Information:					
Manufacturer:	Model No:	Serial No:	Calibration [Due Date:	
Narrative:					
NOTE: Ln mean lanthanides v	which is the same as RI	E or rare earths		La de desa te	
Melt alloy according to the dire	ctions below, record to	tal number of times alloy	is melted or casting	is attempt	ed
but didn't drop. Also not any c	hanges in alloy appeara	ance after melting, espec	cially multiple times,	i.e. darker	surface
color, visible dross, etc.					
Buttoning Sequence					
1) Melt U + Pd flip and	remelt 1X				
2) Add Zr to U + Pd butto	n - flip and remelt 1X				
	r button – flip and reme				
 Add Lanthanides to the 	U+Pd+Zr+Pu button-	Flip and remelt 3X			
Initial cut to square ends only le	eaving length as long a	s possible.			
			· · ·		
,					
	<u></u>				
			······································		
		<u> </u>	<u>.</u>		
		<u> </u>			
			· · · · -		
· · · · · · · · · · · · · · · · · · ·					
<u> </u>					

12/03/15	
Rev. 1	

Rev. 1	MEI	AL FUEL FAI	BRICATION PARAMETERS	Page 1 of
Alioy Fabrication Require	d		⊠ Yes □ No	
Unique ID (SPM No., SAD	Z No., etc.)	AFC-U19P0.7	Z4.3T-5M-1215-Slug1	JA02-348
		-	3	(7)
Total Batch Weight:			13 grams	
Alloy Formulae	1.8	Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium	_		²³⁵ Uranium % Enrichment	
²³⁸ Uranium	71		²³⁵ Uranium/Zirconium Alloy	
Plutonium	19		230Uranium	9.23 ± 0.01 9.233
Americium			Plutonium	2.47 ± 0.01 2.472
Neptunium			Plutonium/Americium Alloy	
Zirconium	0.7		Americium	
Rare Earth			Neptunium	
Fitanium	4.299		Zirconium	0.091 ± 0.01 0.0964
Molybdenum	5.001		Rare Earth	
	_		Titanium	0.559 ± 0.01 0.552 6
			Molybdenum	0.650 ± 0.01 0.6495
		Material Mass Limit glovebox enclosure sha	It be limited to any combination of the following Isotop	Not With NAte Cost : 12.960
U235°	350			
Np237	100			
Pu239	225			
Am241 Am242m ⁴	50 6.5			
e. Redioactive contamin	ants associated	with isotopes listed in the listed loops are a	e table that result from the irradiation and also permitted.	
 Other naturally occurr Uranium resulting from 	ing isotopes of (n U-233 produc	uranium (U-234, U-238) tion activities is not perm	are permitted and do not count against this limit. itted.	
allows the Pu in the gi	overox to cons	st of any mixture of wea	-238 production activities is not permitted. This pons or reactorgrade Pu isotopes.	
d. Am242m quantities ma properties, Am242m c	ay be conserva annot be chemi	lively counted as 0.5% o cally or isotopically sepa	f the total Am241 present. As a result of its rated from Am241.	
	Press personal and			
c Melting Parameters:				and the second
nperage adjust setting: 3	300			

 $(r,r) \in \mathbb{R}$

Inner Mold diameter: 5mm

Mold: ZrO₂ coated Copper

Hearth: Copper

Page 2 of 4

Fuel Casting Parameters:

Total cast length (minimum): 1.25 inches (31.75 mm)

Slug length (minimum): 1.25 inches (31.75 mm)

Sample length (minimum): sample length will be determined after casting

Batch Information:				i.
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment				
²³⁵ Uranium/Zirconium Alloy			l	
²³⁸ Uranium	9.238	LAT2	<u>~</u> 35	12-7-15
Plutonium	2412	<u>tin</u>	133	12-7-15
Plutonium/Americium Alloy			· · · · · · · · · · · · · · · · · · ·	
Americium				
Neptunium				
Zirconium	0 0964	<u>JN</u>	1035	12-7-15
Rare Earth				
TITANIUM	0.5526	JN.	12.35	12-7-15
Malybdenum	0.6495	<u>Zn</u>	Fiss	12-7-15
Total Weight (grams)	13.0085	SN	1255	12-7-15
Weight of Alloyed/Casted Material (grams)	12.960	JN	1553	12-7-15
Material Difference (grams)	0.0485	5	1235	12-7-15
Material Accountability by: (MBA Custodian)		<u></u>	Date:	

}	Weight aftercutting	Diameter	Length	Weighed/ Measured by	Verified by	
Slug No.	(grams)	(inches/mm)	(inches/mm)	FMH	FMH	Date
1	5. 312 stuy	0.189"	0.749	TN :	E35	1-27-16
31-4 2	chem Simple 0.437 met Sample				133	1-27-1
32-3	0.751	4.93,mm	2.73, nm	52	as	1-27-1
4	I					
5						
6						
7						

Total weight aftercutting (grams): 12.413

.2/05/15 Rev. 1

Total weight of alloyed/casted	material (grams):	12.960			
Material differences (grams):		0.347			
Material Accountability by: (MBA Custodian)			2	Date:	1-27-16
Balance Information:				<u> </u>	
Manufacturer:	Model No:	Serial No:	Calibration	Due Date:	
Caliper Information:					
Manufacturer:	Model No:	Serial No:	Calibration	Due Date:	
Narrative:		·····			
Alloy composition- 61.84%	DU – 19% Pu – 0.7%	Zr – 4.299% Ti- 5.00	1% Mo		
Charge targets- DU 9.23 g	± .01				
Pu 2.47 g	±.01				
Zr 0.091 g	g±.01 0.096	<i>4</i>			
Ti 0.559 ç	1±.01 C.552	6a			
Mo 0.650	g ± .01 0.0969 g ± .01 C-5521 g ± .01 0.644	л. 15 ч	·		
·					
attempted but didn't drop. A i.e. darker surface color, visi Buttoning Sequence 1) Alloy Mo+Ti+Zr first- 2) Add U and Pu to Mo-	flip and re-melt 3X	······································			
Initial cut to square ends onl	y leaving length as lon	ig as possible			
			· · · · · · · · · · · · · · · · · · ·		

a da anti-	METAL FUEL FABRICATION PARAMETERS			Page 1 of 3
uon Required		AFC-3F-2	⊠ Yes □ No	344
Total Batch Weight:	Batch Weight:		14.995 grams	
Alloy Formulae		Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium	43%		²³⁵ Uranium % Enrichmer	nt 6.386 ±0.05 (69% U-235) / 34
²³⁸ Uranium	67%		²³⁵ Uranium/Zirconium Alloy	
Plutonium			²³⁸ Uranium	7.107±0.05 (Depleted) 7.099
Americium			Plutonium	
Neptunium			Plutonium/Americium Alloy	
Zirconium	10%		Americium	
Rare Earth			Neptunium	in the
A Star Che Maria			Zirconium	1.502 ±0.02 1.511
ine constraint and the second			Rare Earth	
Condition a folge store	500		and the state of a	
TELEVISION NUMBER OF STREET	1973-92°		等于10月1日的日本10月1日的日本10月1日	

Inner Mold diameter: 4.3 mm

Amperage adjust setting: 300 amps

Arc Melting Parameters:

Mold: ZrO2 coated quartz

Hearth: Copper

Fuel Casting Parameters:

Total cast length (minimum): 2.5 in.

Slug length (minimum): 1.5 in.

Sample length (minimum): 1-2 mm (Chem), 2-3 mm (Metallography)

Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
²³⁵ Uranium % Enrichment	6 344	IN	-1255	3-10-16
²³⁵ Uranium/Zirconium Alloy		0		
²³⁸ Uranium	7.099	JN N	Les .	J-12-11
Plutonium				
Plutonium/Americium Alloy				

40

METAL FUEL FABRICATION PARAMETERS

.

Americium				
Neptunium				
Zirconium	1.517		235	3-10-12
Rare Earth	<u>, , , , , , , , , , , , , , , , , , , </u>			
Total Weight (grams)	14-960	QVI	1735	3-10-14
Weight of Alloyed/Casted Material (grams)	14-242	14.945	1535	3-10-12
Material Difference (grams)	2.118	0.015 JN	155	3-10-16
Material Accountability by: (MBA Custodian)			Date: 3-10-16	

Slug Inform	nation:					
Slug No.	Weight after-cutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/Measured by FMH	Verified by FMH	Date
3851	5105 81515 c	0.169 mch	1,491 inch	5501	tos	3-24-16
2	net 0.6479	4.36 mm	3.02 Mint	$(\overline{\Lambda})$	1	3-24-16
3	0,473g	4.29 MM	2.75 MM	(T)	1.85	3-24-16
4	Ø					
5					ĺ	
6						
7						

Total weight after-cutting (grams	i):	14.561 111000	
Total weight of alloyed/casted m		14.960 14.945	
Material differences (grams):	7	-21-16 153 12, 399 0.384	
Material Accountability by: (MBA Custodian)			Date: 3- 24-16
Balance Information:	Fisher Scientific		
Manufacturer:	Model No: ALLO 413	Serial No: 723566	Calibration Due Date: 4-1-11
Caliper Information:	instatayo · Absolat	e AGS Digimatic	
Manufacturer:	Model No: co - c' A>>	< Serial No: #/308167	Calibration Due Date: 7-13-17

LUM-1990
93/02/16
Rev. 2

METAL FUEL FABRICATION PARAMETERS

Page 3 of 3

alive:				
5x buttoned	3× casti	ng attemp	5 fecorded	from
5x buttoned GS-built dat	a package	P. Fugf	19 Dec 201	6
		F		
			1211	
· · · · · · · · · · · · · · · · · · ·				
			- X	

FRM1598	
12/03/15	
Rev. 1	

Alloy Fabrication Required		🗵 Yes	🗆 No	
Unique ID (SPM No., SADZ No., etc.)	AFC-3F-3			5402-352
and the second second second				5.402 359
Total Batch Weight:		24.177	grams	

Alloy Formulae -	Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium	8.4%	²³⁵ Uranium % Enrichment	2.867 ±0.05 (69% U-235) 2
²³⁸ Uranium	61.6%	235Uranium/Zirconium Alloy	
Plutonium	20%	238Uranium	14.045 ±0.05 (Depleted) /4
Americium		Plutonium	4.844 ±0.05 4. 808 4
Neptunium		Plutonium/Americium Alloy	
Zirconium	10%	Americium	
Rare Earth	Pa-	Neptunium	
		Zirconium	2.422 ±0.05 2.453
		Rare Earth	
	74		19 E

* AC 5.404.11 AFCI Glovebox Radioactive Material Mass Limit

The mass of radioactive process material in the AFCI glovebox enclosure shall be limited to any combination of the following isotopes, provided that the individual mass limits are not exceeded:

Isotope*	Mass (g)	
U235°	350	
Np237	100	
Pu239:	225	
Am241	50	
Am242m*	6.5	

a. Radioactive contaminants associated with isotopes listed in the table that result from the irradiation and separations processes used to create the listed isotopes are also permitted.

b. Other naturally occurring isotopes of uranium (U-234, U-238) are permitted and do not count against this limit. Uranium resulting from U-233 production activities is not permitted.

c. All Pu shall be counted as Pu239. Plutonium resulting from Pu-238 production activities is not permitted. This allows the Pu in the glovebox to consist of any mixture of weapons or reactorgrade Pu isotopes.

d. Am242m quantities may be conservatively counted as 0.5% of the total Am241 present. As a result of its properties, Am242m cannot be chemically or isotopically separated from Am241.

Arc Melting Parameters:

Amperage adjust setting: 300 amps

Inner Mold diameter: 4.3 mm

Mold: ZrO₂ coated quartz

Hearth: Copper

_ _ _

METAL FUEL FABRICATION PARAMETERS

Page 2 of 4

Fuel Casting Parameters:

Total cast length (minimum): 2.5 in.

Slug length (minimum): 1.5 in.

Sample length (minimum): 1-2 mm (Chem), 2-3 mm (Metallography)

Batch Information:		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date
235Uranium % Enrichment	2.846	1	1659	2-7.16
235Uranium/Zirconium Alloy				
238Uranium	14.045	UT	135	3.7-16
Plutonium	4.808	50	1.55	37-16
Plutonium/Americium Alloy		-3		
Americium				
Neptunium				
Zirconium	2.453	(T)	1835	2-7-16
Rare Earth		**		
				20
Total Weight (grams)	24.152	d'a	135	8-7-16
Weight of Alloyed/Casted Material (grams)	23.993 23.925	572	2535	8-7-16
Material Difference (grams)	0150 0.227	1 N	1635	3-7-16
Material Accountability by: (MBA Custodian)			Date: 3-7-16	

Slug Inform	nation:	Care and	Se glore Stat	la hana dalahan	descalation.	
Slug No.	Weight aftercutting (grams)	Diameter (inches/mm)	Length (inches/mm)	Weighed/ Measured by FMH	Verified by FMH	Date
5AD 1394	011016	T- 0.1615-0.1645 B-0.1655-0.1715	1.4965 "	Mr.	5CSS	2-24-16
2	013150	4.24m	1.89 m	(mar)	155	2-24-15
3	0.536g	4.14 mm	2.70 mm	2 AN	as	2-24-16
4						
5						
6						
7	···					

Total weight aftercutting (grams): 23,588 2 - C. 1019 - USED TO Rodert 3 The fast IS STILL TO SADZ 394

FRM1598
12/03/15
Rev. 1

.

METAL FUEL FABRICATION PARAMETERS

Total weight of alloyed/casted mat	terial (grams):	23.925			
Material differences (grams):		0.3373		-	
Material Accountability by: (MBA Custodian)	12	<u> _</u>	_	Date:	2-211-11
Balance Information:	Fisher Scientific				
Manufacturer:	Model No: Accv - 41	3 Serial No: 723566	Calibration I	Due Date:	4-6-16
Caliper Information:	Mitutaya - Abs	late ADS Digimatic	-		
Manufacturer:	Model No: 20-6" AS	< Serial No: 1430816	7 Calibration I	Due Date:	1.13.17
Narrative:					
Please use the 69% enriched feed mold. Record the number of tin been cut shall be AFC-3F-3 AF	mes the alloy was butt	ource. Button a minimum ons and drop attempts.	of 3X before dro Remaining mater	opping into ial after sa	the quartz imples have
			Bittan	1141	
Whole Butter	22.065				
				2	
	14 347.	airbaneer 3 time	5 115 3	- ne	·
<u></u>	->141353 AHE	- CAST WEIGHT			
		<u> </u>			
23 0	293- 23.925	Total in STADE			
		<u> </u>			
				·	
				<u></u>	
<u></u>					
	<u></u>				
				·	

FRM-1598
03/02/16
Rev. 2

Alloy Fabrication Required		🗵 Yes	D No	
Unique ID (SPM No., SADZ No., etc.)	AFC-3F-4			
States and the second	-			
Total Batch Weight:		14.994	grams	

Alloy Formulae	Weight %	Component Mass*	grams ± tolerance value
²³⁵ Uranium	39%	²³⁵ Uranium % Enrichment	5.803 ±0.05 (69% U-235)
²³⁸ Uranium	51%	235Uranium/Zirconium Alloy	
Plutonium		²³⁸ Uranium	7.689 ±0.05 (Depleted) 7,
Americium		Plutonium	
Neptunium		Plutonium/Americium Alloy	
Zirconium	10%	Americium	<i>#</i>
Rare Earth		Neptunium	
		Zirconium	1.502 ±0.02 /, 521
and the second		Rare Earth	0 A
Sensitives and the sense	200	Antest All States and All States	
IN ALCONDING STATE			
		Construction Construction Construction	
and the second		and the second se	

Arc Melting Parameters:

Amperage adjust setting: 300 amps

Inner Mold diameter: 4.3 mm

Mold: ZrO2 coated quartz

Hearth: Copper

Fuel Casting Parameters:

Total cast length (minimum): 2.5 in.

Slug length (minimum): 1.5 in.

Sample length (minimum): 1-2 mm (Chem), 2-3 mm (Metallography)

Component	Mass (grams)	Weighed by FMH	Verified by FMH	Date	
²³⁵ Uranium % Enrichment	5.207	LAD !!	15	3-7-16	
²³⁵ Uranium/Zirconium Alloy					
²³⁸ Uranium	7.716	JN.	135	3.7.16	
Plutonium					
Plutonium/Americium Alloy					

5MD2 368

5-10-14

n

METAL FUEL FABRICATION PARAMETERS

Page 2 of 3

.

.

4

Americium				
Neptunium				
Zirconium	1521	NN.	1655	3-7-16
Rare Earth				
· · ·				
Total Weight (grams)	15.044	5N	155	3-7-16
Weight of Alloyed/Casted Material (grams)	15.001	501	1555	3-7-16
Material Difference (grams)	0.043	STAL	1535	3-7-16
Material Accountability by: (MBA Custodian)			Date: 3 7-16	

		Weight after-cutting	Diameter	Length	Weighed/Measured by	Verified by	
	ug No.	(grams)	(inches/mm)	<u>(inches/mm)</u>	FMH	FMH FMH	Date
80 37	12	Sing 8:6389-	0.1700 inch	1. 4945 Inch.	(th)	tos	3-10-16
	2	01317c	0.1700 Neh	1.44 111	N.	Es	3-10-12
	3	0-5680	0.17conch	2.50 mm	(JN)	155	3-10-16
	4	· · · · · · · · · · · · · · · · · · ·					
	5						
	6						
	7						

Total weight after-cutting (grams	5): //	4.6979			
Total weight of alloyed/casted m		5,001			
Material differences (grams):		0.3042		<u> </u>	
Material Accountability by: (MBA Custodian)				Date:	3-10-16
Balance Information:	Fisher scientific	(·····	·····
Manufacturer:	Model No: Accu - 413	Serial No: 723566	Calibration I	Due Date:	4-6-16
Caliper Information:	Digimentic Absoli	ute			
Manufacturer:	Model No: CP-6"Asx	Serial No: 131845	Calibration I	Due Date:	1-13-17

FRM-1598
03/02/16
Rev. 2

٠.

6

METAL FUEL FABRICATION PARAMETERS

Page 3 of 3

Narrative:				
	3x buttoning m As Built data	1x consti	via attempt	recorded
for	m As Built data	package	P. fick 19	Dec 20/6
			0	
		÷		
	ann an taite an tha ann			
				<u> </u>
		<u> </u>		