INL/EXT-16-38957

NSUF ION BEAM INVESTMENT OPTIONS WORKSHOP INL Meeting Center, Energy Innovation Laboratory

March 22-24, 2016

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

NSUF Ion Beam Investment Options Workshop

March 22-24, 2016

INL Meeting Center, Energy Innovation Laboratory

Idaho National Laboratory Nuclear Science User Facilities Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

NSUF Ion Beam Investment Options Workshop

March 22-24, 2016

INL Meeting Center, Energy Innovation Laboratory

INL/EXT-16-38957

Brenden Heidrich NSUF Capability Scientist J. Rory Kenned, Director, NSUF

Approved by:

20 JUN 2016 Date 6/20/2016

ACR	ONYMS	vii
1.	INTRODUCTION	1
2.	WORKSHOP PARTICIPANTS	1
3.	WORKSHOP STRUCTURE AND PROCESS FLOW	3
4.	CRITERIA SELECTION AND WEIGHTING	3 7
5.	ION BEAM FACILITY ASSESSMENT	10
6.	FUTURE WORK	12
7.	REFERENCES	12
Appe	ndix A — Workshop Agenda	13
Appe	ndix B — NSUF Presentations (Workshop and Criteria Weighting)	19
	Welcome Presentation	21
	Comments from the Introduction to ThinkTank Exercise	27
	Workshop Criteria Presentation 1	28
	Workshop Criteria Presentation 2	39
	Workshop Criteria Presentation 3	47
Appe	ndix C — Criteria Weighting Data and Comments	53
	Criteria Weighting – Exercise 1 (pre-workshop exercise)	55
	Community Comments on the Criteria (#2)	56
	Criteria Weighting – Exercise 3	57
	Community Comments on the Criteria (#3)	58
Appe	ndix D — Ion Beam Users Presentations	61
	Presentation: NSUF User's Organization	63
	Presentation: Irradiation Material Testing	72
	Presentation: LWRS Program Data Needs	84
	Presentation: Nuclear Energy Advanced Modeling	89
	Presentation: Fuel Cycle R&D	99
	Presentation: Used Fuel Disposition	108
	Presentation: EPRI	116
Appe	ndix E — Ion Beam Facility Presentations	123
	Presentation: IVEM-Tandem User Facility	125
	Presentation: Extreme Materials Beam Line	137

CONTENTS

Presentation: Capabilities at the Idaho Accelerator	148
Presentation: CMUXE, Purdue University	160
Presentation: High-energy Ion Implantation Capability at LLNL	
Presentation: Wisconsin IBL	
Presentation: In situ Ion Irradiation Transmission	191
Presentation: Michigan IBL	
Presentation: Accelerator Based Facility for Materials Irradiation Testing	
Presentation: In-Situ X-ray Characterization of Microstructural Evolution	
Presentation: Univ. of Tennessee IBML	
Presentation: Edwards Accelerator Laboratory at the University of Ohio	
Presentation: Ion Beam Laboratory at Texas A&M University	
Presentation: IBML at LANL	
Presentation: Potential for Laboratory Compact Cyclotrons	
Appendix F — Facility Ranking Exercise	
Facility Ranking by Criteria	
Appendix G — Ion Beam Facilities' Quantitative Data	

FIGURES

Figure 1. Relative weights of the 10 final criteria and their standard deviations $(\pm 1\sigma)$	8
Figure 2. Distribution of votes for criteria weighting exercise.	9
Figure 3. Overall score and ranking of the ion beam facilities.	11

TABLES

Table 1. Workshop participants.	. 1
Table 2. Original 25 criteria and weights	.4
Table 3. Original 25 criteria combined into eight	. 5
Table 4. Final 10 criteria used in the NSUF workshop to assess ion beam facilities	. 8

ACRONYMS

AEC	Atomic Energy Commission	CASS	cast austenitic stainless steel
AFC	Advanced Fuel Campaign	CEA	Commissariat à l'Energie Atomique
AFM	atomic force microscopy	CLIM	Characterization Laboratory for
AGR	advanced gas-cooled reactor		Irradiated Materials
ALARA	as low as reasonably achievable	CMUXE	Center for Materials under Extreme Environment
AMS	accelerator mass spectrometry	CSTAR	Center for Science and Technology
ANL	Argonne National Laboratory		with Accelerators and Radiation
ANS	American Nuclear Society	СТ	computed tomography
APS	Advanced Photon Source	DBTT	ductile-brittle transition temperature
ARRM	Advanced Radiation-Resistant	depU	depleted uranium
		DFT	density functional theory
ART	Advanced Reactor Technologies	DoD	U.S. Department of Defense
ATLAS	Argonne Tandem-Linac Accelerator System	DOE	U.S. Department of Energy
ATR	Advanced Test Reactor	DOE-BER	U.S. Department of Energy Biological and Environmental
AUGER	auger electron spectroscopy		Research
BAM	Federal Institute for Materials Research and Testing (Germany)	DOE-IRP	U.S. Department of Energy Integrated Research Projects
BCC	body-centered cubic	DOE-NE	U.S. Department of Energy Office
BLAIRR	Brookhaven Linear Accelerator		of Nuclear Energy
	IRRadiation Test Facility	DOT	U.S. Department of Transportation
BLIP	Brookhaven Linear Isotope	dpa	displacements per atom
DNC	Pirel Nametechnele zu Conten	DR	direct reading
BNC	Birck Nanotechnology Center	DTA	differential thermal analysis
BNL	Brooknaven National Laboratory	DuET	Dual-Beam Facility for Energy
BK2	Bergian Reactor 2		Science and Technology
BSD	backscattered electron detector	EAF	environmentally assisted fatigue
BSU	Boise State University	EBIC	electron beam induced current
BU	burn-up	EBSD	electron backscatter diffraction
BWR	boiling water reactor	EDS	energy dispersive spectroscopy
CAES	Center for Advance Energy Studies	EMC	Electron Microscopy Center
CAMS	Center for Accelerator Mass	EPRI	Electric Power Research Institute
C A CI	Spectrometry	ERD	elastic recoil detection
CASL	Consortium for Advanced Simulation of Light Water Reactors	ERDA	Energy Research and Development Administration

EUPS	extreme ultraviolet photoelectron spectroscopy
FCCI	fuel cladding chemical interaction
FCM	fully ceramic microencapsulated
FCRD	Fuel Cycle Research and Development
FEG	field emission gun
FEM	finite element analysis
FFAG	fixed field alternating gradient
FG	fission gas
FHR	fluoride-salt-cooled high- temperature reactor
FIB	focused ion beam
FMI	fuel matrix interaction
GAIN	Gateway for Accelerated Innovation in Nuclear
GB	grain boundary
GISAXS	grazing incidence small-angle x-ray scattering
GIXRD	grazing incidence x-ray diffraction
HAADF	high-angle annular dark field detector
HEDM	high energy diffraction microscopy
HEDP	high-energy density physics
HEU	highly enriched uranium
HFIR	High-Flux Isotope Reactor
HLW	high-level waste
HREM	high-resolution episcopic microscopy
HRTEM	high-resolution transmission electron microscopy
HT	high temperature
HVEM	high-voltage electron microscope
HXN	hard x-ray nanoprobe
I3TEM	in situ ion irradiation transmission electron microscope
IASCC	irradiation-assisted stress corrosion cracking

IBA	ion beam analysis
IBIOW	Ion Beam Investment Options Workshop
IEE	insulator enhanced etch
IMBL	Ion Beam Materials Laboratory
IMPACT	interaction of materials with particles and components testing
IMT	ion microtomography
INL	Idaho National Laboratory
INPP	Institute of Nuclear and Particle Physics
IR	infrared
IRP	Integrated Research Project
ISU	Idaho State University
IVEM	intermediate-voltage electron microscope
IXB	ion x-ray beam
KMC	kinetic Monte Carlo
LANL	Los Alamos National Laboratory
LANSCE	Los Alamos Neutron Science Center
LBE	lead-bismuth eutectic
LE	low energy
LEAP	local electrode atom probe
LEISS	low-energy ion scattering spectroscopy
LEU	low enriched uranium
LINAC	linear accelerator
LLNL	Lawrence Livermore National Laboratory
LMIG	Laser Material Interaction Group
LN	liquid nitrogen
LP	low pressure
LPP	laser-produced plasma
LT	low temperature
LWR	light-water reactor
LWRS	light-water reactor sustainability

MAaD	Materials Aging and Degradation	ODS
MBC	Multi-Beam Chamber	ORNL
MC	Monte Carlo	PHENIX
MD	molecular dynamics	
MIBL	Michigan Ion Beam Laboratory	PID
MIT	Massachusetts Institute of Technology	PIE PIXE
MITR	Massachusetts Institute of Technology Reactor	PKA PNNL
MSE	materials science and engineering	ITTL
MTR	materials test reactor	PRIME
NASA	National Aeronautics and Space Administration	PWR
natU	natural uranium	PWSCC
NC	nanocolumnar	
NDE	nondestructive examination	QA
NDMAS	Nuclear Data Management and Analysis System	QCM R&D
NEAMS	Nuclear Energy Advanced Modeling and Simulation	RBS
NEC	National Electrostatics Corporation	RD&D
NEET	Nuclear Energy Enabling Technology	RERTR
NEID	Nuclear Energy Infrastructure Database	RF
NEUP	Nuclear Energy University Program	RFI
NGNP	Next Generation Nuclear Plant	RHIC
NIH	National Institutes of Health	RIAM
NNSA	National Nuclear Security Administration	RIP
NP	nanoparticulate	RISE
NRA	nuclear reaction analysis	RPV
NRC	U.S. Nuclear Regulatory	RT
NSF	National Science Foundation	RTE
NSIS	National Synchrotron Light Source	SANS
NGUE	Nuclear Science User Easilities	SAXS
TUSUL	nucleal Science User Facilities	SCC

ODS	oxide dispersion strengthened
ORNL	Oak Ridge National Laboratory
PHENIX	Pioneering High Energy Nuclear Interaction Experiment
PID	photoionization detector
PIE	post-irradiation examination
PIXE	proton induced x-ray emission
РКА	primary knock-on atom
PNNL	Pacific Northwest National Laboratory
PRIME	particle radiation interaction with matter experiments
PWR	pressurized water reactor
PWSCC	primary water stress corrosion cracking
QA	quality assurance
QCM	quartz crystal microbalance
R&D	research and development
RBS	Rutherford backscattering spectrometry
RD&D	research, development, and demonstration
RERTR	Reduced Enrichment for Research Test Reactors
RF	radio frequency
RFI	request for information
RHIC	Relativistic Heavy Ion Collider
RIAM	risk-informed asset management
RIP	radiation-induced phasing
RISE	Research and Innovation in Science and Engineering
RPV	reactor pressure vessel
RT	room temperature
RTE	rapid turnaround experiment
SANS	small-angle neutron scattering
SAXS	small angle x-ray scattering
SCC	stress corrosion cracking

SEM	scanning electron microscope	UCB	University of California at Berkeley
SLIA	Spiral Line Induction Accelerator	UCSB	University of California at Santa
SNF	spent nuclear fuel		Barbara
SNICS	source of negative ions by cesium	UFD	used fuel disposition
	sputtering	UHFI	ultra-high-flux irradiation
SS	stainless steel	UHV	ultra-high vacuum
SSD	silicon drift detector	UM	University of Michigan
STAR	Solenoidal Tracker at RHIC	UNF	used nuclear fuel
STEM	scanning transmission electron	UNT	University of North Texas
	microscope	UPS	ultraviolet photoelectron
STM	scanning tunneling microscopy		spectroscopy
STP	standard temperature and pressure	UT	University of Tennessee
SUNY	State University of New York	UW	University of Wisconsin
SUSNAG	Surface Science and Nanostructures	V&V	verification and validation
	Group	VCU	Virginia Commonwealth University
TAMU	Texas A&M University	VHTR	very high temperature reactor
TC	temperature calibration	WAXS	wide-angle x-ray scattering
TDS	thermal desorption spectroscopy	WEC	Westinghouse Electric Company
TEM	transmission electron microscopy	WNR	weapons neutron research
TGA	Thermogravimetric analysis	XFEL	x-ray free electron laser
TORVIS	toroidal volume ion source	XMAT	extreme materials beam line
TREAT	Transient Reactor Test Facility	XPD	x-ray powder diffraction
TRU	transuranic	XPS	x-ray photoelectron spectroscopy
TUF	tandem user facility	XRD	x-ray diffraction
UC	University of Colorado		

NSUF Ion Beam Investment Options Workshop

1. INTRODUCTION

The Nuclear Science User Facilities (NSUF) Ion Beam Investment Options Workshop (IBIOW) was held to develop a set of recommendations (i.e., a priority list) for funding domestic ion beam irradiation capabilities available to researchers. These capabilities are focused on the support of nuclear-energy research, development, and deployment. The recommendations are intended for use by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) when faced with decisions about investments in ion beam support, instruments, and facilities. Recommendations developed during the IBIOW are provided in the *Supplement to the NSUF Ion Beam Investment Options Report: Initial Results and Recommendations* (Heidrich 2016).

As part of their initial discussions of potential future funding, IBIOW participants considered input submitted through DOE-NE Request for Information DE-SOL-0008318, "University, National Laboratory, Industry and International Input on Potential Office of Nuclear Energy Infrastructure Investments (April 13, 2015)." Discussions and presentations of other input, whether specific or general in scope, were also welcomed. Also included was user input, including input regarding DOE-NE program interests and ion irradiation research, development, and deployment needs.

The workshop was held March 22–24, 2016, at the Idaho National Laboratory (INL) Meeting Center in the Energy Innovation Laboratory in Idaho Falls, Idaho. The workshop agenda is included in Appendix A.

2. WORKSHOP PARTICIPANTS

Workshop participants were selected from various sources, i.e., request-for-information respondents, Nuclear Energy University Program/Nuclear Energy Enabling Technology infrastructure applicants, universities with known expertise in nuclear engineering and materials science, and other developed sources.

Thirty-three members of the ion beam community attended the workshop, including 15 representatives of ion beam facilities, six representatives of DOE-NE research and development (R&D) programs, an industry representative from the Electric Power Research Institute, and the chairs of the NSUF User's Organization and the NSUF Scientific Review Board. Four ion beam users attended as advisors to the process but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4), also attended the workshop.

Table 1 lists the workshop participants.

Name	Organization/Position		
Workshop Organizers and Sponsors			
Rory Kennedy	Director, NSUF		
Brenden Heidrich	NSUF Capability Scientist		
Jodi Grgich	INL Facilitator		
Jody Henley	INL Facilitator		
Michael Worley	DOE-NE		
Thomas Miller	DOE-NE		
Alison Hahn	DOE-NE		

Table 1. Workshop participants.

Table 1.	(continued)).
		•

Name	Organization/Position			
User Community Representatives				
Sean McDeavitt	Texas A&M University – NSUF Scientific Review Board			
Peng Xu	NSUF User's Organization Chair – Westinghouse			
William Windes	Advanced Reactor Technologies (ART)			
Sebastien Teysseyre	Light-Water Reactor Sustainability (LWRS)			
Daniel Schwen	Nuclear Energy Advanced Modeling and Simulation (NEAMS)			
Shannon Bragg-Sitton	Fuel Cycle Research and Development (FCRD)			
Remi Dingreville	Used Fuel Disposition Program			
Dean Peterman	Waste Forms Research and Development Program			
Tiangan Lian	Electric Power Research Institute – Program Manager			
Robert Odette	University of California – Santa Barbara			
James Stubbins	University of Illinois – Urbana-Champaign			
Ion Beam Facility Repres	entatives			
Abdellatif Yacout	Argonne National Laboratory (ANL) – Extreme Materials Beam Line (XMAT)			
Meimei Li	ANL – Intermediate Voltage Electron Microscope (IVEM)			
Nick Simos	Brookhaven National Laboratory (BNL) – Brookhaven Linear Isotope Producer (BLIP) – Brookhaven Linear Accelerator IRRadiation Test Facility (BLAIRR)			
Lynne E. Ecker	BNL – Ion X-Ray Beam (IXB)			
Jon L. Stoner	Idaho State University – Idaho Accelerator Facility			
Yong Q. Wang	Los Alamos National Laboratory (LANL) – Ion Beam Materials Laboratory			
Scott J. Tumey	LLNL – Center for Accelerator Mass Spectrometry			
Lance Snead	Massachusetts Institute of Technology (MIT) – Nuclear Materials Laboratory			
Steve Grimes	Ohio University – Edwards Accelerator Laboratory			
Jitendra Kumar Tripathi	Purdue University – Center for Materials under Extreme Environment (CMUXE) Facility			
Khalid Hattar	Sandia National Laboratories – In Situ Ion Irradiation Transmission Electron Microscope (I3TEM)			
Lin Shao	Texas A&M University – Ion Beam Laboratory			
Gary S. Was	University of Michigan – Ion Beam Laboratory			
William J. Weber	University of Tennessee – Ion Beam Materials Laboratory			
Beata Tyburska-Pueschel	University of Wisconsin – Ion Beam Laboratory			

3. WORKSHOP STRUCTURE AND PROCESS FLOW

The NSUF IBIOW process began in December 2015 by soliciting interest in participating in the workshop from the various U.S. ion beam facility owners (universities and national laboratories). This was followed in January and February 2016 by official invitations to the workshop. The participants were asked to become involved in an ongoing process to define and weight criteria that could be used to judge the options available to DOE-NE to support and expand domestic ion beam irradiation capabilities. The assessment process started informally but later transitioned to the ThinkTank collaboration software.

Because the goal of the workshop was to provide recommendations to DOE-NE, a data-driven process was designed with the assistance of the INL's systems engineering division. ThinkTank collaborations software was selected as the tool to gather the data and link the workshop participants together. ThinkTank has been used successfully in a wide variety of government projects, notably the Nuclear Innovation Workshops held in March 2015.

The process outline was:

- 1. Select workshop participants
- 2. Determine and weight criteria (online, pre-workshop)
- 3. Hold the workshop (March 22–24, 2016)
 - a. Review the criteria list
 - i. Combine criteria (25 into 10)
 - ii. Reweight new combined criteria
 - b. View presentations by researchers (DOE-NE programs and ion beam users)
 - c. View presentations by ion beam facilities
 - d. Conduct an assessment and ranking exercise
 - e. Discuss future work
- 4. Analyze the workshop data, and generate a report

4. CRITERIA SELECTION AND WEIGHTING

The workshop participants generated and weighted a list of criteria against which to compare the various ion beam facilities and estimate the need for future investment. (Appendix B contains the information from the criteria exercises.) The original 15 criteria were generated by NSUF as a starting point for the discussion. Workshop participants then added criteria via email during the lead-up to the workshop. Table 2 shows the resulting 25 criteria and the weights assigned by the workshop participants using the ThinkTank software (before the workshop). The total list of 25 criteria proposed at the start of the workshop was too large to handle in the 3 days allotted for the workshop, so NSUF suggested eight combined criteria to replace the 25 original criteria (see Table 3). Appendix C provides criteria weighting data and comments.

Table 2. Original 25 criteria and weights.

No.	Criteria	Mean	Std. Dev.
1	Scientific merit and potential merit	8.60	1.35
2	Broad applicability (cross-cutting – i.e., multi-program)	7.07	2.25
3	International capabilities alternatives	4.80	1.90
4	DOE-NE programmatic mission need	7.80	1.82
5	Nuclear energy industry needs	6.13	2.67
6	Proportion of time to be allocated to direct DOE-NE mission work through Gateway for Accelerated Innovation in Nuclear [GAIN], NSUF, or DOE-NE programs	6.27	1.67
7	Current/past DOE-NE support/investment	5.93	1.94
8	Current DOE-NE work performed at facility	6.27	2.49
9	User experiment throughput capability	6.67	2.09
10	Beam energies (and energy ranges)	7.88	1.78
11	Ion types and variety	7.69	2.24
12	Variety of irradiation environments		2.03
13	Multiple analytical techniques available		2.67
14	Radiation levels allowed for samples		2.50
15	Multiple convergent beams (dual or triple)		2.31
16	Ability to match prototypic conditions	6.31	2.75
17	In situ examination during irradiation	6.56	2.92
18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	5.63	2.42
19	Does the facility provide new capabilities?	6.14	3.37
20	Radiation effects/damage experience at the host institution	6.88	3.07
21	Need to define and have new capability be on path toward greater applicability and relevance	6.21	2.58
22	Relative R&D impact of utilizing direct simulants (i.e., swift heavy ion) or indirect simulants (i.e., light ions)	5.43	2.90
23	Applicability of results to development or data goals	5.36	3.54
24	Is there support of small specimen test technology?	5.50	3.25
25	Standards development, including temperature sensing	5.21	2.83

Original No.	Criteria	Mean	Std. Dev.	Combined	Combined Criteria	Mean	Std. Dev.
1	Scientific merit and potential merit	8.6	1.4				
2	Broad applicability (cross-cutting – i.e., multiprogram)	7.1	2.3	C1	Ability of the facility to produce results of high scientific merit and the potential to	7.4	2.2
4	DOE-NE programmatic mission need	7.8	1.8		meet needs of DOE-NE and industry		
5	Nuclear energy industry needs	6.1	2.7				
10	Beam energies (and energy ranges)	7.9	1.8				
11	Ion types and variety	7.7	2.2	C2	Ability of the facility to provide a variety	7.4	22
15	Multiple convergent beams (dual or triple)	6.5	2.3		multiple beams, etc.)	/.4	2.2
12	Variety of irradiation environments	7.4	2.0	C 2	Ability of the facility to provide a variety	()	2.4
16	Ability to match prototypic conditions	6.5	2.8	0.3	of irradiation environments and conditions	6.9	2.4
13	Multiple analytical techniques available	5.8	2.7				
17	In situ examination during irradiation	6.6	2.9	C4	Ability of the facility to collect and	6.4	2.9
20	Radiation effects/damage experience at the host institution	6.9	3.1	04	data onsite and in situ		
6	Proportion of time to be allocated to direct DOE-NE mission work through GAIN, NSUF, or DOE-NE programs	6.3	1.7		DOE-NE support and activities		
7	Current/past DOE-NE support/ investment	5.9	1.9	C5	C5 (performed and anticipated) at the facility, including the volume of experiments that	6.3	2.0
8	Current DOE-NE work performed at facility	6.3	2.5		can be handled		
9	User experiment throughput capability	6.7	2.1				
19	Does the facility provide new capabilities?	6.1	3.4		Unique conchilities of the facility		
21	Need to define and have new capability be on path toward greater applicability and relevance	6.2	2.6	C6	including new technology	6.2	2.9

Table 3. Original 25 criteria combined into eight.

Table 3. (continued).

Original No.	Criteria	Mean	Std. Dev.	Combined	Combined Criteria	Mean	Std. Dev.
14	Radiation levels allowed for samples	6.3	2.5				
18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	5.6	2.4	C7	Ability of the facility to handle radioactive materials in the beams and	5.8	2.7
24	Is there support of small specimen test technology?	5.5	3.3		elsewhere onsite		
23	Applicability of results to development or data goals	5.4	3.5	<u> </u>	Ability of the facility to produce high-quality data that can support	5.2	
25	Standards development, including temperature sensing	5.2	2.8	68	verification and validation of modeling and simulation	5.3	3.2

The weights and standard deviations shown in Table 3 for the eight combined criteria are a combination of the standard deviations from the original 25 criteria. During the first day of the workshop, the eight criteria were expanded to the following nine combined criteria based on input from the participants:

- 1. Ability of the facility to produce results of high scientific merit and accurately simulate neutron irradiation results
- 2. Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.)
- 3. Ability of the facility to provide a variety of irradiation environments and conditions
- 4. Ability of the facility to collect and analyze materials properties and perform microstructural characterization data onsite and/or in situ
- 5. DOE-NE support and activities (performed and anticipated) at the facility, including the volume of experiments that can be handled
- 6. Unique capabilities of the facility, including any new technology
- 7. Ability of the facility to handle radioactive materials in the beams and elsewhere onsite
- 8. Ability of the facility to produce quality-level data that can support licensing as well as verification and validation of modeling and simulation
- 9. Ability of the facility to produce results that meet the needs of DOE-NE (including cross-cutting programs) and the nuclear energy industry.

4.1 Final Criteria

After much discussion, a set of 10 criteria were agreed upon by the workshop participants. These criteria were discussed and weighted during the workshop. Table 4 shows the weights normalized so that the highest weight is equal to 100% and the remaining are relative to that one. The ThinkTank software also calculates the standard deviation of the weights based on the scores and the number of voters. Unfortunately, the spread in scores given by the participants was too large to use the weights in a statistically valid quantitative assessment. The relative weights $\pm 1\sigma$ are shown in Figure 1. The plot shows that there is significant overlap in the weights. Even with this issue, the relative importance of the criteria can be observed through the raw scores. The highest scoring criteria are generally also the ones with the least variation in opinion, as shown by the lower coefficient of variation (CoV) (standard deviation divided by the weight or percent standard deviation).

Table 4. Final 10 criteria used in the NSUF workshop to assess ion beam facilities.

#	Combined Criteria	Relative Weight	CoV
C1	Viability for the capability to extend our understanding towards accurately simulating nuclear irradiation conditions (neutrons or fission fragments).	100%	13%
C10	Ability of the facility to produce results that meet the needs of the DOE – Office of Nuclear Energy (including cross-cutting programs) and the nuclear energy industry.	94%	21%
C3	Ability of the facility to provide a variety of well-controlled target environments and conditions.	92%	22%
C8	Ability of the facility to handle radioactive materials (structural materials and/or fuels) in the beams and elsewhere onsite.	89%	20%
C5	Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data in-situ.	86%	24%
С9	Ability of the facility to produce quality-level data that can support licensing as well as verification and validation of modeling and simulation.	86%	29%
C2	Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.)	85%	24%
C7	Unique capabilities of the facility including any new technology that has the capability to close technological gaps.	83%	30%
C6	Current or potential productivity of the facility (e.g. fewer high-impact experiments or high-volume sample throughput).	69%	35%
C4	Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data onsite.	62%	39%

Figure 1. Relative weights of the 10 final criteria and their standard deviations $(\pm 1\sigma)$.

Figure 2 shows the final 10 criteria and the proportion of votes to weight each one as high (dark green), medium (light green), or low (yellow). The value in parentheses is the relative weight of the criterion. Note that the final order of the facility rankings was not affected by the use or non-use of the weighting criteria.

The following pages show the data from the ThinkTank software, including the results from the weighting and the comments made by the workshop participants.

Figure 2. Distribution of votes for criteria weighting exercise.

5. ION BEAM FACILITY ASSESSMENT

In addition to developing and weighting criteria, workshop participants viewed presentations from ion beam users and DOE-NE R&D programs and then the ion-beam facility representatives. These presentations are provided in Appendixes D and E along with any community comments in the sidebar of the slides.

Following the presentations, the workshop participants assessed each ion beam facility against each of the final 10 criteria. This exercise was performed individually, although discussions and questions were allowed. ThinkTank software was used to collect the data from the assessments. The data and comments from the facility ranking exercise are in Appendix F. Figure 3 shows the results of the assessment of the facilities against the criteria. The absolute scores are slightly different if the criteria weights are applied, but the overall ranking does not change.

It should be noted that the facilities are not all focused on the same objectives and therefore may have significantly different designs. Of the 15 facilities that were reviewed, only 11 were operational at the time. Four facilities were proposed to be constructed in the future:

- 1. Argonne National Laboratory Extreme Materials Beam Line (XMAT)
- 2. Brookhaven National Laboratory (BNL) Ion X-Ray Beam (IXB)
- 3. BNL Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex BLIP-BLAIRR
- 4. Massachusetts Institute of Technology (MIT) MIT Nuclear Materials Laboratory.

Additionally, the facility at Purdue University focuses on surface science of materials and utilizes much lower energy ions than the others. The Edwards Accelerator Laboratory at The Ohio University is primarily engaged in nuclear data measurement and not in the irradiation effects on materials. The Idaho Accelerator Laboratory at Idaho State University is a multipurpose facility that supports a wide variety of research endeavors. These three facilities should not be judged in the same manner as the others.

Beyond this, the remaining eight currently operating facilities all provide vital support to nuclear materials researchers. The individual capabilities of these eight facilities differ based on their particular missions. Three facilities have (or will have soon) in situ characterization capabilities that combine ion irradiation with a transmission electron microscope. The proposed facilities seek to provide in situ characterization with an x-ray source.

- C1: Viability for the capability to extend our understanding towards accurately simulating nuclear irradiation conditions (neutrons or fission fragments).
- C2: Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.).
- C3: Ability of the facility to provide a variety of wellcontrolled target environments and conditions.
- C4: Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data onsite.
- C5: Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data in-situ.
- C6: Current or potential productivity of the facility (e.g. fewer high-impact experiments or high-volume sample throughput).
- C7: Unique capabilities of the facility including any new technology that has the capability to close technological gaps.
- C8: Ability of the facility to handle radioactive materials (structural materials and/or fuels) in the beams and elsewhere onsite.
- C9: Ability of the facility to produce quality-level data that can support licensing as well as verification and validation of modeling and simulation.
- C10: Ability of the facility to produce results that meet the needs of the DOE – Office of Nuclear Energy (including cross-cutting programs) and the nuclear energy industry.

Figure 3. Overall score and ranking of the ion beam facilities.

6. FUTURE WORK

During the closeout discussion from the NSUF IBIOW, three criteria were viewed by the participants as being quantitative in nature and therefore better judged by direct comparison instead of peer assessment. These were Criteria C2, C3, and C8. NSUF gathered quantitative data for these three areas for use in future assessments. These data can be found in Appendix G.

The NSUF IBIOW is the first step in assessing and building a plan for the development and expansion of ion beam irradiation capabilities in the United States. The ThinkTank software can be used in the future to allow additional people, such as a wider community of ion beam users, to review the presentations and quantitative data and to participate in the assessment of the existing and proposed ion beam irradiation facilities. In addition, a road-mapping exercise is planned for Fiscal Year 2017 to layout the direction of R&D efforts.

7. REFERENCES

Heidrich, Brenden J., Supplement to the NSUF Ion Beam Investment Options Report: Initial Results and Recommendations, INL/LTD-16-38580, Rev. 0, April 2016.

Appendix A

Workshop Agenda

Appendix A

Workshop Agenda

Tuesday, March 22

8:00	ThinkTank and INL Guest Network setup	Jodi Grgich
	1	Idaho National Laboratory Facilitator
8:30	Introductions of Workshop Participants (light breakfast)	Jody Henley
		Idaho National Laboratory Facilitator
9:00	Welcome, Introductions and Workshop Overview	Rory Kennedy
		Director, NSUF
9:10	Agenda and Conduct of Workshop	Brenden Heidrich
		NSUF Capability Scientist
9:20	Introduction to ThinkTank	Jody Henley
		Idaho National Laboratory Facilitator
9:30	Discussion of the Workshop Analysis Criteria and Weights	Brenden Heidrich
		NSUF Capability Scientist
10:30	Morning Break (30 min)	
11:00	NSUF User's Organization	
		NSOF OO Chuir, westinghouse
11:30	Irradiation Material Testing for VHTR Core Materials	
		Taano National Laboratory Scientist
12:00	Light Water Reactor Sustainability (LWRS) Program Data	NeedsSebastien Teysseyre
		Idaho National Laboratory Scientist
12:30	Lunch (90 min)	
2.00	Nuclear Energy Advanced Modeling and Simulation (NEA)	MS) Program Data
2.00	Needs	
		Idaho National Laboratory Scientist
2:30	Fuel Cycle Research & Development Program Data Needs	Shannon Bragg-Sitton
		Idaho National Laboratory Scientist
3:00	Used Fuel Disposition Program Data Needs.	
		Sandia National Laboratory Scientist

3:00 Afternoon Break (30 min)

3:30	The IVEM-Tandem User Facility: TEM with In-situ Ion IrradiationMeimei Li Argonne National Laboratory Research Scientist
4:00	Extreme Materials Beam Line
	Argonne National Laboratory Research Scientist
4:30	Capabilities at the Idaho Accelerator and RISE Research Centers at Idaho State University
	Idaho State University Research Faculty
5:00	Closing Discussion – Day 1Brenden Heidrich NSUF Capability Scientist
Wedn	esday, March 23
8:00	Advanced Materials Characterization at CMUXE, Purdue University Jitendra Kumar Tripathi Purdue University, Senior Research Associate
8:30	A High-Energy Ion Irradiation Capability for Radiation Damage Experiments at the LLNL Center for Accelerator Mass Spectrometry
9:00	Wisconsin Ion Beam Laboratory: Capabilities and NeedsBeata Tyburska-Pueschel University of Wisconsin Research Faculty
9:30	In-situ Ion Irradiation Transmission Electron Microscope at SNLKhalid Hattar Sandia National Laboratory Scientist
10:00	Morning Break (30 min)
10:30	Ion Irradiation Capabilities at the Michigan Ion Beam Laboratory Gary S. Was University of Michigan Research Faculty
11:00	Accelerator Based Facility for Materials Irradiation TestingNick Simos Brookhaven National Laboratory Scientist
11:30	In-situ X-ray Characterization of Microstructural Evolution due to Ion Beam IrradiationLynne E. Ecker Brookhaven National Laboratory Scientist
12:00	University of Tennessee Ion Beam Materials Laboratory

12:30 Lunch (90 min)

2:00	Edwards Accelerator Laboratory at the University of Ohio
2:30	Ion Beam Laboratory at Texas A&M UniversityLin Shao Texas A&M University Research Faculty
3:00	Ion Beam Materials Laboratory
3:30	Afternoon Break (30 min)
4:00	U.S. Nuclear Industry User Community Requirements Tiangan Lian EPRI-Program Manager
4:30	Potential for Lab Compact Cyclotrons: Ions at Energies Relevant to Engineering PropertiesLance Snead
	MIT Research Faculty
5:00	Closing Discussion - Day 2Brenden Heidrich
	NSUF Capability Scientist
Thurs	day, March 24
8:00	Discussion of Final Criteria and Weighting ExerciseBrenden Heidrich/Jody Henley INL Facilitator
9:30	Ranking Exercise for Investment Options Jody Henley INL Facilitator
10:00	Analysis of Results and Discussion
11:00	Workshop CloseoutBrenden Heidrich
	NSUF Capability Scientist

Appendix B

NSUF Presentations (Workshop and Criteria Weighting)

Appendix B

NSUF Presentations (Workshop and Criteria Weighting)

This appendix provides NSUF presentations made at the workshop with comments from workshop participants (in the sidebar).

Welcome Presentation

Brenden Heidrich

Nuclear Science user Facilities — I Capability Scientist – NSUF Ion Beam March 22, 2016	on Beam Investment Options Workshop – Brenden Heidrich R&D Investment Workshop Idaho National Laboratory Idaho Falls, ID
U.S. DEPARTMENT OF ENERGY	Nuclear Energy
Nuclear Science Ion Beam Inves Work	e User Facilities stment Options (shop
Brenden R&D Capab	Heidrich ility Scientist
NSUF Ion Beam In Idaho Nation Idaho A Idaho f March 3	vestment Workshop hal Laboratory Falls, ID 22, 2016
	INL/MIS-16-37818

- There are a few additional people participating over the Bluejeans conferencing system.
 - · Audio only + ThinkTank
 - Audio is fed through the mics in the meeting rooms.
- Please limit the amount of non-meeting work on laptops and phones during the actual meeting.

3

Infrastructure Needs Referenced in RFIs

Comments from the Introduction to ThinkTank Exercise

- 1. To produce heavy damage in a short time.
 - 1.1 Is this equivalent to neutron damage?
 - 1.2 This is connected to neutron damage in some cases and not in others.
- 2. Fast, low, or no activation, relatively inexpensive.
- 3. Quantifiable well-defined damage.
- 4. To emulate neutron irradiation under various conditions.
- 5. Economical, quick method to implement radiation damage on materials.
 - 5.1 Large accelerators are not very economical
- 6. Dedicated compact accelerators are affordable.
- 7. Very important for fundamental research.
- 8. Ion beams can create damage that is similar to neutrons in certain situations at a much higher damage rate.
- 9. One important and realistic way to speed up materials screening.
- 10. Simulation of radiation damage in materials.
- 11. Offer surrogate irradiation to neutron damage.
- 12. To perform complex material property measurements unavailable to materials test reactor studies.
- 13. For creating far-from-equilibrium microstructures.
- 14. They are the only way to access the high damage rates in both light-water reactor and advanced reactor systems in reasonable times and at reasonable costs.
- 15. Ion beams allow for separation and control of a wide range of experimental conditions that facilitate the isolation and study of fundamental unit mechanisms that occur by radiation damage.
- 16. Simulate primary knock-on atoms from neutrons, fission fragments, and energetic particles from alpha and beta decay. Produce damage under controlled conditions on laboratory time scales.
- 17. To provide an initial look into the microstructure damage before spending the time and money on neutron irradiation.
- 18. Ion beams serve as surrogate for neutron, provide similar microstructure and effects as neutrons in much shorter time without introducing radioactivity.
- 19. Train students.
 - 19.1 This is important and often overlooked.
- 20. Provide data that are easier to use to develop models.
- 21. Separate effects studies.
 - 21.1 This is key to developing validated computational models.

Workshop Criteria Presentation 1

Brenden Heidrich

EI	Criteri	a Sı	umn	nary		SI ar Sc Facili	ience ties	those criteria accord the university, facil industry needs?
				n				2. How can "the abilit
Original	Criteria Sciantific mark and added bit mark	Mean	50	Combined	Combined Criteria	Mean	SD	produce high-qualit
#2	Broad applicability (cross-outting ~ i.e. multi-program)	7.1	2.3	2. 22.52	Ability of the facility to produce results of high scientific	122		produce mgn quan
#4	DOE-NE programmatic mission need	7.8	1.8	C1	merit and the potential tomeet needs of DOE-NE and	1.26	(78) 1	data" end up at the
#5	Nuclear Energy Industry needs	6.1	2.7	2	1.0.00 M			data ena ap at the
#10	Beam energies (and energy ranges)	7.9	18		¥		-	bottom? None of w
#11	on types and variety	7.7	2.2	C2	Ability of the facility to provide a variety of ion	7.4	2.2	
#15	Multiple Convergent 8e ams (dual or triple)	6.5	2.3	문 가지	incadiations (ion types, energies, multiple beams, etc.)	10255	1932	we're doing has an
			1.55		1			
822	venety or maximon environments	7.4	2.0	CB	Ability of the facility to provide a variety of irradiation	6.9	2.4	value unless the dat
#10	seems to match biocopypic conditions	:0.5		9355	environments and conditions.	12292	1000	
#13	Multiple analytical techniques available	5.8	2.7	N	1		1	of high quality. Thi
#17	In-situ examination during gradiation	6.6	2.9	C4	Ability of the facility to collect and analyze	6.4	2.9	
#20	Radiation effects/damage.experience at the host institution	6.9	31	17. 1825.C	microstructural charactergation data onsite and insitu.	(H103)	1773 A.	big issue with this
	We want the state of the state			10				
16	Proportion or time to be allocated to direct No mission work either through GAIN, NSUE or NE programs	6.3	1.7		NE support and activities inachemist and and include			technique.
#7	Current/past NE support/investment	5.9	1.9	C5	the facility including the volume of esperiments that can	6.3	2.0	1
#0	Current NE work performed at facility	6.3	2.5	10.000	be handled.	120357	1.000	
193	User experiment throughput capability	6.7	2.1					
819	Pass the factor, and the Caseb Star	61	1 24			_	-	
	Need to define and have new capability be no oath toward measure	0.1	3.4	C6	Unique capabilities of the facility including new	6.2	2.9	
#21	applicability and relevance.	6.2	2.6		technology.			
Sec. 1		1000	Manue	20				
#14	Radiation levels allowed for samples	6.3	2.5	5	and the sum of the local division of			
#18	pupperting intrastructure (hot work facilities, sample preparation,	5.9	2.4	C7	publicity of the facility to handle radioactive materials in the beams and elsewhere ensite	5.0	2.7	
#24	is there support of small specimen tast technology	5.5	3.3	1				
-								
#23	Applicability of results to development or data goals	5.4	3.5		Ability of the facility to produce high quality data that	1000		
125	Standards development including temperature sensing	5.2	2.8	68	can support verification and validation of modeling and simulation.	5.3	-3.Z	
				άι.	1			4

INE	Energy C1: Scientific	/le	ri	t					<		Nuclear Science User Facilities	1	. Group #2, #4, and #2 together into a single criterion. Move #1 elsewhere and mayb revise.
#1 #2 #4 #5	Criteria Scientific merit and potential merit Broad applicability (cross-cutting—i.e. multi-progra DOE-NE programmatic mission need Nuclear Energy Industry needs	1 0 m) 0 1	2 0 0 1	3 4 0 0 2 0 0 1	4 5 0 1 0 1 1 1 2 2	6 0 3 1 2	7 1 2 3 1	8 9 4 5 2 3 3 3 4 0	10 4 2 3 2	Mean 8.6 7.1 7.8 6.1	Std Dev 1.4 2.3 1.8 2.7	2	 #1 should be on its c or eliminated. Interpreted this slide the ability of the fac to analyze the beam
	Combined Criterion						M	lea	n	Std			to simulate accurate neutron data from M studies. The combin
Abili scien DOE-	ty of the facility to produce results of hi tific merit and the potential to meet ne NE and industry.	gh eds	of	1000			1.000	7.4		2.2			criterion may need rewriting to address

C2: Varie	ty of Irradiations				
	C2: Variety of Irradia	tions <	San St		1. Do convergent, multiple beams really fit with this criterion?
Nucl	ear Energy Criteria 1 2 3 4 5 6 7 #10 Beam energies (and energy ranges) 0 0 1 0 1 0 2 #11 Ion types and variety 0 1 1 0 0 0 3 #15 Multiple Convergent Beams (dual or triple) 1 0 0 1 2 3 2	8910Mean 64227.9 4527.7 1406.5	Std Dev 1.8 2.2 2.3	es	2. When it comes time to "vote" on how each facility capabilities are able to address individual criteria, I wonder if we should implement the "Russian Judge" model from Olympic sports and
	Combined Criteria	Mean	Std Dev		lowest scores recorded (that may be
	Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.)	7.4	2.2		unnecessary, but I thought I'd throw it out for consideration).
				7	3. Beam energy is obviously important. I think the question is more "Cover beam energy spectrum from near surface to deeply penetrating ions."

3 Irradiatio	n Env	rironments			
U.S. DEPAR ENE Nuclear	Energy	C3: Irradiation Environments			 Nuclear Science User Facilities 1. C2 and C3 might be combined 2. What is meant as irradiation environments and prototypic condition
	#12 #16	Criteria1 2 3 4 5 6 7Variety of irradiation environments0 0 1 1 0 2 4Ability to match prototypic conditions2 0 1 0 2 2 3	8 9 10 Mei 3 2 3 7.4 2 3 1 6.3	Std Dev 4 2.0 8 2.8	 (beta)? Could you be more specific? 3. Could move the multiple beams criterion here, as this describes the radiation environment.
		Combined Criteria	Mean	Std Dev	
	Abilit irradi	y of the facility to provide a variety of ation environments and conditions.	6.9	2.4	
					8

C4: Micro	ostruc	tural Characterization								
O EN Nuc	NER Slear En	GY ergy C4: Microstru Characte	uctura rizatio	l on	<		Nuclear S User Faci	UF Science lities	1. Do yo analyt availat subsec (beta) ⁶	u mean in situ ical techniques or ble onsite for a quent analysis ?
		Criteria	123456	57891	10 Mean	Std Dev			2. What damag	is meant by ge experience? Do
	#13	Multiple analytical techniques available	112042	2203	1 5.8	2.7	2		you w wheth	ant to know er a facility has
	#17	In-situ examination during irradiation	201014	4114	2 6.6	2.9			implar	itation and/or
	#20	Radiation effects/damage experience at the host institution	102130	0014	4 6.9	3.1			irradia (beta)	tion capability
8		Combined Criteria			Mea	in	Std Dev		3. Consid materi proper	ler adding al and bulk ties.
	Ability	of the facility to collect and analy tructural characterization data on	ze site and i	in-situ	6.4		2.9		4. I woul	d only consider
					5			9	that in expect charac Often done e facility irradia	portant only if I the facility to do terization for me. characterization is elsewhere and the y only provides ttion service.

Criteria 1 2 3 4 5 6 7 8 9 10 Mean Std Dev #6 Proportion of time to be allocated to direct NE mission work either through GAIN, NSUF, or NE programs. 0 0 0 2 4 3 2 2 0 6.3 1.7 #7 Current/past NE support/investment 0 0 0 2 1 4 2 3 2 0 1 5.9 1.9 #8 Current NE work performed at facility 1 1 0 0 4 1 2 4 1 1 6.3 2.5 #9 User experiment throughput capability 0 1 1 0 1 3 3 3 0 6.7 2.1	NEF	RGY	C5: NE Support a Activities	nc	ł					<	<	Í	ASU Nuclear Sc User Facilit	ties	 Did DOE-NE weigh in on this one? Isn't this the same as "Support DOE-NE missions" in C1? How is
#6Proportion of time to be allocated to direct NE mission work either through GAIN, NSUF, or NE programs.0002432206.31.7#7Current/past NE support/investment0021423015.91.9#8Current NE work performed at facility1104124116.32.5#9User experiment throughput capability0113306.72.1		1	Criteria	1	2 3	4	5 6	5 7	8	9 1	0	Mean	Std		this different?
#7 Current/past NE support/investment 0 0 2 1 4 2 3 2 1 5.9 1.9 #8 Current NE work performed at facility 1 1 0 4 1 1 6.3 2.5 #9 User experiment throughput capability 0 1 0 1 3 3 0 6.7 2.1	#6	Proportion of tin work either thro	ne to be allocated to direct NE mission ugh GAIN, NSUE, or NE programs,	00	00	2	4	3 2	2	2 (>	6.3	1.7		
#8Current NE work performed at facility1104124116.32.5#9User experiment throughput capability011013306.72.1	#7	Current/past NE	support/investment	00	2	1	4	2 3	2	0	1	5.9	1.9		
#9 User experiment throughput capability 0 1 1 3 3 0 6.7 2.1	#8	Current NE work	performed at facility	1	10	0	4	1 2	4	1	1	6.3	2.5		
	#9	User experiment	throughput capability	0	1 1	0	1	3 3	3	3 (,	6.7	2.1		
Combined Criteria Mean Std Dev			Combined Criteria								N	Лean	Std Dev		
NE support and activities (performed and anticipated) at the facility including the volume of experiments that can be handled.	NE supp facility i	ort and activi ncluding the v	ties (performed and anticipat olume of experiments that c	ted an	l) a be	at e l	th ha	nc	lle	d.		6.3	2.0		

NE	RG) Energy	C6: Unique Capa	bili	tie	s		<	\leq		Nu/Usi	Clea er Fa	r Sc acilit	ience ies	the current existing facilities?2. Where do we ask the community about the community about the facilities.
	-	Criteria		1 2	34	156	57	8 9	10	Mean	St	d ev		able to test nuclear fuel? 3. New capabilities are only
#19	Does th	e facility provide new capabilities?		30	1	11	11	3 2	2	6.1	3.	4		useful if they serve a
#21	Need to greater	define and have new capability be on path to applicability and relevance.	ward	10	20	2 2	2 1	41	1	6.2	2.	6		purpose. So we need to
		Combined Criteria	Me	an	S	td								 4. Clarification: "new technology" covers
		Unique capabilities of the facility including new technology.	6.	2	2	.9								everything.
				1										5. New technology include irradiation, characterization methods etc.

C7: Radioactive Material Capabilities

				/ User Fa	cinties	other?
	Criteria	1234567	8910M	Aean Std Dev		
#14	Radiation levels allowed for samples	0004141	312	6.3 2.5		
#18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	1040061	301	5.6 2.4	1	
#24	Is there support of small specimen test technology	4000212	311	5.5 3.3	1	
	Combined Criteria	Mean	Std Dev			
	Ability of the facility to handle radioactive materials in the beams and elsewhere onsi	5.8	2.7			

ENERGY Nuclear Energy	C8: High-Quality Data to Support Modeling and Simulation Efforts	form a new category. 2. I think we need to better define what is meant by high quality and what
#23 Applicat #25 Stand	Criteria 1 2 3 4 5 6 7 8 9 10 Mean Std Dev ility of results to development or data goals 4 0 2 0 2 2 3 1 5.4 3.5 ards development including temperature sensing 3 0 1 2 1 0 5.2 2.8 Combined Criteria Mean SD SD SD	 3. I would remove "high-quality data" from definition that can be confused with high-meri data and replace it with "Quality Data" to emphasize the QA aspec
quality data and validat	that can support verification 5.3 3.2 on of modeling and simulation.	of the data rather than th merit. 4. Repeatability and
		reliability are important. 5. QA plan for data validation.
		 6. NQA-1? 7. Whether ion irradiation follows standard procedures is very important. The criteria should include repeatability and reliability.
		8. I do not think ion irradiation data will even be used for licensing
		 9. For the past many years, the push for ion irradiation and computational materials science has been very active in leading into at least pre-licensing activities. It is not clear that this data will NEVER be used in that way. (But I agree that it' not likely, and at best it will not comprise the majority of the data generated.)

		10. User community- defined standard methods and measurement techniques need to be developed with data validation with neutron irradiation damage before licensing actions could be considered based on ion beam irradiations alone. The roadmap for ion beams needs to be comprehensive if the licensing path is to be pursued
		puisuou.
Criteria Rem	oved from Original List	
1		
U.S. DEPART	Energy Criteria Removed from Original List	
Nuclear	Criteria Removed from Original List	
V.S. DEPART ENE Nuclear	Criteria Removed from Original List Criteria Removed from Original List Criteria 1 2 3 4 5 6 7 8 9 10 Mean Std Dev International capabilities alternatives 1 0 3 1 6 2 1 0 1 0 4.8 1.9	
U.S. DEPART Nuclear #3 #22	Criteria Removed from Original List State International capabilities alternatives 1 0 3 1 6 2 1 0 1 0 4.8 1.9 Relative R&D impact of utilizing direct simulants (i.e. light ions.) 3 0 1 0 2 2 2 2 2 0 5.4 2.9	

Workshop Criteria Presentation 2

Brenden Heidrich

E	S. DEPARTMENT OF ENERGY Nuclear Energy	rite	ria	 Scientific knowledge technical expertise to help with experiment design and execution
#	Criteria	#	Criteria	
1	Scientific ment and potential ment	14	Radiation levels allowed for samples	
2	Broad applicability (cross-cutting-i.e. multi-program)	15	Multiple Convergent Beams (dual or triple)	
3	International capabilities alternatives	16	Ability to match prototypic conditions	
4	DOE-NE programmatic mission need	17	In-situ examination during irradiation	
5	Nuclear Energy Industry needs	18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	
6	Proportion of time to be allocated to direct NE mission work either through GAIN, NSUF, or NE programs.	19	Does the facility provide New Capabilities?	
7	Current/past NE support/investment	20	Radiation effects/damage experience at the host institution	
8	Current NE work performed at facility	21	Need to define and have new capability be on path toward greater applicability and relevance.	
9	User experiment throughput capability	22	Relative R&D impact of utilizing direct simulants (i.e. Swift Heavy Ion) or indirect simulants (i.e. light ions.)	
1	Beam energies (and energy ranges)	23	Applicability of results to development or data goals	
1	lon types and variety	24	Is there support of small specimen test technology	
1 2	Variety of irradiation environments	25	Standards development including temperature sensing	
1	Multiple analytical techniques available			

	ALKOT	New Criteria		
Nu	clear Energy		User Facilities	×.
#		CombinedCriterion		
C1	Ability of the facility neutron irradiation	results, to produce results of high scientific me results.	erit and accurately simulate	
C2	Ability of the facility beams, etc.)	y to provide a variety of ion irradiations	(ion types, energies, multiple	
сз	Ability of the facility	v to provide a variety of irradiation envi	ronments and conditions.	
C4	Ability of the facility microstructural cha	y to collect and analyze materials prope racterization data onsite and/or in-situ.	rties and perform	
C5	DOE-NE support an volume of experime	d activities (performed and anticipated) ents that can be handled.) at the facility including the	
C6	Unique capabilities	of the facility including any new techno	logy.	
C7	Ability of the facility	to handle radioactive materials in the	beams and elsewhere onsite.	
C8	Ability of the facility verification and vali	y to produce quality-level data that can dation of modeling and simulation	support licensing as well as	
с9	Ability of the facility Energy (including c	to produce results that meet the need oss-cutting programs) and the nuclear	s of the DOE – Office of Nuclear energy industry.	
				3

- 1. Move #17 to C6.
- 2. Need to add a new criterion: technical support.
- 3. One strong need for DOE-NE will be to identify important criteria that are not well met by the existing infrastructure. Understanding gaps may lead to investment.
- e is a strong push individual groups to ect their Wheaties." e is an appearance hese criteria are ming a measure of ty on existing ities with winners osers emerging from neeting. How can iscussion be formed into a iminating evaluation cilities to discern is available at each ty (and globally s the country) out creating the ession of "good/bad" es?

: Scientin	c Merit					
	RGY	C1: Scientific	Merit	Ś		1. Suggestion: add "and simulate fission fragments."
Nuclear	Energy			V	Jser Facilities	2. Change to "simulate nuclear irradiation conditions."
Abili accu	ty of the facility t rately simulate n	o produce results of eutron irradiation re	terion f high scientific esults.	merit and		3. Reword: Viability for the capability to extend our understanding toward accurately simulating neutron radiation results.
						4. Rank to capability of the facility/team to answer the question: Can an ion beam simulate a neutron irradiation faster than a
		Criteria	1 2 3 4 5	6 7 8 9 10 Mean	Dev	reactor can?
	a second s		00000			
#1	Scientific merit and	potential merit	00001	01454 8.6	1.4	

U.S. DEPARTMENT OF ENERGY Nuclear Energy	C2: Variety of Irradiations	
1	Combined Criteria	
Ability of the fit types, energies	acility to provide a variety of ion irradiations (ion s, multiple beams, etc.)	
An ideal facil spectrum fro	ity should be able to cover the beam energy m near surface to deeply penetrating ions.	
	Criteria 12345678910Mean Std Dev	
#10 Beam en #11 Ion type #15 Multiple	bergies (and energy ranges) 00 10 02 64 2 7.9 1.8 s and variety 01 10 03 45 2 7.7 2.2 Convergent Beams (dual or triple) 10 01 23 21 4 0 6.5 2.3	
the second se	5	

3: Irradiatio	n En	vironments								
U.S. DEPART ENEI Nuclear	RG Energy	C3: Irradiatio	n Ien	its	02.07			(1. Replace irradiation with "target." 2. Well controlled target conditions.
		Combined Crit	teria	a	_	_	_		_	
	Abilit enviro	y of the facility to provide a va onments and conditions.	riet	y of	irr	adi	ati	on		
	• •	 Should this include multiple b Specific conditions: Temperature (heated and Chemical environments) Pressure Other? 	ear d ch (wa	nlin nille ter,	d) LN	(in: /, n	ste nol	ead c	f C2 salts,	2)? s, etc.)
		Criteria	12	3 4 5	6 7	89	10	Mean	Std Dev	
	#12	Variety of irradiation environments	00	1 1 0	2 4	32	3	7.4	2.0	
	-									

ENER Nuclear En	ergy	C4: Materials and Micr Characte	s Pi os eriz	ro tru	pe uct	rti tur n	al	•		Nuclear Scien User Facilities	ce	 Split into two criteri onsite/in situ separa criteria. There is a tradeoff between what can be
Abilit perfo	y of the facilit rm microstrue	Combined ty to collect and an ctural characterizat	Crite alyze ion c	ria mi lata	atei a on	rials Isite	pro an	oper id/or	ties a in-sit	nd tu.		done in situ vs. what be done without that instrument on the tar Doesn't this capabili
												have to be an add-or else being equal, doe also have in situ capability and/or mis structural
		Criteria	12	3 4	5 6	789	101	Mean	Std Dev			have to be an add-or else being equal, doo also have in situ capability and/or mi- structural characterization?
#13	Multiple analytic	Criteria al techniques available	12	3 4 2 0	5 6	7 8 9 2 0 3	101	Mean 5.8	Std Dev 2.7			have to be an add-or else being equal, doe also have in situ capability and/or mic structural characterization?
#13	Multiple analytic	Criteria al techniques available ion during irradiation	1 2 1 1 1 2 0	3 4 2 0 1 0	5 6 4 2 1 4	7 8 9 2 0 3 1 1 4	10 1 2	Mean 5.8 6.6	Std Dev 2.7 2.9			have to be an add-or else being equal, doe also have in situ capability and/or mis structural characterization?

U.S. DEPARTMEN ENER Nuclear En	wro≠ GY ergy	C5: NE Support Activities	and			<	۲	Ruclear User Fac	Science cilities	 Replace volume with productivity (words Is this a question of much work has been done at that site? If
		Combined Criter	ria							projection of how m
includi	ng the volum	e of experiments that ca	n be ha	ndl	ed.	8				based on capability
										available time, and of the site?
		Criteria	12	1 3 4	56	789	0 10 Mear	Std		available time, and of the site?
#6	Proportion of ti work either thre	Criteria ne to be allocated to direct NE n pugh GAIN, NSUF, or NE program	1 2 nission 15.	2 3 4	56 43	7 8 9 2 2 2	10 Mear 2 0 6.3	Std Dev 1.7		available time, and of the site?
#6	Proportion of ti work either thr Current/past Nf	Criteria ne to be allocated to direct NE n ugh GAIN, NSUF, or NE program support/investment	nission 0 C ns. 0 C	2 3 4 0 0 2 0 2 1	56 43 42	7 8 9 2 2 2 3 2 0	2 0 6.3 0 1 5.9	Std Dev 1.7 1.9		available time, and of the site?
#6 #7 #8	Proportion of tin work either thro Current/past NE Current NE wor	Criteria ne to be allocated to direct NE n ugh GAIN, NSUF, or NE program support/investment c performed at facility	1 2 nission 0 0 15. 0 0 1 1	2 3 4 0 0 2 0 2 1 0 0 0	56 43 42 41	7 8 9 2 2 2 3 2 0 2 4 2	2 0 6.3 1 5.9 1 6.3	Std Dev 1.7 1.9 2.5		available time, and of the site?

ENE Nuclear	Energy	C6: Unique Capabil	itie	s	<		Nuc	clear Sci er Facilit	I ience ies	1. Hard to do this unless you take a group of experts (users/modeler and all the capabilities presented (or the expert
		Combined Criteria			_	_				from each place) and
11	nique capabili	ties of the facility including any n	ew te	echr	olo	gv.				create a big matrix of
•	Does the c	apability fill any known gaps in	tech	nolo	gy	?				available vs. what wou be needed. If you don' you get the problem of ranking wildly differen
	Does the c	apability fill any known gaps in	tech	nok	gy	?				 available vs. what wou be needed. If you don' you get the problem of ranking wildly different technologies. How far should we loo into the past
	Does the c	apability fill any known gaps in Criteria	tech	nolo 3 4 5	gy 7	?	Mean	Std Dev		 available vs. what wou be needed. If you don' you get the problem of ranking wildly different technologies. How far should we loo into the past performance— 5, 10 years?
#19	Does the c	apability fill any known gaps in Criteria	tech	nolo 3 4 5	gy ⁻¹	? 9 10 2 2	Mean 6.1	Std Dev 3.4		 available vs. what wou be needed. If you don' you get the problem of ranking wildly different technologies. How far should we lood into the past performance— 5, 10 years?

NERG	C7: Radioactive	Mate	ria			Ð	, ISL	IF	
luclear Energ	Capabilities						clear Scie er Faciliti	ence es	
	Combined Criter	a							
Ability of the elsewhere or	facility to handle radioactive mate nsite.	rials in f	the b	ean	ns ai	nd			
Radioactive	e structural materials	Fuel ma Sun dep LEU Pu a Higt	ateria roga U or I or I and a nly-b	als tes nat HEU actir	U nide ed fi	s uels			
	Criteria	1	3 4 5	67	3 9 1	0 Mean	Std Dev		
#14 Radiatio	n levels allowed for samples	00	041	41	3 1 2	6.3	2.5		
#18 Support	ing infrastructure (hot work facilities, sample tion, etc.)	10	400	61	301	5.6	2.4		
43.6 Just	support of small spanings tost toshaplan.		00	12	2 1 1	55	2.2		

ENERG Nuclear Energ	Y C8: High-Qu Suppor Simulat	uality Data to t Modeling and tion Efforts	d Mucl Nucl User	lear Science r Facilities	
	Combine	ed Criteria			
Ability of licensing	the facility to produce qual as well as verification and v	ity-level data that car alidation of modeling	n support and simulation	on.	
• C • F	ommunity standards shou acility should follow standa ample preparation, etc.	Id be developed and ard procedures for ir	applied. radiations,		
s	allo allo di				
S	Criteria	12345678910M	san Std Dev		
#23	Criteria Applicability of results to developm or data goals	12345678910 Ment 40200202315	an Std Dev .4 3.5		

Ability of the Department programs) at	C9: Meetir Combined facility to produce resul of Energy – Office of Nuc	ng R&D Needs		/ Nuclear Science User Facilities	e	
Ability of the Department programs) a	Combined facility to produce resu of Energy – Office of Nuc	d Criterion Its that meet the nee				
Ability of the Department programs) a	facility to produce resu of Energy – Office of Nu	Its that meet the nee	the two over several to the			
programs) a		clear Energy (includi	ds of the ng cross-cut	tting		
				Std		
-	Criteria	123450	7 8 9 10 Mea	Dev		
#2 Broad app	licability (cross-cutting-i.e. mu	lti-program) 0 0 2 0 1 3	2 2 3 2 7.1	2.3		
#4 DOE-NEp	ogrammatic mission need	000111	5 3 3 3 7.8	1.8		
#5 Nuclear E	lergy Industry needs	110222	1 4 0 2 6.1	2.1		
					110.20	

Workshop Criteria Presentation 3

Brenden Heidrich

6	ENERGY	Final Edit	
	Nuclear Energy		V Nuclear Science User Facilities
#	1	Combined Crit	eria
C1	Viability for the capabi irradiation conditions	lity to extend our understanding to (neutrons or fission fragments).	wards accurately simulating nuclear
C2	Ability of the facility to	provide a variety of ion irradiation	s (ion types, energies, multiple beams, etc.)
C3	Ability of the facility to	provide a variety of well-controlled	d target environments and conditions.
C4	Ability of the facility to characterization data of	collect and analyze materials proponsite.	erties and/or perform microstructural
C5	Ability of the facility to characterization data i	collect and analyze materials prop n-situ.	erties and/or perform microstructural
C6	Current or potential pr sample throughput).	oductivity of the facility (e.g. fewer	high-impact experiments or high-volume
C7	Unique capabilities of technological gaps.	the facility including any new techn	ology that has the capability to close
C8	Ability of the facility to and elsewhere onsite.	handle radioactive materials (struc	ctural materials and/or fuels) in the beams
С9	Ability of the facility to validation of modeling	produce quality-level data that car and simulation.	n support licensing as well as verification and
C10	Ability of the facility to (including cross-cutting	produce results that meet the nee g programs) and the nuclear energy	ds of the DOE – Office of Nuclear Energy r industry.

- · Chemical environments (water, LM, molten salts, etc.)
- Pressure
 Other?

	Criteria	1	2	3	4	5	6	7	8	9	10	Mean	Std Dev
#12	Variety of irradiation environments	0	0	1	1	0	2	4	3	2	3	7.4	2.0
#16	Ability to match prototypic conditions	2	0	1	0	2	2	3	2	3	1	6.3	2.8

8

			•		H	ligt	h	b	ип	10	df	uels	
	Criteria	1	1	2 3	3 4	15	6	7	8	9	10	Mean	Std Dev
#14	Radiation levels allowed for samples	0	1	>	4	1	4	1	3	1	2	6.3	2.5
#18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	1	1 0	2	1	0	6	1	3	0	1	5.6	2.4
#24	Is there support of small specimen test technology	4) (0	2	1	2	3	1	1	5.5	3.3

Appendix C

Criteria Weighting Data and Comments

Appendix C

Criteria Weighting Data and Comments

Criteria Weighting – Exercise 1 (pre-workshop exercise)

Votes Cast: 14

No.	Criteria	Avg. Score	+/	Std Dev	1	2	3	4	5	6	7	8	9	10
1	Scientific merit and potential merit	8.79	26.4%	1.32	0	0	0	0	1	0	0	4	4	5
2	Broad applicability (cross-cutting – i.e., multi program)	7.29	31.7%	2.22	0	0	2	0	1	1	2	3	3	2
3	International capabilities alternatives	4.50	24.9%	1.99	2	0	2	1	6	2	0	0	1	0
4	DOE-NE programmatic mission need	7.93	31.2%	1.87	0	0	0	1	1	1	2	3	2	4
5	Nuclear energy industry needs	6.64	30.2%	2.72	1	1	0	1	2	0	1	5	1	2
6	Proportion of time to be allocated to direct DOE-NE mission work through GAIN, NSUF, or DOE-NE programs	6.36	28.6%	1.72	0	0	0	2	3	3	3	1	1	1
7	Current/past DOE-NE support/investment	5.93	33.5%	2.34	0	0	3	1	4	0	2	2	0	2
8	Current DOE-NE work performed at facility	6.29	29.5%	2.66	1	1	0	0	5	0	1	3	1	2
9	User experiment throughput capability	7.00	27.0%	1.89	0	1	0	0	1	3	3	2	4	0
10	Beam energies (and energy ranges)	7.79	26.0%	1.82	0	0	1	0	1	0	2	5	3	2
11	Ion types and variety	7.79	25.5%	2.04	0	1	0	0	1	0	2	4	4	2
12	Variety of irradiation environments	7.71	28.5%	1.71	0	0	0	1	1	0	4	4	1	3
13	Multiple analytical techniques available	6.21	28.8%	2.60	1	1	0	0	5	0	2	1	3	1
14	Radiation levels allowed for samples	7.14	38.8%	2.33	0	0	0	4	0	2	0	3	2	3
15	Multiple convergent beams (dual or triple)	6.36	27.4%	2.19	1	0	0	1	3	2	2	2	3	0
16	Ability to match prototypic conditions	6.43	29.0%	2.61	2	0	0	0	2	1	4	2	2	1

No.	Criteria	Avg. Score	+/	Std Dev	1	2	3	4	5	6	7	8	9	10
17	In situ examination during irradiation	7.43	33.5%	3.02	2	0	0	0	1	1	1	1	4	4
18	Supporting infrastructure (hot work facilities, sample preparation, etc.)	6.07	29.2%	2.63	1	0	3	0	0	4	1	3	0	2
19	Does the facility provide new capabilities?	6.93	37.4%	3.37	3	0	0	0	1	0	1	3	2	4
20	Radiation effects/damage experience at the host institution	6.86	33.8%	3.04	1	0	1	1	4	0	0	0	2	5
21	Need to define and have new capability be on path toward greater applicability and relevance	6.93	27.4%	2.46	1	0	1	0	1	2	1	5	1	2
22	Relative R&D impact of utilizing direct simulants (i.e. swift heavy ion) or indirect simulants (i.e., light ions)	5.86	35.6%	2.85	3	0	0	0	2	2	2	2	3	0
23	Applicability of results to development or data goals	5.43	40.9%	3.68	5	0	1	0	0	1	0	2	4	1
24	Is there support of small specimen test technology?	5.21	38.1%	3.43	5	0	0	0	2	1	0	3	2	1
25	Standards development including temperature sensing	5.29	37.3%	2.99	4	0	0	1	1	1	2	4	1	0

Community Comments on the Criteria (#2)

Criteria	Comments
8. Current DOE-NE work performed at facility	Although it would be preferable that the person in charge of the facility would be very knowledgeable in the issues we need to tackle upfront, a facility with the capability we need and an advisory board composed of knowledgeable persons would allow any facility to satisfy the requirements of the nuclear-energy research community.
12. Variety of irradiation environments	This question is not clear to me. What variety are we talking about? Ion used? Energy? Something else?
16. Ability to match prototypic conditions	This is a tricky question as, for very high dose, such ability has not been demonstrated yet.

Criteria Weighting – Exercise 3 Votes Cast: 23

No.	Low / Med / High	Avg. Score	+/	Std. Dev	Low	Medium	High
1	Viability for the capability to extend our understanding toward accurately simulating nuclear irradiation conditions (neutrons or fission fragments)	2.83	37.9%	0.38	0	4	19
2	Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.)		28.5%	0.57	1	12	10
3	Ability of the facility to provide a variety of well-controlled target environments and conditions		28.5%	0.57	1	7	15
4	Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data onsite		33.7%	0.67	9	11	3
5	Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data in situ	2.43	28.8%	0.58	1	11	11
6	Current or potential productivity of the facility (e.g., fewer high-impact experiments or high-volume sample throughput)	1.96	34.5%	0.69	6	12	5
7	Unique capabilities of the facility, including any new technology that has the capability to close technological gaps	2.35	34.9%	0.70	3	9	11
8	Ability of the facility to handle radioactive materials (structural materials and/or fuels) in the beams and elsewhere onsite	2.52	50.0%	0.50	0	11	12
9	Ability of the facility to produce quality-level data that can support licensing as well as verification and validation of modeling and simulation	2.43	35.6%	0.71	3	7	13
10	Ability of the facility to produce results that meet the needs of DOE-NE (including cross-cutting programs) and the nuclear energy industry	2.65	28.0%	0.56	1	6	16

LOW / MED / HIGH

Community Comments on the Criteria (#3)

Combined Criteria	Comments
1. Viability for the capability to extend our understanding toward accurately simulating nuclear irradiation conditions (neutrons or fission	1. Don't understand what is meant by viability. Suggest removing "viability for." Someone should improve English here. Also, this one is important but difficult to judge/score since it is too abstract.
fragments)	2. While accurately simulating (or informing) the effects of neutron irradiations is the ultimate goal of ion beams, no single capability or facility can achieve this goal. Rather, a collection of complementary capabilities coupled with a robust user community is required. Thus, scoring individual facilities on these criteria seems difficult.
3.	3. This must be defined by the programs (with input from facilities). We need a collective effort to move forward, and the path forward must be determined before we can decide which facility is best equipped to support such effort.
	4. It is critical to determine the limitations, if any, of the use of ion beam irradiation techniques for the simulation of the impacts of neutron irradiation on materials.
	5. This criterion cannot be quantified, since we don't have a good

Combined Criteria			mments
			idea of what is truly needed to accurately simulate neutron damage in materials from ion beam irradiation. One facility may actually have outstanding potential to produce better results, but AT THIS TIME there is no standard upon which to measure such a claim. Therefore, I graded all facilities the same.
2.	Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.)	1.	The variety of ion beam conditions is one of the most important attributes that will enable a facility to meet the needs of the user community and provide DOE-NE with the data it needs to meet its programmatic mission.
		2.	This speaks to the versatility of the facility, which is an important attribute for an ion beam laboratory, as different conditions may be needed to meet the needs of the experimenter.
3.	Ability of the facility to provide a variety of well-controlled target environments and conditions.	1.	Because of the large number of damage effects and conditions that nuclear materials experience in a reactor, clearly it is important that ion beam facilities be able to provide a method for emulating these conditions.
		2.	This is of importance as the effects of radiation on the behavior of materials in nuclear systems are generally not in isolation. Rather, behavior is due to the combination with high temperature, an aggressive environment, stress, etc.
4	Ability of the facility to collect and	1.	How do we rank a facility according to this criterion?
	analyze materials properties and/or perform microstructural characterization data onsite	2.	Users select the analysis capabilities that are most valuable to their experiments and other than a marginal level of convenience, there is not that much value in the ion beam facility also providing onsite characterization capabilities.
5.	Ability of the facility to collect and analyze materials properties and/or perform microstructural characterization data in situ	1.	The ability to generate dynamic data—i.e., watch or record things as they happen—is not represented with sufficient significance in the general weighting criteria.
6.	Current or potential productivity of the facility (e.g., fewer high-impact experiments or high-volume sample throughput)		
7.	Unique capabilities of the facility, including any new technology that has the capability to close technological gaps		
8.	Ability of the facility to handle radioactive materials (structural materials and/or fuels) in the beams and elsewhere onsite	1.	NSUF should provide to the facilities a required format for this information. In order to compare facility to facility, the same description must be used, i.e., total activity, dose rate, and ability to handle special nuclear material.
9.	Ability of the facility to produce quality-level data that can support licensing as well as verification and validation of modeling and simulation	1. 2.	This criterion can be simply restated by determining if the facility has a suitable quality assurance program in place. Ion irradiation data will unlikely be accepted for licensing without the support of mechanism models to correlate ion-neutron damage.

Combined Criteria	Comments
	3. Supporting licensing is definitely important, but it is difficult at this stage since we cannot establish ion-neutron correlation yet.
	4. It is doubtful that ion irradiation alone will lead to licensing. However, only high-quality data will support the efforts toward licensing (which will ultimately be based on neutron data).
	5. It is nearly impossible to quantitatively differentiate the ability of facilities to meet DOE-NE needs. By definition, all invited participants to the workshop were able (on paper) to meet DOE-NE needs. And after reviewing the Excel summary sheet, no one admitted that they were unable or unwilling to perform DOE-NE work. Consequently, I ranked all facilities the same.
	6. Understanding this criterion centers on the word "quality." Researchers view quality as a measure of the precision, accuracy, and impact of their data. Licensing and QA professionals regard "quality" as pertaining to the certification, documentation, and accessibility of the entire data-generation process (i.e., making the data lawyer-friendly). I think the definition of quality for this criterion is the latter. Is that correct?
10. Ability of the facility to produce results that meet the needs of DOE-NE (including cross-cutting programs) and the nuclear energy industry	
Appendix D

Ion Beam Users Presentations

Appendix D

Ion Beam Users Presentations

The first day of the workshop was planned for the ion beam user community (researchers and DOE-NE programs) to present their needs to the community. Their presentations are provided here along with any comments made by workshop participants (in the sidebar).

Presentation: NSUF User's Organization

Peng Xu

History and Missions

History and Missions

- Started in 2010
- Defined in UO Charter updated Oct 2013
 - Provide a formal and clear channel for the exchange of information, advice and best practices between the investigators and the NSUF management
 - Serve as an advocacy group for the experimental activities at the NSUF
 - Facilitate communications among NSUF users, partner facilities, and ATR
 - Charter will be updated this year to enhance user engagement

Membership

Leadership	
Leadership	
 Executive Committee Seven members, including one student member, nominated and elected by UO membership plus immediate past char as member ex-officio Four-year terms (one-year term for student member) Chair and Secretary/Chair-Elect selected by Executive Committee members Proposed changes in the new charter: adding two more regular members and one more student member Proposed Extension of student membership from one-year to two-year 	

Executive Committee

- Current Members
 - Chair Peng Xu, Westinghouse (since 2013)
 - Secretary/Chair-Elect Yong Yang, University of Florida (since 2013)
 - Ron Ballinger, MIT (since 2014)
 - Jessika Rojas, VCU (since 2015)
 - Peter Hosemann, UCB (since 2015)
 - Student Member Matthew Swenson, BSU (since 2015)
 - Immediate Past Chair David Senor, PNNL (since 2012)
- UO Executive Committee 2016 Spring
 Election
 - Two regular members and one student member

	12222222222
CHAR Dave Senor Pacific Northwest National Laboratory david since (Land Land Land	SECONE TARY Ferry Xu Wastingtoose Electric Company Collected States and UED 443-3470
STUDENT MEMBER Dan Letter Idaho Statu University Information eta	Are Tuberto (2hd Torm) Conservat of Fands Tuberto Cald, edu 302-302-302
NEMBER Yong Yang Utversity of Florida Yang staffaff, etc.	MEMOCK Mito Tasei Cristal (Meansity colline: Groet America)
2012 Executive Committee	
CHAOR Just Terry Broos Anathale of Technology Income Control Science Control	SACRE TARY Dave Service Parks Northwest National Laboratory Isold servicible(per
STUDENT MEMBER Peter Wels Unsweity of California, Santa Barbara web/755-dbarbal.com	MEMBER Davis Baller University of Neverla, Las Vegas, tector (Davis reveals, edu (PL2-2005-145)
MEMBER K.L. Murty North Carolina State University (mittellingua eta (mittellingua eta)	MEMORY Unit Fuertes Diversity of Florida Diversity of Florida Diversity of Florida Diversity of Florida
Past Members	
Sean W. Deavill Texas AM 1976-300-1745	

Executive Committee Led Activities

Executive Committee Led Activit	ies
--	-----

- Provided input/feedback to ATR NSUF management on a variety of topics (mostly driven by comments received from users)
 - Proposal process
 - User engagement
 - Sample library policy
 - Utilization of partner facilities
 - User week meeting
 - Experiment planning, scheduling, and executing
 - Created three committees to address specific topics
 - User Week
 - Education and Outreach
 - Capabilities and Infrastructure
 - Membership in committees is open to any UO member and broad participation is encouraged
- Participated in ATR NSUF booth at various national meetings, i.e. ANS Meeting in 2013, TMS meeting in 2014 and 2015

Member Demographics and Status

300

- NSUO is still young and in his early stage
- Significant growth in 2015
- More members from national labs and industry participated in 2015
- Another strong growth is projected in 2016

Member Affiliation

2014

2015

Member Growth

User Week Committee

	User Week Committee
•	Matthew Swenson and Dave Senor, Chair
•	Provides input on timing, format, content, location and other aspects of User Week
	 Matthew has been leading the effort and put together a draft of User Week Meeting Agenda for 2016 with comments from the rest of committee members
•	User Week is the annual meeting of the UO – strong participation and input from members during planning is critical
	 A survey was sent out to all the users to solicit user feedbacks on the user week meeting experience and suggestions on improvement
•	Vision for User Week
	 User Week should be "go-to" meeting for users to share experiences and ideas on ATR NSUF projects Helps build a vibrant and interactive user base
	 Fosters communication between users and ATR NSUF staff
	 Transitioning from mostly educational format to mostly technical exchange (will retain some educational component to benefit new users)
	 User week meeting has always been hosted at INL Live conferencing is a great approach to reach out to partner facilities

Education and Outreach Committee Education and Outreach Committee · Jessica Rojas, Chair Focuses on growing the UO membership and improving communication with stakeholders - Important component to the vision of growing NSUF beyond irradiation testing to embrace the wider nuclear materials and fuels community · Tough goal to achieve since NSUF needs to support NE missions - Strong university representation in UO, reflecting early focus of ATR NSUF on university-led research - Opportunities now exist to grow industry and national laboratory participation in the ATR NSUF and UO Good accomplishment in 2015 Current activities - Developing NSUO brochure Developing NSUO website

NSUO Website

Sugge	stions on Membership and Engagement Improvement	
	Suggestions on Membership and	
	Engagement Improvement	
	 Need member growth PIs of funded experiments automatically become UO members Attendees at User Week or other ATR NSUF workshops automatically become UO members? Ask people to sign up during professional meetings Ask current users to provide referrals Diversification 	
•	 Improve member engagement Suggest to increase rapid turnaround awards Suggest to boost partner facility usage Suggest to sponsor or host technical sessions at professional meetings 2016 TMS Meeting: Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Ion Beam Irradiation and In-situ TEM, organized by James Cole and Peter Hosemann 2016 ANS Meeting: Nuclear Fuels and Structural Materials (NFSM-2016) organized by Yong Yang, and etc. 	

Capabilities and Infrastructure Committee	
Capabilities and Infrastructure Committee	
 Yong Yang, Chair 	
 Work closely with Brenden Heidrich to support the NEID development Participated in database survey and trial runs 	
 Collected and Provided comments to the NEID Participated in NEID Database Review Panel 	
 Will continue to support future efforts in NEID Ion Beam Workshop 	

User Feedbacks on Ion Beam Facilities at NSUF

User Feedbacks on Ion Beam Facilities at NSUF

- · Academia and national lab users
 - Important education and training function for students
 - Productive and versatile tools for fundamental studies
- Industry users
 - Tools can be used to expedite product development if used properly
 - Need to show that what we learned from ion irradiation can be used to solve real problems
- Scientific merit

- 1. Interesting point: DOE has a specific role in Nuclear Engineering education that was part of the congressional act that separated the DOE and NRC from the AEC/ERDA history.
- 2. While it is commendable that DOE-NE focuses on program relevant applied research, the university faculty and facilities have education and training as primary tasks.
- 3. But these are not necessarily exclusive objectives. DOE-NE programs can provide good opportunities for training and teaching AND still produce high merit data.

Users Input on Ion Beam Facilities

Users Input on Ion Beam Facilities

		Ranking
	Beam energies (and energy ranges)	High
	Ion (particle) types and variety	High
	Variety of irradiation environments (vacuum, water, gas mixture, etc.)	Low to Medium
i o	Multiple analytical techniques available	Low
ati	Radiation levels allowed for samples	Medium to High
nsider	Types of sample materials allowed (e.g. alpha emitters/ fresh fuels/ irradiated fuels/TRU)	High
cal Col	Ability to match prototypic conditions (LWR, advanced reactors, etc .) – High (temperature)	High
echnic	In-situ examination during irradiation (TEM, photon source or other) - Medium	Medium
	Supporting infrastructure (hot work facilities, sample preparation, etc.) - Medium	Medium
	Multiple beam capability	Medium to High
	Damage profile modeling capability - High	Medium to High

e	100		
วน		टा	ΓV

innary
Summary
 NSUO is on the right path to become a very vibrant and interactive user group
 NSUO is a fast growing user group NSUO gained tremendous support from NSUF management
 – Significant improvement on funding – Focus of the executive committee
 There is still significant room to grow the user base and engagement
 If you are not a member of NSUO, I will sign you up!
up!

Presentation: Irradiation Material Testing

William Windes

Slide 2

	Idaho National Leb	oratory
Primary interests in Ion Bea	m Material Testing	
 Provide data/results comparable to neu Must be comparable to neutron irradia Must be compatible with previous irradia Must be compatible with previous irradia Ability of facility to provide a variety of Testing over temperature range Testing with mechanical load In-situ testing (C4) Underlying irradiation damage mecha changes Microstructure characterization and ex NE support (C1 & C5) Require high quality scientific merit data 	atron irradiation (C1 & C8) ation program (AGC) diation programs testing conditions (C3 & C nisms for material property volution ata & high volume	:6)
but		
 Quality Assurance (QA) program mea If data is to be codified → Need QA d 	sures ata	
		1

- Nuclear graphite
- Ceramic & carbon composites
- Ceramics
- New capabilities
 - Capsule disassembly
 - Specimen prep. (cut saw, TEM disk cutter, etc.)

80

RERTR

TREAT

Material prep, thermal and physical

18

Welding & material prep.

- Thermal oxidation physical

Roma	inna	na
I CIIIG		па

	Idaho National Laboratory
Remaining Criteria	
Variety of ion irradiations	
 While this is important to impose similar irr. damage, r achieve similar results from neutron dose 	more important to
Ability to handle radioactive materials	
 Most VHTR core materials are low activation and not However, this is an important consideration for genera How are samples shipped? Shipping container? DOT approved? Specimen handling and ALARA considerations In-situ testing and ALARA considerations 	much trouble al testing
Modeling and simulation verification/validation	
 VHTR (NGNP) behavior model V&V will come from ne However, ion beam studies can dramatically assist in interpretation and model development Complex experiments that compliment MTR studies would Incremental data that "fills in the gaps" between difficult to irradiations will be helpful in developing behavior models. 	eutron irradiation data d be important o achieve MTR
	20

Idaha Natanal Jabaratary	1. This
In Summary	nucl
Data must be comparable to neutron studies - Key criteria	need
Data must be comparable to neutron studies – <u>Ney Cintena</u>	this
 If we can't compare ion beam studies to neutron results, data is of little use 	not
Complex irradiation and novel testing capabilities – <u>Highly desirable</u>	tech
 Complex experiments that compliment the MTR data 	mat
 In-situ measurements at temperature and/or load In-situ chemical attack (corrosion) 	data
 Internal interrogation (X-ray CT, XRD, others) 	2. Thi
 Other unique conditions or interrogation techniques 	inte
	MT
Support NE Material programs (QA program) – <u>Highly desirable</u>	that
 Need high quality data with scientific merit 	to a
 Can support existing data and assist in understanding material behavior (models) 	Tha
 QA program is necessary (Not just good data, but also a high quality program) 	ımn
Codified data : <u>Critical criteria</u> Scaping studies : <u>Highly desirable</u>	mo
 Scoping studies : <u>mignly desirable</u> 	the
21	QA
	OI n
	star
	sett
	real
	evn
	nar
	gett
	for
	noir

- 1. This summary really gets to the heart of what nuclear technology needs. If the ion beam community cannot get to this point, then we will not be able to use this technology in nuclear material irradiation and data use.
- seems to reflect an est in having R-like conditions accelerate results couple of days. reflects an aturity of the els that represent wo modalities. The ssue is a function ot having a lard controlled o for each riment—which is y not an riment but a meterization ng the parameters ne model at each t in n space.

Presentation: LWRS Program Data Needs

Sebastien Teysseyre

LWRS Program Overview

Risk-Informed Safety Margin Characterization. Research and development to develop and deploy approaches to support the management of uncertainty in safety margins quantification to improve decision-making for nuclear power plants. The R&D products will be used to produce state-of-the-art nuclear power plant safety analysis information that yields new insights on actual plant safety margins and permits cost effective management of these margins during periods of extended operation.

Advanced Instrumentation, Information, and Control Systems Technologies. The R&D products will be used to design and deploy new instrumentation, information, and control technologies and systems in existing nuclear power plants that provide an enhanced understanding of plant operating conditions, available margins, improved response strategies, and capabilities for operational events.

Reactor Safety Technologies. Research and development to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.

WR

Material Aging Pathway

Material Aging Pathway

- High fluence effects of IASCC of stainless steels How will high doses affect the resistance of a component to IASCC?
 - · Main issue: lack of materials.
 - · How can we generate the materials needed for the study?
 - · Is it relevant to "re-irradiate" a material?
 - · Can we use an alternative to neutron irradiation?
 - · Do we have the tools to focus an irradiation campaign?

Advanced Replacement Materials (collaboration with EPRI's Advanced Radiation Resistant Materials program)

- · Development of materials with improved radiation resistance
- Increase knowledge on less used alloys in nuclear environment

1. If the damage caused by ions and neutrons is different, will re-irradiated materials tell us anything?

radiation Needs	
Irradiation Needs	
 Generation of highly irradiated materials (>50 dpa) If ion beam is to be used, validation of ions for high fluence is needed Flux rate effect is a major concern that must be addressed Understanding the developing microstructure which will lead to developing modeling/simulation codes that will allow researchers to utilize less costly alternatives to neutron irradiation experiment campaigns and/or better plan irradiation campaigns. Down selection of radiation damage tolerance for the Advanced Replacement Materials. 	
 Needs: Variety of beam (protons, Fe, Ni) Ability to offer multiple beams Ability to control irradiation condition (temperature control, energy) Ability to handle radioactive material would be a plus 	

Ion Beam for Characterization

Ion beam for characterization	1. This is a whole different application of ion beams than we have been
 Characterization of cracking (3D tomography, local strain, local changes in material composition) could support the LWRS mission to understand IASCC initiation and propagation. Limited usage of in situ characterization (IVEM) under LWRS. However. 	discussing—may fall better into a PIE category of the eight criteria. 2. On the characterization of cracking: what would
fundamental work on irradiation damage, potentially using such equipment, would benefit LWRS	an ion beam facility bring to the table here?
WRS	

Presentation: Nuclear Energy Advanced Modeling

Daniel Schwen

Data Needs – Plasticity/Fracture/Creep

- The increase of yield strength due to irradiation hardening
- Work hardening of irradiated RPV steel and model alloys as function of dose-level and test temperature
- Micro-fracture tests with quantifiable irradiated microstructure and crack propagation behavior
- In-situ deformation under irradiation (creep)
 Nano-pillar compression
 - Beam bending

. These are measurements that would be extremely difficult to conduct in core—ion irradiations are the only practical way to get at some of this separate effects data that is needed for model development.

Presentation: Fuel Cycle R&D

Shannon Bragg-Sitton

ENERGY Nuclear Energy	AFC High Level Technical Objectives (5-year)	
Identify and sele development tow	ct advanced LWR fuel and cladding concepts for vards lead test rod testing by 2022.	
Complete the co fuel technologies the fuel fabrication	nceptual design for the baseline advanced reactor s with emphasis on the fundamental understanding of on and performance characteristics for recycle fuels.	
Achieve state-of- research and dev accelerating furth	-the art infrastructure that can be used to perform fuel velopment from a "science-based" approach her development of selected concepts.	
I Integrate with the	e development of the predictive, multi-scale, multi-	

4	
	4

ATF cladding development efforts focus on materials with more benign steam reaction (various research teams)

FeCrAl alloys being developed for ATF cladding applications have been tested for irradiation hardening using light and heavy ions

In addition to irradiation hardening, saturation of hardening was also measured using 5 MeV Fe²+ irradiations at 300°C up to 11 dpa

U.S. DEPARTMENT OF	Challenges / Needs for Ion Beam	1. Is this dedicated p option available in	rote 1 ar
Nuclear Energy	Irradiation in Cladding Development	current facilities?	current facilities?
Challenges / Nee	ds		
 High irradiation Ability to replicate depend on the file Knowledge of the Ion irradiation per mechanical tes Measurement of Creep Fatigue Other mechanical Possible option: Dedicated protoning weeks to monther 	rate results in more defects in a small area: te neutron damage with protons decreases for properties that ime required for damage to precipitate out ne impact of the defect flux on processes is important hysical sample size limits the ability to conduct post-irradiation ting if processes <i>in situ</i> would be very beneficial: anical properties in facility allowing automated sample irradiation over a vs. hours to a day in duration		
- Allows for large	r sample size for subsequent characterization tests		
 Addressed defe 	ect precipitation issue		
Advanced Fuels Campaign		16	
e 17			
ENERGY			
Nuclear Energy			

Presentation: Used Fuel Disposition

Remi Dingreville

muc

Used Fue	l Disposi	ition Cam	paign	mission

Used Fuel Disposition Campaign mission

Identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles

Storage and transportation R&D focus:

- · Extended storage of UNF
- · Fuel retrievability and transportation after extended storage
- Transportation of high-burnup UNF (>45 GWd/MTU)

Disposal R&D focus:

[Courtesy of] Scaghone, ORNL]

- · Sound technical basis for multiple viable disposal option in the US.
- · Increase confidence in robustness of generic disposal concepts
- Develop the science and engineering tools needed to support disposal concept implementation

OUTCOMES

110

UFD data need drivers

UFD data need drivers

What data already exists and relevance to UFD mission

- · Data collected within UFD campaign.
- Proprietary data (e.g. ZIRLO[™], M5[®]).
- · How do we interpolate gaps between existing data points?

Relevance of data w.r.t. regulatory performance criteria for storage and transportation?

- Metrics extracted from 10CFR71, 10CFR72.
 - "...spent fuel cladding must be protected during storage against degradation that leads to gross ruptures..."
 - "...degradation of the fuel during storage will not pose operational safety problems wr.t. its removal from storage."
- · Recommendations from SFST-ISG-11.3 and NUREG-1567.

Where are the data gaps and why?

- · Access to high burn-up data difficult to obtain? What about newer alloys?
- · Compliance: DOE Order 435.1 "Radioactive Waste Management".
- · Separate effects testing.
- · NRC and industry data needs?
- · When do we stop collecting data relevant to UFD needs?

Gaps for storage and transportation

Degradation mechanisms	Storage importance
Annealing of radiation damage	Н
H ₂ effects: embrittlement and reorientation	Н
H ₂ effects: delayed hydride cracking	н
Oxidation	М
Creep	М
Corrosion and SCC	М
Thermal aging effects	М
Corrosion: blistering	М
Corrosion atmospheric	Н
Corrosion: aqueous (pitting, crevice)	Н
Thermo-mechanical fatigue of seals and bolts	М
Freeze-thaw	М
Corrosion of embedded steel	М

- 1. When are the data good enough to deploy?
- 2. Since NRC doesn't provide guidance for research needs, how do you know what is necessary for storage? Is this DOE's thought? What does NRC think?
- 3. DOT data needs are probably different from NRC and DOE.

6

Ion beam irradiation capabilities that could help				
 Ion beam irradiation capabilities that could help closing data gaps Do we have sufficient data on cladding and fuel assembly materials once they are stored (e.g. high-burnup)? Probability of degradation mechanism occurring? Regulatory considerations? Impact on safety functions (Retrievability, Radiological Protection, Thermal Performance, Confinement, Subcriticality)? Storage and transportation R&D: Extended storage of UNF Cladding: Annealing of radiation damage. Bolted cask: Embrittement of elastomer seals. Fuel retrievability and transportation after extended storage Cladding: High-burnup cladding performance. Cladding: Hydride reorientation and embrittlement. Transportation of high-burnup UNF Cladding: Pellet/clad delamination. Fuel: Pellet/pellet bonding. 	1. Would the facility need to accept highly burned fuel?			
8				

Ion beam irradiation capabilities that could help	
Ion beam irradiation capabilities that could help closing data gaps	
 Emulate Initial storage materials conditions (materials damage). Emulate alpha irradiation during storage. Handle irradiated materials. Have the ability to perform accelerated aging. Collect microstructural characterization in coupled environments. 	
 Storage and transportation R&D: Extended storage of UNF Cladding: Annealing of radiation damage. Bolted cask: Embrittlement of elastomer seals. Fuel retrievability and transportation after extended storage Cladding: High-burnup cladding performance. Cladding: Hydride reorientation and embrittlement. Transportation of high-burnup UNF Cladding: Pellet/clad delamination. Fuel: Pellet/pellet bonding 	
9	8

Hydride reorientation and embrittlement (M/H)		
Hydri	de reorientation and embrittlement (M/H)	
• Influ	encing parameters	
ş	Temperature, H concentration, crystallography, defect density, stress level, solubility limit.	
• Data	already available	
ş	Terminal Solid Solubility (TSS), optical microscopy quantification of precipitation morphology (Arborelius, Motta, Billone, Chung), in-situ XRD	1
• Data	needs:	
ş	Radial-hydride formation below licensing limits (400°C) on irradiated cladding materials.	1
ş	Effect of peak cladding temperature and pressure on hydride formation mechanisms in irradiated materials: Ductile-to-Brittle Transition Temperature (DBTT).	
ş	Collect microstructural information on interaction between hydride and deformation mechanisms of (irradiated) cladding matrix.	
ş	Data on fracture toughness for various burn-up level is scarce at best. No data on radial hydrides cladding.	
5	Data on ZIRLO [™] , M5 [®] .	10

Pellet/clad delamination (M/H)

Pellet/	clad delamination (M/H)
• Influe §	Temperature, loading mode, burn-up, composition, interface
• Data a	already available
5	Data associated with in-reactor behavior (fission product swelling, reactivity induced accident).
• Data 1	needs:
9	Characterization of interfacial features (roughness, void structure, etc.) and environmental factors (thermal/irradiation) on delamination process.
ş	Interfacial fracture toughness data for pellet/clad interfaces (not to mention high burn-up) does not exist to date.
ş	Interfacial fracture toughness data for pellet/pellet interface. Emulation of irradiated fuel?
	11

Radiation annealing (M) Radiation annealing (M) • Influencing parameters § Temperature, loading mode, burn-up, composition. • Data already available § Hardness tests vs. annealing temperature (Ito, 2004). • Data needs: § Low-temperature annealing studies applicable to extended storage (over long period of time). § Hardness recovery of irradiated cladding materials (especially for newer alloys ZIRLOTM, M5[®] [high burn-up]) as a function of time during long term annealing.

Embrittlement of elastomer seals/polymeric neutron shields (L)	
Embrittlement of elastomer seals/polymeric neutron shields (L)	
 Influencing parameters Temperature, composition, alpha irradiation. Data already available Rubber-glass transition temperature for unirradiated samples (BAM, Germany). Data needs: Study of coupled alpha irradiation and temperature on cross-linking of polymer? Failure of elastomer seals. 	
13	

	_	
Review of criteria		
Criterion	Priority	
Ability of the facility to produce results of high scientific merit and the potential to meet needs of DOE-NE and industry.	HIGH*	
Ability of the facility to provide a variety of ion irradiations (ion types, energies, multiple beams, etc.).	MEDIUM	
Ability of the facility to provide a variety of irradiation environments and conditions.	MEDIUM	
Ability of the facility to collect microstructural characterization data onsite and in-situ.	HIGH	
NE support and activities (performed and anticipated) at the facility including the volume of experiments that can be handled.	LOW	
Unique capabilities of the facility including new technology.	LOW	
Ability of the facility to handle radioactive materials in the beams and elsewhere onsite.	HIGH	
Ability of the facility to produce high quality data that can support verification and validation for modeling and simulation.	HIGH	

Presentation: EPRI

TG Lian

Slide 1	
ELECTRIC POWER RESEARCH INSTITUTE	
NSUF Ion Beam Irradiation Capabilities Support	
industry in Materials R&D	
TG Lian	
EPRI	
NSUF Ion Beam Investment Options Workshop	
Idaho Falls, ID; March 22-24, 2016	

Life Extention for Existing LWR Plants

Life Extention for Existing LWR Plants Sustainability of US nuclear power is essentially important for t

- Sustainability of US nuclear power is essentially important for the nation to achieve a decarbonized, integrated energy system
- Extended operation life requires more effective management of materials aging issues

Ion Irra	adiation Plays Complementary & Important Role	
	Ion Irradiation Plays Complementary & Important Role	
	Neutron irradiation provides conditions protypical to reactor core internal environments	
	 Preferred capability to validate enginnering solutions 	
	 Retrieved in-service component expands opportunities 	
	 The capabilities is extremely limited, only a handful of facilities around the world with the right capabilities for LWR needs 	
	Expensive, long time, radiation protection, etc	
	Ion irradiation is a complementary irradiation tool	
	 More suitable for mechanistic studies 	
	 Faster and more cost effective 	
	- Greater flexibilities	
	 Has its own limitations: fidelity of simulation (know-how), limited size, and much more,,, 	
0-2010 Ex	otro Power Research Institute. Inc. All rights asserved 6	

Rapid Simulation of Irradiation Damage in LWR Internals at High Fluence	1. Amounts to the re-irradiation approach previously discussed.
 Objective: Develop and validate an approach based on heavy ion irradiation (Fe²⁺ or Ni²⁺) with He/H implantation for cost effective and rapid simulation of irradiation damage, with a focus on <u>void swelling</u> behavior, in PWR internals at high fluence 	
Motivation PWR Internals are expected to experience high fluence well exceeding 100 dpa at certain locations during first and second license renewal (60-80 years). There is a need for data and validated models to predict the degree of irradiation damage expected in austenitic stainless steel internals at high fluence.	
 Approach: Use the materials retrieved from an operating PWR reactor to perform ion irradiation experiment (see the next 3 slides) 	
0.000 Decco 7 Juar Teasard Institut, No. Altypic teasured. 8	

TogetherShaping the Future of Electricity			
TogetherShapi	ing the Futu	re of Electricity	
©2016 Electro Pover Research Institute. Inc. All rights reserved	13		

Appendix E

Ion Beam Facility Presentations

Appendix E

Ion Beam Facility Presentations

Presentation: IVEM-Tandem User Facility

Meimei Li

Slide 2

Slide 3

Ion Irradiation Capability

In situ	lon	Irradia	tion
---------	-----	---------	------

100 I III I		
Dual-beam	Add a low-energy ion gun to study combined effects of He and displacement damage (under construction).	
Dosimetry	Real-time dosimetry with Faraday cup in the microscope column	
Beam size	Uniform beam , 1.5 mm \varnothing	
High dose	~100 dpa/day	
Ion Flux	10 ¹⁰ – 10 ¹² ions/cm ² /s (10 ⁻⁶ – 10 ⁻⁴ dpa/s)	
Ion Types	H, He, Ne, Ar, Kr, Xe, and many elements from Al to Au	
Beam Energy	50 keV – 1 MeV	

Pete Baldo tunes the electrostatic deflector to direct the ion beam down into the electron microscope on the 1st fleor.

Ex situ ion irradiation

- Dual-beam, triple-beam ion irradiation capability exists, but is inactive (chamber with three beamlines, a 2 MeV Tandem accelerator, an ion implanter, and a lowenergy ion gun)
- Combine in situ and ex situ ion irradiations
 - Capability for ex-situ high-dose combined with in-situ ion irradiation is being designed, allowing a unique ability to follow material microstructural development to exceptionally high doses.
- High-energy, heavy-ion irradiation can be performed at Argonne Tandem-Linac Accelerator System (ATLAS) User Facility

Slide 4

Irradiation Environments and Conditions

<i>In situ</i> heating/cooling (20 K to 1300°C)	 Double-tilt LT stage (20 K - 295 K); Double-tilt HT stage (20°C - 900°C); Single-tilt HT stage (20°C - 1300°C);
<i>In situ</i> straining	 Single-tilt HT straining stage (20°C - 600°C); Single-tilt LT straining stage (-196°C - 100°C);
Well-controlled experimental conditions	 Controlled metallurgical variables Constant specimen area Crystal orientation Single microstructural feature Controlled irradiation variables Ion type, energy dose rate, dose Controlled irradiation temperature

Coupling *in situ* ion irradiation with *in situ* stages for heating, cooling or straining enables studies of combined effects of irradiation, temperature and stress in real reactor environments that cannot be revealed through traditional post-irradiation examination.

TEM Specimen Holder Vacuum Storage Station

Slide 5

Slide 6

What Distinguishes IVEM-Tandem from Other Ion Irradiation Facilities: In situ, real time imaging to track individual nm-sized defects during Irradiation

In situ movie shows irradiation defect formation, motion, and coalescence to form extended dislocation structure.

11 video files included in the publication revealed:

- One-dimensional hopping of small dislocation loops
- Dislocation loops with BV= <111> highly mobile in direction of BV.
- Dislocation loops with BV <100> sessile.
- Loop hopping was much less common in Fe-Cr alloys
- Some formed over 0.2 sec consistent with cascade overlap mechanism.
- Dislocation loop coalescence in string alignment.
- Temperature dependence, only <100> loops at ≥500°C.

M.Hernandez-Mayoral, Z. Yao, M. Jenkins, M. Kirk, "Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thinfoils at higher doses," Phil Mag 88(21), 2881 (2008).

Slide 7

Unique Experiment – Defect and Dislocation Interactions under Irradiation+Temperature+Load

304 SS irradiated in situ at 400°C with 1 MeV Kr ions to dose of 3x10¹³ ions/cm².

Without ion irradiation

- Direct insight to the mechanisms by which dislocations interact with and annihilate radiation defects to create channels, dispelling some of the common held beliefs about the processes and mechanisms.
- New insight as to how strain is transferred across grain boundaries in irradiated metals, the results of this effort have identified the deterministic step in irradiation stress corrosion cracking.

J. Kacher, I. M. Robertson, Acta Mater. 60 (2012) 6657. M. Briceño et al., J. Nucl. Mater. 409 (2011) 18.

Unique Experiment - Mapping Temperature-Dependent Critical Doses for Amorphization of Wasteforms

- The temperature dependence of the critical amorphization dose was determined in situ for a wide temperature range of 50 – 1073 K under well-controlled experimental conditions at the IVEM-Tandem
- This information can only be obtained in situ at the temperature because of spontaneous crystallization during warm-up of the specimen.

Radioactive Materials Handling

- Radioactive samples have been irradiated at the IVEM-Tandem
 - Low-dose neutron-irradiated steels
 - Nuclear fuels: U, U-Mo, UO₂, etc.
- Irradiated Materials Laboratory (IML)
 - A radiological Facility in the same building
 - Electro-polishing (Tenupol-5) of radioactive TEM specimens in IML
 - Argonne Nuclear Engineering Division operates both IVEM-Tandem and IML
- Radioactive material characterization using synchrotron X-rays is routinely carried out at the Advanced Photon Source

Facility History and Current Status

Interdence on anterials Laborator

Facility History and Current Status

- The 1st generation, HVEM-Tandem user facility was commissioned in 1981 in Materials Science Division, ANL, supported by DOE BES.
 - A high-voltage electron microscope (HVEM) interfaced with two accelerators (2 MV tandem and 650 kV ion implanter).
- The 2nd generation, IVEM-Tandem was commissioned in 1995, and was part of Argonne's Electron Microscopy Center supported by DOE BES until 2014.
 - Increased imaging spatial resolution by nearly one order of magnitude
- DOE NE and ANL signed Memorandum of Agreement in May 2014 for full time operation of IVEM-Tandem to support nuclear energy research.
- The Facility was transitioned to Nuclear Engineering Division, ANL in June 2014.
- In FY 2016, the IVEM-Tandem received 50% DOE NE support through NSUF.

۵

User Research

Exploring New Alloy Design Concept: Radiation-tolerant Nanotwinned Metals with Nanovoids (Texas A&M, PI: X. Zhang)

Si	imulation	
R	Many experiments at the IVEM-Tandem are performed to benchmark computer models designed to simulate both ion and neutron irradiation damage;	
1	Experiments are carried out under highly-controlled conditions that allow producing high-quality data for single-mechanism studies or studies of collective behavior	
¢.	In situ TEM observation of heavy ion irradiation damage reveals cascade damage phenomena, e.g. single cascade events, cascade – cascade or cascade – subcascade interactions, cascade defect production and annihilation rates, and the experimental data can be directly compared with molecular dynamics simulations of cascade damage.	
	In situ ion irradiation can access the full history of the kinetic development of the defect structure under irradiation, providing critical input into the computer models of microstructural evolution during irradiation that determines the lifetime of materials in nuclear systems.	
•	The high-quality experimental data obtained at the IVEM-Tandem Facility provided useful data for validating the nuclear materials and fuels models being developed under the DOE Consortium for Advanced Simulation of Light Water Reactor (CASL) and the Nuclear Energy Advanced Modeling and Simulation (NEAMS) programs.	

Slide 20

Predicting Neutron Irradiation Damage from in situ Ion Irradiation through Computer Modeling

bul	m	m	a	ry	

Summary TEM with in situ ion beam irradiation coupled with computer modeling and . simulation provides a new way to understand radiation effects, critical to the development of new high-performance materials and predictive models to reliably forecast material component lifetimes in a nuclear reactor environment. The IVEM-Tandem Facility is a world-class facility for in situ study of defect dynamics in nuclear reactor materials, fuels, and waste storage materials. User projects support DOE NE's FCRD, ART, NEAMS programs and nuclear industry needs. Given the great scientific impact of the IVEM-Tandem research to advance the . DOE-NE missions, the high productivity of its users, its importance to education and training of next-generation scientists and engineers, and the potential for future growth, support for the IVEM-Tandem as a user facility should be a priority investment for the DOE Office of Nuclear Energy. 21 Δ

Suppo	rt Letters from the Community	
S	upport Letters from the Community	
	Stuart A. Maloy, Los Alamos National Laboratory	
٠	TL. (Sam) Sham, Argonne National Laboratory	
	Tiangan Lian, Electric Power Research Institute	
3 .	Rosmarie HENGSTLER-EGER, AREVA	
	Arthur T. Motta, Penn State University	
	Brian Wirth, University of Tennessee	
	James F. Stubbins, University of Illinois at Urbana-Champaign	
	Ian M. Robertson, University of Wisconsin – Madison	
	Jian Gan, Idaho National Laboratory	
•	Michael Nastasi, University of Nebraska – Lincoln	
	William J. Weber, University of Tennessee	
	Mitra L. Taheri, Drexel University	
	Djamel Kaoumi, University of South Carolina	
	Xinghang zhang, Texas A&M	
1	2	22

Presentation: Extreme Materials Beam Line

Abdellatif Yacout

Extreme Materials Beam Line (XMAT)	
Abdellatif M. Yacout,	
Nuclear Engineering Division	
Argonne National Laboratory	
NSUF Ion Beam Investment Options Workshop	
March 22-24, 2016	
@ ENEP	ÎĞY
ne	
Outline	
Overview	

- Unique Capability of XMAT
- Impact to DOE-NE Programs
- Technical Demonstration

NSUF Ion Beam Investment Options Workshop March 22-24, 2016

Budget

0

Proposal - eXtreme MATerials beamline (XMAT)

2

=> In situ provides the ability to mimic the nuclear

environment at critical moments providing a direct

10

connection to material performance in a reactor

 Direct measure of the rate competition among combined effect of dpa and other in-situ parameters (temp., stress, Corrosion [steam, oxidation, etc], ..)
 Insight into structural effects that lead to non-linear

·Direct measure of the parameters necessary to

re Options Workshop March 22-24, 2016

understand the effects of accelerated testing

rate effects at high doses

Δ

Applications to Oxide and Silicide Fuels C5

Defect Evolution in Uranium Dioxide:

- Emulate ~1 MeV/amu fission fragment energy
- Use low energy noble gas (Xe, Kr) ions to implant gas atoms; use high-energy (~1 MeV/amu) solid fission products (Zr, I) ions
- Replication of defect structures observed in in-pile irradiated fuels

Amorphization Threshold of Silicide Fuels

- In situ investigation of the amorphization threshold at low temperatures using IVEM-Tandem
- This dynamic process takes place at low dose and can hardly be captured in in-pile irradiated fuels

Energy domain of fission fragments and corresponding energy loss rate in UO₂ (Matzke, 2000)

Gas bubble formation induced by 40 keV Kr implantation and 72 MeV 1 irradiation in UO₂ (Matzke, 2000)

12

Technique Demonstration: other synchrotron techniques used in studying ion-irradiated materials C1, C8

C7,

Mo Before Xe Irradiation

Technique Demonstration: other synchrotron techniques used in studying ion-irradiated materials C1, C8

1.

- X-ray Tomography Microscopy (XTM, Nanotomography):
 - Characterization of bubble morphology and distribution in Xe irradiated U-10Mo monolithic fuel
- Small Angle X-ray Scattering:
 - Characterization of bubble superlattice, and other bubble structures in fuel
 - Characterization of nano- and microstructural development in structural materials
- X-ray micro-diffraction:
 - Characterization of irradiation induce strain development

1. Sample size for unirradiated fuel = 1 mm. Irradiated fuel at 10% BU = FIB sample.

Xe bubble structure within the U-10Mo fuel

Size (A)

Mo After Xe Irradiation (40 dps)

Miso, Yecout, __Scripta Materia/la, 114, 2016

XMAT Schedule and Cost

XMAT Schedule and Cost

A phased approach allows achieving **an operating system within the first year**. Initial operation would allow irradiation at ATLAS (200 hrs first year, 30% of operational days within the two years). In situ operation at APS would come online as the APS upgrade is completed (5 years).

		Description	Achieves	Costs
Year 1	Phase 1	Design & Build multiuser beam switcher at ATLAS and irradiation station	Full beam capability for 30% of yearly operating hours for NE programs - {Until complete	\$2M (ANL contributes \$0.5 M for design)
	Phase 2	Begin XMAT full accelerator design for APS	200 hrs of beam time will be allocated)	\$2 M
	Phase 1	Complete & Test	Full beam capability for 30% of	\$1 M
Year 2	Phase 2	Begin acquisition and testing of accelerator components	programs (ex situ)	\$3 M
	Phase 1	Ex Situ Irradiation Facility operat hours (~2400 hrs of beam	es for 30% of yearly operating a time for NE programs)	\$1M / yr
Year 3-5	Phase 2	Complete operation as part of APS-U beam line	Full in-situ analysis under APS user program + 100% irradiation time	\$3 M / yr
			Total Cost Build Cost	\$20 M
Out year operational		ATLAS facility ceases operation	lon source 1 man year, 3 man year user support & x-ray	\$1.5 M/yr

Key XMAT Advances

n comparison to most existing ion irradiation capabilities, the XMAT ion energies and currents are 100 times higher. The increased ion irradiation energy (e.g., 133 MeV for xenon) enables several	
 It provides a unique opportunity to simulate the effects of fission fragments in nuclear fuels, where ions of all elements can be accelerated to fission fragment energies, while being characterized <i>in situ</i>. For cladding and structural materials, the increased penetration depth of energetic ions allows the "bulk behavior" to be examined, eliminating surface-sink effects, and allows understanding of individual physics of ion damage including electronic, collisional, & added interstitial The in situ penetrating ability of the APS focusable hard x-rays, applied during ion irradiation, is another key advancement of XMAT that allows the interrogation of individual grains within solid material samples during irradiation. With this information and related computational modeling, the differences between ion and neutron irradiation as well as the impact of fission products damage become much more understandable. 	
MAT can close the design loop for the nuclear materials community in two ways: It provides accelerated testing for hundreds of samples (24; 7) It reveals the key "single" physics dependences required for accurate computational modeling	

Nuclear Waste Forms

Presentation: Capabilities at the Idaho Accelerator

Jon Stoner

Idaho State University RISE Complex

Idaho Accelerator Center Operating for 20 Years

Idaho Accelerator Center Operating for 20 Years Founded in 1994 Center at Idaho State University

- Chartered by State Board of Education
- Dr. Frank Harmon founding Director
- Mission
 - Applied physics and engineering research
 - Graduate and undergraduate education
 - New accelerator applications
 - Support economic development
- · ISU Physics and Nuclear Engineering
 - Faculty : Nuclear Science orientation
 - Graduate MS/PHd programs

ISU RISE Complex **ISU RISE Complex** · Unique intersection of nuclear science and nanotechnology. "Hot" nano-scale fabrication laboratory ٠ All tools are rated for radioactive material use. • Radioactive materials license allowing flexibility with . most radionuclides including Z>83 BRINGING THE NANO-SCALE INTO EVERYDAY LIFE World-class capability to research and develop functionalized nano-materials and devices HITTH Maranza Conter

IAC/RISE Beam line capabilities					
HARDWARE	Capabilities				
eLINACS - 44 MeV – L-Band, short pulse to 70 ps Zero and 90° ports Experimental Cell - 45 MeV – S-band, power to 8 kW Water cooled target chamber Separate Cell - (2) 25 MeV – S-band, power to 2 kW Zero, 45°, 90° ports Experimental Cell - (2) 25 MeV – S-band, power to 2 kW Zero, 45°, 90° ports Experimental Cell - Radiography equipment Pulse Power electrons - 3 MeV, 20 kA - 8 MeV, 10 kA Protons - 4 MV (8MV) Peletron 200 uA - 17 MeV, 50 uA JSR for installation Instrumentation - TEM,SEM,FIB - RadioChemistry Lab with ICP-MS - HPGe detectors, - HPGe detectors, - Experimental cell - TEM,SEM,FIB - RadioChemistry Lab with ICP-MS - HPGe detectors, - HPGe detectors - 3 MeV ab	 Isotopes via (y.*) Commercial shipments of ⁴⁷Cu Investigations and yield analysis of. ¹⁵⁰Xe, ¹⁵³R ¹⁵⁰Nettransform Development ¹⁵⁰Nettransform Scattering ¹⁵⁰Nettransform Scattering ¹⁵⁰Nettransform Production ¹⁵⁰Material Defect analysis ¹⁵⁰Nuclear reaction cross sections ¹⁵⁰UNAC produced Neutrons 				

44 MeV LINAC (Main Hall) 44 MeV LINAC (Main Hall) RF Frequency: 1300 MHz (L-Band) Energy Range: ~2-44 MeV (current varies) Pulse Width: ~60ps (Bunched only) to 2 micro seconds (certain discrete widths only) Repetition Rate: single pulse to 180 Hz Ports: 0 degree and 90 degree (Beam energy resolution ~ 1+/- 15%) Charge/ Pulse Maximum Peak Pulse Peak Width Current e-Dose Gamma Dose** 50ps 100A 5nC 2 x 1013 rads/s2.5 x 108 rads/s 3A 20nC 1 x 1012 1.2 x 107 2ns 1A 6 x 1011 20ns 60nC 7.5 x 10⁶ 100ns 1A 100nC 2 x 1011 2.5 x 10⁶ 0.5A 2000nC 1 x 1011 1.25 x 106 2µs Coolerat ISI

25 MeV LINA	C (Main Ha	all)			
25 Me	V LINAC	C (Main H	all)		
RF Erequency:	2856 MHz (S-8	Band)			
Energy Ranger	odo25 MeV (n	urrent varies)			
Source and the second		and a second			
Polse Width:	-50ns to 4 micro	o seconds			
Departition Dat	or cincle sulta t	260 Us			
INCOCUDOR ADV	ca surgie puise i	10 300 M2			
Ports: 0 degre	e, 45 degree an	d 90 degree (8eam	energy resolution	n ~ 1+/-	
15%)					
					and the second
		258 Energy vs Current		The second secon	
Energy (MeV)	0 port (mA)	45 port (mA)	90 port (mA)	LAD ABANA	
23	55	55 @ 3.8u5	46 @ 3.6 u5		
10	100	10 9 4 05	00 0 10 00		
10	200	46 9 3.6 45	15.0 1.005		
10	60	18 @ 3 u5	7.5@3u5		
	1000		1	Contraction of the second second	
9	110	30 @ 4u5	15@4u5		
6	100	60 Ø 4 uS	60 @ 4 u5		
A .	50	20 @ 4 uS	20 @ 4 uS		
				A Idaha	2
				antowers Conter	lor
ISU					

RISE: 4 MV Tandem Pelletron

1. Can you also handle actinides?

RISE Lab: TEM/SEM/FIB Capability

RISE Lab: TEM/SEM/FIB Capability

 Nano Secondary Ion Mass Spectrometer (Dynamic nanoSIMS) 8" FEI Dualbeam FIB with high current column and cold FEG imaging Omniprobe nanomanipulator Energy Dispersive Analytical X-Ray spectroscopy Pt, W deposit 3D imaging FEI ESEM cold FEG XL-30 Hot (1200 C) and cold (77K) stages Electron Back Scatter Diffraction (EBSD) Energy Dispersive Analytical X-Ray spectroscopy Energy Dispersive Analytical X-Ray spectroscopy EBIC spectroscopy Dynamic straining and bending stage 	 In-situ localized heating (Laser) Heated stage, dynamic straining stage EDAX 200 kV digital imaging STEM (0.17 A esolution) Lorenz lens Heated and cooled stages (1600 C - 77 k) BSD STEM imaging In-situ dynamic laser heating 100 kV digital imaging TEM (-ray microscope (300 nm resolution)) Materials discrimination capability
--	---

Pulse Power Accelerator (SLIA)

The Idaho Accelerator Works, a private contractor, operates this 4MeV portable LINAC out of the IAC. The principle application is for radiography of thick and/or dense materials.. It has been used to qualify for NASA the containment of the nuclear thermoelectric batteries for the Mars Rover and the New Horizons spacecraft.

Cocel

Presentation: CMUXE, Purdue University

Jitendra Tripathi

Slide 4

IMPACT Laboratory

1. IMPACT and UHFI are ion beam facilities.

C M U

In-situ advanced materials characterization

- ✓ Thin film & multilayer deposition (using precise four-pockete-beam evaporator)
- ✓ Ion beam sputter cleaning (NTI 1401 and 1402 ion source gun; 5 eV- 5 keV)
- ✓ Ion irradiation (KDC 10; 300 eV- 1.2 keV; LN₂ to 1100°C substrate temperature)
- ✓ X-ray Photoelectron Spectroscopy (XPS)
- ✓ Auger Electron Spectroscopy (AUGER)
- ✓ Ultraviolet Photoelectron Spectroscopy (UPS)
- ✓ Low-Energy Ion Scattering Spectroscopy (LEISS)
- . _____

surface morphology and optical property measurement facility

1. Also has associated user facilities with TEM, S/TEM, etc.

CMU

2. Also has access to use the USER facility at BNC (Birck Nanotechnology Center), Purdue University (partial list, closely related to this workshop): With stateof-the-art fabrication and characterization facilities, highly qualified personnel with expertise in design, fabrication, packaging, and characterization, the BNC is the place to work on the development of new systems and technologies. A partial list (related to this workshop) of the research activity at BNC is as follows: (i) Nanoscale Metrology: Scanning Probe Microscopy (SPM), STM, AFM, Field Emission (FE)-SEM, TEM, in-situ TEM, XRD, XPS, AES, Electron Energy Loss Spectroscopy (EELS), ISS, Low Energy **Electron Diffraction** (LEED), Focused Ion Beam Imaging (FIB), Raman Spectroscopy, Photoluminescence (PL), and Near-Field Optical Microscopy (NSOM); (ii) Materials Growth and Deposition: Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Plasma-Enhanced

Slide 15

Slide 15	
	Chemical Vapor
	Deposition (PECVD),
	Halide Vapor-Phase
	Epitaxy (HVPE), Pulsed
	Laser Deposition (PLD),
	Atomic Layer Deposition
	(ALD), Reactive
	magnetron sputtering,
	Electron Beam
	Evaporation, Thermal
	Evaporation, and Sputter
	Deposition;
	(III) Nanoelectronics and
	Molecular Electronics
	Nonewire Electronics,
	Nanowire Electronics,
	Electronics Silicon
	Microelectronics
	Compound
	Semiconductor Devices
	Wide Bandgan
	Semiconductor Devices.
	Thermoelectric Energy
	Conversion, and
	Photovoltaic Energy
	Conversion;
	(iv) Nanofabrication:
	Optical
	Photolithography,
	Electron-Beam
	Lithography,
	Circuit Layout
	Workstation, Optical
	Mask Generation,
	(DIE) Inductively
	(RIE), Inductively
	etching Focused Ion
	Beam Machining Plasma
	Etching and Cleaning
	Wet Chemical
	Processing, Thermal
	Oxidation and Diffusion.
	and Rapid Thermal
	Processing (RTP);
	(v) Electronic
	Characterization:
	Current-Voltage
Slide 15	
----------	--
Slide 15	Metrology (µV to 10 kV), Capacitance- Voltage Metrology, Admittance-Voltage Metrology, Admittance- Frequency Metrology, Deep Level Transient Spectroscopy (DLTS), Photoresponse Metrology, Hall Effect Metrology, Microwave Characterization (to over 200 GHz) Variable Temperature
	650 K), and
	Ultra-Low-Temperature
	Electrical
	Characterization (using
	liquid helium).

Slide 16	
Ion Irradiations and advanced materials characterizations at CMUXE : Proposals / Projects (examples)	C ^{MU} ₿
✓ Low energy high-flux ion induced modifications in high-Z refractory meta nuclear fusion applications.	als for
✓ Individual, Sequential, and Simultaneous dual ion beam irradiation induc surface modifications.	ced
✓ Laser and ion beam exfoliations in 2D materials.	
✓ Thermal desorption spectroscopy (TDS) studies.	
✓ Nano structuring in novel 2D materials using pulsed laser deposition (PL	.D).
✓ In-situ low-energy irradiations (in a temperature range of LN2-1100C).	
✓ Transient thermal heat loading (1.5 MJ m ⁻²) on high-Z refractory metals f nuclar fusion applications.	for
✓ Nanostructuring in semiconductors <i>via</i> ion beam irradiations for their val technological applications.	rious
✓ Ion induced surface modifications in thin film and multilayers.	
✓ Self ordered and self organized nano patterning using ion irradiation.	
PURDUE	16

Of nm □ The calculated average length of halfcylindrical Mo nano-platelets → ~70 nm

e

(f)

height (nm)

200 400

distance (nm)

25 50 75 100 length (nm)

(C)

Q 0.4

prob. (arb. 1

- □ Fig.(f) → the line profile from the marked position (green line in figure (e)).
- The observed average width and/or diameter of these platelets are ~ 55 nm, however the average protrusion of the curvature from surface were ~ 14 nm.

Tripathi et al. Appl. Surf. Sci. 353 (2015) 1070

19

lid	e 24	
	Conclusion C ^{MU} _{NE}	1. What materials can be handled? Actinides?
	Availability of low energy (70 -5 keV) high flux (up to 1.2×10^{21} ions m ⁻² s ⁻¹) helium, hydrogen, and deuterium ion irradiation facility.	2. We are NOT handling radioactive materials due to safety issue.
	Availability of <i>in-situ</i> low energy (300- 1200 eV) high flux flux (up to 1.2×10^{21} ions m ⁻² s ⁻¹) helium, hydrogen, and deuterium ion irradiation facility.	
	Availability of <i>in-situ</i> thin film & multilayer deposition, Ion beam sputter cleaning, ion irradiation, XPS, AUGER, UPS, LISS and, EUPS facility.	
	Availability of Individual, Sequential and Simultaneous dual ion beam irradiation facility.	
	E beam, RF sputtering and pulsed laser deposition (PLD) facility	
	Availability of <i>in-situ</i> simultaneous "dual ion beam irradiation" and "transient heat loading" (using a ms laser).	
	Possibility of the availability of 10k-100kV electron source gun.	
	Availability of thermal desorption spectroscopy (TDS) facility.	
	More information about the CMUXE are available at : https://engineering.purdue.edu/CMUXE/index.htmlhttps://atrnsuf.inl.gov	
	Contacts:	
*	Prof. Ahmed Hassanein (Director, CMUXE): hassanein@purdue.edu	
F >	Dr. Jitendra K. Tripathi (Group leader of SUSNAG at CMUXE): jtripat@purdue.edu	

Presentation: High-energy Ion Implantation Capability at LLNL

Scott Tumey

Lawrence Livermore National Laboratory

NISA

177

NISA

Lawrence Livermore National Laboratory

- 1. Do you keep a running tally of the beam profile, or is it an in-beam/out-ofbeam measurement?
- 2. Regarding your comment about using the tails of the beam profile to achieve different damage levels, can you trust this method when the damage varies so steeply with position? Any beam "drift" will have a big impact on the actual damage to the sample.
- 3. Response to Comment 1: The Faraday cup measurements are periodic in beam measurements. We augment this with the BPM, which provides relative measurements constantly throughout the experiment.
- 4. Response to Comment 2: This is a very good point. Our beam stability is quite good, typically +/- 0.1 to 0.2 mm, and the drifts are captured by the BPM, which runs continuously throughout the experiment.

Slide 11 Implantation capability provided key data to the LLNL weapons program. Implanted He into Pu at 40 discrete energies to produce "uniform" deposition over 70 um. Analyzed samples for microstructure (TEM) and equation-of-state (DAC) to assess effects of long-term (~200 years) aging of stockpile. Number of bubbles = 403 Minimum diameter = 1.86 nm Maximum diameter = 5.3 88 nm Median diameter = 5.27 nm Mean diameter = 5.40 nm standard deviation = 1.44 nm Volume percentage of bubbles ~ 0.25% Bubble # density = 2.5 x 10¹⁶ cm³ Number \$75 Bubble diameter (nm) Lawrence Livermore National Laboratory NISA -

- energy implantation beamline could allow for real-time studies of bulk property changes to materials under irradiation:
 - Non-equilibrium defect concentration via positron annihilation spectroscopy
 - Dimensional instability via capacitive plate dilatometry
 - Embrittlement and stress-corrosion cracking via nonlinear acoustic ultrasound

Lawrence Livermore National Laboratory

NNSA 15

Presentation: Wisconsin IBL

Beata Tyburska-Pueschel

2 of 13

Sample goniometer
Sample goniometer
Motorized 2-axis MultiCentre manipulator
1" diameter puck sample holder
6 pin type K thermocouple feedthrough
Sample biasing/current measurement
Tantalum wire heater element on a boron nitride mandrel for
heating up 900°C (flash heating) and 800°C (radiative heating)
LN2 sample cooling facility to -150°C

Other equipment

Other equipment
Sample preparation equipment – low speed saw, polisher, ion mill etc.
Analysis techniques CLIM – SEM with EDS and EBSD, TEM, XRDs
MSC – non dust producing equipment, e.g. Raman, AFM, etc.

Criteria Criteria Facility Response or Programmatic/User Needs Ability of the facility to provide a variety of ion 1 MeV - 5.2 MeV, max. 8.5 MeV after repairs and upgrades. C2 irradiations (ion types, energies, multiple beams, IONS: H, D, He, sputtered ions; no Nobel gases. Single gun, triple etc.) beam is planned Ability of the facility to collect and analyze In-situ depth profiling and concentration analysis of implanted C4 microstructural characterization data onsite and inspecies through ion beam analysis; surface chemistry monitoring situ. through PIXE About 20% of irradiation time goes to NSUF, 70% to federal NE support and activities (performed and C5 anticipated) at the facility including the volume of projects, and 10% to other projects. Recently won a NEUP infrasturcture grant (\$200k), total 4 NSUF project, currently 2 experiments that can be handled. ongoing, numerous NEUP, IRP, and NSF projects. Total irradiatio hours about 400-800/year, estimate for 2016 is 1200 h State license for storage and treatment of radioactive material. C7 Ability of the facility to handle radioactive materials in the beams and elsewhere onsite. No transuranic products. Storage limit 10 mCi. Max. exposure of 100mR/hr unshielded, on contact. Hot cell, sample storage, licenced equipment for sample prep and analysis. 11 of 13 Contact Contact

Presentation: In situ Ion Irradiation Transmission

Khalid Hattar

Presentation: Michigan IBL

Gary Was

Slide 4 ATR-NSUF Partnership Date: Thu, 5 Feb 2009 09:52:31 -0700 Dear Dr. Was: Congratulations, your facility has been selected to join the ATR NSUF as a research partner. Attached below is the formal selection letter. Welcome to the NSUF team. If you have any questions about your selection, please don't hesitate to contact me. Todd R. Allen Scientific Director ATR National Scientific User Facility Michigan Ion Beam Laboratory

Slide 6 Summary of Instrumentation at MIBL Accelerators 9 Beam lines • 3 MV Tandem (Pelletron) (Wolverine) • 1.7 MV Tandem (Tandetron) (Maize) 5 Target chambers • 0.4 MV implanter (Blue) ion irradiation · irradiation accelerated corrosion · multi-beam chamber Ion sources · 2 ion beam analysis chambers · TORVIS (protons) - Wolverine · Peabody (sputter) - Wolverine 300 kV FEI TEM* · Alphatross (He) - Wolverine • Dual beam interface for • ECR (gases, e.g. He) - Maize simultaneous damage and gas • Multi-cathode SNICS (sputter)-Maize injection • Danfysik, multi-mode source - Blue Target temperature range: 77K to 1500K Damage rate: < 10-5 dpa/s (protons), 10-3 dpa/s (heavy ions) Irradiated area: up to 200 mm² 'in progress 6

Ion Irradiation Capabilities at MIBL Ion Irradiation Capabilities at MIBL · Single Ion Irradiations - Proton irradiation to moderate dose - Self-ion irradiation to high dose - In-situ corrosion · Dual Beam Irradiations Triple Beam Irradiations ٠ Dual Beam In-situ TEM (in progress) · Ion Beam Analysis - Rutherford backscattering spectroscopy (RBS) - Nuclear Reaction Analysis (NRA) - Particle Induced X-ray Emission (PIXE) - Elastic Recoil Detection (ERD) - Ion channeling Michigan Ion Beam Laboratory 8

<section-header>

Addressing a wide range of dpa, He, H production

Damage rate, He/dpa and H/dpa for various reactor types

Reactor type	Fast (F-M)	LWR (stainless)	CANDU (Ni-base)	Fusion (F-M)	SNS (F-M)
Dose rate (dpa/s)	1×10 ⁻⁶	5×10'*	2×10 ⁻⁷	10''-10"	10'*-10''
He/dpa (appm/dpa)	0.2	2-5	300	~10	~100
H/dpa (appm/dpa)	-	12	60	70	1700

Achievable damage rate, He/dpa and H/dpa in MIBL

Ion	400 KV implanter	1.7 MV Tandem	3.0 MV Tandem	
Fe	-	10 ⁻³ -10 ⁻³ dpa/s	10°-10' dpa/s	
He	0.1 - 10° appm/dpa	0.1 - 10° appm/dpa	0.1-10' appm/dpa	
H,	0.1-10° appm/dpa	0.1-10° appm/dpa	0.1-10° appm/dpa	

Michigan Ion Beam Laboratory

	Use of Ion Irradiation to Study Nuclear Fuel
	Xe (up to 1 μ A of 1.6 MeV Xe) and Kr (up to 1.5 μ A of 1.2 MeV) ion irradiation to study fission gas effect.
	He ion irradiation to study α particle irradiation effect.
•	In-situ Kr/Xe ion irradiation in TEM to study microstructural evolution with or without gas effect depending on ion energy and sample thickness.
•	Heavy ion irradiation with Zr or Mo ions (both with high fission yield) to study interface stability under irradiation.
•	Ion irradiation to study fuel-matrix-interaction (FMI) or fuel-cladding-chemical-interaction (FCCI) behavior.

25

Slide 27 Experience and capability In 2013 >6600 beam hr logged on irradiation effects studies in MIBL (~200 irradiations) for 130 researchers and 52 projects. In last five years: INL, LANL, ORNL, PNNL, Bettis, U.S. Army Research Lab Labs: Universities: Boise State, Wisc., Connecticut, Texas A&M, Windsor, Illinois, Va. Tech, Virginia, Cornell, Colorado School of Mines, Southern California, Wayne State, Ohio State, Buffalo, Notre Dame, San Antonio, Tennessee, Alabama A&M, Duke Univ., Brown Univ., UCLA, Rutgers, Delaware, Pennsylvania, McMaster International: France - Areva, CEA, CNRS, U. de Toulouse, Ecole Nat'l Sup. Paris U.K. - U. Manchester, Oxford China - IMR, SNPRI, SNERDI, Northeastern U., SJTU, U. Electr. Sci. and Technol. Canada - AECL Japan - INSS (Japan) Germany - Helmholtz Center Poland - Institute of Physics Chech Republic - NRI Korea - KAERI Pakistan - Lahore College for Women, NILOP, Pakistan Inst. of Engin & Appl Sci 27 Michigan Ion Beam Laboratory Slide 28 Current UM-based Projects at MIBL

- EPRI ARRM program on IASCC
- EPRI 718 program on IASCC of 718 as a function of microstructure
- DOE-BES program on mechanism of IASCC
- DOE/EPRI LWRS program on IASCC mechanism and modeling
- NEUP program on IASCC mitigation
- MAI/EdF program on IAC
- · 5 NEUP programs on Accident Tolerant Fuel Development
- · NEUP program on accelerated irradiations for high dose microstructures
- NEUP program on radiation induced segregation
- CASL project on oxidation and hydrogen uptake in Zr under irradiation
- · DOE-IRP on High Fidelity Ion Irradiation to Emulate Reactor Irradiation
- · TerraPower project on core materials development

Michigan Ion Beam Laboratory

28

· Phillps XL30 FEG SEM

TEM holders

- FEI Quanta 3D e-SEM/FIB

- FEI Nova 200 Nanolab SEM/FIB

FEI Hellos 650 Nanolab SEM/FIB

Cameca LEAP 4000X HR Atom Probe

Veeco Dimension Icon AFM

Kratos Axis Ultra XPS

· Hysitron tribo-indenter

Hysitron pico-indenter

JEOL 2010F Analytical Electron Microscope

JEOL 2100F Probe-corrected Electron Microscope

34

JEOL 3011 High Resolution Electron Microscope

JEOL 3100R05 Double Cs Corrected TEM/STEM

- · Scanning electron microscopy (SEM)
- · Focused ion beam (FIB) milling and imaging
- X-ray energy dispersive spectrometry (XEDS)
- Electron backscattered diffraction (EBSD)
- · Cryo electron microscopy
- · Transmission electron microscopy (TEM)
 - · diffraction imaging
 - high resolution (HREM)
 - scanning (STEM)
 - · aberration-corrected
- · In-situ electron microscopy
- (straining, heating, indentation)
- Electron energy loss spectrometry (EELS)
- · Atom probe microscopy (APM)
- · Atomic force microscopy (AFM)
- · X-ray photoelectron spectroscopy (XPS) tribo/pico-indentation

- Sample preparation
- Michigan Ion Beam Laboratory

Presentation: Accelerator Based Facility for Materials Irradiation Testing

Nick Simos

BROOKHAVEN

INL Ion Irradiation Workshop,

March 22-24, 2016

wen Science Associates

Slide 3 1. Working on getting CFN **BNL Irradiation and Characterization Facilities Synergy** to handle radioactive materials. BLIP (Brookhaven Linear Isotope Producer): Irradiation studies using (a) high energy protons (66 MeV to 200 MeV) and (b) spallation neutrons from 118 MeV protons on target. Materials for fusion and fission reactors as well as high power accelerators (LHC, LBNF, FRIB, etc.) NSRL - 2 GeV protons + High Energy lons Tandem Van de Graaff: Irradiation facility with 28 MeV protons or ions from an ion array up to 197Au Isotope Extraction-Processing Facility: An experimental area in the facility hot cells for complete macroscopic analysis of irradiated samples NSLS II - X-ray diffraction Center for Functional Nanomaterials (CFN) - Characterization INL Ion Irradiation Workshop, BROOKHAVEN March 22-24, 2016 en Science Assoc

Slide 11 1. How hot are typical 28 MeV Proton & Heavy ion irradiation at Tandem - 2 uA current samples after a high-dose irradiation study? Max Energy Surface LET Range Surface LET Mass Range Tandem van De Graff MeV MeV MeV AMU AMU MeV ng/cm² Mic ig/cm Micro Symbol ιH 1.0079 28.75 28.52 0.0153 4550 0.0118 2610 ⁷Li 7.0164 57.2 8.15 390 0.27 240 0.369 118 11.0093 85.5 7.7 1.08 206.13 0.754 132.55 ^{12}C 12.0000 99.6 8.30 180.43 1.46 1.03 2.61 137.78 10O 15.999. 128 8.00 1.83 88.9 8 3.51 19F 18.9954 142 7.48 118,88 2.45 77.12 9 24Mg 23.9921 6.71 55.13 161 6.01 84.16 4.17 14 24Si 28.0855 187 6.66 7.81 77.16 5,42 50,66 17 MCI . 34.9688 6.06 64.41 7.93 42.71 11.5 20 39 9753 ^{a0}Ca 221 5.51 15.8 51.89 10.5 34.7 48_{Ti} 22 47.9479 232 4.84 47.8 32.36 19.6 13.4 24 52Cr 51.9403 245 4.72 22.3 45,86 15.3 31.06 26 ⁵⁶Fe 55.9349 259 4.63 25.1 44.24 30,09 58 Ni 57,935 28 4.66 44.56 30,47 270 27.9 19.1

6³Cu 29

72Gc 32

107Ag 47

127 53

Au

35 81Br

41 93_{Nb} 62.929

71.9221

80,9163

92,9060

106.9051

126.9045

196,9665

4.40 30.1 42.06

3.80

2.93

1.71

287 3.55

300 3.23 47.5

313

322 2.54 35.9 37.94

41.3

\$9.2

66,9

84.6 INL Ion Irradiation Workshop, N March 22-24, 2016

37,50

36,32

32.48

32.54

29.21

20.6 28.79

28,0

32.1

39,9

45,0 23.17

56.2 21.18

26.25 24.4

26,11

25.4

22.89

Slide 15 **BNL Post-Irradiation Facilities** Isotope Extraction and Processing Facility at BNL PIE analyses performed are: · Stress-strain (tension, 3-point and 4-point bending) Thermal Expansion and annealing . (extremely sensitive dilatometer) Thermal Conductivity (electrical resistivity) Magnetic Whole probe Ultrasonic measurements Photon spectra and isotopic analysis · Activity measurements · Weight loss or gain INL Ion Irradiation Workshop, BROOKHAVEN March 22-24, 2016 Science Asso

Presentation: In-Situ X-ray Characterization of Microstructural Evolution

Lynne Ecker

In situ X-ray characterization of radiation effects is a supporting technology for the DOE-NE mission.

Nuclear Energy Research and Development Roadmap:

•Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors.

•Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals.

•Develop sustainable fuel cycles.

Brookhaven Science Associates

•Understand and minimize the risks of nuclear proliferation and terrorism.

2

BROOKHAVEN

<page-header><section-header><section-header><image><text><text><text><text><text>

Slide 12 NSLS-II has world leading beamlines for ex situ characterization of low activity samples Submicron Resolution X-ray Hard X-ray Nanoprobe (HXN) Spectroscopy (SRX) Explore new frontiers of hard x-ray microscopy with . the highest achievable spatial resolution: Long-term **XRF** capability goal 1~10 nm elemental quantificatio . Complement electron microscopy capabilities with higher elemental sensitivity, and enable in situ imaging in a variety of realistic environmental conditions. Comparison of SEM vs. HXN The Par ID No. Par Ann Con St. K Emission line can be detected L Emission line can be detected SEM In-vacuum undulator $4.65 \text{ keV} \le E \le 25 \text{ keV}$ nergy range Focusing mode: DE = 1.5-2.5 eV @ 12 keV Energy DE = 0.9 eV @ 7 keV Focal spot 0.5 x 0.5 µm² (H x V) High-flux HXN at > 101) phot/sec setup . Pt XRF Focal spot 70 x 70 nm² (H x V) 5 nm/pixel • High at 1011 - 1012 phot/sec @ 7 keV 50 ms/pixel And 30 x 30 nm² (H x V) setup at 1011 phot/sec @ 12 keV BROOKHAVEN 12 ven Science Assor

Slide 15 An endstation for in situ studies with particle accelerators will be located in a separate facility (IXB) outside of the NSLS II ring Space for multiple particle accelerators ٠ and supporting infrastructure Customizable user experiments Higher radioactivity in the samples ٠ Larger samples (prototypical of bulk) ٠ Previously irradiated (activated) ray Beam from N materials **Dispersible materials GE PETtrace** No restrictions on cyclotron number or type of NEC 6MV accelerators because of space BROOKHAVEN 15

Access IXB is provided through a DOE User Facility: the NSLS-II

- · Access to world-leading, complementary beamlines at NSLS-II
- · Accommodate industry (rapid access to beamtime, remote access, proprietary)
- · NSLS-II 5000 hrs/year
- DOE user facility with support infrastructure, guest center, training, accommodations, established proposal process
- Radiation handling, shipping and receiving, remote hot cells
- Maintenance on x-ray source from NSLS-II
- · New directorate for data analysis

HXN

Brookhaven Science Associates

SRX

XPD

BROOKHAVEN

Slide 20 Criteria Image: Solution of the facility to produce results of high scientific merit and the potential to meet needs of DOE-NE and industry. Image: Solution of the facility to produce results of high scientific merit and the potential to meet needs of DOE-NE and industry. Image: Solution of the facility of the facility includions Image: Solution of the facility of the introductions. Image: Solution of the facility includion of experiments that can be handled. Image: Solution of the facility includion new technology Image: Solution of the facility includion new technology Image: Solution of the individual that can support verification and aidiation for modeling and simulation.

19

Presentation: Univ. of Tennessee IBML

William Weber

Alphatross

Tank service

TENNESSEE T

<page-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Typical Ion Flux on Target (without raster) Typical Ion Flux on Target (without raster) He1+ 3.5 MeV: 85 nA in 1.5×1.5 mm² (2.4×10¹³ ions cm⁻² s⁻¹) Charge state distribution of Ni Si1+ 1 MeV: accelerated with 2.5 MV 550 nA in 3×3 mm² (3.8×10¹³ ions cm⁻² s⁻¹) 40 Si4+ 13.5 MeV: 1300 nA in 3×3 mm² (2.3×10¹³ ions cm⁻² s⁻¹) ê 30 Relative Intere Au1+ 1 MeV: 20 200 nA in 3×3 mm² (1.4×10¹³ ions cm⁻² s⁻¹) 10 Au7+ 23 MeV 60 nA in 3×3 mm² (5.95×10¹¹ ions cm⁻² s⁻¹) 6. Charge State Au⁸⁺ 25 MeV 15 nA in 3×3 mm² (1.30×10¹¹ ions cm⁻² s⁻¹) TENNESSEE T High-Energy End Stations **High-Energy End Stations** Station L3A: Radiation Effects - 100 to 1500 K > Manipulator has 1 axis of tilt and 3 axes of translation > Beam rastering capability > Time-of-Flight spectrometer (ERDA, electronic stopping, etc.) Station L3B: Closed-cycle helium system (25 to 300 K) - Under testing > Manipulator has 3 axes of rotations and 3 axes of translation > IBA capabilities > 30 keV electron gun > In situ luminescence Station L5: Radiation Effects - 150 to 1000 K > Manipulator has 3 axes of rotations and 3 axes of translation; ideal for channeling measurements > Beam rastering capability IBA capabilities Station L6: Ion Beam Analysis (300 K) > Designated for routine, rapid analysis. > A large number of samples can be mounted on two sample holders > Equipped with standard IBA capabilities, e.g. RBS, NRA, ERDA, PIXE No Radioactive Materials at this Time! TENNESSEE T

Presentation: Edwards Accelerator Laboratory at the University of Ohio

Steve Grimes

Neutron Detectors

Neutron Detectors

- Liquid Scintillators NE213
- Lithium glass
- BF₃
- Fission chambers- ²³⁵U, ²³⁸U

Advanced Method for Calibration

Advanced Method for Calibration

- The neutron spectrum for a stopping target using the ²⁷Al(d,n) reaction at E_d = 7.44.
- The spectrum has been measured at 120° using a ²³⁵U fission chamber.
- This spectrum can be used to calibrate a detector from 0.2 to 12 MeV in a short time.
- The NE213 efficiencies obtained by this method are close to the calculated efficiencies.

Lithium Glass Detectors

Lithium Glass Detectors

- The measured efficiencies of lithium glass detectors differ from the calculated shape from just the ⁶Li(n,α) reaction.
- Contributions from ¹⁶O(n,n'γ) and ²⁸Si(n,n'γ) are important above 1.8 MeV.
- Detectors which have the same specification of ⁶Li content have efficiencies which varied by a factor of two at the 250 keV resonance.

Pulsed Neutron Spheres

Pulsed Neutron Spheres

- A gas cell is placed in the center of a spherical shell with high purity material.
- The Time-of-Flight for the emerging neutrons is measured with a neutron detector.
- The spherical shell is typically 0.5 to 2.0 mean free paths thick.
- The energy of the neutrons cannot be directly measured due to multiple scattering.
- The experiment is modeled with Monte Carlo to calculate the arrival time spectrum

The Iron Sphere Setup

- At E_n = 1 MeV the spectrum is in agreement with ENDFB_VII.
- For En > 5 MeV, the sphere results disagree with predictions.
- Modifications are required for the ENDFB_VII evaluation.
- Elements that need to be checked are C, Zr, U and Pu.

Time-of-Flight,	Energy	spectro	meter
	- JJ		

Time-of-Flight, Energy spectrometer	
 It is difficult to optimize for ΔE thickness for a ΔE-E telescope if both alphas and protons are detected. 	
 Measuring E and ToF allows the separation of the different particles emitted. This spectrometer has 10 instrumented angles and has 85 cm or 170 cm flight paths. Additional neutron or gamma detectors can be added. 	

Facility Upgrades-Negative Ion Source	
Facility Upgrades-Negative Ion Source	
Iorvis (NEC) estimate \$500,000	
— 40 μA He	
– 100 μA H, D	
 Aphatross(NEC) \$250,000 	
— 4 μA He	
– 10 μA H, D	
 The ion optics are being checked for 	
compatibility with our accelerator	

Other facilities	
Other facilities	
 Two spectrometers available for (n,Z) reactions. Facilities for surface science measurements A code which allows correct calculation of cross sections using the Hauser-Feshbach formalism for deformed nuclei. 	

Materials Science with the Application of Nuclear Physics • Nuclear Science • Detection of fissile materials • Neutron Resonance Radiography • Neutron Imaging and Tomography • Neutron Detector development and calibration • Materials for Nuclear Reactors • Neutron Induced Single Event Upsets • Measurement of the p, d and t, alpha elastic recoil cross- sections • Nuclear Reaction Analysis	Materials Science with the Application	
 of Nuclear Physics Nuclear Science Detection of fissile materials Neutron Resonance Radiography Neutron Imaging and Tomography Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 		
 Nuclear Science Detection of fissile materials Neutron Resonance Radiography Neutron Imaging and Tomography Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	of Nuclear Physics	
 Detection of fissile materials Neutron Resonance Radiography Neutron Imaging and Tomography Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	Nuclear Science	
 Neutron Resonance Radiography Neutron Imaging and Tomography Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	Detection of fissile materials	
 Neutron Imaging and Tomography Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	Neutron Resonance Radiography	
 Neutron Detector development and calibration Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	Neutron Imaging and Tomography	
 Materials for Nuclear Reactors Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross-sections Nuclear Reaction Analysis 	Neutron Detector development and calibration	
 Neutron Induced Single Event Upsets Measurement of the p, d and t, alpha elastic recoil cross- sections Nuclear Reaction Analysis 	Materials for Nuclear Reactors	
 Measurement of the p, d and t, alpha elastic recoil cross- sections Nuclear Reaction Analysis 	Neutron Induced Single Event Upsets	
Nuclear Reaction Analysis	 Measurement of the p, d and t, alpha elastic recoil cross- sections 	
	Nuclear Reaction Analysis	

Summary	
Summary	
During the past 25 years-	
 Numerous elastic and inelastic neutron scattering measurements completed. 	
 Measurement of Fe(n,p), Fe(n,α), Cu(n,p), Cu(n,α), Ni(n,p), Ni(n,α), completed. 	
 Stopping target neutron spectra measurements. 	
 Measurements and calculation of level densities. 	

Summary- continued

- Collaboration with LLNL, LANL, ANL, Ohio State University, University of Michigan, Michigan State University, SUNY Geneseo, and Oak Ridge National Lab on neutron calibrations and activation capture measurements.
- Pulsed Sphere (Fe) measurements at 4 bombarding energies
- Condensed Matter studies.

Presentation: Ion Beam Laboratory at Texas A&M University

Lin Shao

Slide 2

Slide 3 Radiation Materials Science Group (Accelerator Lab) Lin Shao, Leader Mark Hollander Xuemei Wang Wayne Kinnison Frank Garner Lab Manager Lab Manager Senior Scientist Senior Scientist Jonathan Gigax Jing Wang Lloyd Price Tianyi Chen losey Wallace Eda Avo ogar F/M alloys Modeling Metallic glass Tianyao Wang Aaron French Fuel cladding Fuel-clad interact. Robert Balerio Jianyuan Fang Hyosim Kim **Elizabeth Castanon** Nitriding **Fuel cladding** Fuel cladding Slide 4 Acquisition of 1 MV and 1.7 MV accelerators from the Cornell University 9 years ago Terminal Voltages: 1 MV and 1.7 MV

Slide 16

Provide a variety of irradiation environments

- Recently updated target chambers

Slide 21 **Current NE work performed at facility** Advanced surface plasma nitriding for development of corrosion resistant cladding Sponsor: DOE-NEUP-NEET PI: Lin Shao; Co-PI: Don Lucca (Oklahoma State Univ.), Frank Garner (Texas Short (MIT). Total amount: \$800,000; Period: 10/01/2015-09/30/2018 Radiation tolerance and mechanical properties of nanostructured amorphe (a) composites Sponsor: DOE-NEUP-NEET SIOC PI: Michael Nastasi (Univ of Nebraska-Lincoln); Co-PI: Don Lucca (Oklahomi Fe (Texas A&M Univ.), Michael Demkowicz (MIT). Total amount: \$994,997 ; Period: 10/01/2015-09/30/2018 SiO 200 nm Development of accident tolerant fuel options for near term applications Sponsor: DOE-NEUP-IRP PI: Jacopo Buongiorno (MIT); Co-PI: Lin Shao and seven others 0,28 nm Total amount: \$3,000,000 ; Period: 10/01/2015-09/30/2018 0.27 **Development of High Performance ODS Alloys** Sponsor: DOE-NEUP PI: Lin Shao; Co-PI: Frank Garner and Fei Gao Total Amount: \$800,000; Period: 09/01/2014-08/30/2017 6 nm (b)

Ability of the facility to produce results of high scientific merit and the potential to meet needs of DOE-NE and industry: Journal paper published: 108 (from 2007 to 2016) Book chapters: 3 (from 2007 to 2016)

Slide 25		
The sector is		
i nanks!		
lshao@tamu.edu		
isinao@tainu.edu		
Presentation: IBML at LANL

Yong Wang

W ...

Ion Implanters + Ion Accelerators: ✓Synergistic activities ✓Damage plus transmutation products ✓Dual-beam or Triple-beam capabilities

Los Alamos

Ion Accelerators + TEM:

✓Synergistic activities

✓In-situ characterization of radiation damage

✓Damage plus Transmutation products ✓2-beam, 3-beam, 4-beam capabilities

W ...

LANSCE Experimental Areas

<image>

Ion Beam Materials Research at LANL (1986-2016) (Courtesy of Nastasi, Tesmer, Sickafus, Maggiore, Misra, Maloy, Uberuaga, Picraux, Jia, and others)

Irradiation under corrosion lasted for ~60 hours Irradiation under corrosion lasted for ~60 hours The oxide layer formed within the beam region is significantly thicker than outside the beam ×, region, suggesting a strong synergistic effect due to radiation enhanced diffusion and corrosion. Oxide layer 11 µm Thin oxide layer ~1.5 µm Corrosion crack inside the materi HT-9 Steel HV WD pressure mag B HSW -20 0 kV 9 9 mm 6 72e-8 mbar 10 004 x 14 9 µm 3.605 - 43.0

Before irradiation

After irradiation

Material: Cu (100) Tes,ng: Displacement controlled, 1 nm/s Dimensions: d_{top}= 136 nm d_{avg}= 206 nm h= 904 nm

Material: Cu (100) irradiated to 0.8 dpa Tes,ng: displacement controlled, 1 nm/s Dimensions: d_{top}= 118 nm d_{avg}= 198 nm h= 1143 nm

Presentation: Potential for Laboratory Compact Cyclotrons

Lance Snead

Slide 14

Ulii T

Near-term Goal : Demonstrate Compact Cyclotron to Provide Relevant Engineering Data for Model Validation

		the star	the pieces?
Particle	Proton+ (deuteron+)		2. [Lance Snead] The
Energy	12.5 MeV (6.25 MeV)	- CB-OO	instrument will be
Current	<50 μΑ		operational within a month of delivery. Target
Dimensions	0.96 m ¢ x 1.75 m	TODAT A	Construction of target
Weight	1800 kg (4000 lb)		thimble this summer. Irradiation late this year.
Power	208V 3-phase, 125A		
Peak power	35 kW (consumption)	102-24	
Magnets	Superconducting (always on)		
Magnetic field	4.5 T (internal); 50 gauss (1 n	n); 5 gauss (4 m)	
Cryogenics	Liquid-free; closed loop He	Lab Under Construction	
Target	Internal (no external beam)	Salety Installation April	
Target material	Variable	Instruction	

1. What is the timeframe for

getting this operational?

How long for the rest of

Slide 19		
	Concluding Remarks	1. Primary purpose is to dead reckon the models—few facilities
A MIT will be ave	laving bull in invaliding and task times to show static same	like this needed.
while under irrad	liation. The ultimate goal is to provide a bridge from the bulk of	f
irradiation materi will continue to b	ials science from low-to-intermediate energy ions to what is and e a limited set of neutron irradiation data.	d
• As a NSUF user	facility and with a local reactor (MITR), comparison with neutro	on
irradiated materia	al will be straight forward.	
Given throughp	put issues, radiological issues and somewhat higher costs that th	ne
low-to-intermedia unique facilities a	ate ion beam facilities such a "penetrating sources" will likely be and their science largely guided by modeling goals.	es
We will embari	k on the building blocks of such a facility with the development	of
compact high bril superconducting	lliance x-ray sources and demonstrating the usefulness of compa cyclotrons.	act
It would be ver	y useful to decide if such a facility is on critical path by carrying	out
a community road		

Appendix F

Facility Ranking Exercise

Appendix F Facility Ranking Exercise

Facility Ranking by Criteria Votes Cast: 21

	C1: Viability for the capability to			Number of Votes at Each Score (1-5)					(1-5)
No.	extend our understanding toward accurately simulating nuclear irradiation conditions (neutrons or fission fragments)	Avg. Score	Std. Dev.	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	4.00	0.93	0	0	2	3	9	7
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.57	0.95	0	0	4	4	10	3
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.48	0.85	0	0	2	10	6	3
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.38	1.13	0	1	4	6	6	4
1	Argonne National Laboratory - Intermediate Voltage Electron Microscope (IVEM)	3.29	0.98	0	1	3	8	7	2
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.24	0.87	0	0	5	7	8	1
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.24	0.81	0	0	4	9	7	1
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.19	1.30	1	2	1	8	6	3
12	Texas A&M University – Accelerator Laboratory	3.19	1.01	0	2	2	8	8	1
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.14	0.83	0	2	0	12	7	0
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.90	0.92	0	1	5	12	1	2
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.81	0.79	0	2	2	16	0	1
5	Idaho State University – Idaho Accelerator Laboratory	2.19	0.85	0	5	8	7	1	0
9	Ohio University – Edwards Accelerator Laboratory	1.90	1.06	2	6	6	6	1	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	1.86	0.99	1	9	3	8	0	0

	C2: Ability of the facility to provide a			Number of Votes at Each Score (1-5)					(1-5)
No.	variety of ion irradiations (ion types, energies, multiple beams, etc.)	Avg. Score	Std. Dev.	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	4.10	0.87	0	0	1	4	8	8
12	Texas A&M University – Accelerator Laboratory	3.86	0.89	0	0	1	7	7	6
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.48	1.14	0	1	3	7	5	5
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.43	0.95	0	0	4	7	7	3
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.38	0.84	0	0	3	9	7	2
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.33	1.04	0	1	2	11	3	4
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	3.24	1.02	0	1	3	10	4	3
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.10	1.23	1	0	6	6	5	3
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	3.10	1.11	0	1	7	4	7	2
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.00	1.31	0	3	5	6	3	4
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	2.86	1.21	1	2	3	10	3	2
5	Idaho State University – Idaho Accelerator Laboratory	2.76	1.19	0	4	4	8	3	2
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	2.67	1.08	1	2	5	8	5	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.10	1.34	1	8	5	4	1	2
9	Ohio University – Edwards Accelerator Laboratory	1.81	1.10	2	8	4	6	1	0

	C3: Ability of the facility to provide a			Number of Votes at Each Score (1-5)					(1-5)
No.	variety of well-controlled target environments and conditions	Avg. Score	Std. Dev.	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	4.29	0.70	0	0	0	3	9	9
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.48	1.01	0	1	2	7	8	3
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.38	1.05	0	1	3	7	7	3
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.38	0.90	0	1	1	10	7	2
12	Texas A&M University – Accelerator Laboratory	3.33	0.84	0	0	3	10	6	2
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.19	0.85	0	0	5	8	7	1
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.19	0.91	0	1	2	12	4	2
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.19	1.14	0	2	3	8	5	3
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	3.10	0.75	0	0	4	12	4	1
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	2.95	1.05	1	0	5	9	5	1
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.90	0.92	0	1	5	12	1	2
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	2.76	1.06	1	1	5	10	3	1
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.48	1.01	0	4	7	6	4	0
5	Idaho State University – Idaho Accelerator Laboratory	2.24	1.19	2	3	8	4	4	0
9	Ohio University – Edwards Accelerator Laboratory	1.86	0.99	2	6	6	7	0	0

	C4: Ability of the facility to collect			Number of Votes at Each Score (1-5)					
No.	and analyze materials properties and/or perform microstructural characterization data onsite	Avg. Score	Std Dev	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	3.95	0.79	0	0	0	7	8	6
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.86	1.21	0	2	0	5	6	8
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.71	1.12	0	1	2	5	7	6
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.57	1.00	0	1	1	8	7	4
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.57	1.18	0	1	3	6	5	6
12	Texas A&M University – Accelerator Laboratory	3.57	0.95	0	0	2	10	4	5
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.52	1.05	0	0	5	4	8	4
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	3.52	1.01	0	0	4	6	7	4
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.48	1.22	0	1	5	3	7	5
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.43	1.00	0	0	4	8	5	4
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	3.19	1.05	0	1	4	9	4	3
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.10	1.02	0	2	3	8	7	1
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.71	1.20	1	2	5	9	2	2
5	Idaho State University – Idaho Accelerator Laboratory	2.24	0.81	0	4	9	7	1	0
9	Ohio University – Edwards Accelerator Laboratory	1.86	1.04	2	6	7	5	1	0

	C5: Ability of the facility to collect			Number of Votes at Each Score (1-5)					
No.	and analyze materials properties and/or perform microstructural characterization data in situ	Avg. Score	Std. Dev.	0	1	2	3	4	5
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	4.05	1.21	0	1	2	3	4	11
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	4.05	1.29	1	0	1	4	4	11
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.90	1.02	0	1	0	6	7	7
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.67	1.36	0	3	0	6	4	8
13	University of Michigan – Michigan Ion Beam Laboratory	3.52	1.22	1	0	2	7	6	5
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	2.90	1.41	1	4	1	8	4	3
12	Texas A&M University – Accelerator Laboratory	2.90	1.27	2	1	2	9	6	1
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	2.57	1.53	2	5	2	5	5	2
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	2.48	1.43	2	4	4	6	3	2
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.14	1.25	2	5	5	7	1	1
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	2.10	1.41	4	3	5	6	2	1
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.10	1.31	2	7	3	5	4	0
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.05	1.05	2	4	7	7	1	0
5	Idaho State University – Idaho Accelerator Laboratory	1.29	1.03	6	6	6	3	0	0
9	Ohio University – Edwards Accelerator Laboratory	1.14	0.83	5	9	6	1	0	0

	C6: Current or potential productivity			Number of Votes at Each Score (1-5)					
No.	of the facility (e.g., fewer high-impact experiments or high-volume sample throughput)	Avg. Score	Std. Dev.	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	3.86	1.08	0	1	0	8	4	8
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.71	1.08	0	0	3	7	4	7
12	Texas A&M University – Accelerator Laboratory	3.48	0.85	0	0	2	10	6	3
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.43	0.73	0	0	1	12	6	2
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.19	1.05	0	1	4	9	4	3
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.10	0.81	0	1	2	13	4	1
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.00	0.93	0	1	5	9	5	1
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP- BLAIRR	2.86	1.12	0	2	7	6	4	2
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.81	0.79	0	1	6	10	4	0
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	2.76	0.87	0	2	5	10	4	0
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.71	0.88	0	2	6	9	4	0
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	2.67	1.04	0	4	3	11	2	1
5	Idaho State University – Idaho Accelerator Laboratory	2.33	1.13	1	5	4	8	3	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.14	1.21	2	5	4	9	0	1
9	Ohio University – Edwards Accelerator Laboratory	1.86	1.04	2	7	4	8	0	0

	C7: Unique capabilities of the facility,			Number of Votes at Each Score (1-5)					
No.	including any new technology that has the capability to close technological gaps	Avg. Score	Std. Dev.	0	1	2	3	4	5
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.95	0.84	0	0	0	8	6	7
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.90	0.97	0	0	2	5	7	7
13	University of Michigan – Michigan Ion Beam Laboratory	3.76	1.06	0	1	1	6	7	6
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.71	1.03	0	0	3	6	6	6
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.71	0.98	0	0	2	8	5	6
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.48	1.18	0	1	4	5	6	5
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.38	0.90	0	0	4	7	8	2
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.29	1.20	0	2	3	7	5	4
12	Texas A&M University – Accelerator Laboratory	2.95	0.90	0	2	3	10	6	0
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	2.86	0.94	1	0	5	10	5	0
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.67	0.78	0	1	8	9	3	0
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.57	0.79	0	2	7	10	2	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.33	0.89	0	4	8	7	2	0
9	Ohio University – Edwards Accelerator Laboratory	1.95	1.25	3	5	6	4	3	0
5	Idaho State University – Idaho Accelerator Laboratory	1.81	1.01	2	7	5	7	0	0

	C8: Ability of the facility to handle			Number of Votes at Each Score (1-5)					
No.	radioactive materials (structural materials and/or fuels) in the beams and elsewhere onsite	Avg. Score	Std. Dev.	0	1	2	3	4	5
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.95	1.00	0	1	1	2	11	6
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.81	1.01	0	1	1	4	10	5
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.62	1.09	0	1	2	6	7	5
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.48	1.10	0	1	2	9	4	5
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.43	1.14	0	1	4	5	7	4
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.29	1.16	0	1	5	6	5	4
5	Idaho State University – Idaho Accelerator Laboratory	3.05	1.05	1	1	1	12	5	1
13	University of Michigan – Michigan Ion Beam Laboratory	2.90	1.27	2	0	3	12	1	3
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	2.62	1.33	1	4	5	4	6	1
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.48	1.14	1	4	3	11	1	1
12	Texas A&M University – Accelerator Laboratory	2.38	0.90	1	2	7	10	1	0
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	2.33	0.94	0	5	6	8	2	0
9	Ohio University – Edwards Accelerator Laboratory	1.29	1.35	8	5	4	3	0	1
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	0.90	0.92	9	6	5	1	0	0
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	0.86	1.12	12	3	3	3	0	0
	C9: Ability of the facility to produce			Number of Votes at Each Score (1-5)				(1-5)	
-----	--	---------------	--------------	-------------------------------------	---	---	----	-------	---
No.	quality-level data that can support licensing as well as verification and validation of modeling and simulation	Avg. Score	Std. Dev.	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	3.76	1.02	0	0	3	5	7	6
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.62	0.84	0	0	1	10	6	4
11	11Sandia National Laboratory – In Situ Ion11Irradiation Transmission ElectronMicroscope		0.90	0	0	2	8	7	4
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.57	1.40	1	1	2	5	5	7
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.52	1.01	0	1	1	9	6	4
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.43	1.09	0	1	3	7	6	4
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.43	0.90	0	0	3	9	6	3
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.43	1.14	0	2	1	8	6	4
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.33	1.04	0	1	2	11	3	4
12	Texas A&M University – Accelerator Laboratory	3.29	1.20	0	1	5	7	3	5
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	3.05	0.95	0	1	5	8	6	1
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.86	1.21	1	1	6	7	4	2
5	Idaho State University – Idaho Accelerator Laboratory	2.43	0.95	0	4	7	7	3	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	2.24	1.23	1	7	3	6	4	0
9	Ohio University – Edwards Accelerator Laboratory	1.90	1.11	1	9	4	5	2	0

	C10: Ability of the facility to produce			Number of Votes at Each Score (1-5)				(1-5)	
No.	results that meet the needs of DOE– NE (including cross-cutting programs) and the nuclear energy industry	Avg. Score	Std Dev	0	1	2	3	4	5
13	University of Michigan – Michigan Ion Beam Laboratory	4.05	0.90	0	0	2	2	10	7
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.81	1.14	0	1	2	4	7	7
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.67	0.94	0	0	1	11	3	6
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.57	1.09	0	1	2	7	6	5
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.57	1.29	1	0	3	5	6	6
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	3.52	1.18	0	1	3	7	4	6
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.52	1.30	0	3	0	7	5	6
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.52	0.91	0	0	2	10	5	4
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.48	1.22	0	2	2	6	6	5
12	Texas A&M University – Accelerator Laboratory	3.38	1.00	0	1	2	9	6	3
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	3.05	1.33	0	3	5	5	4	4
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.86	1.08	0	3	4	8	5	1
5	Idaho State University – Idaho Accelerator Laboratory	2.38	1.09	1	3	8	5	4	0
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	1.95	1.13	1	9	3	6	2	0
9	Ohio University – Edwards Accelerator Laboratory	1.76	1.23	3	8	3	5	2	0

Overall Facility Rankings

No.	Facility	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	Total
13	University of Michigan – Michigan Ion Beam Laboratory	4.00	4.10	4.29	3.95	3.52	3.86	3.76	2.90	3.76	4.05	38.19
1	Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	3.29	3.00	3.38	3.86	4.05	3.71	3.71	3.29	3.57	3.81	35.67
2	Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	3.57	3.10	3.19	3.71	3.90	2.67	3.95	3.62	3.52	3.57	34.81
11	Sandia National Laboratory – In Situ Ion Irradiation Transmission Electron Microscope	3.48	3.43	3.48	3.57	4.05	3.43	3.90	2.33	3.62	3.52	34.81
3	Brookhaven National Laboratory – Ion X-ray Beam (IXB)	3.24	2.86	3.19	3.48	3.67	3.19	3.71	3.48	3.62	3.67	34.10
4	Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex - BLIP-BLAIRR	3.38	3.48	3.19	3.52	2.90	2.86	3.48	3.43	3.43	3.52	33.19
7	Los Alamos National Laboratory – Ion Beam Materials Laboratory	3.14	3.33	3.38	3.57	2.48	3.10	2.86	3.95	3.33	3.48	32.62
12	Texas A&M University – Accelerator Laboratory	3.19	3.86	3.33	3.57	2.90	3.48	2.95	2.38	3.29	3.38	32.33
6	Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	3.24	3.38	2.95	3.43	2.10	3.00	3.38	3.81	3.43	3.52	32.24
8	Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	3.19	2.67	2.76	3.10	2.57	2.76	3.29	2.62	3.43	3.57	29.95
15	University of Wisconsin – Wisconsin Tandem Accelerator Ion Beam	2.90	3.10	2.90	3.52	2.14	2.81	2.67	2.48	2.86	3.05	28.43
14	University of Tennessee-Knoxville – Ion Beam Materials Laboratory	2.81	3.24	3.10	3.19	2.05	2.71	2.57	0.86	3.05	2.86	26.43
5	Idaho State University – Idaho Accelerator Laboratory	2.19	2.76	2.24	2.24	1.29	2.33	1.81	3.05	2.43	2.38	22.71
10	Purdue University – Center for Materials Under Extreme Environment (CMUXE)	1.86	2.10	2.48	2.71	2.10	2.14	2.33	0.90	2.24	1.95	20.81
9	Ohio University – Edwards Accelerator Laboratory	1.90	1.81	1.86	1.86	1.14	1.86	1.95	1.29	1.90	1.76	17.33

Community Comments on Facility Rankings

Facilities	Any Comments
Argonne National Laboratory – Intermediate Voltage Electron Microscope (IVEM)	 Comment was made that there should be an "n/a" option in the scoring levels. The IVEM is a clearly an important facility for high-impact science. However, I see no direct linkage between the data emanating from this facility and licensing data. I only see indirect linkage through multi-length-scale modeling. Ion irradiation data will unlikely be used for licensing purpose without the strong support of computer models to correlate the ion irradiation to neutron irradiation damage. The IVEM-Tandem Facility provides unique capability to facilitate the
Argonne National Laboratory – Extreme Materials Beam Line (XMAT)	development of such computer models.
Brookhaven National Laboratory – Ion X-ray Beam (IXB)	
Brookhaven National Laboratory – Ion Irradiation Facilities and Capabilities at the BNL Accelerator Complex – BLIP-BLAIRR	
Idaho State University – Idaho Accelerator Laboratory	 No in situ capabilities. Lack of in situ capabilities specifically mentioned in the Excel file.
Lawrence Livermore National Laboratory – Center for Accelerator Mass Spectrometry (CAMS)	1. No mention of specific in situ capabilities either in the presentation or in the Excel file.
Los Alamos National Laboratory – Ion Beam Materials Laboratory	 These facilities appear duplicative of what is being productively used in the complex. No mention of specific in situ capabilities either in the presentation or in the Excel file.
Massachusetts Institute of Technology – MIT Nuclear Materials Laboratory	 Entries in the spreadsheet are either not there or statements like "yes." I cannot work with that. No mention of specific in situ capabilities either in the presentation or in the Excel file. Saying "yes" to the presence of capabilities is not enough.
Ohio University – Edwards Accelerator Laboratory	 No info provided on ability to handle radioactive materials. No info provided in the spreadsheet. Cannot handle radioactive materials. Ohio can handle 100 mR/hr beta/gamma activity at 25 cm separation. No mention of specific in situ capabilities either in the presentation or in the Excel file.
Purdue University – Center for Materials Under	1. Not able to handle active materials.

Facilities	Any Comments
Extreme Environment (CMUXE)	2. No info provided on ability to handle radioactive material.
	3. We do not agree with the zero score for Criteria #2, #3, #4, #5, #6, #7, #9, and #10. Someone gave us "zero score" for these criteria, which is certainly NOT true. CMUXE has capability for these criteria, which is self reflected from our presentation slides.
Sandia National Laboratory – In Situ Ion	1. That is BS!
Irradiation Transmission Electron Microscope	2. Assuming that comment refers to the 0 in situ rating. If so, then agreed.
Texas A&M University – Accelerator Laboratory	1. Apparently not an accurate comment.
University of Michigan – Michigan Ion Beam Laboratory	 MIBL has the capability to handle 100 mR/hr samples and so should be scored a 3 according to the Criteria Scoring Definitions.
University of Tennessee-Knoxville – Ion Beam	1. Not able to handle active materials.
Materials Laboratory	2. Stated inability to handle radioactive materials.
	3. Cannot handle radioactive material.
	4. Cannot handle radioactive materials.
	5. Cannot handle radioactive materials.
	6. The University of Tennessee has a full suite of materials characterization capabilities onsite, including all the capabilities in the new Joint Institute for Advanced Materials that has opened on campus. We also have all the characterization capabilities available at Oak Ridge National Laboratory.
University of Wisconsin – Wisconsin Tandem	1. We can handle 100 mR/hr on contact—there should be no standard deviation here.
Accelerator Ion Beam	2. UW-Madison supports DOE-NE through a vast number of NEUP projects.
	3. UW-Madison has in situ ion beam analysis (RBS, NRA), in situ chemical analysis through PIXE, and we plan for in situ TEM and molten salt corrosion.

Appendix G

Ion Beam Facilities' Quantitative Data

Appendix G

Ion Beam Facilities' Quantitative Data

National Laboratories

	Institution	LANL	Argonne National Laboratory	LLNL	Sandia National Laboratories
	Facility	Ion Beam Materials Laboratory	Intermediate Voltage Electron Microscope Tandem User Facility (IVEM-TUF)	Center for Accelerator Mass Spectrometry (CAMS)	In Situ Ion Irradiation Transmission Electron Microscope (I3TEM)
	Beam #1 Ions	H, He, Li, C, Si, Fe, Ni, Cu, Ag, W, Au, and more	H, He, Ne, Ar, Kr, Xe, and many elements from Al to Au		H, He, B, C, O, Ne, Al, Si, Ti, Cr, Fe, Ni, Au, Ag, etc.
	Beam #1 Energy (Low) (MeV)	0.4	0.05		0.01 He
	Beam #1 Energy (High) (MeV)	21	1		14 (Si)
ristics	Beam #2 Ions	H, He, N, O, Ne, Si, Ar, Fe, Kr, Xe, etc.			
aractei	Beam #2 Energy (Low) (MeV)	0.01			
m Ch	Beam #2 Energy (High) (MeV)	0.38			
Bea	Beam #3 Ions				
u Ion	Beam #3 Energy (Low) (MeV)				
In Sit	Beam #3 Energy (High) (MeV)				
	Maximum Flux (1E+12 nv)	1E13 ions/cm ² /s	1		
	Maximum Dose Rate (1E-4 dpa/s)	1E-2 dpa/s	1		
	Beam Spot Diameter (mm)	10.0 - 50.0	1.5		

Argonne National Laboratory LLNL Institution LANL Sandia National Laboratories **Intermediate Voltage** In Situ Ion Irradiation **Electron Microscope Tandem Ion Beam Materials Center for Accelerator Mass Transmission Electron** Facility User Facility (IVEM-TUF) **Microscope (I3TEM) Spectrometry (CAMS)** Laboratory Beam #1 Ions H, He, Li, C, Si, Fe, Ni, Cu, H, He, and all heavy ions He Ag, W, Au, and more except noble gases Beam #1 Energy 0.4 0.003 1 (Low) (MeV) 21 0.02 100 Beam #1 Energy (High) (MeV) Beam #2 Ions H, He, Ne, Ar, Kr, Xe, etc. Heavy ions (e.g., Fe, Ni, Au, Situ Ion Beam Characteristics Si, etc.) Beam #2 Energy 0.01 0.1 (Low) (MeV) Beam #2 Energy 0.38 4 (High) (MeV) Beam #3 Ions H, He, Ne, Ar, Kr, Xe, C, Si, Fe, Ni, Cu, Ag, W, Au, and more Beam #3 Energy 0.02 (Low) (MeV) ΕX 0.8 Beam #3 Energy (High) (MeV) Maximum Flux 1E13 ions/cm2/s 10000 (1E+12 nv) Maximum Dose Rate 1E-2 dpa/s 100 (1E-4 dpa/s)10.0 to 50.0 Beam Spot Diameter 0.5-10 (mm)

National Laboratories (continued)

Institution LANL **Argonne National Laboratory** LLNL Sandia National Laboratories **Intermediate Voltage** In Situ Ion Irradiation **Electron Microscope Tandem Ion Beam Materials Center for Accelerator Mass Transmission Electron** Facility **User Facility (IVEM-TUF) Spectrometry (CAMS) Microscope (I3TEM)** Laboratory 2 MeV tandem (IVEM) 3 MV NEC Pelletron tandem 10 MV FN tandem Pelletron HVE 6 MV tandem Accelerator #1 with radio frequency plasma and sputter ion sources and five beamlines 200 kV Varian DF-3000 ion 500 keV ion implanter (IVEM) NEC 1.7 MV tandem Accelerator #2 NEC 1 MV tandem implanter with gas ion source accelerator 200 kV Danfysik high current Low-energy ion gun (IVEM) Accelerator #3 NEC 3 MV Pelletron Accelerators ion implanter with gas-ovensputter ion source with potential for up to three beamlines 350 kV High-Voltage Accelerator #4 Engineering Europa Implanter A&D 100 kV nanoImplanter Accelerator #5 10 kV Colutron Accelerator #6 Radio frequency quadrupole Accelerator #7 booster Temperature (Low) 77 20 273 (routine), LN_2 (possible) 43 (K) Temperature (High) 1473 1573 1273 (routine), 1473 (possible) 1473 (K) Air Environment х Gas Environment cell holder х (700°C) Water х ~5E-8 Torr <2E-7 Torr ~10-7 Torr (normal operation) Vacuum Corrosion experiment chamber Liquid cell, gas cell, electrical Other and radiation shielding for bias, 77 K to 1000°C performing corrosion of leadbismuth eutectic or molten salts

Institution LANL **Argonne National Laboratory** LLNL Sandia National Laboratories **Intermediate Voltage** In Situ Ion Irradiation **Electron Microscope Tandem Ion Beam Materials Center for Accelerator Mass Transmission Electron** Facility **User Facility (IVEM-TUF) Microscope (I3TEM)** Laboratory **Spectrometry (CAMS)** Ion beam analysis chamber Double-tilt low-temperature Single-tilt general purpose Single-tilt, room-temperature Stage #1 (RBS, ERD, NRA, PIXE, and stage (20-295 K) stage (0–1000°C) straining stage channeling) High-energy, high-temperature Single-tilt stage for radiological Hysitron PI-95 Stage #2 Double-tilt, high-temperature stage (20–900°C) materials (samples over irradiation chamber **Specimen Stages** Class III threshold, 0–200°C) Stage #3 Single-tilt, high-temperature Double-tilt rotate stage Tandem-Varian dual-beam stage (20–1300°C) chamber for damage/He experiments (77 to 1473 K) Stage #4 High-energy helium Single-tilt, high-temperature High-tilt (+/- 81) tilt stage implantation chamber straining stage (20–600°C) Single-tilt, low-temperature 2.3-mm heating (800°C) and Stage #5 Irradiation and Corrosion straining stage (-196–100°C) Experiment (ICE) chamber LN₂ (77 K) stages Stage #6 Low-energy implantation Gas/heating and liquid mixing chambers (77–1473 K) stages In situ @ I3TEM TEM In situ @ IVEM Ex situ Three TEMs at Electron Microscopy Laboratory Hardness Testing Two nanoindenters at the Ex situ Ouantitative mechanical Center for Integrated (Hysitron PI-95) Characterization Nanotechnologies user facility Strain/Tension Testing - Single-tilt, high-temperature Ex situ **Ouantitative** mechanical In situ strain/tension stage straining stage (20–600°C) (Hysitron PI-95 w/P2P) attached to TEMs - Single-tilt, low-temperature straining stage (-196–100°C) X-Ray Techniques Several x-ray diffraction Ex situ @ Advanced Photon Ex situ instruments, including high-Source temperature grazing incident xray diffraction for shallowdepth regions

National Laboratories (continued)

	Institution	LANL	Argonne National Laboratory	LLNL	Sandia National Laboratories
	Facility	Ion Beam Materials Laboratory	Intermediate Voltage Electron Microscope Tandem User Facility (IVEM-TUF)	Center for Accelerator Mass Spectrometry (CAMS)	In Situ Ion Irradiation Transmission Electron Microscope (I3TEM)
	Fatigue Testing			Ex situ	Quantitative mechanical (Hysitron PI-95 w/P2P) under beta test
	Not Permitted				
	Trace Amount (TEM Lamellae)	Yes	x and 3-mm disk	Yes	Yes
	Contact Direct Reading (DR) Limit (mR/hr)	3000	500		100
I I	30 cm DR limit (mR/hr)	100	5	100	
eria	Uranium Fuel	х	x	Y	x
Mat	N-Irradiated U Fuel	х	x	Y	x
ve I	Actinides	Depends on activity		Y	
lioacti	Beta-Gamma Activity Limit (Ci)	Isotope specific, e.g., 290 Ci for Co-60		0.005	
Rac	Alpha Activity Limit (Ci)	Isotope specific, e.g., 14.6 Ci for U-235		0.0005	
	Pu-239 Grams Equivalent	38.6 grams		0.5	
	Can Ship and Receive	Yes	@ ANL-IML	Y	Receive
	Radiological Sample Preparation	At nearby Sigma uranium facility and Chemistry Metallurgy Research facility hot cell	@ ANL-IML	Y	

	Institution	Texas A&M University	University of Michigan	University of Wisconsin
	Facility	Accelerator Laboratory	Ion Beam Laboratory	Tandem Accelerator Ion Beam
	Beam #1 Ions	All elements, except heavy noble gases	H, He, D, O, Ar, Ni, Fe, etc.	H, D, He, O, N
	Beam #1 Energy (Low) (MeV)			0.7 MeV
ıcteristics	Beam #1 Energy (High) (MeV)	3	>1.5	4 MeV (depends on ion)
	Beam #2 Ions	All elements, except heavy noble gases		All sputtered ions if commercial cathode available
har	Beam #2 Energy (Low) (MeV)			0.7 MeV
n Cl	Beam #2 Energy (High) (MeV)	1.7	1.2	8.5 MeV (depends on ion)
ean	Beam #3 Ions			
n B	Beam #3 Energy (Low) (MeV)			
u Io	Beam #3 Energy (High) (MeV)			
Situ	Maximum Flux (1E+12 nv)			2e15 ion/cm2/s
In	Maximum Dose Rate (1E-4 dpa/s)		1	1 dpa/s
	Beam Spot Diameter (mm)		2	1–600 mm2
	Beam #1 Ions			H, D, He, O, N
cs	Beam #1 Energy (Low) (MeV)			0.7 MeV
risti	Beam #1 Energy (High) (MeV)			4 MeV (depends on ion)
aracte	Beam #2 Ions		Zr or Mo	All sputtered ions if commercial cathode available
Chź	Beam #2 Energy (Low) (MeV)			0.7 MeV
am	Beam #2 Energy (High) (MeV)			8.5 MeV (depends on ion)
Be	Beam #3 Ions			
Ion	Beam #3 Energy (Low) (MeV)			
itu	Beam #3 Energy (High) (MeV)			
X S	Maximum Flux (1E+12 nv)			2e15 ion/cm2/s
H	Maximum Dose Rate (1E-4 dpa/s)			1 dpa/s

Universities (Texas A&M University, University of Michigan, and University of Wisconsin)

	Institution	Texas A&M University	University of Michigan	University of Wisconsin
	Facility	Accelerator Laboratory	Ion Beam Laboratory	Tandem Accelerator Ion Beam
	Beam Spot Diameter (mm)			1–600 mm2
	Accelerator #1	1.7 MV ion accelerator	3 MV tandem (Pelletron) (Wolverine)	1.7 MV tandem
S	Accelerator #2	3 MV ion accelerator	1.7 MV tandem (Tandetron) (Maize)	
ator	Accelerator #3	400 kV Van de Graaff	0.4 MV implanter (Blue)	
lera	Accelerator #4	140 kV gas atom accelerator		
JCCe	Accelerator #5	10 kV gas ion source		
A	Accelerator #6			
	Accelerator #7			
	Temperature (Low) (K)	573 (also LN_2 temps)	77	77
	Temperature (High) (K)	1073	1500	1500
lent	Air			
und	Gas			
Enviror	Water		High-temperature/high-pressure water (PWR PW, BWR NWC, BWR HWC)	
	Vacuum	Greater than 2E-7 Torr	10E-8 Torr	1e-8 Torr
	Other			Planned molten salt corrosion
SS	Stage #1		High temperature and under static load	
tag	Stage #2			
n S	Stage #3			
ime	Stage #4			
pec	Stage #5			
S	Stage #6			
ation	TEM			FEI Titan aberration-corrected STEM, Phillips CM200 Ultra Twin TEM, Tecnai T-12 Cryo TEM, Tecnai TF-30
eriz	Hardness Testing		Buehler hardness indenter	Hysitron Tribonanoindenter
acti	Strain/Tension Testing			
Char	X-Ray Techniques		PIXE	Bruker D8 Discovery, PANalytical X'Pert PRO, Rigaku small angle x-ray scattering. Siemens Stoe, PIXE

Universities (Texas A&M University, University of Michigan, and University of Wisconsin) (continued)

	Institution	Texas A&M University	University of Michigan	University of Wisconsin
	Facility	Accelerator Laboratory	Ion Beam Laboratory	Tandem Accelerator Ion Beam
	Fatigue Testing			
	Not Permitted			
	Trace Amount (TEM Lamellae)	x	x	Yes
	Contact DR Limit (mR/hr)	10	100	1000
ial	30cm DR limit (mR/hr)			100
iter	Uranium Fuel			Yes
M	N-Irradiated U Fuel			Not allowed
tive	Actinides			Not allowed
oac	Beta-Gamma Activity Limit (Ci)			0.01
adi	Alpha Activity Limit (Ci)			Not allowed
R	Pu-239 Grams Equivalent			Not allowed
	Can Ship and Receive		@ Michigan Irradiated Materials Testing Complex	Yes, at Characterization Laboratory for Irradiated Materials
	Radiological Sample Preparation			Yes

Universities (Texas A&M University, University of Michigan, and University of Wisconsin) (continued)

	Institution	University of Tennessee- Knoxville	Idaho State University	Purdue University	Ohio University
	Facility	Ion Beam Materials Laboratory	Idaho Accelerator Laboratory	Center for Materials Under Extreme Environment (CMUXE)	Edwards Accelerator Laboratory
acteristics	Beam #1 Ions	Most elements, except heavy noble gases	Electrons	Inert and some of the reactive gases (H2, CH4, etc.)	
	Beam #1 Energy (Low) (MeV)	0.5	2 MeV	0.0003	
	Beam #1 Energy (High) (MeV)	27	25 MeV	0.0012	
	Beam #2 Ions		Electrons		
	Beam #2 Energy (Low) (MeV)		2 MeV		
n Char	Beam #2 Energy (High) (MeV)		44 MeV		
ean	Beam #3 Ions		H,D, others with source		
Ion B	Beam #3 Energy (Low) (MeV)		0.5 MeV		
n Situ	Beam #3 Energy (High) (MeV)		8 MeV		
	Maximum Flux (1E+12 nv)				
	Maximum Dose Rate (1E-4 dpa/s)	100			
	Beam Spot Diameter (mm)	2 to 5 mm	~10	10	

Universities (University of Tennessee, Idaho State University, Purdue University, and Ohio University)

Universities (University of Terry esses	Idaha Stata University Dund	a University and Ohio University	(a a m time a d)
Universities (University of Tennessee	e, Idano State University, Purdi	ie University, and Unio Universit	v) (continuea)
	, , , , , , , , , , , , , , , , , , , ,		

	Institution	University of Tennessee- Knoxville	Idaho State University	Purdue University	Ohio University
	Facility	Ion Beam Materials Laboratory	Idaho Accelerator Laboratory	Center for Materials Under Extreme Environment (CMUXE)	Edwards Accelerator Laboratory
tics	Beam #1 Ions				
	Beam #1 Energy (Low) (MeV)				
	Beam #1 Energy (High) (MeV)				
	Beam #2 Ions				
acteris	Beam #2 Energy (Low) (MeV)				
Ex Situ Ion Beam Chara	Beam #2 Energy (High) (MeV)				
	Beam #3 Ions				
	Beam #3 Energy (Low) (MeV)				
	Beam #3 Energy (High) (MeV)				
	Maximum Flux (1E+12 nv)				
	Maximum Dose Rate (1E-4 dpa/s)				
	Beam Spot Diameter (mm)				
lerators	Accelerator #1	3.0 MV tandem	25 MeV LINAC		4.5 MV Tandem Van de Graaff
	Accelerator #2		44 MeV LINAC		
	Accelerator #3		8 MV Tandem		
	Accelerator #4		45 MV LINAC		
Acce	Accelerator #5		3 MeV pulse power (30kA)		
V	Accelerator #6				
	Accelerator #7				

	Institution	University of Tennessee- Knoxville	Idaho State University	Purdue University	Ohio University
	Facility	Ion Beam Materials Laboratory	Idaho Accelerator Laboratory	Center for Materials Under Extreme Environment (CMUXE)	Edwards Accelerator Laboratory
onment	Temperature (Low) (K)	25	298		
	Temperature (High) (K)	1475			
	Air				
nvi	Gas				
E	Water				
	Vacuum	High vacuum	High vacuum available		
	Other				
es	Stage #1				
tag	Stage #2				
n S	Stage #3				
ime	Stage #4				
pec	Stage #5				
S	Stage #6				
Characteriza- tion	TEM		x		
	Hardness Testing				
	Strain/Tension Testing				
	X-Ray Techniques				
	Fatigue Testing				

Universities (University of Tennessee, Idaho State University, Purdue University, and Ohio University) (continued)

		University of Tennessee-			
	Institution	Knoxville	Idaho State University	Purdue University	Ohio University
	Facility	Ion Beam Materials Laboratory	Idaho Accelerator Laboratory	Center for Materials Under Extreme Environment (CMUXE)	Edwards Accelerator Laboratory
	Not Permitted	x			
	Trace Amount (TEM Lamellae)		x		
	Contact DR Limit (mR/hr)		100		
	30-cm DR limit (mR/hr)				
al	Uranium Fuel				
Radioactive Materi	N-Irradiated U Fuel				
	Actinides				
	Beta-Gamma Activity Limit (Ci)				
	Alpha Activity Limit (Ci)				
	Pu-239 Grams Equivalent				
	Can Ship and Receive		Hot lab for radiochemistry and an SEM/TEM/FIB lab that can handle moderate activity material		
	Radiological Sample Preparation				

Universities (University of Tennessee, Idaho State University, Purdue University, and Ohio University) (continued)

The Idaho National Laboratory is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance